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ABSTRACT

A quantile-based bias-correction method is applied to a seven-member dynamic ensemble of global wave cli-

mate simulations with the aim of reducing the significant wave heightHS, mean wave period Tm, and mean wave

direction (MWD) biases, in comparison with the ERA5 reanalysis. The corresponding projected changes toward

the endof the twenty-first century are assessed. SevenCMIP5EC-EARTHruns (single forcing)were used to force

sevenwavemodel (WAM) realizations (singlemodel), following theRCP8.5 scenario (single scenario). The biases

for the 1979–2005 reference period (present climate) are corrected using the empirical Gumbel quantile mapping

and empirical quantile mapping methods. The same bias-correction parameters are applied to the HS, Tm (and

wave energy fluxPw), andMWDfuture climate projections for the 2081–2100 period. The bias-corrected projected

changes show increases in the annual meanHS (14%),Tm (6.5%), andPw (30%) in the SouthernHemisphere and

decreases in the Northern Hemisphere (mainly in the North Atlantic Ocean) that are more pronounced during

local winter. For the upper quantiles, the bias-corrected projected changes are more striking during local summer,

up to 120%, for Pw. After bias correction, the magnitude of the HS, Tm, and Pw original projected changes has

generally increased. These results, albeit consistent with recent studies, show the relevance of a quantile-based

bias-correction method in the estimation of the future projected changes in swave climate that is able to deal with

the misrepresentation of extreme phenomena, especially along the tropical and subtropical latitudes.

1. Introduction

Potential increases of coastal hazards, like inundation

or extreme coastal erosion, are among the most dis-

ruptive effects of climate change. Therefore, changes in

wind-wave climate at the coast are particularly impor-

tant, especially when combined with sea level rise. Wind

waves (henceforth just called waves) are a key driver of

coastal hazards and considered one of the main climate

drivers impacting the coastal environment, significantly
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contributing to extreme water levels, storm surge effects,

and coastal erosion. Increased wave energy at the coast or

changes in wave direction (or the combination of both;

Morim et al. 2019) are responsible for extreme coastal

erosion and changes in coastal geomorphology (Łabuz

2015), particularly in lowland countries and delta areas

such as theMauritius (Bheeroo et al. 2016) or some of the

West African countries such as Senegal, Ghana, or

Nigeria (Goussard and Ducrocq 2014). Increased wave

energy is also responsible for overtopping and coastal

flooding and aggravated loads in coastal and offshore

structures, decreasing projected life span, with direct

economic impacts (IPCC 2014).

Waves are part of the climate system (Cavaleri et al. 1991;

Babanin et al. 2012) and play a key role in modulating ex-

changes of momentum, heat, and mass at the air–sea inter-

face (Sullivanet al. 2008;Högströmetal. 2009, 2011; Semedo

et al. 2009; Rutgersson et al. 2010). The accurate knowledge

of the current wave climate and its trends is a concern for

ship and marine infrastructures design standards, emanated

from classification societies (Bitner-Gregersen et al. 2015;

Bitner-Gregersen and Gramstad 2018). Therefore, besides

themonitoringof presentwave climate (Young1999;Young

et al. 2011; Aarnes et al. 2015), knowledge of how future

changes in climate might impact the future wave climate

became an important issue for decision and policymakers in

climate change adaptation and mitigation strategies.

Climate change refers to the systematic, long-term

changes in the statistics of the climate parameters (such

as wave sea-state parameters), sustained over long-term

periods (several decades or even longer time periods).

From observations (or modeling efforts) it can be

assessed how wave climate has been changing in the past.

Future wave climate projections, on the other hand, rely

on greenhouse gases emission scenarios, set on global

climate models (GCMs) used to force dynamic or statis-

tical wave models (Wang et al. 2010). Under the auspices

of the Coordinated Ocean Wave Climate projections

(COWCLIP) project (Hemer et al. 2010, 2012), sup-

ported by the World Climate Research Program–Joint

Technical Commission for Oceanography and Marine

Meteorology (WCRP-JCOMM), several dynamical and

statistical global wave climate projections have recently

been produced. The first studies were based on phase 3 of

the Coupled Model Intercomparison Project (CMIP3)

GCM climate simulations for the forcing (e.g., Mori et al.

2010; Hemer et al. 2013b; Semedo et al. 2013; Fan et al.

2013) of wave models, further leading to an ‘‘opportu-

nity’’ wave climate ensemble (Hemer et al. 2013a): the

COWCLIP-1 ensemble. The use of ensembles has been

widely accepted in recent climate studies, with the goal of

reducing the uncertainties arising from the GCM’s in-

ternal variability (Hawkins and Sutton 2009; Knutti and

Sedlá�cek 2013; Rauser et al. 2015). Dedicated dynamic

and statistical ensembles of wave climate simulations,

using wind or mean sea level pressure fields, and sea ice

cover (SIC), from phase 5 of CMIP (CMIP5) GCMs as

forcing, have also been recently pursued (e.g., Hemer and

Trenham 2016; Aarnes et al. 2017; Camus et al. 2017;

Casas-Prat et al. 2018). These wave climate ensembles

relied on a multiforcing strategy, that is, different GCMs

were used to force a single statistical or dynamical wave

model. In this study, however, a different approach is

pursued in which a seven-member single-GCM forced

dynamic wave climate ensemble is used to study the effect

of climate change on the late-twenty-first-century global

wave climate. Since it uses the sameGCM (EC-EARTH),

with the same radiative forcing (RCP8.5) and the same

wave model (WAM), the ensemble is named as a ‘‘single-

forcing, single-(wave)-model, single scenario’’ ensemble,

as in Semedo et al. (2018) and Lemos et al. (2019). This

ensemblewas built with the goal of reducing the variability

that is inherent to a multiforcing GCM approach (for the

samewavemodel), such as inHemer and Trenham (2016).

Standard future climate studies rely on the comparison

between the present (historical) climate (recent past) and

the future climate projections. The climate change impact

in the future is then assessed by the differences between the

historical and the future climates. Projected changes in the

future should then be seen in the context adopted models’

ability to reproduce the historical climate. The under-

standing of howwell theGCMor a wavemodel represents

the climatological mean state and temporal variability of

the historical climate is a key step. GCM atmospheric

simulations often exhibit biases resulting from simplified

physics or parameterization within the models (Rocheta

et al. 2017), which can cascade, increasing the uncertainty,

by forcing wavemodels offline. To correct these systematic

errors, and to improve the present climate simulations’

agreement with observations or reanalyses/hindcasts, the

implementation of bias-correction (BC) procedures has

become common practice in recent climate studies, on

parameters such as temperature (Applequist 2012), winds

(Hemer et al. 2012), and precipitation (Terink et al. 2009).

To the extent of our knowledge, the application of BC

techniques to dynamic global wave climate projections is

still limited in the scientific literature (Lemos et al. 2020).

BC methods range in complexity, from the simplest one,

the ‘‘delta’’ method (Hay et al. 2000), to more elaborated

ones, as the quantile mapping (Déqué 2007; Boé et al. 2007;
Amengual et al. 2012) or linear/nonlinear regression

methods (e.g., Hay and Clark 2003; von Storch and Zwiers

1999; Mínguez et al. 2011). The BC strategy has embedded

the fundamental assumption that the bias behavior of the

climate simulation, assessed in the historic period, does not

change in time and is the same in the future climate period
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(Haerter et al. 2011). For that matter, in this study, the

present (1979–2005) and future (2081–2100) wave climate

simulations’ time slices’ biases are corrected using the em-

pirical Gumbel quantile mapping (EGQM) and empirical

quantilemapping (EQM)methods (Dequé 2007;Amengual

et al. 2012), having the ERA5 reanalysis (Copernicus

Climate Change Service 2017; Hersbach et al. 2020) as the

historical reference. The goal of the present study is to assess

the impact of a warmer climate on the future global signifi-

cantwaveheightHS,meanwaveperiodTm,waveenergyflux

Pw, and mean wave direction (MWD) fields, after bias cor-

rection, using the WAMEC-EARTH single-forcing, single-

model and single-scenariowave climate ensemble and twoof

the bias-correction methods defined in Lemos et al. (2020).

The remainder of the paper is structured as follows: in

section 2, theWAMEC-EARTHensemble and theERA5

reanalysis, as well as the EGQM and EQM BC methods,

are presented. In section 3, the bias-correction performance

is analyzed and the results from the bias-corrected future

wave climate projections are presented. Results are dis-

cussed and summarized in section 4.

2. Models, data, and methods

a. The ERA5 reanalysis

The ERA5 is a global ECMWF reanalysis, produced

using the IntegratedForecast SystemcycleCY41R2 release,

covering the period from 1979 to 2018, being extended in

almost real time. The ERA5 (similar to its ERA-Interim

reanalysis predecessor; Dee et al. 2011) was produced using

an improved data assimilation technique (4D-Var scheme).

The horizontal resolution of the atmospheric model in

ERA5 is about 30km (;0.258 3 0.258), and the wave pa-

rameters have a resolution of about 40km (;0.368 3 0.368).
The time resolution is 1h. The WAMmodel in ERA5 was

set with a spectral resolution of 30 logarithmically spaced

frequency bins (from 0.03453 to 0.5478Hz), and 24 direc-

tional bins of 158. The bottom topography in ERA5 is based

on the ETOPO2 (NGDC 2006) dataset. Additional details

about the ERA5 reanalysis can be found in Copernicus

ClimateChangeService (2017) and inHersbachet al. (2020).

Preliminary results from the ERA5 wave reanalysis

performance evaluation showed that it tends to slightly

underestimate theHSBidlot et al. (2019), when compared

with an extensive dataset of in situ observations, altimetry

measurements, and previous reanalyzes/hindcasts. It was

concluded, nevertheless, that the ERA5 performs better

than previous wave products in several areas of the global

ocean (J. Bidlot 2019, personal communication), which

provides the necessary confidence in the ability of the

ERA5 to accurately represent the global wave climate, in

this study. Here, the globalHS,Tm, andMWDparameters

from the ERA5 dataset, at a 6-hourly time resolution and

interpolated to a 18 3 18 horizontal resolution (to match

the wave climate simulations) were used to train the BC

method, from 1 January 1979 to 31 December 2005.

b. The single-forcing, single-model, single-scenario
wave climate ensemble

Seven EC-EARTH climate simulation runs were used

to force the third-generationwavemodelWAMcycle 4.5.3

with 10-m wind speed U10 and SIC fields, producing the

seven wave ensemble members. Each EC-EARTH inte-

gration started in 1850, being differentiated by the initial

conditions, which are snapshots taken from the long pre-

industrial control simulation for CMIP5, 25 years apart.

The WAM global domain was set to a regular global

latitude–longitude grid (from 788N to 788S) with a fixed

horizontal spatial grid size of 18 3 18, a spectral resolution
of 25 logarithmically spaced frequency bins (from 0.041 to

0.411Hz) and directional bins of 158, and a 6-hourly time

resolution. The 1-min (;0.01688) ETOPO1 data (Amante

and Eakins 2009) have been used for bottom topography.

The single-forcing, single-model, single-scenario wave

climate ensemble performance skills used here have been

extensively evaluated against in situ wave observations, a

wave reanalysis (ERA-Interim;Deeet al. 2011), and awave

hindcast (CFSR; Saha et al. 2010), as shown inSemedoet al.

(2018), and against remote sensing altimetry observations

(Stopa et al. 2019). Further details on the ensemble design

and performance skills, as well on the EC-EARTH and

WAM setups, can be seen in Semedo et al. (2018).

TheWAMEC-EARTHwave climate simulations were

divided into three time slices: a present climate historic

time slice from 1979 to 2005 (the overlapping period with

ERA5), henceforth named as PC20, used to compute the

bias corrections, a 20-yr run time slice from 1986 to 2005,

henceforth named as PC20-C, and a late-twenty-first-

century future time slice, from 2081 to 2100 (also

20 years), henceforth named as FC21. The seven wave

climate ensemble members were named for convenience

from PC20-1 to PC20-7, from PC20-C-1 to PC20-C-7, and

from FC21-1 to FC21-7, for the present, control run, and

future periods, respectively. The wave climate ensemble

was built considering unweighted means of the individual

members. The wave climate changes are assessed by

comparison between thePC20-C and the FC21 time slices.

In the high latitudes, SIC was dealt with following one

of the procedures proposed by Tuomi et al. (2011), in

which only grid points with 30% or less ice concentra-

tion along the time series were treated as open water.

c. The EGQMand the EQMbias-correction methods

The EGQM method consists of calibrating a simu-

lated empirical cumulative distribution function (ECDF;

Wilks 1995), by adding a correction term to each
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individual (preselected) quantile. The quantiles where

this correction term is applied are defined by a standard

Gumbel distribution (SGD; Gumbel 1935), with a better

representation of the upper tail of the distribution. This

method was used to correct the HS and Tm parameters,

during PC20. For the application of theEGQMmethod, a

set of nq 5 20 quantiles was selected, following an SGD,

between the 1st quantile and the 99.999th quantile,

where 11 of the 20 selected quantiles are above the 99th

percentile, focusing on the correction of the extreme

values, where higher biases are usually found.

The correction term is calculated as the difference be-

tween the inverse ECDFs of ERA5 (ECDFERA521

) and

PC20 (ECDFPC2021

), at each selected quantile, and is ap-

plied at every 18 3 18 grid point of the PC20 global fields:

X(q
i
)5ECDFERA521

(q
i
)2ECDFPC2021

(q
i
),

i5 1, . . . ,n
q
, and (1)

PC20C(q
i
)5PC20(q

i
)1X(q

i
) , i5 1, . . . ,n

q
, (2)

where PC20 is the original wave parameter and PC20C is

the bias-corrected one, at each selected quantile. The

correction terms are linearly interpolated between the

selected quantiles. All data outside the defined quantile

range are extrapolated using the same correction terms

found for the first and last selected quantiles.

A simplified version of the EGQM, the EQM, method

was used to correct the PC20 MWD. Both the ERA5 and

the original PC20MWDs were transformed into zonal (u)

and meridional (y) components, each corrected individu-

ally. For the EQM method, a linearly spaced set of quan-

tileswas chosen, from the 1st to the 99th quantile (nq5 99).

The implementation then followed theEGQMmethod, by

solving Eqs. (1) and (2), at every 18 3 18 grid point. The

bias-corrected u and y components were finally used to

reconstruct the MWD parameter.

d. General method for bias-correction evaluation

The BC terms were computed for each ensemble

members’HS, Tm, and MWD global fields, for the PC20

(1979–2005) time slice, with ERA5 as the ‘‘ground

truth.’’ These correction terms were further applied to

the wave climate projections in the FC21 (2081–2100)

time slice, assuming that the original bias properties are

propagated into the future projections.

The BC terms were computed using the EGQM

(HS and Tm) and EQM (MWD) methods, for each grid

point [as in Lemos et al. (2020)]. After correction,

the ensemble was rebuilt considering the uniformly

weighted mean of the individual members. The Tm used

here is defined as the ratio between the first-negative

and the zeroth moments, as Tm 5m21/m0. Results from

the bias-correctedwave energy flux (Pw) projections were

also analyzed, considering the extreme events (mean

above the 99th quantile), where Pw 5 (rg2/64p)TmH
2
S

(Holthuijsen 2008).

The ability of the EGQM and EQMmethods to correct

the PC20members is evaluated for the global ocean, and at

13 different subareas, allowing a regional assessment of the

bias-correction performance. The subareas were chosen

according to Alves (2006) and are detailed in the online

supplemental material (Table SM1 and Fig. SM1). The

evaluation is carried out at each grid point, using the bias

[Eq. (3)], the PDF score [Perkins et al. 2007; Boberg et al.

2009; Brands et al. 2011; Eq. (4)], the distribution added

value [DAV; Soares and Cardoso 2018; Eq. (5)], and the

Yule–Kendall skewness measure [YK; Ferro et al. 2005;

Eq. (6)] metrics, defined respectively as

bias5
1

N
�
N

i51

PC20
i
2

1

N
�
N

i51

ERA5
i
, (3)

PDFScore5

ð
min(PDF

PC20
, PDF

ERA5
), (4)

DAV5
PDFScore

C
2PDFScore

O

PDFScore
O

5

ð
min(PDF

PC20C
, PDF

ERA5
)2

ð
min(PDF

PC20O
, PDF

ERA5
)ð

min(PDF
PC20O

, PDF
ERA5

)

, and (5)

YK5

"
(P

95
2P

50
)2 (P

50
2P

5
)

(P
95
2P

5
)

#
PC20

2

"
(P

95
2P

50
)2 (P

50
2P

5
)

(P
95
2P

5
)

#
ERA5

, (6)

where i is the index of the data at each grid point; N is

the length of the time series; ERA5 refers to the

reference ERA5 data; PC20 refers to each of the PC20

members (from PC20-1 to PC20-7); C and O are the
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bias-corrected and original datasets; and P95, P50, and

P5 correspond to the 95th, 50th, and 5th quantiles,

respectively.

While the PDF score provides a measure of the com-

mon area between the empirical PDFs of each of the

seven PC20 ensemble members and ERA5 ranging from

0 (nooverlap) to 1 (perfect overlap), theDAVrelates two

PDF scores (the original and bias-corrected ones) by

normalizing their difference (bias corrected minus origi-

nals, divided by the originals). Positive or negative DAVs

are related to an increase or decrease, respectively, in the

common area between PDFs after applying the BC.

The YK measures are used to estimate the skewness of

the PC20 distributions, in comparisonwith those of ERA5.

The skewnesses are computed using the relative positions

of the 95th and 5th quantiles with respect to the median

(50th quantile), resulting in a positive value for right-

skewed curves and a negative value for left-skewed curves.

3. Results

a. Performance of bias correction

The PC20 original annual mean and extreme mean

(mean above the 99th quantile) HS biases, computed

using Eq. (3), are presented in Fig. 1, as well as

the respective corrected biases. Global and regional

quantile–quantile (Q–Q) plots are shown in Fig. SM2 of

the online supplemental material. The original PC20

overestimates the mean HS in most of the global ocean,

relative to ERA5 (Fig. 1a and supplemental Fig. SM2a),

particularly in the Pacific Ocean and in the mid-to-high

latitudes of the Southern Hemisphere, between 0.1

and 0.5m (Figs. SM2d–f; Table 1). Locally higher biases

are visible near some archipelagos (e.g., Polynesia,

Micronesia, Maldives, Hawaii, and the Aleutian Islands).

These differences, however, occur potentially due to un-

resolved subgrid-scale bathymetry in the PC20 WAM

setup (Semedo et al. 2018), taken into account in ERA5.

The original PC20 agreement with ERA5 can be con-

sidered as good in the Atlantic basin, but biases up to

0.5m are still visible in Fig. 1a. The original biases

for the extreme mean HS also show a consistent PC20

overestimation along the extratropical latitudes of both

hemispheres (Fig. 1b and supplemental Figs. SM2b–f),

generally below 2.2m, but up to 2.6m in the North Pacific

subbasin (Fig. SM2c). A possible misrepresentation of

tropical cyclones in PC20, compared to ERA5 (which

potentially better simulates tropical cyclones due to its

higher temporal and spatial resolution), is also noticeable,

in the tropical North Atlantic (e.g., Gulf of Mexico

and Caribbean Sea) and Pacific (e.g., Philippines Sea)

(Fig. SM2j). The original biases there show a PC20 un-

derestimation of the extreme HS, locally reaching 1 and

3m in the North Atlantic and North Pacific, respectively.

After the bias correction has been applied, improvements

FIG. 1. Original PC20HS bias (m) relative to ERA5 for (a) the annual meanHS (m) and (b) the extreme mean (mean for values higher

than the 99th quantile)HS (m), and (c),(d) the corresponding bias-corrected fields, using the EGQMmethod. The color scales vary among

the panels.
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of two–three orders of magnitude are visible for the an-

nual mean and extreme mean (mean above the 99th

quantile)HS biases. The annual meanHS biases virtually

disappear, with values below 0.01m. The corrected biases

are not zero, however, because of the linear nature of the

correction parameters’ interpolation, between each of

the predefined quantiles (only nine of them are below the

99th). This also allows part of the uncertainty to be kept.

Figure 2 is similar to Fig. 1, but for Tm. Global and

regional Q–Q plots are shown in Fig. SM3 of the online

supplemental material. Similarly to HS, the original

PC20 mean and extreme Tm values are mostly

overestimated across the global ocean, relative to ERA5

(also visible in Fig. SM3a and Table 1). However,

slightly higher biases (above 1 s) are visible along the

tropical latitudes of both hemispheres, in the so-called

swell pools (Semedo 2010). Higher biases in the inter-

tropical latitudes can also be seen in Figs. SM3i (TENP),

SM3j (TWNP), SM3k (TESP), SM3l (TWSP), SM3m

(TNIO), and SM3n (TSIO) (see Fig. SM1 for regional

areas and acronym definitions). After correction, the

biases of the annual mean and extreme mean Tm

are effectively reduced, globally, with values generally

bellow 0.01 and 0.04 s, respectively (Figs. 2c,d),

TABLE 1. PC20 original (OR) and corrected (BC) biases for the annual mean HS, Tm, and MWD wave parameters. Here, ‘‘key p.’’

means ‘‘key point,’’ roughly in the center of each area because it is not possible to averageMWD over the entire area. The key points are

shown in Fig. SM4; ‘‘N/D’’ means ‘‘no data available.’’

Area HS OR (m) HS BC (m) Tm OR (s) Tm BC (s) MWD OR (key p.) (8) MWD BC (key p.) (8)

Global 0.25 8.81 3 1024 1.06 4.68 3 1024 N/D N/D

ETNA 20.02 1.20 3 1023 0.42 2.10 3 1023 22.51 3.50 3 1023

ETNP 0.30 2.10 3 1023 1.22 7.00 3 1023 21.43 2.90 3 1023

ETSA 0.26 1.00 3 1023 0.89 3.26 3 1024 22.21 22.80 3 1023

ETSP 0.32 1.40 3 1023 1.09 2.65 3 1024 4.08 6.40 3 1023

ETSI 0.30 1.30 3 1023 0.92 9.84 3 1024 1.30 24.50 3 1023

TNAO 0.08 3.56 3 1024 0.74 5.90 3 1024 0.66 20.03

TSAO 0.18 1.06 3 1024 1.03 26.59 3 1024 1.33 20.04

TENP 0.33 1.02 3 1024 1.59 21.40 3 1023 29.3 4.80 3 1023

TWNP 0.19 9.72 3 1024 1.23 2.50 3 1023 10.9 20.01

TESP 0.34 21.51 3 1024 1.33 22.20 3 1023 24.8 23.00 3 1023

TWSP 0.43 29.33 3 1025 1.75 27.10 3 1024 10.6 22.5 3 1023

TNIO 0.19 7.77 3 1024 1.39 1.20 3 1023 5.22 20.01

TSIO 0.23 1.92 3 1024 1.24 21.30 3 1023 16.6 20.07

FIG. 2. As in Fig. 1, but for Tm (s). The color scales vary among the panels.
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showing improvements that can exceed two orders of

magnitude.

Figure 3 shows the PC20 uncorrected annual mean

MWD biases, overlapped with the PC20 (blue) and

ERA5 (green) MWD arrows. While negative (counter-

clockwise) biases are mostly visible in the extratropical

latitudes of both hemispheres, associated with a more

western MWD component along the storm belts, posi-

tive (clockwise) biases prevail along the tropical lati-

tudes. These positive biases are associated with an

enhanced southerly MWD component in PC20, most

probably associated with intensified swell propagation

from the Southern Ocean (as supported by Figs. 1 and 2

and supplemental Figs. SM2 and SM3). While the

highest original biases are visible mainly along the in-

tertropical latitudes, and Northern Hemisphere, the

lowest values are present in the extratropical latitudes of

the Southern Hemisphere (Southern Ocean), being as-

sociated with higher and lower MWD intra-annual

variability, respectively. The ERA5, and original and

bias-corrected PC20 MWD relative frequencies (%),

considering 58 bins, at centered key locations inside each
of 13 selected areas, are shown in Fig. SM4 of the online

supplemental material. The higher (and clockwise)

original biases are visible along the tropical latitudes of

the Pacific and Indian oceans, in Figs. SM4h (TENP),

SM4i (TWNP), SM4j (TESP), SM4k (TWSP), SM4l

(TNIO), and SM4m (TSIO) and in Table 1. After the

correction of the directional biases, very low values are

visible in most of the global ocean (Fig. 3b and supple-

mental Fig. SM4), showing improvements of two orders

of magnitude along the tropical and subtropical lati-

tudes, and above three orders of magnitude along the

extratropical latitudes of both hemispheres (Table 1).

The improvements visible for the HS (Figs. 1c,d), Tm

(Figs. 2c,d), and MWD (Fig. 3b) are, however, respon-

sible for constraining the original PC20 intermember

uncertainty, since all the ensemblemembers are corrected

using the same reference dataset (ERA5 reanalysis).

For the HS and Tm, the high sensitivity to the reference

dataset is especially relevant at the extremes, since 11 of

the 20 predefined quantiles for the EGQM method are

above the 99th. Therefore, the results in section 3b

should be interpreted considering this limitation, taking

also into account that the ERA5 reanalysis tends to

slightly underestimate the mean and extremeHS (Bidlot

et al. 2019), when compared with in situ observations,

altimetry data and previous reanalyses/hindcasts.

The PC20 ability to representHS and Tm intra-annual

variability was also evaluated. This comparison was

done for the global ocean and separately for the 13 se-

lected areas. The HS intra-annual variabilities (daily

averaged) for the original and bias-corrected PC20, as

well as for the reference ERA5, are displayed in Fig. 4.

The widespread original PC20 HS daily mean overesti-

mation across the global ocean, between around 0.2 and

0.4m throughout the year, peaking in the late months, is

visible in Fig. 4a. The higher Northern Hemisphere

intra-annual variability is to blame here, adding higher

original biases during the boreal winter (Figs. 4b,c) to

the relatively stable Southern Hemisphere original bia-

ses (Figs. 4d–f). A good agreement between the original

PC20HS and the ERA5HS is visible for the ETNA area

(Fig. 4b, also visible in Fig. 1a); however, for tropical

areas such as TENP and TWSP, the agreement is worse

(Figs. 4i,l), with daily mean overestimations punctually

exceeding 0.5m. After the correction of the biases, the

agreement of both the global and regional HS daily

means with ERA5 increased. The differences between

the bias-corrected and ERA5 HS daily means are gen-

erally below 0.1m.

Figure 5 is similar to Fig. 4, but for Tm. The original

PC20 Tm overestimation is present for both the global

ocean (Fig. 5a) and for all the regional areas (Fig. 5b–n),

similar to HS (Fig. 4). Higher original daily mean biases

are visible in the TWSP area, reaching 2 s during the

FIG. 3. (a) Original PC20 annual mean MWD bias (8; color shades) relative to the ERA5 reanalysis (blue arrows show the original

PC20 MWD, and green arrows show the ERA5 MWD). (b) Bias-corrected PC20 annual mean MWD bias (8), using the EQM method,

relative to the ERA5 reanalysis.
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FIG. 4. TheHS intra-annual variability (daily means) from the original (red line) and bias-

corrected (green line) PC20 and from ERA5 (blue line) for the following areas: (a) global,

(b) ETNA, (c) ETNP, (d) ETSA, (e) ETSP, (f) ETSI, (g) TNAO, (h) TSAO, (i) TENP,

(j) TWNP, (k) TESP, (l) TWSP, (m) TNIO, and (n) TSIO. The red and green bands rep-

resent ensemble members spread for the original and bias-corrected PC20, respectively.

The magnitude of the vertical axes varies among the panels.
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FIG. 5. As in Fig. 4, but for Tm (s). The magnitude of the vertical axes varies among

the panels.
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early and late months of the year (austral winter). For

the ETNA area, a good agreement between the original

and the ERA5 Tm daily means is visible, with biases

below 0.8 s. After the biases have been corrected, the

agreement improved in all areas. The differences be-

tween the bias-corrected and ERA5HS daily means are

generally below 0.5 s.

In both Figs. 4 and 5 (forHS and Tm), agreement with

ERA5 improved after bias correction. However, biases

in the daily means are still visible, since the EGQM

method only acted by correcting specific quantiles in

each time series, interpolating linearly between them.

Therefore, the original intra-annual variability, as well

as the daily mean intermember uncertainty (spread), is

mostly conserved after bias correction. Despite the vir-

tually inexistent annual mean bias (considering the en-

tire time series), low biases are still present when smaller

time scales are considered (like daily means).

TheDAVs from the comparison between theHS PDF

scores [Eq. (5)], considering the entire distribution and

the HS values above the 99th quantile, as well as the

normalized differences between the bias-corrected and

original PC20HSYK, relative to ERA5, are displayed in

Fig. 6. While the highest uncorrectedHS PDF scores are

present along the extratropical latitudes of both hemi-

spheres, generally above 0.7 (not shown), the lowest

ones are found in the tropical and subtropical lati-

tudes (very close to zero for the HS values above the

99th quantile). The potential misrepresentation of local

phenomena by PC20 can explain the higher mismatch

between the PC20 and the ERA5 PDFs, due to the

higherHS interannual variability in these areas, owing to

the presence of tropical cyclones. As amatter of fact, it is

in the tropical and subtropical latitudes that both DAVs

for the entire and upper tail of the distribution assume

the highest values, corresponding to the greatest in-

creases in the PDF scores after bias correction. While

the DAVs in Fig. 6a show increases in the original PDF

scores of up to one order of magnitude, in Fig. 6b, these

can locally exceed three orders ofmagnitude. The smallest

increases in the original PDF scores are present in the

Atlantic Ocean (mainly along the North Atlantic), where

the original agreement between PC20 and the ERA5 re-

analysis was already relatively good (Figs. 1a,b and 4b).

Considering the normalized differences between the

bias-corrected and original PC20 HS YK measures,

present in Fig. 6c, it is clear that after the correction of the

biases, the YK dropped across the global ocean, to values

close to zero (green areas; reduction between 299%

and 2101%). A total agreement between the PC20 and

ERA5 skewness, after bias correction, would result in a

(virtual) YK value of 0 and normalized difference value

of2100%. However, a change in the YK signal, after bias

correction, yields values below 2100%. In the higher lat-

itudes of the Southern Hemisphere and in the North

Atlantic subbasin, the stronger YK normalized differences

FIG. 6. DAV (%) between the bias-corrected and original PC20 (a)HS and (b)HS for values higher than the 99th quantile. Also shown

are (c) normalized differences (%) between the bias-corrected and original YK skewness measure, relative to the ERA5 reanalysis. The

color scales vary among the panels. The normalized differences are defined as bias-corrected minus original, normalized by the original.
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fluctuations, generally from 267% to 2133%, are still

consistent with a decrease in the YK values, after bias

correction. The better agreement between the original

PC20 and ERA5HS in these areas (Fig. 1a) is responsible

for lower original YK values, which are more sensitive to

small variations, after bias correction, leading to a higher

range of YK normalized differences.

Figure 7 is similar to Fig. 6, but for Tm (DAVs and

YK). In both Figs. 7a and 7b, the higher DAVs are

present along the tropical and subtropical latitudes of

both hemispheres, the areas where the increases in the

PDF scores, after bias correction, were higher. Similar to

what was shown in in Figs. 6a and 6b, the DAVs in

Figs. 7a and 7b show increases in the original PDF scores

of up to one and three orders of magnitude, considering

the entire Tm distribution and the Tm values above the

99th quantile, respectively. The Tm YK, relative to

ERA5, also show lower values, after bias correction,

across the global ocean, in Fig. 7c. Changes from295%

to 2105% are present everywhere except for the

North Atlantic subbasin and the Mediterranean Sea,

in which the normalized differences range is higher

(from 271% to 2113%), as a result of the better

agreement between the original PC20 and ERA5 Tm

in these areas (Fig. 2a).

b. Bias-corrected wave climate projections toward
the end of the twenty-first century

To correct the biases for the HS, Tm and MWD pro-

jections, the same corrections terms obtained for the

PC20 time slice (1979–2005) were applied to the FC21

time slice (2081–2100). For that matter, the bias prop-

erties are considered stationary throughout the present

and future period simulations. The bias-corrected future

projections are presented by comparing the bias-corrected

FC21 with the bias-corrected PC20-C (1986–2005) time

slice, following the COWCLIP standards (Hemer et al.

2012). The projected wave climate changes are assessed

through normalized differences for HS, Tm, and Pw

(FC21 minus PC20-C normalized by PC20-C), and ab-

solute differences for MWD (FC21 minus PC20-C). The

results are analyzed for annual and seasonal [December–

February (DJF) and June–August (JJA)] means. The

statistical significance of the projected changes was

computed using standard t test for difference in means.

The shading in panels a and b, d and e, and g and h of

Figs. 8–11 and 13, described in more detail below,

correspond to statistically nonsignificant areas at the

99% confidence level. Because of the reduced inter-

member uncertainty of the ensemble, most of the

projected changes are statistically significant.

1) SIGNIFICANT WAVE HEIGHT

Figure 8 shows the annual and seasonal original and

bias-corrected mean HS projected changes, as well as

the differences between the original and bias-corrected

projections. The hatching in Figs. 8c, 8f, and 8i outlines

areas where the magnitude of the original projected

changes (positive or negative) decreased after the bias

correction (the same applies for Figs. 9–11 and 13,

FIG. 7. As in Fig. 6, but for Tm. The color scales vary among the panels.

SEPTEMBER 2020 LEMOS ET AL . 1403

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/59/9/1393/4995794/jam

cd190297.pdf by U
N

IVER
SID

AD
 D

E C
AN

TABR
IA user on 11 Septem

ber 2020



described below). The annual and seasonal (DJF and

JJA) original and bias-corrected PC20-CmeanHS are

presented in Fig. SM5 of the online supplemental

material.

Upon the correction of the biases, the PC20-C annual

and seasonal mean HS patterns have been maintained

(Fig. SM5), however, the bias-corrected mean wave

heights tend to be lower, especially in the Southern

Hemisphere. This reduction is due to the original PC20

annual mean HS overestimation (Figs. 1a and 4; sup-

plemental Fig. SM2 and Table SM1) that is now cor-

rected. The bias-corrected annual mean HS projections

(Fig. 8b) show increases in wave heights in most of the

SouthernHemisphere, reaching 14% in theAtlantic and

Indian sectors of the Southern Ocean. These projected

increases in the annual mean HS tend to propagate

northward, along the eastern halves of the Atlantic,

Pacific, and Indian Oceans (across the swell pools; Chen

et al. 2002; Semedo et al. 2011, 2018), due to swell prop-

agation. The projected decreases on the annual meanHS

are more confined to the Northern Hemisphere, espe-

cially in the North Atlantic subbasin, where expected

decreases of210% are noticeable. The western Pacific is

also dominated by projected decreases on annual mean

HS; however, they are lower, not exceeding 27%.

The comparison between the bias-corrected and

original annual mean HS projected changes shows in-

creases in the magnitudes of the original projected

changes in most areas of the global ocean (unhatched

areas in Fig. 8c), after the correction of the biases. The

reader is warned that, in this case, we are referring to

differences between the normalized differences (pro-

jected changes), with increased (decreased) magnitude

when the bias-corrected projected changes are higher

(lower) than the original, in absolute value. The in-

creases in the magnitude of the original projected

changes on the annual mean HS reach 0.9% in the

higher latitudes and 1.3% in the subtropical latitudes of

the eastern Pacific. Enhanced projected increases, after

bias correction, are also noticeable in some areas of the

north Indian subbasin (2%). Enhanced projected de-

creases, on the other hand, are visible mainly in the sub-

tropical latitudes of the North Atlantic and North Pacific

subbasins, reaching 21.1% and 20.7%, respectively.

The bias-corrected projected changes for the DJF

mean HS (Fig. 8e) show decreases in most areas of the

global ocean, down to211% and215% in the Arabian

and in theArafura Seas, respectively. Exceptions are the

SouthernOcean and areas of the North Pacific subbasin,

where increases of up to 11% and 5%, respectively, can

FIG. 8. (a)–(c) Annual, (d)–(f) DJF, and (g)–(i) JJA (left) original and (center) bias-corrected meanHS projected changes (normalized

differences: FC21 minus PC20-C normalized by PC20-C; %), along with (right) the absolute differences (%) between the bias-corrected

and original ensemble mean projected changes (between their normalized differences). The gray shading in (a), (b), (d), (e), (g), and

(h) corresponds to areas without statistically significant (at 99% confidence level) projected changes. The hatching in (c), (f), and

(i) outlines areas where the absolute magnitude of the original projected changes decreased after the bias correction. The color scales are

different among panels. The original and bias-corrected PC20-C mean HS are shown in supplemental Fig. SM5.
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be expected during DJF. For the JJAmeanHS (Fig. 8h),

on the other hand, the bias-corrected projections show

mostly increases. In the Southern Hemisphere, positive

HS changes, locally up to 15% (Southern Ocean) can

be expected. Projected increases of up to 15% are

also visible in the South China Sea, Bay of Bengal,

Caribbean Sea, Gulf of Mexico, and in the Arctic Ocean

(probably due to an extended reduction of the SIC

during JJA). In theNorthAtlantic and Pacific subbasins,

the bias-corrected projected changes are negative dur-

ing JJA, down to 213% and 25%, respectively. The

comparison between the bias-corrected and the original

DJF and JJA mean HS projected changes (unhatched

areas in Figs. 8f and 8i) shows increases in magnitude

mostly in the Southern (Northern) Hemisphere during

DJF (JJA). An enhancement of the original projected

decreases in the Coral Sea during DJF, in25%, is visible,

as well as an enhancement of the original projected in-

creases in the Philippines Sea during JJA, in 8%. For the

annual, DJF and JJA mean HS, the global ocean area

where projected increases are expected to occur increased

after bias correction, from 58.8% to 59.0%, 31.6% to

31.9%, and 68.7% to 69.6%, respectively (Table 2).

Figure 9 and Fig. SM6 (in the online supplemental

material) are similar to Fig. 8 and supplemental Fig. SM5,

but for the extreme HS. After bias correction a slight re-

duction of the extreme mean HS is noticeable, especially

in the Southern Hemisphere, where the original PC20

overestimated the HS upper quantiles (Fig. SM2). The

bias-corrected projected changes for the extreme mean

HS (Fig. 9b) show increases of up to 15% in the Southern

Ocean, and between 1% and 5% along the swell pools.

Increases can also be expected in the northern areas of the

Indian Ocean (e.g., Bay of Bengal and Arabian Sea; up to

15%), and in the higher latitudes of the North Atlantic

and North Pacific subbasins (up to 7%). Nevertheless, an

attenuation of the original projected changes on the ex-

treme meanHS is visible after bias correction (hatched in

Fig. 9c), mainly in the extratropical latitudes of both

hemispheres (between 1% and 3%).

During DJF, the bias-corrected projected changes

(Fig. 9e) in the western tropical Pacific and western

tropical south Indian Ocean (east of Madagascar) show

decreases down to 222%. These correspond to an en-

hancement of the original projected decreases of 29%

and27.8%, respectively. During JJA, the bias-corrected

projected changes (Fig. 9h) in the tropical and subtropical

areas of the western North Atlantic reach 226%, cor-

responding to an enhancement of the original projected

decreases in29%. Bias-corrected projected increases of

up to 40% are visible in the Philippines Sea, during JJA,

corresponding to an enhancement of the original pro-

jected increases in 15%. All the areas mentioned before

are in the path of tropical cyclones. The enhancement of

the original projected changes there is possibly due

to the misrepresentation of local tropical phenomena in

the original PC20, when compared with ERA5.

For the annual, DJF, and JJA extreme mean HS, the

global ocean area where projected increases are ex-

pected to occur increased after bias correction, from

55.2% to 57.9%, 34.8% to 40.7%, and 63.0% to 68.3%,

respectively (Table 2).

2) MEAN WAVE PERIOD

Figure 10 and Fig. SM7 (in the online supplemental

material) are similar to Fig. 8 and supplemental Fig. SM5,

but for the annual mean Tm. After the correction of the

(mostly) positive biases (Figs. 2a and 5; supplemental

Fig. SM2 and Table SM1), the PC20-C annual and sea-

sonal mean Tm patterns have been maintained, showing

nevertheless a consistent reduction of the original mean

wave periods (within 1–2 s; Fig. SM7).

The bias-corrected projected changes in the annual

mean Tm (Fig. 10b) show increases mainly in the

Southern Hemisphere and along the swell pools, up to

4.5%, consistent with the projected increases on the

annual mean HS in the same areas (Fig. 8b). Projected

decreases can be expected in the North Atlantic sub-

basin (including the Mediterranean and Baltic Seas)

and in the western half of the Pacific basin, down

to25.5%. The comparison between the bias-corrected

and the original projected changes shows increased

magnitudes in most of the global ocean, after bias

correction (Fig. 10c). Enhanced projected increases are

noticeable in the eastern halves of the Atlantic and

Pacific basins, peaking in the tropical areas (swell

pools), at 1.5% of the original projected increases. In

the North Atlantic subbasin and in the western half of

the Pacific basin, enhanced projected decreases in the

annual mean Tm are noticeable: 20.9% and 21.5%,

respectively.

TABLE 2. Percentage of the global ocean area where projected

increases and decreases in the ensemble’sHS are expected to occur,

considering the original and bias corrected projections.

HS OR

increase

HS BC

increase

HS OR

decrease

HS BC

decrease

Mean

Annual 58.8 59.0 41.2 41.0

DJF 31.6 31.9 68.4 68.1

JJA 68.7 69.6 31.3 30.4

Extreme

Annual 55.2 57.9 44.8 42.1

DJF 34.8 40.7 65.2 59.3

JJA 63.0 68.3 37.0 31.7
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During DJF, decreases in the bias-corrected mean Tm

can be expected in most of the Northern Hemisphere,

down to 24.5% (Fig. 10e). Exceptions are the eastern

half of theNorth Pacific subbasin (up to 4.5%), the north

Indian subbasin (up to 6.5%) and theArctic (up to 5.5%,

possibly due to a reduction of the SIC). Projected in-

creases of up to 4.5% are visible in the Southern

Hemisphere, mainly in the swell pools. During JJA,

FIG. 9. As in Fig. 8, but for the extreme mean. bias-corrected extreme mean HS (mean for values higher than the 99th quantile) The

original and bias-corrected PC20-C extreme mean HS are shown in supplemental Fig. SM6.

FIG. 10. As in Fig. 8, but for Tm. The original and bias-corrected PC20-C mean Tm are shown in supplemental Fig. SM7.
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projected increases of up to 7.5% are visible across

most of the global ocean (Fig. 10h). Exceptions are the

North Atlantic subbasin and the western half of the

Pacific basin. For both seasons, after bias correction,

increased projected magnitudes are visible especially

in the tropical areas of both hemispheres (less than 2%;

Figs. 10f,i).

For the annual, DJF and JJA mean Tm, the global

ocean area where projected increases are expected to

occur increased after bias correction from 77.7% to

78.2%, 59.9% to 60.3%, and 86.3% to 86.8%, respec-

tively (Table 3).

Figure 11 and Fig. SM8 (in the online supplemen-

tal material) are similar to Fig. 9 and supplemental

Fig. SM6, but for the extreme mean Tm. The bias-

corrected projected changes in the extreme mean Tm

(Fig. 11b) show increases of up to 5.5% (decreases down

to 25.5%) in the Southern (Northern) Hemisphere.

These changes tend to be higher in the tropical latitudes.

The projected increase in the extreme mean Tm along

swell pools is also consistent with the projected in-

crease on the extreme meanHS in the Southern Ocean

(Fig. 9b). After the biases have been corrected, the

projected changes in the extreme mean Tm show in-

creased magnitudes in the tropical latitudes of both

hemispheres (unhatched areas in Fig. 11c), mainly be-

tween 0.3% and 0.9%.

The bias-corrected DJF projected changes in the ex-

treme mean Tm (Fig. 11e) show increases in the Indian

Ocean, and in the South Atlantic and Pacific subbasins,

mainly between 1% and 3%, but up to 9%. Projected

decreases can be seen in the North Atlantic and western

half of the Pacific basin, down to 23% and 27%, re-

spectively. During JJA (Fig. 11h), the bias-corrected

projected increases reach 15% in the Gulf of Mexico,

and in the Caribbean, Arafura, Java, Celebes, and Sulu

Seas. Projected increases are also visible covering part of

the North Atlantic subbasin, up to 11%. Projected de-

creases during JJA peak at and211% in the Caribbean

Sea. After bias correction, increased magnitudes are

visible, during DJF (Fig. 11f), in most of the Southern

Hemisphere and in the Arabian Sea (3.3% and 4.5%,

respectively), and during JJA (Fig. 11i), mostly in the

Northern Hemisphere and in the Indonesian archipel-

ago. In the tropical latitudes of the North Atlantic

subbasin (e.g., Caribbean Sea and Gulf of Mexico),

the differences between the bias-corrected and original

JJA projected changes in the extreme mean Tm range

from 24.5% to 10%. Such large differences possibly

arose due to the misrepresentation of local tropical

phenomena in the original PC20, which resulted in

higher volatility among the bias-correction parameters,

then transferred to the bias-corrected FC21.

For the annual, DJF and JJA extreme mean Tm, the

global ocean area where projected increases are ex-

pected to occur increased after bias correction, from

78.1% to 79.6%, 66.4% to 72.1%, and 75.4% to 79.4%,

respectively (Table 3).

3) MEAN WAVE DIRECTION

Figure 12 and Fig. SM9 (in the online supplemen-

tal material) are similar to Fig. 8 and supplemental

Fig. SM5, but for the mean MWD. The attenuation of

swell propagation from the Southern Ocean, after the

correction of the biases, is visible in Fig. SM9. Greater

differences are noticeable during JJA (Figs. SM9e,f),

with a less southerly component at the swell pools.

The bias-corrected projected changes in the annual

mean MWD (Fig. 12b) show counterclockwise rota-

tions, mainly along the extratropical latitudes of both

hemispheres (mostly between 238 and 2158), and

clockwise rotations along the tropical and subtropical

ones. This pattern is in agreement with an enhance-

ment of the swell propagation from the Southern

Ocean (as seen in Figs. 8–11), but also with a pro-

nounced decrease in the SIC in the higher latitudes of

the Northern Hemisphere. The comparison between

the bias-corrected and original projected changes in the

annual meanMWD (Fig. 12c) shows higher differences

in the Northern Hemisphere.

For both seasons (DJF and JJA), the bias-corrected

projected changes on themeanMWD(Figs. 12e,h) show

counterclockwise (clockwise) rotations mainly along

the extratropical (tropical and subtropical) latitudes,

similarly to the bias-corrected projected changes on the

annual mean MWD, in Fig. 12b. The highest projected

changes on the seasonal mean MWD take place in

the tropical and subtropical latitudes of the respective

summer hemisphere, probably due to local phenomena.

This is also where greater differences in the seasonal

mean MWD projected changes occur, after the correc-

tion of the biases (e.g., southeastern of the Pacific basin

during DJF and Philippines Sea during JJA; Figs. 12f,i).

TABLE 3. As in Table 2, but for Tm.

Tm OR

increase

Tm BC

increase

Tm OR

decrease

Tm BC

decrease

Mean

Annual 77.7 78.2 22.3 21.8

DJF 59.9 60.3 40.1 39.7

JJA 86.3 86.8 13.7 13.2

Extreme

Annual 78.1 79.6 21.9 20.4

DJF 66.4 72.1 33.6 27.9

JJA 75.4 79.4 24.6 20.6
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4) WAVE ENERGY FLUX

Thewave energy flux (Pw; kWm21) projected changes

were also computed, for both the original and the

bias-corrected instances. Given the greater impacts of

the extreme events, only the extreme mean Pw is con-

sidered. Figure 13 and Fig. SM10 (in the online supple-

mental material) are similar to Fig. 9 and supplemental

Fig. SM6, but for the extreme mean Pw. The extreme

Pw means are generally reduced after bias correction

(Fig. SM10). This reduction (Figs. SM10a,b) exceeds

300kWm21 in the Northern Hemisphere (from above

1100 to below 800kWm21), and 400kWm21 in the

Southern Hemisphere (from 1000 to 600kWm21). Such

differences between the bias-corrected and original PC20-

C extreme mean Pw values can be attributed to the

original PC20 extreme mean HS and Tm overestima-

tion, visible in Figs. 1b and 2b, but also in Figs. 4 and 5,

and in supplemental Figs. SM2 and SM3 and Table SM1.

The bias-corrected projected changes in the extreme

mean Pw (Fig. 13b) show consistent increases between

10% and 30% in the Southern Ocean, and up to 18%

along the swell pools. Projected increases of up to 30%

and 18% are also visible along the northern areas of the

Indian basin (e.g., Bengal Bay and Arabian Sea) and in

the higher latitudes of the North Atlantic and Pacific

subbasins, respectively. The comparison between the

bias-corrected and the original projected changes in the

extreme mean Pw shows decreased magnitudes, after

bias correction, mainly in the Southern Ocean and in the

North Atlantic subbasin (hatched areas in Fig. 13c),

with an attenuation between 1.8% and 5.4%. Increased

magnitudes are visible in the swell pools, Philippines

Sea, Gulf of Mexico, Caribbean Sea, and higher lati-

tudes. These increases in the magnitude of the original

projected changes in the extreme mean Pw ascend

to 9%.

During DJF (Fig. 13e), the bias-corrected projected

changes show decreases in the extreme mean wave

energy fluxes in the North Atlantic subbasin, down

to 220%, and in the western tropical Pacific and

western areas of the Indian Ocean, down to 236%

and 242%, respectively. These correspond to an en-

hancement of the original projected decreases in222.5%

and 216.5%, respectively. The bias-corrected projected

increases during DJF take place mainly in the Southern

Ocean, between 12% and 44%, corresponding to an en-

hancement of the original projected increases in more

than 20% in the higher latitudes (Fig. 13f). During JJA

(Fig. 13h), the bias-corrected projected changes show

increases in the extrememean Pwmainly in the Southern

Ocean, swell pools and in the North Pacific subbasin

(especially the western half–Philippines Sea). These

projected increases are up to 36%, 20%, and 120%,

respectively. Considerable decreases can be expected

in the North Atlantic, mostly between24% and228%,

reaching 252% east of the Bermuda archipelago.

During JJA (Fig. 13i), increased magnitudes are visible

FIG. 11. As in Fig. 9, but for Tm. The original and bias-corrected PC20-C extreme mean Tm are shown in supplemental Fig. SM8.
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mainly in the Northern Hemisphere, reaching 20% in

several areas of the western North Pacific, and 219.5%

in the westernNorthAtlantic.Most of the areas in which

bias correction resulted in increased magnitudes are

within the path of tropical cyclones, therefore such en-

hancements are possibly related to the misrepresenta-

tion of local tropical phenomena in the original PC20.

For the annual, DJF and JJA extreme mean Pw, the

global ocean area where projected increases are ex-

pected to occur increased after bias correction, from

62.1% to 67.1%, 38.1% to 49.4%, and 65.5% to 72.2%,

respectively (Table 4).

4. Summary and conclusions

Aseven-member dynamic single-forcing (EC-EARTH),

single-model (WAM), and single-scenario (RCP8.5) en-

semble of wave climate simulations was submitted to a

bias-correction procedure, using a method that is based

on the differences between the simulated and the ref-

erence quantiles (EGQM and EQM), first applied to

global wave climate projections by Lemos et al. (2020).

The most recent ECMWF reanalysis has been used as

reference. The original biases were computed for the

PC20 (1979–2005) time slice, for theHS, Tm, and MWD

wave parameters.

The original HS biases (annual mean, and extreme

mean: mean above the 99th quantile) showed a consis-

tent overestimation by the PC20 ensemble, relative to

ERA5, especially in the extratropical latitudes of both

hemispheres for extreme HS values (Figs. 1a,b and 4;

supplemental Fig. SM2; Table 1). Note that the ERA5

tends to slightly underestimate both the mean and

extreme HS (Bidlot et al. 2019), when compared with

observations and previous reanalyzes/hindcasts, which

could have resulted in increased original biases for the

HS. A generalized overestimation by the original PC20

ensemble was also shown for the Tm, with highest biases

along the swell pools (Figs. 2a,b and 5; supplemental

Fig. SM3; Table 1). For the MWD, the highest biases

were shown to be present along the tropical and sub-

tropical latitudes of both hemispheres (Fig. 3a; supple-

mental Fig. SM4; Table 1). After the bias correction

(using the EGQMmethod forHS and Tm, and the EQM

method for MWD), biases were shown to have reduced

between two and three orders of magnitude, to values

generally below 0.01m for HS (Figs. 1c,d and Table 1),

0.01 s for Tm (Figs. 2c,d and Table 1), and 0.28 for MWD

(Fig. 3b and Table 1).

The PDF scores for the HS and Tm parameters were

also shown to have improved considerably after bias

correction, in Figs. 6a,b and 7a,b, respectively. These

FIG. 12. (a)–(c)Annual, (d)–(f)DJF, and (g)–(i) JJA (left) original and (center) bias-correctedmeanMWDprojected changes (absolute

differences: FC21 minus PC20-C; 8) [blue arrows show the (original and bias corrected) PC20-CMWD, and red arrows show the (original

and bias corrected) FC21 MWD], along with (right) the absolute differences (8) between the bias-corrected and original ensemble mean

projected changes (between their absolute differences). The color scales are different among panels. The original and bias-corrected

PC20-C mean MWD are shown in supplemental Fig. SM9.
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improvements were particularly striking along the tropi-

cal and subtropical latitudes of both hemispheres, where

the original PDF scores were lower (higher mismatch

between the PC20 and the ERA5 distributions). The

skewness of the PC20 and ERA5HS andTm distributions

were also shown to be in a greater agreement after the

biases were corrected, as seen by the normalized differ-

ences between the bias-corrected and original Yule–

Kendall skewness measures, between299% and2101%

in large areas of the global ocean, which can be translated

in skewness deviations below 1% upon the correction of

the biases, in these areas.

The same bias-correction parameters applied to the

HS, Tm, and MWD during PC20 time slice, were applied

to the future projections FC21 (2081–2100) time slice,

considering that the original biases properties are

propagated throughout the simulations (i.e., the long-

term deviations with reference to ERA5 are kept

constant until the end of the twenty-first century), a

fundamental assumption of climate bias-correction

studies (Lemos et al. 2020; Wood et al. 2004; Wang

et al. 2010; Amengual et al. 2012; Charles et al. 2012).

The bias-corrected projections were shown and com-

pared to the original ones in Figs. 8–13.

Considering the annual mean and extreme mean HS,

the bias-corrected projections showed increases mainly

in the Southern Hemisphere and decreases mainly

in the Northern Hemisphere. In the Southern Ocean

and North Atlantic subbasin, bias-corrected projected

changes of 14% and210%, respectively, for the annual

mean HS and of 15% and 211%, respectively, for the

extreme mean HS were shown to be visible in Figs. 8b

and 9b. The seasonal bias-corrected projected changes

were shown to depict mostly decreases in the mean and

extremeHS during DJF and increases in JJA. Increased

magnitudes, after bias correction of the annual meanHS

projections, were shown to be visible in most of the

global ocean (Fig. 8c). However, for the bias-corrected

extreme mean HS projections, increased magnitudes

were only shown to be visible along the tropical and

subtropical latitudes (Fig. 9c), especially in the sum-

mer hemisphere (Figs. 9f,i). This pattern is consistent

with the misrepresentation of the tropical cyclones

in PC20, which possibly led to increased extreme HS

projections magnitudes in these areas. Altogether, the

FIG. 13. As in Fig. 9, but for Pw. The original and bias-corrected PC20-C extreme mean Pw are shown in Fig. supplemental SM10.

TABLE 4. As in Table 2, but for Pw.

Pw OR

increase

Pw BC

increase

Pw OR

decrease

Pw BC

decrease

Mean

Annual 66.5 67.4 33.5 32.6

DJF 36.7 38.0 63.3 62.0

JJA 76.2 77.6 23.8 22.4

Extreme

Annual 62.1 67.1 37.9 32.9

DJF 38.1 49.4 61.9 50.6

JJA 65.5 72.2 34.5 27.8
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bias-corrected projected changes for the HS are consis-

tent with the results from previous studies, showing,

however, higher projected increases in the tropical

and subtropical latitudes (especially in the Southern

Hemisphere), when compared, for example, with Semedo

et al. (2013), Hemer et al. (2013a), andMorim et al. (2019).

The bias-corrected annual and extreme mean Tm

projections showed increases in most of the global

ocean, up to 6.5% and 7.5%, respectively. Such pro-

jected increases were shown to take place especially

in the Southern Hemisphere and at the swell pools.

Exceptions were shown to be the North Atlantic and

western North Pacific, with projected decreases down

to 25.5%. Seasonally, the bias-corrected projected in-

creases were shown to be more striking during JJA,

covering 86.8% of the global ocean. Increased magni-

tudes for the annual mean Tm projected changes, after

bias correction, were shown to be visible in most of

the global ocean (Fig. 10c). For the extreme mean

Tm, increased magnitudes were shown to be mostly

confined to the tropical and subtropical latitudes (Fig. 11c),

especially in the summer hemisphere (Figs. 11f,i). The

bias-corrected projected changes for the Tm are consistent

with previous results in scientific literature (Semedo et al.

2013; Hemer et al. 2013a; Morim et al. 2019); however,

slightly higher projected increases were found in the

tropical and subtropical latitudes of the Southern

Hemisphere, especially at the swell pools.

The bias-corrected projected changes in the annual

mean MWD (Fig. 12b) showed counterclockwise rota-

tions mainly along the extratropical latitudes of both

hemispheres, and clockwise rotations along the tropical

and subtropical latitudes. Such patterns are consistent

with enhanced swell propagation from the Southern

Ocean and reduced SIC in the Northern Hemisphere, in

FC21. The bias-corrected projected changes for the

MWD are in agreement with the results from Hemer

et al. (2013a) and Morim et al. (2019).

The joint effects of the expected changes in theHS and

Tm climates were analyzed through the Pw projections

(only the extreme mean Pw was considered). Bias-

corrected projected increases of up to 30% in the

Southern Ocean and 18% in the swell pools and de-

creases down to 218% in the North Atlantic subbasin

were found. While these were shown to be slightly at-

tenuated in magnitude (Fig. 13c), compared to the

original projected changes, the seasonal extreme mean

Pw bias-corrected projections were shown to be in-

creased in magnitude, mainly along the tropical and sub-

tropical latitudes of the summer hemisphere (Figs. 13f,i),

possibly due to the misrepresentation of seasonal extreme

tropical phenomena, in PC20. For the western North

Pacific (Philippines Sea), the bias-corrected projected

changes on the JJA extreme Pw were shown to ascend

to 120%.

The bias-corrected projected changes in wave cli-

mate described in this study are consistent with the re-

sults from previous studies. Nevertheless, enhanced

projected increases on the annual and seasonal means

were found for the HS and Tm, in the tropical and sub-

tropical latitudes of both hemispheres. Such differences

were shown to be more striking for the upper quantiles

(extreme events; Pw). Note that, since a single-model,

single-forcing ensemble, designed with the purpose of

reducing the higher uncertainty inherent to multiforcing

ensembles (and therefore with reduced intermember

uncertainty), was used to produce the results, the pro-

jected changes shown in the present study are, in most

cases, statistically significant at the 99% confidence

level. However, the good performance of this ensemble

in representing the current wave climate features, when

evaluated through comparison with reanalysis/hindcast

and in situ observations (Semedo et al. 2018) increases

our confidence in the results, despite their reduced

robustness.

The relevance of a quantile-based bias-correction

method in the estimation of the projected changes in

wave climate should be acknowledged, particularly be-

cause of its ability to deal with the misrepresentation

local tropical phenomena, such as the effects of tropical

cyclones. The application of this method (such as for

other bias-correction methods) should, however, be

limited to final output data—for example, to the wave

parameters—instead of the to the winds prior to the

forcing of the wave model(s). This principle should be

kept to avoid extra sources of uncertainty (Hemer et al.

2012), and to prevent breaking the consistency of mul-

tivariate features between the simulated parameters.

The BC method used in this study has a purely

mathematical nature, based on local differences be-

tween two distributions. Therefore, the results should be

interpreted in the context of some limitations, such as

the great sensitivity to the chosen reference dataset

(ERA5), the assumption of a stationary bias (i.e., that

the bias behavior in PC20 is propagated into the future

climate projections maintaining its properties), and the

use of an ensemble with reduced intermodel uncer-

tainty. One way to increase the robustness of BC in

climate analysis may be by including nonstationary and

spatially dependent techniques.
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