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Abstract: Resource efficiency is a strategy with great potential to make progress towards the UN
Sustainable Development Goals (SDGs), since it can contribute to meeting a variety of economic,
environmental and social targets. In this context, this investigation developed a systemic analysis of
co-located Industrial Symbiosis (IS) synergies in an industrial park formed of four companies. To this
end, public data showing that the main activity in this park concerned materials, water and steam
flows were supported with short visits to the companies for verification purposes. Then, the effects of
nine exchange and twelve share synergies were analysed at different scales according to their impacts
on sustainable development. The changes caused by these synergies in the flows in the industrial
park enabled saving more than 10 k tonnes of raw materials and waste disposal and almost 10 Mm3

of raw water per year, as well as six auxiliary service systems. In the end, these figures might be
translated into more than 200 kt CO2 eq. and EUR 6M saved per year, which in turn corresponds to
0.05% of the Gross Domestic Product (GDP) of the region in which the park is located. In terms of
sustainable development, these modifications were translated into contributions to nine SDGs and 14
of their specific targets, proving the domino effect associated with the application of IS policies by
governments and public entities.

Keywords: circular economy; systems thinking; industrial symbiosis; resource sharing; steam;
sustainable development; synergy; industrial sustainability

1. Introduction

Resource efficiency has been proposed by the UNEP International Resource Panel (IRP) as a means to
decouple economic growth from environmental deterioration while protecting human well-being, which
is crucial for achieving the Sustainable Development Goals (SDGs) [1]. The worldwide consumption of
primary materials was 90 billion tons by 2017, a figure which is expected to increase up to 186 billion tons
by 2050 [2]. This trend has resulted in diverse negative impacts on soils, aquifers and biodiversity, whilst
increasing food and water demands.

Industrial Ecology (IE) has been found to have huge potential to attenuate the effects of these
harmful prospects [3]. IE is an interdisciplinary area whose goal is to reproduce the characteristics of
natural ecosystems in the industry, closing material loops and searching for sustainable development [4].
Hence, IE requires industrial areas not to be isolated with respect to their surroundings, but considered
alongside them to optimize the handling of resources from extraction to disposal [5]. Apart from this
global and systemic vision of the industry as a natural ecosystem, IE must be based on the creation
of dynamic networks of entities or companies within their area and the promotion of sustainable
development [6]. In this vein, the retrofitting of industries by increasing resource efficiency has been
identified as a means to contribute to the SDGs [7].
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Industrial Symbiosis (IS) is a branch of IE aimed at creating cooperation networks whereby two or
more industrial entities carry out mutually beneficial relationships, with emphasis on cases in which
one entity makes productive use of streams that are considered as wastes by another [8]. The other
main means of symbiotic association concerns the shared use of facilities, equipment and/or utilities for
saving resources purposes [9]. As a result, there is a reduction in the amount of waste and emissions,
as well as economic advantages for the industrial entities involved [10]. Geographical proximity is an
essential factor in facilitating IS [11], since it increases the feasibility of opportunities through which
to exchange products and/or share components [12]. Despite the additional complexity entailed by
IS practices in relation to other alternatives (e.g., direct disposal), IS has been found to be capable of
producing economic and environmental benefits at regional scales [13].

As a result, the principles of IS crystallize in Eco-Industrial Parks (EIP), which consist of
communities of companies located in a common area that seek to improve economic, environmental
and social performance through collaboration in managing resources [14]. EIPs differ from other forms
of cooperation such as industrial clusters, whose main focus is to gain economic benefits and, therefore,
disregards other aspects of sustainability [15]. They also differ from industrial districts, which are more
specific and mostly refer to co-located small and medium companies devoted to light manufacturing
sectors of the economy [16]. Although all these terms have limited geographic boundaries, they
are closely linked to regional innovation systems, which in turn relate to the existence of learning
experiences based on localized nodes of industrial activity. These nodes can lead to developing policies
whereby a region is considered the most suitable scale to foster innovation-based economies [17].

Under these premises, the research community has produced a variety of scientific studies to explore
the nexus between IE (including IS and EIPs), systems engineering and sustainability. More than two
decades ago, Côté and Cohen (1998) [18] highlighted the need for widening the perspective on EIPs,
which tended to be limited to waste exchange, and used a systems-approach to involve environmental,
economic and social aspects within and outside of the park. In this vein, Haskins (2006) [19] studied
existing eco-industrial developments and pointed out the adoption of regional approaches to achieve
stable and sustainable ecosystems. This path was found to be hindered by geographic dispersion, as well
as by additional efforts in terms of trust, coordination and data collection. As a contribution to deal with
these barriers, the same author proposed [20] and applied [21] a systems framework to form and sustain
industrial parks, including aspects such as stakeholder coordination, interdisciplinarity, unification and
monitoring. The use of indicators to track sustainable development progress was identified as one of the
main lines of additional work to develop. Similarly, Sopha et al. (2010) [22] built a systems framework
for assessing IS, including its application through a case study. Although the approach served for
stakeholder identification and reveals the need and means to solve the problem under consideration,
facilitating communication was argued to be a field to explore in the future. The dynamic nature of EIPs
was also addressed by Romero and Ruiz (2013) [23], who developed a framework expected to form the
basis on which to build mathematical models for analyzing EIPs. Their objectives, surroundings and
the relationships and decisions of stakeholders were underlined as key features to properly modelling
these systems.

The link between territorial policies and sustainability was explored by Deshpande and Aspen (2018) [24],
who provided a systems engineering framework to ensure sustainable resource management. The approach
taken was found to facilitate the nexus between the SDGs and policymakers, such that the latter gained
understanding of a complex process and improved their decision-making. In relation to the SDGs focused
on zero poverty and hunger, Ginige (2018) [25] combined systems engineering with smart computing to
support the coordination of agricultural production in Sri Lanka. The proposed framework was presented
to provide a long-term solution to the complex multi-disciplinary nature of this problem. On a smaller scale,
Moldavska and Welo (2019) [26] defined a corporate sustainability assessment method based on systems
thinking to measure the links of manufacturing companies with the SDGs. The proposed approach proved
to address the shortcomings of previous methods by using a set of sustainability criteria. This was in line
with the perspective of van den Hoven (2019) [20], who emphasized the need for using a systemic and
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comprehensive engineering approach to couple technical issues with social and ethical aspects. Brooks
(2020) [27] explored the link between systems engineering and the SDGs by adopting a design science
research method to examine the elicitation of sustainability requirements in aerospace and healthcare
facilities. The preliminary results achieved suggested that the application of the proposed method may lead
to the enhanced coverage of the SDGs in most organizations.

The trend of these studies showed that previous research focused on developing theoretical
frameworks to couple systems engineering with the monitoring of the SDGs. However, their use for
cultivating symbiotic relationships in EIPs is still limited, especially under the consideration of how
these potential processes of IS might contribute to achieving the SDGs. Therefore, this revealed a
gap in what concerns the assessment of IS in industrial systems, whereby synergies are presented
and analysed to assist public and private sector organizations in developing and implementing EIPs.
This needs to be supported with an examination of the potential benefits that IS may have at meso
(city and region) and macro (country) scales, including their evaluation using the SDGs as a benchmark.
Consequently, this research concerned the identification of synergies in an industrial park, their analysis
at different scales and the relationships of such synergies with the targets forming the SDGs, thereby
providing an overview of the contributions of IS to sustainable development.

The rest of the article is structured as follows: Section 2 includes the methodology proposed to
collect and process the data characterizing the main companies in the industrial park under study,
as well as the framework used to value the contributions of synergies to be identified in terms of
sustainable development. Section 3 starts by describing and illustrating the situation of the three main
flows (materials, water and steam) in the industrial park. Then, potential direct and indirect synergies
are overviewed according to their feasibility, such that a set of opportunities is selected and assessed
based on their impacts of the three flows under consideration, The section ends with the estimation and
discussion of the benefits to which these synergies may lead, emphasizing their associated economic
and environmental savings. Finally, Section 4 contains the main findings of the study, highlighting
both their implications for its research field and future lines of action to address its limitations.

2. Materials and Methods

The approach taken to conduct this research is depicted in Figure 1. It stemmed from a collaboration
agreement between the city council to which the industrial park under study belongs and the university
of the region. Therefore, the project involved the three main stakeholders required for promoting
IS, namely public institutions, research centres and private companies, whose interests focused on
welfare, knowledge and benefits, respectively. In this vein, the results to be obtained in this study were
expected to work as the basis for developing future IS projects in the city. To this end, first was the
acquisition of information from the public Integrated Environmental Authorisations (IEA) of the main
companies (C1–C4) in the industrial park. Then, guided visits to their facilities and work sessions were
arranged to corroborate these data and understand the processes leading to them. Finally, an analysis
of potential IS opportunities in this industrial park was undertaken by taking into account both the
contributions of the identified synergies to sustainable development and their scaling to regional and
national levels.

2.1. Study Area and Industrial Park Description

The industrial park under study is located in the north of Spain and formed of more than 100
companies, most of which belong to a first subsystem of small and medium-sized enterprises (SMEs).
Still, the four large companies forming the second subsystem are responsible for most of the material
and energy resources in the area. Furthermore, since the park is an open industrial ecosystem, they
can perform as a node to enable potential expansions involving other companies and/or industrial
parks within the city or region. Consequently, this study focused on these dominant companies, since
they might act as a catalyst in terms of IS due to their intense activity and turnover. Data for the
characterization of these companies were acquired from their IEAs, which contain their global resource
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flows and can be publicly accessed on the official bulletin of their region. Nevertheless, in no case
will details about the location and names of these companies be disclosed, since confidentiality has
been maintained to prevent any leakage of sensitive information. Suffice it to state that the distance
separating the companies is as follows: 2.6 km (C1–C2), 0.7 km (C1–C3), 2.7 km (C1–C4), 2.15 km
(C2–C3), 4.0 km (C2–C4) and 2.3 km (C3–C4).Sustainability 2020, 12, x FOR PEER REVIEW 4 of 28 
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C1 was a company devoted to the conversion of plastic materials into flexible packaging and
amounted to 490 employees on the date the study was conducted. With 466 workers, the area targeted
by C2 was the manufacture of tires for private cars, trucks, tractor and industrial vehicles, pre-rolled
treads and compound strips. C3 was the largest company, with 517 employees operating in facilities
for the production, distribution and/or treatment of cellulose, inorganic chemical products (gas),
electric energy, pressurized steam, viscose fibre, sodium sulphate organic chemical products (plastic
materials and salts). Finally, C4 staff (463 people) were dedicated to several production processes
with multiple applications, such as manufacturing of sodium carbonate, electrolysis, preparation of
hydrogen peroxide solutions and cogeneration with thermal coal and cooling systems.

The input and output patterns observed in the companies forming the industrial park led to
limiting the study to three flows: materials, water and steam. This particular trio of flows was selected
because of their predominance in the activities carried out in the industrial park and their greater
potential impacts with respect to others such as electricity, compressed air, nitrogen and fuels. Materials
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included raw materials, auxiliary materials and auxiliary production services, as well as the wastes
derived from their production, such as hazardous and non-hazardous substances and emissions and
discharges to air and water. Water included the consumption and waste flows required for its analysis
as a resource, without taking into account temperature. Finally, steam concerned water thermal flows
used in the companies as a process fluid or for power generation purposes.

2.2. Preparation of Questionnaires

The first step to undertake an inventory gathering information about the activity of the companies in the
industrial park was the delimitation of the systems included in a company. According to Casals et al. (2008) [28],
a company can be divided into five systems: management, operations, finance, marketing and human
resources. Since the circulation of physical resources within the companies mainly concerns the
operations system, this was the focus of the study hereinafter. This system refers to the set of activities
oriented to the transformation of raw materials into products or the production of services demanded
by the market, as well as to the auxiliary tasks required to carry out such processes. Material, water
and steam flows circulate throughout several areas forming the operations system, such as production,
auxiliary systems, general systems, waste treatment, storage and staff services.

With the support of these concepts, a questionnaire was designed to inventory data describing the
different flows present in the industrial park. This questionnaire was structured according to three
main parts: (1) an introduction showing the proposed workflow and a glossary of terms, (2) general
information that must be provided by the companies regarding their organization and location maps
and (3) specific data to be collected during the visits about the input, distribution and output flows in
the companies. As proofs of the contents of these questionnaires, Supplementary Materials shows the
data requested to compile information about the three flows analysed in this study: materials, water
and steam. The questionnaires were filled out during short stays in the four companies forming the
industrial park during 2011, in order to gather information about materials, water and steam flow
inputs and outputs, as well as their distribution in the companies. The questionnaire was sent in
advance to the technical coordinators of the companies to guarantee the effectiveness of the stays, which
were divided into two main components: visits to facilities and office works sessions. The former were
supported with explanations by technicians regarding the processes in their respective companies,
whilst the latter consisted of putting together the information collected about the different flows,
enabling the completion of the questionnaire.

2.3. Processing and Analysis of Data and Identification of Synergies

Once the stays were over, the data collected were processed and analysed according to the
following sequence: inventory, flow schemes and floor plans. The inventory consisted of organising
and simplifying the data collected during the stays independently for each company, and then
combining them to represent the whole industrial park. Flow data were arranged to include quality
specifications and details about the generation, distribution and treatment facilities, specifying their
nominal and maximum capacities. Finally, the analysis was completed with the floor plans of the
industrial park. Although this information was not strictly necessary for the identification of synergies,
their consideration enabled the determination of the preliminary technical viability of some of them by
locating consumption and waste generation spots.

The processing and analysis of data was the premise required for the identification of synergies.
From a conceptual point of view, this research considered two types of synergies: substitution and
mutuality. The former consists of replacing the consumption of input flows in a company by waste or
output flows from another company, such that there is a reduction in resource needs and environmental
impacts. Unlike this type of synergies in the form of exchanges, mutuality synergies refer to the
shared use of services and/or infrastructures between different companies. In line with the most recent
developments in the field of IS at the European level, the terminology used in the SCALER project [29]
was adopted for this investigation. This project, which aimed at increasing the uptake of IS across
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Europe through a systemic approach that considered all stakeholders, translated exchange and sharing
practices into direct and indirect synergies, respectively. The criteria followed for the identification of
materials, water and steam synergies in the industrial park are summarised in Table 1.

Table 1. Considerations for the identification of materials, water and steam synergies.

Flow Synergy Description Parameters

Materials

Direct Use of wastes as raw materials Type and amount of materials and wastes
Indirect Shared supply Type and amount of materials

Shared storage Type and amount of materials; Storage capacity

Indirect Joint management of waste Type and amount of wastes;
Current management

Water

Direct Use of wastewater as raw water
Type and amount of raw water; Raw water uses;
Water with similar quality; Type and amount of

wastewater; Wastewater destination

Indirect Shared collection Type and amount of raw water; Raw water uses;
Water with similar quality

Pre-treatment of water
Type and amount of water; Water uses;

Ownership of facilities for water pre-treatment;
Pre-treatment capacity

Steam
Direct Use of non-recovered steam as

consumption steam

Waste steam generation; Steam consumption;
Physical characteristics of waste and

consumption steam
Indirect Shared supply Production and consumption

Supply from one company to another Production and consumption; Supply capacity

Due to their intrinsic characteristics, materials data could not be arranged in the form of a network
using an origin-destination structure based on nodes and arrows. This was because these data consisted
of separate lists of different materials and wastes, without sharing intermediate processes or treatments.
Instead, water and steam uses were formed of a sequence of steps going from their collection to
their disposal or recirculation. Consequently, their representation differed from that of materials,
whose visualization was approached through bar charts detailing the variety of substances used in the
industrial park.

Regarding water and steam, their graphical depiction was addressed with the support of Sankey
diagrams, which display resource flows through directed arrows whose width is proportional to the
quantity represented [30]. This concept was originally published by Riall Sankey at the end of the 19th
century to analyze the efficiency of steam engines [31]. The need for improving material management
in the steel production sector during the 1930s popularized the application of balances with the support
of Sankey diagrams [32]. Since then, they have become particularly important in industrial ecology,
due to their capacity to depict all relevant flows and their interdependences [33]. This trend provides
evidence of the suitability of Sankey diagrams to represent both water and steam flows.

2.4. Industrial Symbiosis and Sustainable Development Goals (SDGs)

The broad implications of IS, whose consideration helps to promote economic growth and the
safeguarding of the environment, have great potential to unlock mechanisms aimed at fostering
sustainable development [3]. These potential contributions can be measured using the Sustainable
Development Goals (SDGs) as a benchmark, which are 17 objectives that were set in the United Nations
Conference on Sustainable Development held in Rio de Janeiro in 2012 for the period 2015–2030 [34].
In fact, the UN International Resource Panel highlighted the ripple effect of IS on sustainability,
provided by its linked benefits across different SDGs [1].

Schroeder et al. (2019) [7] identified the extent to which circular economy practices may be
relevant for achieving the SDGs. Overall, they found that a circular economy can contribute with
greater or lesser intensity to all SDGs, either directly or indirectly. The strongest relationships were
found to correspond to the targets of SDGs 6 (Clean Water and Sanitation), 7 (Affordable and Clean
Energy), 8 (Decent Work and Economic Growth), 12 (Sustainable Consumption and Production) and
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15 (Life on Land). These inferences provided an overview of the association between circular economy
and the SDGs; however, further analysis is required to explore the relationships between sustainability
and particular branches of circular economy, such as IS.

Hence, the synergies identified in the industrial park under study through the proposed
methodology (Figure 1) were evaluated in terms of their potential contributions to achieving the
169 targets included in the SDGs. To the extent possible, this analysis was supported with coarse
quantifications of the economic and environmental benefits derived from the implementation of the IS
practices identified. In turn, this course of action was intended to enable making estimates about the
scale effects of IS at regional and national levels.

3. Results and Discussion

In what concerns material flows, IS was aimed at (1) reducing the consumption of materials and
the generation of wastes, (2) minimizing and centralizing the storage of input materials and wastes
to increase space availability and (3) sharing supply services to save costs due to economies of scale,
thereby improving the logistics in the industrial park. Overall, the consumption of virgin materials
was distributed as follows: raw materials (2,906,119 t/yr., 96%), auxiliary materials (87,061 t/yr., 3%)
and auxiliary production services (34,676 t/yr., 1%). Regarding the destination and type of wastes
generated, 242,648 t/yr. (99.6%) were found to be non-hazardous, which means that only 1006 t/yr.
(0.4%) were hazardous.

The breakdown of materials and wastes according to their types is depicted in Figure 2. C4 was
the greatest contributor to the consumption of raw materials, since it was responsible for brine and
limestone, which amounted to a yearly consumption of 1,576,974 and 930,646 t. Similarly, C3 was the
dominant company in the consumption of auxiliary materials and auxiliary production services, with
17,280, 15,515 and 2191.6 t/yr. of sulphuric acid, sodium hydroxide and oxygen, respectively. Regarding
hazardous wastes, sludge from ink distillation processes (253.8 t/yr.) and Industrial Wastewater
Treatment Plants (IWTP) (179.3 t/yr.) were the main sources of generation. The fact that calcined
calcium carbonate (205,684 t/yr.) and brine (110,000 t/yr.) were the main flows in terms of non-hazardous
wastes and emissions and discharges supported the feasibility of some potential synergies, since both
products were consumed as materials in the industrial park (Figure 2).

Apart from generic reduction and minimization considerations as mentioned for the materials,
the analysis of water flows also required taking into account the following Spanish and European
standards concerning the Hydraulic Public Domain: Royal Decree-Law 995/2000 (Quality objectives for
certain polluting substances), Royal Decree-Law 60/2011 (Environmental quality standards in the field
of water policy), Directive 91/271/EEC (Urban wastewater treatment) and Royal Decree-Law 1620/2007
(Legal framework for the reuse of purified water).

Overall, more than 94% of water (3739 m3/h out of 3966 m3/h) was captured from a river. Assuming
an annual continuous work regime (8760 h) and according to the values represented in Figure 3,
this volume amounted to 32,753,640 m3/yr. Therefore, reducing the consumption of this source was a
priority. From less to more quality, the types of water used by the companies are raw, filtered, clarified,
decarbonated and demineralized (equivalent to osmotized). Since the most widely consumed type of
water by all the companies in the industrial park was clarified (2746 m3/h, 41% of the flow processed
through either coarse filtering, osmosis, clarification, demineralization, decarbonation or chlorination),
this was a flow of interest for the reduction in the amount of water used in the park. A small part of
the flows derived from these treatment nodes was straightforwardly connected to output nodes, since
it was associated with purges.
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The total flow consumed in intermediate nodes amounted to 12,811 m3/h. In particular, three
groups represented the main uses given to water: processes, steam production and cooling towers.
These groups were taken as a criterion to determine whether any of their associated uses might
admit lower quality water without compromising the performance of the companies. The highest
consumption within this group corresponded to processes (3448 m3/h, 82%), followed by steam
production (469 m3/h, 11%) and cooling towers (265 m3/h, 7%).

Water destination plays an important role in this systemic analysis, since this concept is related
to the minimization of discharge rates and potential reuse of water according to the implementing
legislation. Most of the water used in the park was sent to an IWTP (1834 m3/h, 46%), a marine outfall
(1510 m3/h, 38%) and the atmosphere (512 m3/h, 13%). Instead, only 3% ended up being used as
products (111 m3/h).

The optimization of steam consumption in the industrial park aimed at achieving a higher efficiency
in the companies and minimizing the presence of unnecessary infrastructures, while centralizing steam
flows and achieving continuous operating regimes. The fulfilment of these targets was conditioned by
the potential use of the steam produced in the park for generating electricity to be either sold externally
or consumed in internal processes. Therefore, the approach taken to address the steam flow considered
its link with electricity. The quality demands for the production of steam required demineralized water,
such that 317 m3/h out of the 365 m3/h flow depicted in Figure 3 performed as an input (317 t/h) in the
Sankey diagram represented in Figure 4.

The joint analysis of the four companies revealed that the steam and hot water generated in
the industrial park amounted to 469 t/h (carbon boiling, gas boiling and gas cogeneration), which
were produced in the range from 1.2 to 140 kg/cm2. Most of this steam (420 t/h) was produced at
high pressure (58–140 kg/cm2) and then was turbined (Figure 4) for the generation of electric energy.
The low and medium-pressure steam (5.5–33 kg/cm2) derived from turbines, along with the remains
of the production nodes (49 t/h) at 1.2–16.5 kg/cm2, were used in different processes: Processes 1
involved input flows at medium pressure (9–33 kg/cm2), such as steam recovery or drying, whilst
Processes 2 (e.g., distillation) corresponded to low-pressure processes (1.2–5.5 kg/cm2). Heat exchange
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was left apart as a single process to provide more details about C2, since the steam scheme of this
company would be too simplified otherwise. Overall, the steam consumption in the industrial park
was balanced in terms of pressure: 344 t/h were consumed at medium pressure (Processes 1 + Heat
exchange) and 303 t/h at low pressure (Processes 2). In the end, the steam consumed in the processes
was either recirculated as condensates (152 t/h) or converted into 21 t/h of non-recovered (atmosphere)
or 296 t/h of condensate steam (marine outfall and IWTP), amounting to the 317 t/h that originally
entered the system.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 28 
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Figure 4. Sankey diagram of steam flows in the industrial park.

To quantify all these stages, Table 2 collects the path followed by steam in the companies that
consumed it (C1’s was a dry process), including those nodes involving production, pressure drops
and consumption. Carbon was used only by C4, which also produced steam through cogeneration.
This system was also used by C3, whilst C2 resorted to a gas boiler to generate steam. Table 2 specifies
the amount of steam generated by each company using these systems, as well as their corresponding
values of pressure. Once produced, high-pressure steam (>35 kg/cm2) derived from carbon boiling and
cogeneration in C3 and C4 was turbined in steam turbines at a medium (8–35 kg/cm2) and low pressure
(< 8 kg/cm2), respectively (Table 2). Similarly, the flow generated in C2 through gas boiling was laminated
at a medium and low pressure through heat contact and exchange, as indicated in Table 2. To support
the consideration of potential synergies based on this scheme, Table 3 summarizes the situation of the
companies involved in the steam flow in what concerns their use, capacity, needs and margin.

In addition, Table 2 also indicates the role played by steam at the scale of the whole system, specifying
the electric production and consumption patterns of the companies. In this sense, the sole purpose sought
by C2 with respect to its steam production was its subsequent consumption in processes associated with
this flow. Thus, all the electricity consumed by this company (30,600 MWh/yr.) was supplied by the
national electrical grid. Instead, C3 devoted part of its steam production to electric energy. This company
sold the energy produced in its cogeneration system (719,300 MWh/yr.) to the national electrical grid,
whilst the portion of high-pressure steam produced through steam turbines (81,600 MWh/yr.) was used for
the generation of electric energy for self-consumption. The origin of C4 electricity stemmed from turbined
steam derived from carbon boiling (208,139 MWh/yr.) and the national electrical grid (125,308 MWh/yr.).
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Most of this electricity ended up being consumed in the processes (268,718 MWh/yr.), while a smaller part
was returned to the national electrical grid (64,729 MWh/yr.).

Table 2. Scheme of the path followed by steam in the companies forming the industrial park.

ID Flow Production Pressure drop 1 Pressure drop 2 Consumption

System Amount * Node Amount * Node Amount * System Amount

C2
Steam Gas boiling 14 {16.5} Heat exchange 14 {7} − − Processes 2 13

Electricity National
electrical grid 30,600 − − − − Processes 30,600

C3

Steam

Gas cogeneration

110 {63}
Steam turbine

6 {33} − − Processes 2 130
4 {20} − −

100 {5.5} − −

20 {6} − − − −

Electricity Gas cogeneration 719,300 − − − −
National

electrical grid 719,300

Steam turbine ** 81,600 − − Processes 81,600

C4

Steam Gas cogeneration 50 {58} Steam turbine 50 {13} − − Processes 2 50
10 {13} Processes 1 10 {1.2} − − Processes 2 10
5 {1.2} − − − − Processes 2 5

Carbon boiling 260 {140} Steam turbine 50 {33} − − Processes 2 50
210 {13} Processes 1 155 {1.2} Processes 2 155

Processes 2 55

Electricity Gas cogeneration NA Private company NA
Carbon boiling Steam turbine *** 208,139 Processes 268,718

National
electrical grid 125,308 National

electrical grid 64,729

* Values in t/h (pressure in kg/cm2); ** From gas cogeneration; *** From carbon boiling.

Table 3. Situation of steam flow use, capacity, needs and margin in the companies forming the
industrial park.

ID System Status Pressure Use Nominal Needs Available Margin
(kg/cm2) (t/h) Capacity (t/h) (%) (%) (t/h)

C2

Global Installed − 14 65 21 79 51
Production Active * 16.5 14 40 35 65 26

Backup ** 16.5 0 25 0 100 25
Pressure drops Active *** 7 14 40 35 65 26

C3

Global Installed − 130 295 44 56 165

Production
Active * 63 110 125 88 12 15

6 20 35 57 43 15
Backup ** 63 0 150 0 100 150

Pressure drops
Active ***

33 6 21 28 72 15
20 4 19 21 79 15
5.5 100 115 87 13 15

C4

Global Installed - 325 530 61 39 205

Production

Active* 140 260 270 96 4 10
58 50 60 83 17 10
13 10 20 50 50 10
1.2 5 15 33 67 10

Backup ** 58 0 185 0 100 185
Pressure drops

Active ***
33 50 60 83 17 10
13 270 290 93 7 20
1.2 170 190 89 11 20

Backup **** 13 0 185 0 100 185

* C2: Gas boiling; C3: Gas cogeneration; C4: Gas cogeneration (140 kg/cm2) and Carbon boiling (58/13/1.2 kg/cm2);
** C2: Backup gas boiling; C3: Backup carbon boiling; C4: Backup gas boiling *** C2: Heat exchange; C3: Steam
turbine; C4: Steam turbine (33/13 kg/cm2) and Processes 1 (1.2 kg/cm2); **** C4: Steam turbine.

3.1. Direct Synergies

Table 4 summarises the purpose, participating companies and characteristics (Ch.) of the proposed
direct synergies, as well as their identification through a three character code indicating type (S—Substitution),
resource (M—Materials; W—Water; S—Steam) and number. The amount of limestone waste (calcined
CaCO3) generated by C4 is currently poured into the sea through marine outfall, since it is not harmful for
the environment as long as long the spillage is restricted. This was a priority due to its great proportion in the
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wastes generated by C4 (99%). C2 consumes this material as an additive in the production of tyres, whilst
C3 uses dolomite that can be partially replaced by CaCO3 in the production of cellulose (SM1). According to
the BAT (Best Available Techniques) documents [35], about 70% of dolomite might be substituted by CaCO3

(2650 t/yr.). Overall, the residual mass flow of CaCO3 produced by C4 (205,684 t/yr.) would completely meet
the demands of C2 and C3 (2826.4 t/yr.).

Table 4. Summary of direct synergies identified in the industrial park.

ID Purpose Donor Recipient

Company Type Ch. 1 * Ch. 2 ** Company Type Ch. 1 *** Ch. 2 ****

SM1
CaCO3

exploitation C4 Calcined
CaCO3

205,684 Suspended C2 CaCO3 176.4 Powder

C3 Dolomite 2650 Solid

SM2
CO2

distribution C1 CO2 (VOCs
combustion) 435 Adequate

quality C4

CO2
(limestone &

anthracite
calcination)

666,000 95% pure

C2 CO2 (VOCs
combustion) NA Adequate

quality

SM3 Oil
exploitation C2 Oil 20.7 Used as a

lubricant C1 Reused oil NA ***** Impurities
are allowed

SM4 Brine
exploitation C4 Used brine 110,000 NA C3 Brine 8965 Low salt.

Mercury

SW1 Purified
water reuse C3

IWTP
(purified

water)
1230 Suspended

solids C4 River (filtered
water) 993

<35 mg/L
suspended

solids

SW2 Purified
water reuse C3

IWTP
(purified

water)
1230 Suspended

solids C1 Well (raw
water) 8

<5 mg/L
suspended

solids

SW3 Rainwater
reuse C3 Rainwater 200 Suspended

solids C4 River (filtered
water) 993

<35 mg/L
suspended

solids

SW4 Purified
water reuse C4

IWTP
(purified

water)
604

Mercury
(5×10−5

ppm)
C3 River (raw

water) NA <5 × 10−5

ppm mercury

SS1 Unrecovered
steam reuse C3 Waste steam NA NA C1 Hot steam 150 95 ◦C

* Amount in t/yr. (SM1–SM4)/Amount in m3/h (SW1–SS1); ** Qualitative feature (SM1–SM4, SS1)/Outflow condition
(SW1–SW4); *** Amount in t/yr. (SM1–SM4)/Amount in m3/h (SW1–SW4, SS1); **** Qualitative feature (SM1–SM4);
Limit values for water reuse (SW1–SW4); Temperature in ◦C (SS1); ***** NA: not specified.

Both C2 and C1 generate controlled CO2 emissions through Regenerative Thermal Oxidizers
(RTO) for Volatile Organic Compounds (VOCs) that may fit the interests of C4 (SM2). Along with
calcium oxide (CaO), CO2 was the main compound of CaCO3 calcination, which is a reactant involved
in C4’s main chemical process for manufacturing sodium carbonate. However, C4 was found to have
no CO2 deficit, to the extent that part of its CO2 exceeded the amount necessary for the reaction
and was released to the atmosphere. Hence, a complementary option may consist of creating some
infrastructure for capturing the CO2 emissions produced by all these companies.

In a similar vein, C1 consumes oil previously used in its own combustion engines for subsequent
reuse in the removal of polyethylene pigments. Consequently, this company has no deficit either,
thereby not requiring the oil produced by C2 (SM3). C4 generates brine waste from electrolysis processes
with an initial concentration of 250 g/kg of NaCl. Then, this flow is purified in the IWTP to reduce the
amount of mercury to the allowed limits. Although C3 consumes brine in its production processes,
the characteristics of this waste should be analysed more in detail to guarantee the compatibility of this
synergy (SM4).

Two potential synergies (SW1 and SW2) were identified to reuse water from C3 IWTP in C4 and
C1. The amount of suspended solids in the IWTP would not be a problem, since it is within the limits
to reuse water for industrial purposes. Therefore, it might be used by C4, since most of its consumption
is filtered water from a river, whose quality requirements meet those of the IWTP outflow. On the
contrary, the amount of suspended solids in C3 water exceeds that of the raw water collected from the
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well by C1. Although C1 facilities have the capacity for reducing dissolved solids, chlorine and organic
matter, this treatment would produce new wastes that were not previously generated by this company.

The collection of rainwater in C3 is discharged into the river. Thus, its reuse by C4 as filtered or
raw water (SW3) would require some treatment to ensure it meets current standards of quality [36].
Furthermore, since most of the water consumed by C4 is filtered, rainwater could be recirculated and
reused to moisten ashes in generators and refrigerate the electrolysis unit.

Some of the processes carried out by C3 do not require high quality water, such as wood barking.
Hence, wastewater from C4 might be used as a replacement in these situations (SW4), since its mercury
contents meet the standards of environmental quality [37]. However, C3 water supply is undertaken
through a pressurized circuit, whose flexibility should be studied to evaluate more in depth the
suitability of this synergy. Additionally, it is also necessary to detail the use and conditions of water
quality in C3 to assess the adequacy of this substitution.

The steam-related direct synergy (SS1) involved reusing non-recovered steam from C3 in C1. Hot
water consumption in C1 was carried out at 95 ◦C; however, there was no certainty about whether
this temperature may be reached by some non-recovered steam flow from C3. Hence, although this
substitution might be potentially feasible, the lack of data regarding the flow and characteristics of
non-recovered steam in C3 precluded its implementation (Table 4).

3.2. Indirect Synergies

Table 5 is analogous to Table 4 but applies to the indirect synergies identified, such that the first
character in their codification denotes mutuality (M). The analysis of auxiliary material consumption
in the industrial park revealed that some companies shared input flows. In particular, C3 and C4 were
found to consume brine in their respective production processes. Hence, improvements in economies
of scale might be obtained in case both companies had the same brine supplier (MM1). Since C4 is
self-dependent in the extraction of brine from salt surveys, it may directly supply C3, whose stock
stems from a company belonging to the same corporate group.

In the same vein, there were a list of synergies based on sharing the same supplier of auxiliary
production services (MM2). These implementations would not only yield economic improvements,
but also environmental benefits in distribution logistics. The role played by C4 was particularly relevant
in this synergy, since it owns the facilities required to provide C1 with hypochlorite and C1–C2–C3
with hydrochloric acid, chlorine (own internal generation) and caustic soda. Data availability hindered
the proposal of specific actions for other cases involving aluminum polychloride, oxygen and hydraulic
oils, which were limited in providing details about suppliers and/or amounts.

The common storage of these same auxiliary production services (MM3) would result in the
optimization of logistics, since the supply of materials would be limited to only one location, and an
increase in room availability. C4 proved to be capable of storing the whole amount of hypochlorite,
hydrochloric acid and hydraulics oils in the industrial park. C2 was found to have space for storing
hydraulic oils too, as well as oxygen. Caustic soda was storable by C3 and C4, whilst data scarcity
precluded determining the situation of aluminium polychloride.

MM4 and MM5 sought to produce economic and environmental gains in the industrial park
by jointly managing both hazardous and non-hazardous wastes. C1 was the company producing a
wider variety of shared wastes (8 hazardous and 6 non-hazardous), followed by C3 (4 hazardous and
6 non-hazardous) and both C2 (6 hazardous and 3 non-hazardous) and C4 (9 hazardous). C4 was
the greater contributor to generating hazardous wastes with the potential for cooperation (MM4),
especially with regards to the amount produced (82.3 t/yr.), followed by C1 (67.8 t/yr.), C3 (38.7 t/yr.)
and C2 (37.7 t/yr.). Used oils (81.1 t/yr.) and plastic and metal containers (73.2 t/yr.) were the most
shared hazardous waste in the industrial park. The same external company was in charge of the free
pickup of used oils for C1, C2 and C4; instead, this information was unspecified for C3. The remaining
8 shared hazardous wastes (Table 5) were handled by different external managers (unknown in
some cases). Therefore, an improvement may consist of homogenizing the management of these
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wastes and reducing the number of external companies involved. However, this option should be
considered carefully, since it may eventually lead to a monopolistic situation characterized by rising
collection prices.

Table 5. Summary of indirect synergies identified in the industrial park.

ID Purpose Type Characteristics C1 C2 C3 C4

MM1 Shared supply of
auxiliary materials Virgin brine Amount (t/yr.) − − 8965 1,579,974

MM2
Shared supply of

auxiliary
production services

Hypochlorite Amount (t/yr.) 3.4 − − 589
Aluminum polychloride Amount (t/yr.) − NA * 510 −

Hydrochloric acid Amount (t/yr.) − 180 637 4850
Chlorine Amount (t/yr.) 0.5 3.8 3 Internal

Caustic soda Amount (t/yr.) 1.2 25 15,515 25,552
Oxygen Amount (t/yr.) 1 3.6 3.2 External

Hydraulic oils Amount (t/yr.) 4 6.6 NA 26

MM3
Shared storage of

auxiliary
production services

Hypochlorite Storage capacity N ** − − Y
Aluminum polychloride Storage capacity − N NA −

Hydrochloric acid Storage capacity − N NA Y
Chlorine Storage capacity N Y N −

Caustic soda Storage capacity N N Y Y
Oxygen Storage capacity N Y NA −

Hydraulic oils Storage capacity N Y Y Y

MM4 Joint management
of hazardous waste

Water with hydrocarbons Amount (t/yr.) 3.8 (E) *** − − 33.5 (E)
Metal/plastic containers Amount (t/yr.) 60.2 (E) − 9.5 (E) 3.5 (E)
Solids with oily waste Amount (t/yr.) − 7.8 (E) 0.6 (E) 5.1 (E)

Oil filters Amount (t/yr.) 0.1 (E) 0.2 (E) − 13.2 (E)
Equipment Amount (t/yr.) 0.5 (E) − 0.6 (E) 1.6 (E)

Non-halogenated
solvents Amount (t/yr.) 0.4 (E) 0.9 (E) − 0.1 (E)

Batteries Amount (t/yr.) 0.4 (E) 2 (E) − 0.1 (E)
Fluorescent tubes Amount (t/yr.) 0.2 (E) 0.6 (E) − 0.5 (E)

Used oils Amount (t/yr.) 2.2 (E) 26.2 (E/FP) 28 (FP) 24.7 (FP)

MM5
Joint management
of non-hazardous

waste

Solid urban waste Amount (t/yr.) 8.2 (L) − 111.3 (E) −

Debris Amount (t/yr.) 97.8 (L) − 249 (E) −

Wood waste Amount (t/yr.) 86.1 (FP) − 7445 (FP) −

Paper and paperboard Amount (t/yr.) 227.1 (FP) 42.5 (FP) 22.4 (FP) −

Scrap Amount (t/yr.) 85.6 (L) 249.6 (C) 324.7 (E) −

Plastics Amount (t/yr.) 5046 (C) 126.6 (FP) 60.7 (FP) −

MW1
Pre-treatment of
demineralized

water
Demineralized water

Amount (m3/h) − 13.75 110 241
Nominal capacity (m3/h) − 30 280 480
Available margin (m3/h) − 16.25 170 69 ****

MW2 Pre-treatment of
clarified water

Clarified water
Amount (m3/h) − 17.3 1628 1101

Nominal capacity (m3/h) − 120 7000 1500
Available margin (m3/h) − 102.7 5395 399

MW3 Joint collection of
river water

River water
Amount (m3/h) 8.3 17.3 1628 2094

Nominal capacity (m3/h) 10 120 7000 7000
Available margin (m3/h) 1.7 102.7 5018 4906

MS1 Steam supply from
C3 to C2

C3 supply options to
meet C2 needs

Amount in t/yr.
{Pressure in kg/cm2}} −

14 {7} 15 {20} −

MS2 Steam supply from
C4 to C2

C4 supply options to
meet C2 needs

Amount in t/yr.
{Pressure in kg/cm2} − 14 {7} − 205 {13}

MS3 Steam supply from
C3 to C4

C3 supply options to
meet C4 needs

Amount in t/yr.
{Pressure in kg/cm2} − −

15 {33/20}
15 {6/5.5}

270 {13}
170 {1.2}

MS4 Steam supply from
C4 to C3

C4 supply options to
meet C3 needs

Amount in t/yr.
{Pressure in kg/cm2} − −

110 {63}
20 {6}

195 {58}
205 {13}

* NA: not specified; ** N: there is not enough capacity to store the flow of auxiliary production services/Y: there is
enough capacity to store the flow of auxiliary production services; *** E: external management/FP: free pickup/C:
sale to company/L: landfill; **** restricted capacity due to the decarbonation step previous to water demineralization.

The management of non-hazardous wastes (MM5) was even more difficult to characterize due to
the lack of detailed data. C3 was the main producer of non-hazardous wastes suitable for synergies,
generating 8213 t/yr. C1 and C2 were responsible for 5524 and 419 t/yr., respectively. Although C4
produced 205,715.9 t/yr. (mostly calcined calcium carbonate), none of its residues were suitable for
sharing. In those cases in which the same approach was used to manage waste (wood, scrap and
paper and paperboard), there was at least one company that did not provide any details about the
destination of either their companies or landfills. Potential alternatives to better handle hazardous
wastes might focus on the coordination of their management methods, such that transportation costs
and emissions may be reduced. These actions should be especially oriented to wood waste (7531 t/yr.)
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and plastics (5233 t/yr.), which were the shared non-hazardous waste generated in a greater quantity in
the industrial park.

Two of the three water-related synergies consisted of the pretreatment of either demineralized
(MW1) or clarified water (MW2). The use of demineralized water was common for C2, C3 and C4.
Both C3 and C4 had the capacity for supplying the needs of C2 (13.75 m3/h). Water in C4 went through
previous treatments before demineralization, whereby the amount available was reduced to 69 m3/h,
which would only cover 55.25 of the 110 m3/h required by C3 (50.23%). Instead, this figure increased
up to 64.73% (156 of 241 m3/h) when the supply was from C3 to C4. Similarly, C3 was found to be
capable of supplying C2 (17.3 m3/h) and C4 (1101 m3/h) in terms of clarified water (MW2), due to its
77% available margin (5390 m3/h). Finally, the last water synergy (MW3) concerned the collection of
river water from the same point. In this case, three companies (C2–C4) collected river water, whilst C1
used water of similar quality from a well. Therefore, this synergy would involve C1 replacing well
water by river water from a common collection point, in order to obtain economic savings in terms of
collection fees.

The remaining indirect synergies consisted of the supply of high and medium pressure steam
from one company to another. To enable these types of synergies, the companies involved must meet
certain conditions. First, recipient companies should be inefficient in terms of steam use with respect to
their nominal capacity; otherwise, the supply of steam from another company might not be beneficial
at the scale of the whole industrial park. Additionally, recipient companies should have steam needs
that were replaceable without compromising its linkage to the generation of electric energy. From the
point of view of suppliers, they must have the available margin to provide recipients with steam.
In addition, the levels of pressure at which such margin was available should not involve large leaps
with respect to the uses of recipient companies, in order to make optimal use of steam.

The first opportunity identified concerned the supply from either C3 or C4 to C2, since the latter
was found to be very inefficient in using steam. It only used 21% of its nominal capacity (Table 3) and
operated under a discontinuous working regime with weekly breaks, whereby a synergy for the steam
supply to C2 might increase the productivity in the industrial park. C2 was also suitable in terms of
electricity, since its production was null in this sense (Table 2) and a potential steam-related synergy
would not interfere in its energy flow. C2 needs included the production of 14 t/h at 16.5 kg/cm2 to be
used for heat exchange at 7 kg/cm2, as represented in Tables 5 and 6.

MS1 involved C3 as a supplier, which had 56% of the margin with respect to its nominal capacity
to supply C2. Due to the values of pressure at which flow was available in C3 (Tables 5 and 6), the first
option would consist of supplying 14 t/h at 63 kg/cm2 to be used at 7 kg/cm2; however, this was
discarded too due to the large pressure difference it involved. Instead, C3 may shorten that leap by
supplying the 14 t/h required by C2 at 20 kg/cm2, once the steam produced through cogeneration was
turbined (Table 3).

In the case of MS2, the options were rather similar. The margin available in C4 was 39% of its
nominal capacity (Table 3). Again, the pressure drops caused by turbines made available 10 t/h at
33 kg/cm2 and 205 t/h at 13 kg/cm2 that would be sufficient to cover C2’s requirements. Thus, C2 may
use 14 t/h at 13 kg/cm2 to replace C2 uses at 7 kg/cm2.

The two remaining synergies implied the supply from C3 to C4 (MS3), and vice versa (MS4).
Again, the aim of these synergies was to improve the efficiency of the suppliers and reduce the
equipment used by the recipient companies. In this sense, both companies proved to be more efficient
than C2. C4 was found to operate at 61% of their nominal capacity, whilst this figure decreased to 44%
in the case of C3 (Table 3).

The applicability of MS3 would be limited to supply part of the uses derived from C4 carbon
boiling, since the flow generated by C4 through cogeneration was linked to the sale of electricity to a
private company (Table 2). Since the steam produced in C4 through carbon boiling was at a much
higher pressure (140 kg/cm2) than any flow available in C3 (Table 3), the feasible options associated
with MS3 were restricted to subsequent lamination steps (Table 5). Hence, C3 may substitute part of
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C4 uses at 33, 13 and 1.2 kg/cm2 through the supply of flow at 33, 20 and 6/5.5 kg/cm2, respectively,
as collected in Table 3.

Table 6. Sustainable Development Goals (SDGs) and targets to which the selected Industrial Symbiosis
(IS) synergies can contribute.

SDG Target

3. Good health and well-being 3.9. By 2030, [ . . . ] reduce [ . . . ] deaths and illnesses from hazardous chemicals
and air, water and soil pollution [ . . . ]

6. Clean water and sanitation

6.3. By 2030, improve water quality by reducing pollution, eliminating dumping
and minimizing [ . . . ] hazardous chemicals and materials [ . . . ]

6.4. By 2030, [ . . . ] increase water-use efficiency across all sectors and ensure
sustainable withdrawals and supply of freshwater [ . . . ]

7. Affordable and clean energy 7.3. By 2030, double the global rate of improvement in energy efficiency

8. Decent work and economic growth 8.4. Improve [ . . . ] resource efficiency in consumption and production and [ . . . ]
decouple economic growth from environmental degradation [ . . . ]

9. Industry, innovation and infrastructure 9.4. By 2030, [ . . . ] retrofit industries to make them sustainable, with increased
resource-use efficiency and [ . . . ] clean [ . . . ] technologies [ . . . ]

11. Sustainable cities and communities 11.6. By 2030, reduce the [ . . . ] environmental impact of cities [ . . . ] by paying
special attention to air quality and [ . . . ] waste management

12. Responsible consumption and production

12.2. By 2030, achieve the sustainable management and efficient use of
natural resources

12.4. By 2020, achieve the environmentally sound management of chemicals and
all wastes [ . . . ] and [ . . . ] reduce their release to air, water and soil [ . . . ]

12.5. By 2030, substantially reduce waste generation through prevention,
reduction, recycling and reuse

12.6. Encourage companies, especially large and transnational companies, to
adopt sustainable practices and to integrate sustainability information [ . . . ]

14. Life below water 14.1. By 2025, prevent and significantly reduce marine pollution of all kinds,
in particular from land-based activities [ . . . ]

17. Partnerships for the goals
17.13. Enhance global macroeconomic stability, including through policy

coordination and policy coherence

17.14. Enhance policy coherence for sustainable development

The viability of MS4 (from C4 to C3) was limited too, in this case by the double role played by
the C3 turbine: it not only served to laminate steam, but also to generate the 81,600 MWh/yr. that
was consumed by this company in its own processes (Table 2). Taking into account this link with the
electricity flow, the only feasible option in synergy MS4 was the supply of steam from C4 at 58 and
13 kg/cm2 to replace the whole flows produced in C3 through gas cogeneration, which amounted to
110 t/h at 63 kg/cm2 and 20 t/h at 6 kg/cm2, respectively (Table 2).

3.3. Implementation of Selected Synergies

Figure 5 summarises the synergies selected for subsequent analyses, which were shortlisted
because of their feasibility and potential benefits for the industrial park as a whole. Most of these
synergies involved C3 and C4, which was logical due to the larger size and capacity of these two
companies. Still, although some of the selected synergies might be feasible based on the information
collected throughout the study, the existence of data for their numeric characterization was limited
due to their especially indirect nature. This was the case of MM1, MM2, MM3, MM4, MM5 and MW3.

In the case of materials, both feasible and selected synergies coincided. This was because of the
absence of overlaps, whereby the same synergy in conceptual terms might be posed using different
companies as donors and/or recipients. Instead, the water-related synergies required selecting among
different feasible options according to their potential positive impacts on the industrial park. This was
the case of SW1, which was chosen over SW4 due to the larger capacity of C3 for supplying purified
water meeting the required water quality standards for reuse.
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Similarly, C3 was found to be the best company to perform as a supplier of demineralized and
clarified water (MW1 and MW2). Although both C3 and C4 could provide C2 with their needs in
terms of demineralized water, their available margin to supply each other was larger if the synergy
was posed from C3 to C4. In a similar vein, C3 proved to be capable of completely supplying both C2
and C4 with clarified water. Instead, C4 would only have capacity for supplying C2 and a small part
of C3 needs. The remaining water-related synergies (SW3 and MW3) were only addressable in one
manner, thereby not requiring any choice among companies.

The actions to be taken in the steam-related synergies were restricted by their potential impact
on the energetic strategy of the companies. Under these two premises, the best combo of indirect
synergies corresponded to MS2 and MS4 (Table 3). On the one hand, these two synergies involved the
same supplier (C4) and made using two infrastructures in C2 and C3 unnecessary (Figure 5), thereby
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meeting the first criterion related to global efficiency. On the other hand, these synergies were also
aligned with the requirement of not interfering in the electricity flow of the companies. C2 did not
produce electricity through steam, whilst C3 sold it to the national electrical grid. Thus, C3 was subject
to the uncertainty of demand and supply, such that the productivity of its energy sales would not be
solid enough as to discourage the implementation of synergies involving benefits at a larger scale.

Proposing C4 as a supplier was the best alternative, even when considering that part of its
production stemmed from carbon boiling, which is environmentally harmful in terms of greenhouse
gas emissions. In fact, MS2 and MS4 involved C4 backup gas boiler for supplying, thereby not
contributing to carbon burning. In this vein, the alternative of using C3 as a supplier would not cause
a significant variation in C4 carbon-related production, since only a small part of the steam required by
C4 could be supplied through MS3 (Table 5).

Hence, with respect to the diagrams in Figure 2, the consideration of the selected materials synergies
only affected three groups: auxiliary materials, non-hazardous wastes and emissions and discharges.
SM1 and SM4 were responsible for these changes, whereby both brine and calcium carbonate wastes were
recirculated from some companies for reuse as auxiliary materials in others (Figure 5). As a result, the
auxiliary materials’ bars representing brine and calcium carbonate production in Figure 6 were reduced
to zero, whilst that corresponding to dolomite was shortened by 70%. Consistent with these changes,
calcined calcium carbonate and brine non-hazardous wastes and discharges were diminished too.
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The remaining cooperation opportunities identified in Table 5 (MM1–MM5) consisted of either
the shared use of supply or storage facilities for auxiliary production services or the joint management
of hazardous and non-hazardous wastes, which had no visual repercussion on the charts included in
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Figure 2. Although no data were found to quantify the contribution of these synergies, they would
produce positive impacts on the economic and environmental response of the park, optimizing its
performance by improving its logistics through the centralization of materials flows, as well as by
increasing its spatial availability in anticipation of potential future expansions.

Figure 7 depicts the evolution of the Sankey diagram for water flows once the synergies proposed
in Figure 5 were implemented. Direct synergies SW1 and SW3 enabled a reduction of 793 and 200 m3/h
in the amount of river water required in the industrial park, respectively. Both synergies involved C4
as a recipient, whose river water flow was completely directed to the coarse filtering node. Since the
water quality associated with these synergies was equivalent to that of filtered water, rainwater and
IWTP changed their previous roles, whereby the former flowed to marine outfall and the latter was an
output node exclusively, to flow to the clarification node. Additionally, IWTP maintained its output
role, whereby it received flows from the following nodes: cooling towers, toilets, processes, auxiliary
systems and generation.
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The river water node was also affected by MW3, whereby C1 stopped collecting 8 m3/h of
well water due to its similarity to the river water collected by the remaining companies in terms of
water quality. As a result of these synergies, the river water flow decreased from 3739 to 2755 m3/h
(3739 − 793 − 200 + 8). In the end, this caused a reduction in the economic costs associated with water
catchment fees. These variations also produce alterations in the overall water flows in the industrial
park. After the implementation of synergies, the input and output flows continued to be balanced
but decreased to 2974 m3/h. The breakdown of this figure in the case of the inputs was as follows:
2755 m3/h from river water, 200 m3/h from rainwater and 19 m3/h from network water. As for the
outputs, the distribution involved 1310 m3/h to marine outfall (200 m3/h less than before due to the
change in rainwater), 512 m3/h to the atmosphere and 1041 m3/h to IWTP (793 m3/h of the total 1834
m3/h were recirculated to C4 coarse filtering).

The remaining indirect synergies related to the supply of either demineralized (MW1) or clarified
(MW2) water from one company to others. Although the changes caused by these synergies were not
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noticeable at the scale of the whole system (they would be in the individual diagrams of the companies),
they involved 2 demineralizers (C2 and C3) and 2 clarifiers (C2 and C4) that were no longer necessary
for managing water flows in the industrial park, since other companies had extra capacity to satisfy
their needs.

The updated version of the steam Sankey diagram after implementing the synergies identified in
Figure 5 resulted in a variety of modifications in relation to Figure 4, whose main impacts were found
in the production nodes. On the one hand, MS2 involved C2 that was supplied using steam from the
C4 backup gas boiler, once turbined at 13 kg/cm2. On the other hand, MS4 consisted of C4 supplying
C3 needs with steam from backup gas boiling (58 kg/cm2) and turbined flows (13 kg/cm2). This caused
an increase of 130 t/h in the gas boiling node, resulting in a final value of 144 t/h (Figure 8). The gas
cogeneration node changed in the same proportion, decreasing to 65 t/h. Hence, the global value of steam
produced in the industrial park remained at 469 t/h. The breakdown of this figure into carbon boiling,
gas boiling and gas cogeneration evolved from 260, 14 and 195 t/h to 260, 144 and 65 t/h, respectively.

Sustainability 2020, 12, x FOR PEER REVIEW 22 of 28 

these synergies would make the gas boiler used by C2 and the cogeneration system operated by C3 
unnecessary. In turn, this would help to achieve a centralization of steam flows and continuous 
working regimes, avoiding unnecessary starts and stops that would raise operating costs. 

The proposed synergies would also be feasible in what concerns the electric energy strategies 
taken by C2 and C3. As mentioned before, C2 only focused on the generation of steam, whilst C3 sold 
its energy to the national electrical grid. The convenience of these synergies would be justified by the 
dependence of C3 action plan on the fluctuations in demand and supply, whereby the cost 
effectiveness of its production would not be stable enough as to dissuade the consideration of 
alternatives involving global benefits such as these. The energy consumed by C3 in its own processes 
would remain constant, since the steam turbine from which it stemmed (Table 2) continued to 
produce electricity after the consideration of synergies. 

 

 
Figure 8. Sankey diagram of steam flows in the industrial park after implementing the synergies. 

3.4. .Contribution to Achieving the UN Sustainable Development Goals 

The consideration of the synergies compiled in Figure 5 resulted in a series of modifications in 
the material, water and steam flows of the industrial park under study. The implications of such 
changes in terms of sustainability can be addressed using the SDGs as a benchmark. Table 6 provides 
a summary of the specific targets to which the implementation of IS synergies as those described 
above might contribute. 

Some of these targets were conceptually similar, such as 3.9, 6.3, 11.6 and 12.4, but differed in 
line with the perspective from which they were considered. Thus, the amount of waste and air and 
water emissions avoided due to the application of the proposed synergies can contribute to both 
protecting the welfare of living beings, controlling water quality, reducing environmental impacts on 
cities and optimizing consumption and production patterns. 

Another group of targets associated with generic benefits derived from the synergies identified 
were 7.3, 8.4, 9.4, 12.2 and 12.5, since they all concerned resource efficiency, either in terms of energy, 
raw materials, water or waste management. As a result, the IS opportunities found in the industrial 
park might strengthen sustainable and modern energy, economic growth, industry and 
infrastructure innovation and conscientious consumption and production. In the same vein, 
synergies SW1, SW3, MW1, MW2 and MW3 contributed to achieving water-use efficiency in the form 
of sustainable withdrawals and the supply of freshwater (target 6.4). The recirculation processes 

Figure 8. Sankey diagram of steam flows in the industrial park after implementing the synergies.

Apart from their implications in terms of the Sankey diagram, the application of these practices
might contribute to optimizing steam consumption in the industrial park. MS2 and MS4 would
result in an increase of 144 t/h in the production of C4, such that its efficiency would raise up to 88%
(27% more than in the original situation). Since the efficiency of C4 cogeneration was already high
in the starting situation (87%), both synergies were approached using its backup gas boiler, which
would work at 78% of its nominal capacity (144 t/h out of 185 t/h). In terms of equipment, the impacts
of these synergies would make the gas boiler used by C2 and the cogeneration system operated by
C3 unnecessary. In turn, this would help to achieve a centralization of steam flows and continuous
working regimes, avoiding unnecessary starts and stops that would raise operating costs.

The proposed synergies would also be feasible in what concerns the electric energy strategies
taken by C2 and C3. As mentioned before, C2 only focused on the generation of steam, whilst C3 sold
its energy to the national electrical grid. The convenience of these synergies would be justified by the
dependence of C3 action plan on the fluctuations in demand and supply, whereby the cost effectiveness
of its production would not be stable enough as to dissuade the consideration of alternatives involving
global benefits such as these. The energy consumed by C3 in its own processes would remain constant,
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since the steam turbine from which it stemmed (Table 2) continued to produce electricity after the
consideration of synergies.

3.4. Contribution to Achieving the UN Sustainable Development Goals

The consideration of the synergies compiled in Figure 5 resulted in a series of modifications in
the material, water and steam flows of the industrial park under study. The implications of such
changes in terms of sustainability can be addressed using the SDGs as a benchmark. Table 6 provides a
summary of the specific targets to which the implementation of IS synergies as those described above
might contribute.

Some of these targets were conceptually similar, such as 3.9, 6.3, 11.6 and 12.4, but differed in line
with the perspective from which they were considered. Thus, the amount of waste and air and water
emissions avoided due to the application of the proposed synergies can contribute to both protecting
the welfare of living beings, controlling water quality, reducing environmental impacts on cities and
optimizing consumption and production patterns.

Another group of targets associated with generic benefits derived from the synergies identified
were 7.3, 8.4, 9.4, 12.2 and 12.5, since they all concerned resource efficiency, either in terms of energy,
raw materials, water or waste management. As a result, the IS opportunities found in the industrial
park might strengthen sustainable and modern energy, economic growth, industry and infrastructure
innovation and conscientious consumption and production. In the same vein, synergies SW1, SW3,
MW1, MW2 and MW3 contributed to achieving water-use efficiency in the form of sustainable
withdrawals and the supply of freshwater (target 6.4). The recirculation processes involved in these
water-related synergies also helped to mitigate marine pollution, thereby having a positive impact on
life below water through target 14.1.

Finally, there is a last group of targets focusing on the main strengths of the approach taken,
consisting of the systemic assessment of entire industrial parks. The results collected in this research
can inspire other companies to adopt these kinds of strategies (target 12.6), thereby contributing to
extending the benefits of IS at local and regional scales. In such cases, the broader implementation of
these practices might favour the stability of industry-based economies (target 17.13), serving as an
exemplar for other regions in the adoption of policies oriented to promote sustainable development
(target 17.14).

The impacts of these links on economic and environmental terms were quantifiable in some
cases, depending on data availability regarding costs, emissions and the processes in the industrial
park. Table 7 summarises the approximate economic and/or environmental savings associated with
these cases, which corresponded to the following synergies: SM4 (brine), SW3 (river water), MS3
(cogeneration system), SM1 (dolomite) and MW2 (clarifiers). These values were combined using 2011
as a baseline, in accordance with the year when data were collected. In the case of economic values, first
was their conversion into 2011 figures according to the inflation rates of the corresponding currency.
Then, the 2011 values were transformed into EUR and multiplied by the amount of materials, water or
steam saved, as indicated in Table 7. Finally, these results were updated again based on inflation rates
to obtain 2020 savings.

Table 7. Estimates of the economic and environmental savings associated with computable synergies.

Concept Amount (Year) Savings 2020 Savings (SI) References

Brine 8965 t 0.21 (2015) $/gallon (962 gallons/t) 195 €/t [38]
River water 8,619,840 m3 0.02 (2007) €/m3 0.024 €/m3 [39]

Cogeneration 719,300 MWh 40 (2010) £/kW; 0.26 kg CO2
eq./kWh

57.96 €/kW; 0.26 t
CO2 eq./MWh [40,41]

Dolomite 2650 t 0.91 t CO2 eq./t 0.91 t CO2 eq./t [42]
Clarifiers (2) − 21,140 t CO2 eq./yr. 21,140 t CO2 eq./yr. [43]
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The production costs associated with brine were estimated at EUR 0.21/gallon (2015), which
involves 962 gallons/t [38]. Since the amount of brine saved during a year was 8965 t, the economic
savings associated with this exchange (Figure 6) were EUR 1,755,670/yr. (2020). As for the second flow,
the amount of river water required after the implementation of the synergies was reduced to 984 m3/h
due to the recirculation of wastewater. Considering a collection cost of EUR 0.02/m3 (2007) [39] and a
continuous operating regime throughout the year (8760 h), this would result in EUR 208,332/yr. (2020).

Regarding the steam flow, data in the industrial park were limited in what concerns the gas boiler
used by C2, such that the economic calculations only applied to the gas cogeneration system in C3,
which was no longer necessary after implementing the synergies depicted in Figure 5. The cogeneration
system, which produced 719,300 MWh/yr., involved GBP 40/kW (2010) [40] in terms of operation and
maintenance. Consequently, this resulted in GBP 4,499,035 (2020) saved per year with a continuous
work regime (8760 h/yr.). Overall, the implementation of these synergies would result in an annual
economic improvement in the industrial park of EUR 6,463,037/yr. (2020).

Similar calculations were carried out to determine the emissions saved due to the synergies,
expressed in t CO2 eq. Dolomite involved 0.91 t CO2 eq. per t saved [42], which yielded 2411 t CO2

eq./yr. when considering the annual amounts used in the industrial park (Figure 6). Based on the
study carried out by Heffernan et al. (2012) [43], the annual emissions associated with the two clarifiers
avoided thanks to MW2 could be estimated in 21,140 t CO2 eq./yr.

Since the cogeneration system in C3 produced 719,300 MWh/yr. and the emissions associated
with this process were 0.26 kg CO2 eq./kWh [41], the environmental savings in the steam flow were
187,010 t CO2 eq./yr. Again, the effects of the remaining synergies were not taken into account because
of the lack of data to determine their corresponding emissions. Hence, the calculable environmental
savings in the industrial park amounted to 210,561 t CO2 eq./yr.

The financial balance (incomes–expenses) and consumption expenses (raw materials, supplies and
commodities) of the industrial activity in the city where the park was located were EUR 33,292,281 and
EUR 868,798,157 in 2011, respectively [44]. Thus, the economic savings derived from the subset of the
synergies quantified above (EUR 5,850,672/yr. (2011)) would mean 17.57% and 0.67% of these values at
that time. Considering the limited number of synergies from which they stem, these rates provide
evidence of the capacity of these companies to be the cornerstone for future IS developments in the
city. To illustrate how the consideration of plausible IS practices might result in important benefits if
applied at larger scales, the savings associated with this subset of synergies, expressed as a percentage,
were applied to regional and national scales. Hence, the figures calculated above would reduce to
3.65% and 0.14% when referred to the region (autonomous community in Spanish), since 20.77% of
its industrial production corresponded to the city of the industrial park [44]. In turn, the economic
savings associated with the proposed synergies would mean 0.05% of the Gross Domestic Product
(GDP) of the region, which was EUR 12,622,706k in 2011 [45]. Finally, taking into account that this
region was responsible for 1.1% of the total GDP of Spain in 2011 (EUR 1,069,323M) [46], if the effects
of the subset of quantifiable synergies were applied to the scale of the whole country, the economic
savings would amount to approximately EUR 500M.

In the case of emissions, there were no available records of the environmental performance of
the companies in the industrial park. Instead, the Spanish Inventory System provided data about
the region where the park was located, which released 6,310,000 t CO2 eq. during 2011 [47]. Hence,
the environmental savings calculated for the subset of quantified synergies would amount to 3.34% of
the Greenhouse Gas (GHG) emissions of the region, since they were equivalent to 190,610 t CO2 eq./yr.
in 2011. Again, if the subset of actions calculated above as a percentage was proportionally applied to
the size of the country, which emitted 358 million t CO2 eq. in 2011, the emissions avoided in Spain
may amount to 11,953,958 t CO2 eq.

The Spanish Government has recently approved its Circular Economy Strategy to reduce the
generation of wastes and improve resource efficiency, whereby a series of targets were established to
be achieved in 2030, taking the 2010 data as the baseline. These targets included a 30% reduction in
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the consumption of materials, a 15% reduction in the generation of waste and a 10% improvement
in water efficiency [48]. At the scale of the industrial park studied, the amount of materials saved
and waste diverted from disposal (i.e., including discharged brine) through the proposed synergies
was 11,791.4 t (Figure 5). This figure represented 0.39% of the 3,027,856 t of materials consumed (raw
materials, auxiliary materials and auxiliary production services) and 3.33% of the 353,654 t of wastes
generated (hazardous and non-hazardous) (Figure 2). Therefore, more detailed information about
potential means of either reducing and reusing wastes as raw materials or extending the lifetime of
some products in the park should be collected and analysed to contribute further to meeting the first
two objectives. Instead, since the use of water in the park would be reduced by 993 m3/h out of the
initial 3,739m3/h (26.55%) when implementing the synergies related to the replacement of river water
(Figure 5), the water-related target would be amply met.

4. Conclusions

This research took the activity of an industrial park located in the north of Spain to undertake a
systemic analysis of co-located Industrial Symbiosis (IS) opportunities. To this end, information on the
three main flows observed in the park (materials, water and steam) was collected from public data of
its main companies and guided visits to their facilities. Next was the proposal and analysis of direct
(exchange or substitution) and indirect (share or mutuality) synergies to improve the sustainability of
the industrial park and explore its potential for future scaling-up.

As a result, 9 direct (4 materials, 4 water and 1 steam) and 9 indirect (5 materials, 3 water and 1
steam) synergies were identified during the study. Since 6 of them were discarded because of the lack
of some data and/or their incompatibility with other cooperation opportunities, the industrial park
was subject to a series of synergies that produced several changes in its flows. These changes involved
the following savings per year: 2826.4 t of virgin materials replaced by compatible wastes (176.4 t of
calcium carbonate and 2650 t of dolomite), 8965 t of brine replaced by used brine that otherwise would
be discharged into water bodies, 8,619,840 m3 of river water, 2 clarifiers, 1 demineralizer, 1 gas boiler
and 1 gas cogeneration system.

Overall, these figures would entail a reduction in the production and operation economic costs of
the companies, which in turn would crystallize in environmental savings due to the centralization of
flows and the increase in resource efficiency. In this vein, most of the water and steam-related synergies
would result in one company (C3 and C4, respectively) maximizing its capacity to act as a supply
node for the whole industrial park. In turn, this increased efficiency would result in a reduction in the
production unitary costs in this company, thereby putting it in a position to achieve competitive selling
prices. This would justify the remaining companies in the park putting aside some of their equipment,
such that purchasing from those supply nodes might be more profitable for them than generating their
own production services. The importance of these synergies would be especially remarkable due to the
connection among flows, whereby water performed as an input in steam, which in turn was partially
used for electric energy purposes.

Regarding the potential contributions of the selected synergies, only some of them could be turned
into preliminary economic and environmental benefits. Still, this limited quantification of synergies
would imply saving EUR 6,463,037 and 210,561 t CO2 eq. per year in the area where the industrial
park is located. The proportional application of these actions to the region in which this area is located
would result in 0.05% of its Gross Domestic Product (GDP) and 3.34% of its annual Greenhouse Gas
(GGE) emissions. Furthermore, when valuing their potential benefits at the scale of the whole country,
the implementation of these practices may mean about EUR 500M and more than 10M t CO2 eq. saved
per year.

Although approximate, the figures determined for Spain provide insight into the large annual
economic gains that might be obtained by companies involved in IS practices, as well as the associated
important benefits for the environment. In this vein, the selected synergies would result in reductions of
0.39%, 3.33% and 26.55% in the materials consumed, waste generated and water used in the industrial
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park, respectively, thereby contributing to meeting the targets established in the Spanish Circular
Economy Strategy for 2030, especially concerning water efficiency. Apart from this quantification,
the applied synergies were also analysed in terms of their contributions to achieving the Sustainable
Development Goals (SDGs). In total, they proved to be in line with 9 SDGs and 14 of their more specific
targets. The cascade effect inherent to these synergies explained the extension of their obvious benefits
for the industry to other areas, such as water pollution, clean energy, economic growth, responsible
consumption and production, sustainable cities and policy coherence.

The results achieved in this investigation are presented as a proof of the potential benefits of IS at
different scales and under the perspective of the three pillars of sustainability: economy, environment
and society. In this sense, they also served to prove the main assumption of the study, whereby the city
council requesting it expected that the analysis of these large companies may lay the foundations for
designing future IS strategies to strengthen the economy, environment and people’s welfare in the
area. Hence, new schemes of industrial production systems and retrofitting of industrial parks based
on the collaboration and partnerships of companies are highly recommended as the keys to future
business success. In addition, these approaches can improve both private and public decision-making
and support funding allocation, as well as raise awareness and provide reputational benefits and
marketing advantages. In the end, these outputs are expected to contribute to shedding light on the
multiple positive impacts associated with the promotion of IS policies by governments and public
entities. Despite its contributions with respect to recent related literature, this research still needs
further development in what concerns the automation of the systemic identification and analysis of IS
opportunities, in order to facilitate their future implementation.
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