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RESUMEN 

 

1. INTRODUCCIÓN 

La ruta de señalización RAS/ERK desempeña un papel esencial en el control de la proliferación, 

diferenciación y supervivencia celular en condiciones fisiológicas. Los fallos en la regulación de 

dicha ruta contribuyen significativamente a la transformación celular y están incuestionablemente 

involucrados en la progresión tumoral, además de en otras patologías. De hecho, 

aproximadamente el 40% del total de los tumores humanos son debidos a la desregulación de la 

señalización a través de dicha cascada, causada por mutaciones activadoras en las distintas 

proteínas que la componen. Este porcentaje varía en función del tipo de cáncer, pudiendo alcanzar 

el 90%. En el caso del melanoma, un 60% de los casos están originados por la desregulación de las 

señales de ERK. Por estas razones, durante las últimas décadas, esta ruta ha sido el sujeto de 

intensas investigaciones, con el propósito de identificar componentes susceptibles de ser utilizados 

como dianas terapéuticas en el tratamiento del cáncer.  

ERK1/2, las quinasas efectoras de esta vía de señalización, se activan en respuesta a diferentes 

estímulos intra o extracelulares a través de módulos de señalización compuestos por diferentes 

quinasas citoplásmicas. Las señales de ERK se regulan, entre otros mecanismos, por proteínas de 

andamiaje o “scaffolds”. Dichas proteínas ensamblan simultáneamente al menos dos componentes 

de la cascada en un complejo multi-enzimático estable, mediante el cual se regulan la intensidad, 

amplitud y duración de las señales. Una característica importante de las proteínas scaffold es que 

la concentración óptima guarda una estricta estequiometría con la concentración de las quinasas 

que constituyen esta ruta de señalización. Por esta razón, cualquier alteración en sus niveles de 

expresión tendrá profundas consecuencias en la activación de ERK y, en última instancia, en las 

respuestas biológicas reguladas por esta ruta. Además, las proteínas scaffold desempeñan un papel 

central como reguladores espaciales de las señales de ERK. A este respecto, dependiendo de la 

localización subcelular de la que emanan las señales de RAS, determinados scaffolds especifican 

qué sustratos son susceptibles de ser fosforilados/activados por ERK.  



 

  

Debido a la importancia de las proteínas scaffold en la regulación de esta cascada de 

señalización, se ha especulado con su posible implicación en la aparición de resistencia a terapias y 

con su potencial como dianas antitumorales. Una proteína scaffold con presunta capacidad como 

diana antineoplásica es IQGAP, ya que una cantidad significativa de melanomas exhiben 

considerables alteraciones en sus niveles de expresión. Por otro lado, la proteína KSR1 destaca 

como diana terapéutica debido a su inherente participación en la tumorogénesis mediada por RAS 

oncogénico. En consecuencia, recientemente se ha desarrollado el primer inhibidor de KSR, APS-2-

79, que a la vez es también la primera molécula dirigida contra una proteína scaffold. Sin embargo, 

esta molécula, a pesar de estabilizar a KSR en su estado inactivo e impedir la activación de MEK 

dependiente de este scaffold, presenta efectos inhibitorios más bien modestos tanto en la 

supervivencia celular como en la activación de ERK mediada por KSR.  

Una posible explicación a este fenómeno podría surgir de la interacción directa entre proteínas 

scaffold. A pesar de las funciones específicas y de regulación de ERK dependiente de la 

sublocalización de cada scaffold, se ha descrito que algunas de estas proteínas pueden asociarse 

entre sí. Por ello, hemos considerado la hipótesis de que estos macro-complejos scaffold-scaffold 

podrían constituir un nivel adicional de regulación para las señales de ERK y servir como nodos de 

integración para señales en respuesta a estímulos y para la diversificación subsiguiente de 

respuestas celulares específicas, en función de la afinidad por ERK que exhiben las distintas 

proteínas scaffold. Entender el mecanismo de regulación de ERK que supondría la coordinación 

entre proteínas scaffold podría facilitarnos nuevos medios para manipular las señales aberrantes 

de ERK con fines terapéuticos. 

 

2. OBJETIVOS 

Los objetivos planteados en esta tesis son: 

- Evaluar APS-2-79 como inhibidor de la fosforilación/activación de ERK mediada por 

KSR y sus consecuencias biológicas. 



 
 

 

- Investigar si las interacciones de KSR con otra/s proteína/s scaffold son la razón de 

la ineficacia de APS-2-79 en el bloqueo de las señales mediadas por KSR. 

- Investigar si las diferentes proteínas scaffold exhiben diferentes afinidades por ERK. 

 

3. MATERIALES Y MÉTODOS 

Para evaluar el efecto apoptótico de la sobreexpresión de KSR o del tratamiento de líneas 

BRAF y NRAS mutantes de melanoma con APS-2-79 y compararlo con el tratamiento con PLX4032 

o con la depleción de KSR se realizó un ensayo de detección de Anexina V mediante citometría de 

flujo. 

Para estudiar el mecanismo de interacción de KSR1 con ERK fosforilado/activo se utilizaron 

mutantes incapaces de unirse a ERK (KSR1 ASAP), a MEK (KSR1 C809Y), deficientes para la 

homodimerización (KSR1 R615H) y se generó por mutagénesis dirigida una proteína KSR1 doble 

mutante, incompetente para la interacción con MEK y la homodimerización (KSR1 R615H/C809Y). 

La interacción entre estas construcciones y ERK activo se analizó, de forma directa, mediante 

ensayos de co-inmunoprecipitación y ensayos de ligación por proximidad (PLA) mediante 

microscopía de fluorescencia; o, de forma indirecta, mediante ensayos de activación de fosfolipasa 

A2 citosólica por ERK dependiente de KSR1, a partir de cuantificación de ácido araquidónico tritiado 

liberado al medio extracelular. 

Se generaron líneas estables de MEFs KSR1 -/- expresando las construcciones mutantes de 

KSR1 previamente mencionadas donde se analizó el efecto del silenciamento de IQGAP1 sobre la 

activación de ERK dependiente de KSR y se valoró la capacidad de proliferación mediante contaje 

de células con la cámara de Neubauer.  

La capacidad proliferativa de líneas representativas de melanoma BRAF o NRAS mutante tras 

el silenciamiento mediante siRNA contra las proteínas scaffold KSR1 e IQGAP1 fue evaluada a partir 

del análisis de la actividad metabólica a través de la técnica del Alamar Blue. 



 

  

Con el fin de determinar la afinidad entre proteínas scaffold y ERK, se calcularon las constantes 

de disociación (Kd) a partir de la purificación de MP1, KSR1 (dominio de unión a ERK) e IQGAP1 

(dominio WW de unión a ERK) fusionadas con GST con ERK2 generado in vitro marcado 

radioactivamente en metionina con 35S. 

 

4. RESULTADOS Y DISCUSIÓN 

Observamos que el inhibidor de KSR APS-2-79 no mostró efectos en la supervivencia celular a 

pesar de bloquear la heterodimerización RAF-KSR, impidiendo así el cambio conformacional que 

esta interacción provoca en KSR exponiendo los sitios de activación de MEK unido a KSR. Con el 

objetivo de dilucidar si este resultado se correlaciona con la función de KSR, se silenció KSR en una 

línea de melanoma BRAF mutante y en otra NRAS mutante, y se observó que en esta última el 

silenciamiento tiene un claro efecto apoptótico, mientras que la inhibición de KSR no lo reflejaba. 

Por otro lado, se comparó el efecto del APS-2-79 con la depleción de KSR sobre los niveles totales 

de ERK activo en células HEK293T donde se advirtió que el efecto inhibitorio de la activación de ERK 

era significativamente mayor en respuesta a la depleción que a la inhibición de KSR. Asimismo, no 

se apreció disminución en los niveles de fosforilación de ERK dependiente de KSR originada por el 

inhibidor. 

El hecho de que la inhibición de KSR por APS-2-79 y su depleción no tengan el mismo efecto 

sobre la activación de ERK y sobre sus respuestas biológicas nos llevó a analizar más en profundidad 

la regulación de ERK mediada por KSR. En el curso de estos experimentos observamos que una 

proteína KSR1 mutante incapaz de unir MEK (KSR1 C809Y) se comportaba de la misma manera que 

la proteína WT en cuanto a la activación de ERK y sus efectos apoptóticos en células de melanoma 

NRAS mutante (SKMEL2) y en células no tumorales (HEK293T). A consecuencia de este resultado 

inesperado, se observó que el mutante deficiente para la unión de MEK se comporta como el WT 

debido a que mantiene la capacidad de unirse a ERK activo. A este respecto, nuestra hipótesis de 

asociación entre scaffolds y/o la descrita homodimerización de KSR, y la consiguiente interacción 

entre sus quinasas, podría ofrecer una explicación, pero no era descartable que MEK libre en el 



 
 

 

citoplasma pudiera ser el responsable de esta fosforilación. Por ello se generó un KSR1 doble 

mutante deficiente para la homodimerización y la interacción con MEK. En células HEK293T dicho 

mutante perdía su capacidad de unirse a ERK fosforilado, lo que invalidaba la posibilidad de que 

MEK libre fuera el causante de la activación de ERK unido a KSR. Con la finalidad de explicar este 

fenómeno, se descubrió que el scaffold IQGAP1 se unía a KSR. De esta manera, se vio que la 

sobreexpresión de IQGAP1 rescataba la activación de ERK mediada por el KSR doble mutante, lo 

que claramente apuntaba a la existencia de transactivación entre las quinasas unidas a scaffolds 

capaces de asociarse. Hemos denominado este nuevo mecanismo transfosforilación. 

Hemos estudiado con más detalle la interacción entre estas dos proteínas scaffold, como 

resultado hemos delimitado la región C-terminal de IQGAP1 como la parte de la proteína capaz de 

unirse a KSR. Por su parte, en KSR1 el motivo de interacción con IQGAP1 está definido entre los 

residuos 402 y 521. 

En relación a estos resultados, hemos visto que un mutante de IQGAP1 deficiente para unir 

MEK (IQGAP1 DIQ), al igual que KSR1 C809Y, mantiene la capacidad de incorporar ERK activo. Estos 

resultados apuntan a la posibilidad de que la transfosforilación sea recíproca entre scaffolds 

asociados, pero aún necesitamos experimentación adicional para confirmar que es KSR1 y no otro 

scaffold el responsable de esta transfosforilación entre diferentes scaffolds. 

En cualquier caso, la cooperación entre scaffolds podría implicar beneficios en el flujo de la 

señalización de ERK en situaciones en las cuales la concentración de alguna de las quinasas de la 

ruta sea limitante. En este caso se favorecería la activación del pool de sustratos fosforilados por 

ERK unido a ese scaffold hacia el que muestre mayor afinidad. En este contexto, las diferencias en 

la afinidad por ERK mostradas por los distintos scaffolds tendrían un papel importante. Con este 

fin, se han analizado las constantes de disociación de ERK2 con las proteínas scaffold MP1, KSR1 e 

IQGAP1, siendo MP1 el de mayor e IQGAP1 el de menor afinidad. Estas diferencias en afinidad están 

reflejadas en la cinética de interacción con ERK en diferentes condiciones de estimulación.  

 



 

  

En definitiva, considerando a) la capacidad de scaffolds para homodimerizar; b) la posibilidad 

de que distintos scaffolds heterodimericen y c) las distintas afinidades hacia ERK que muestran 

distintos tipos de scaffolds, que las señales de ERK se transmitan a través de un scaffold u otro 

dependería de: 1) la afinidad de homodimerización de cada scaffold; 2) la afinidad de 

heterodimerización entre distintos scaffolds y, por último, 3) de las constantes de disociación de 

cada scaffold hacia ERK. 

 

5. CONCLUSIONS 

 

- APS-2-79 es ineficaz como inhibidor de la oncogénesis inducida por la ruta RAS/ERK. 

Posiblemente como consecuencia de su incapacidad para interferir en la fosforilación de 

ERK dependiente de KSR. 

- Las proteínas scaffold KSR1 e IQGAP1 deficientes para unir MEK pueden incorporar 

ERK fosforilado a través de transfosforilación. 

- En el caso de KSR1, la transfosforilación es llevada a cabo, no por MEK libre, sino 

por MEK unido a la otra molécula de KSR que forma el homodímero o a una molécula de 

IQGAP1 formando un herodímero. 

- KSR1 se une a IQGAP1. Tal interacción ocurre a través de la región CA4 de KSR1 y 

de la región C-terminal de IQGAP1, y es altamente dependiente de la estequiometría entre 

KSR1 e IQGAP1. 

- La ineficiencia de APS-2-79 para inhibir la fosforilación de ERK unido a KSR es una 

consecuencia de su incapacidad para prevenir la transfosforilación, probablemente porque 

este inhibidor no puede interferir en la interacción entre KSR1 e IQGAP1. 

- Las proteínas scaffold MP1, KSR1 e IQGAP1 exhiben diferentes afinidades por ERK. 

Estas diferencias dictan la cinética de interacción de ERK con los distintos scaffolds en 

respuesta a estimulación. 
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ABBREVIATIONS 

aa Amino acid 

ab antibody 

Ala (A) Alanine 

Amp Ampicillin 

ATP Adenosine 5’-triphosphate 

APS Ammonium Persulfate 

Arg (R) Arginine 

ASAP Ala-Ser-Ala-Pro 

ATP Adenosine Triphosphate 

bGH Bovine growth hormone 

BSA Bovine Serum Albumin  

BMK Big MAPK 

ºC Degree Celsius 

CA Conserved Area 

CC-SAM coiled-coil fused to a Sterile � motif 

CD-domain Common docking domain 

CDK Cycline dependent kinase 

CHD Calponin Homology Domain 

CMGC group CDKs, MAP kinases, GSKs and CDK-like kinases 

CMV Cytomegalovirus 

CRD cysteine-rich domain 

C-terminal Carboxy-terminal 

cPLA2 cytosolic Phospholipase A2 



 ABBREVIATIONS 

 4 

Cpm Counts per minute  

CRM1 Chromosomal Maintenance 1 

C-TAK1 cdc25C associated protein kinase 

DBP DEF binding pocket  

ddw distilled deionized water 

DEF Docking site for ERK FXF  

DMEM Dulbecco ́s Modified Eagle Medium 

DNA Deoxyribonucleic acid 

DMSO Dimethyl sulfoxide 

dsDNA double-stranded DNA 

DTT Dithiothreitol 

DUSP Dual specificity phosphatase 

EBD ERK binding domain 

ECL Enhanced Chemiluminescence 

ED Exchange docking site 

EDTA   Ethylenediaminetetraacetic acid 

EF-1a  Elongation factor-1 alpha 

EGF Epidermal Growth Factor 

EGFR Epidermal Growth Factor Receptor 

EGTA Ethylene glicol tetraacetic acid  

Elk-1 ETS Like-1 protein 

EMA European Medicines Agency 

ERK Extracellular signal-regulated kinase  

FADH Flavin Adenin Dinucleotide 

FAK Focal Adhesion Kinase 
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FDA Food and Drug Administration 

FGF Fibroblast growth factor 

g Gram 

GAB1 Grb2-associated-binder 1 

GAP GTPase-Activating Protein  

GDP Guanosine diphosphate 

GEF Guanine-Nucleotide-Exchange factors 

Gly (G)  Glycine 

Glu (E) Glutamic acid 

GPCR G protein-coupled receptor 

Grb2  Growth factor receptor-bound protein 2 

GRD GAP Related Domain 

GSK Glycogen synthase kinase 

GST Glutatione S-transferase 

GTP Guanosine triphosphate 

HCl Hydrochloric Acid 

HEPES  N-(2-Hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid)  

HGF Hepatocyte growth factor 

His (H) Histidine 

H-RAS Harvey-Rat Sarcoma 

HRP Horseradish Peroxidase 

HSP Heat Shock Protein 

H2O2 Hydrogen Peroxide 

IP Immunoprecipitation 

JNK  c-Jun N-terminal kinase 



 ABBREVIATIONS 
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Kd Dissociation constant 

KO  Knock out 

Ile (I) Isoleucine 

IQGAP IQ motif containing GTPase-activating protein 

IMP  Impedes Mitogenic signal Propagation 

IPTG  Isopropyl b-D-thiogalactoside  

K-RAS Kirsten-Rat Sarcoma 

Kan Kanamycin 

Kb Kilo base 

kDa Kilo Dalton 

KSR Kinase suppressor of RAS  

L Litre 

LB Lysogeny broth medium  

LMB Leptomycin B  

LPA Lysophosphatidic acid 

m Milli 

M Molar 

µ Micro 

MAPK Mitogen activated protein kinase 

MEK Mitogen-activated protein kinase (MAPK) and 
extracellular signal-regulated kinase (ERK) kinase 

MEFs Mice Embryonic Fibroblasts  

min Minute 

MKB MAPK binding sequence 

MKP MAPK phosphatase 

MORG1 MAPK organizer 1 
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MP1 MEK Partner 1 

n Nano 

NADPH Nicotinamide adenine dinucleotide phosphate 

N-RAS Neuroblastoma-Rat Sarcoma 

NT Non-transfected 

N-terminal Amino terminal 

NES  Nuclear Export Signal 

NLS Nuclear Localization Sequence 

NLK Nemo-Like Kinase 

NP40 Nonidet-40 

O/N Over-Night 

P Phosphate group 

PAGE Polyacrylamide gel electrophoresis 

PAK1 p21 activated kinase  

PBS Phosphate-Buffered Saline 

PCR Polymerase Chain Reaction 

PDE4 Phosphodiesterase type 4 

PDGF  Platelet derived growth factor  

PEI Polyethylenimine 

Phe (F)  Phenilalanine 

PI3K Phosphatidylinositol 3-kinase 

PKC Protein Kinase C 

PLA Proximity Ligation Assay 

PLCe Phospholipase C e 

PP Protein phosphatase 
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PPMTase Prenylated protein methtyl transferase 

Pro (P)  Proline 

PTP  Protein tyrosine phosphatase 

RAC-1 Ras-related C3 botulinum toxin substrate 1 

RAF Rapidly accelerated fibrosarcoma 

RAS Rat sarcoma 

RASSF1 Ras Association Domain Family Member 1 

RBD Ras Binding Domain 

RGCT Ras GAP C-terminus 

RIN Ras interaction/interference 

ROCK Rho-Rho-associated coiled coil-containing protein kinase 

RSK ribosomal s6 kinase 

RTK Receptor Tyrosine Kinase  

rpm Revolutions per minute 

S Sulfur 

SAPK Stress-Activated Protein Kinase 

SDS Sodium dodecyl sulfate 

SEF Similar expression to FGF protein 

Ser (S)  Serine 

SH-2 Src Homology 2 

shRNA Short hairpin RNA 

siRNA Small Interfering RNA 

SOS Son of sevenless 

SRPK1 Serine/arginine protein kinase 1 

S/T PP  Serine/Threonine protein phosphatase 
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STEP  Striatum enriched Phosphatase 

SV40 Simian Virus 40 

s Second 

TAD Transactivation domain 

TAE Tris-acetate-EDTA 

TBS-T Tris Buffered Saline-Tween  

TEMED Tetramethylethylenediamine 

Thr (T)  Threonine 

TIAM1 T-cell lymphoma invasion and metastasis 1 

TL Total Lysates 

TLK Tyrosine-like Kinase 

Tm  Temperature of melting 

TPL2 Tumor progression locus 2 

Trp (W) Tryptophan 

Tyr (Y)  Tyrosine 

V Volts 

Val (V) Valine 

v/v Volume to volume 

WB Western Blot 

WT Wild type  

w/v Weight to volumen 
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1.1. SIGNAL TRANSDUCTION  

Signal transduction is one of the main mechanisms whereby cell fate is regulated. On a general 

basis, and under physiological conditions, cells do not govern their functions autonomously, but 

mainly in response to stimuli generated by the organism, that will tell cells when to and for how 

long to undergo key processes such as: proliferation, differentiation, and apoptosis, among many 

other cell-type specific functions. These stimuli are mainly conveyed in the form of soluble proteins, 

known as growth factors that are secreted to the bloodstream and distributed throughout the 

organism. Growth factors are aimed at defined target cells, characterized by expressing membrane 

receptors, highly specific for the growth factors in question. These receptors are mostly of the 

tyrosine kinase and of the G-protein-coupled type. The binding of the ligands to their cognate 

membrane receptors triggers receptor activation and the subsequent switching-on of cytoplasmic 

signalling routes, through which information is relayed to the inside of the cell, where biochemical 

effectors and genetic programs are activated in order to execute the orders initially carried by the 

growth factors, in the form of biological responses (Dedrick Jordan, Landau and Iyengar, 2000). 

Activated membrane receptors convey their signals to the inside of the cells through multiple signal 

transduction pathways, mainly mediated both by lipidic secondary messengers and/or cascades 

involving protein phosphorylations and protein-protein interactions, the latter include the 

pathways mediated by Mitogen-Activated Protein Kinases (MAPKs hereafter). 

 

1.2. PROTEIN KINASES 

Approximately 90% of the proteins expressed in cultured human cells are phosphorylated 

(Sharma et al., 2014). Furthermore, the sequencing of the human genome has unveiled that at least 

2% of the known human genes encode for protein kinases. Today the human kinome is composed 

of 535 protein kinases which highlights the importance of protein phosphorylation in biochemical 
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processes (Fig. 1.2). In fact, over 85% of the kinome has been reported to be dysregulated in 

diseases or developmental disorders (Manning et al., 2002; Lahiry et al., 2010; Creixell et al., 2018; 

Wilson et al., 2018). The phosphorylation status of a given protein results from the equilibrium 

between the addition and the removal of phosphate groups. Phosphate addition is carried out by 

protein kinases, these catalyze the reversible transfer of a phosphate group, generally obtained 

from the ATP g phosphate, to the hydroxyl group of tyrosine, threonine or serine residues. The 

removal of phosphate groups is undertaken by protein phosphatases that, through 

dephosphorylation, cleave phosphate groups from previously phosphorylated residues (Fig. 1.1). 

Phosphorylation is a critical process for the modulation of protein properties such as catalytic 

activity, protein stability, protein-protein interactions, subcellular localization, etc. (Hanks and 

Hunter, 1995; Johnson and Lapadat, 2002). In this way, aberrant phosphorylation as a consequence 

of the unregulated activity of either protein kinases or phosphatases imply, in most cases, 

physiological disorders and serious pathologies such as cancer, among many other maladies 

(Hanahan and Weinberg, 2000; Low and Zhang, 2016; Flores et al., 2019).  

 

Figure 1.1. Schematic representation of the activation of a signalling route and the enzymatic reaction of 
substrates by reversible phosphorylation. MAPKs are activated upon threonine (T) and tyrosine (Y) phosphorylation. 
Specific phosphatases are necessary for deactivation of the cascade by removing one or two phosphate groups (P) 
from the aforementioned residues. Once activated, MAPKs are able to phosphorylate serine (S) or threonine (T) 
residues in substrate proteins, that are returned to a basal state by phosphatases upon dephosphorylation. 
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1.3. MAP KINASES  
 

Signalling pathways mediated by MAPKs are among the best studied and well characterized. 

MAPKs are included within the CMGC group of serine-threonine kinases, which is composed of 9 

highly-conserved families, including important kinases such as the Glycogen synthase 3 family; the 

cell cycle CDKs (cyclin dependent kinases) and other kinases involved in splicing and metabolic 

control such as SRPK1 (Colwill et al., 1996; Jope and Johnson, 2004; Kannan and Neuwald, 2004) 

(Fig. 1.2). 

The original term MAPK has two origins: it comes from the ability to phosphorylate 

microtubule associated protein 2 (MAP-2 Protein Kinase), detected in Extracellularly-Regulated 

Kinase 2 (ERK2) which was the first MAPK identified (Ray and Sturgill, 1988); and also from the 

Figure 1.2. Phylogenetic tree of human protein kinases: Kinome. Organization of the 535 human genes bearing a 
protein kinase domain into seven groups, plus a group composed of more divergent atypical protein kinases (down-
left). The part of the dendrogram where CMGC group of serine-threonine kinases is located is amplified on the left. 
(Figure adapted from (Chartier et al., 2013)). 
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finding that ERK2 was activated in response to stimulation by mitogenic growth factors (Mitogen-

Activated Protein Kinase) (Rossomando et al., 1989). As such, the name MAPKs was initially 

restricted to the ERK1/2 family. However, today the term has been extended to describe a whole 

family, comprising not only ERKs, but also a series of similar kinases discovered afterwards, such as: 

Stress-Activated Protein Kinases (SAPKs)/Jun-N-terminal Kinases (JNKs); p38 family kinases and 

ERK5/Big MAPKs (BMK) (Cargnello and Roux, 2011).  

 MAPKs constitute a protein family highly conserved throughout evolution, from fungi and 

plants to animals (Widmann et al., 1999). Structurewise, the different MAPKs contain eleven 

subdomains in the catalytic region with a 30% identity. Thus, the structure and the catalytic 

properties of the proteins are very similar among the different families (Taylor et al., 1993). To date, 

20 different MAPKs have been identified in mammalians, encoded by 10 different genes. In 

addition, there are three atypical MAPKs: ERK3, ERK4 and ERK7 (English et al., 1999; Coulombe and 

Meloche, 2007) (Fig. 1.3).  

 

1.3.1. Identification and classification of MAPKs  

As mentioned previously, there are four MAPKs families, even though they share many 

characteristics, they also harbour distinctive features. 

Figure 1.3. MAPKs family cladogram. 



   1. INTRODUCTION 

 17 

1.3.1.1. Extracellular-Regulated Kinases (ERKs) 

ERK1 was the first MAPK identified in mammalians, as a kinase activated in response to growth 

factors, one of the main characteristics of this subfamily (Ray and Sturgill, 1988). The identification 

of ERK2 by Cobb’s group followed soon after (Boulton and Cobb, 1991). ERKs are activated by most 

mitogenic agonists including phorbol esters, cytokines and hormones. However, they are also 

switched-on by many other types of stimuli including differentiation and survival-promoting factors 

(Eblen, 2018). This family, in addition to p44 ERK1 and p42 ERK2, also includes the splicing isoforms 

ERK1b (Yung et al., 2000), ERK1c (Aebersold et al., 2004) and ERK2b (Gonzalez et al., 1992). Like all 

MAPKs, ERKs are activated by the phosphorylation of a motif present in the activation loop of the 

protein. This motif is the TXY motif, where the X amino acid is specific for each of the MAPKs 

subfamilies. In the case of ERKs it corresponds to Thr-Glu-Tyr (TEY). 

 

1.3.1.2. JNKs (c-Jun N-terminal Kinases) 

Also known as SAPKs (Stress Activated Protein Kinases) since they are activated in response to 

signals generated by environmental and oxidative stress. They are also activated by cytokines and 

to a lesser extent by mitogenic stimuli. The proteins encoded by the JNK1, JNK2 and JNK3 genes 

belong to this family. This include over ten isoforms per gen resulting from alternative splicing 

(Kyriakis and Avruch, 2001). Their phosphorylation motif is Thr-Pro-Tyr (TPY). JNKs play major roles 

in inflammatory processes (Zeke et al., 2016).  

 

1.3.1.3. p38 MAPK 

Also known as CSBP, mHOG1, RK and SAPK2. Like JNKs this family is also activated in response 

to stress stimuli such as osmotic and thermal shock (Han et al., 1994; Rouse et al., 1994). This 

subfamily includes four isoforms encoded by four different genes: p38𝛼 (Han et al., 1993; Freshney 

et al., 1994), p38𝛽 (Jiang et al., 1996), p38𝛾 (Li et al., 1996), p38𝛿 (Jiang et al., 1997).  In addition, 

there are isoforms generated by alternative splicing such as CSBP1 (Lee et al., 1994), Exip (Sudo et 
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al., 2002) and Mxi2 (Zervos et al., 1995) derived from p38𝛼. Its phosphorylation motif is Thr-Gly-

Tyr (TGY). Physiologically they are mainly activated by inflammatory cytokines, and therefore play 

major roles in inflammatory processes. They are also deeply involved in the regulation of cell 

survival and apoptosis and in the control of immune responses. As such, they have an important 

role in human maladies such as asthma and autoimmune diseases (Johnson and Lapadat, 2002). 

The majority of stimuli which activate p38 also activate JNKs. 

 

1.3.1.4. ERK5/BMK1 (Big Mitogen-Activated Protein Kinase 1) 

This MAPK was discovered in 1995 (Lee, Ulevitch and Han, 1995). Its main distinctive feature 

is its size, whereas most MAPKs have a molecular weight around 40-50 KDa, BMK1 is 115 KDa due 

to its unique C-terminus. There are 3 isoforms generated by alternative splicing named ERK5a, 

ERK5b and ERK5c (Yan et al., 2001) and it is mainly activated by mitogens and cellular stress 

(Kamakura, Moriguchi and Nishida, 1999). Like ERK1 and 2 its phosphorylation motif is Thr-Glu-Tyr 

(TEY), however unlike ERK1 and 2 its phosphorylation is no necessary for its nuclear translocation 

because in its C-terminus it harbours a nuclear localization signal (Buschbeck and Ullrich, 2005). 

Figure 1.4. Schematic representation of the classical human MAPKs. MAPKs contain a Ser/Thr kinase domain (in 
green) flanked by the N- and C-terminal regions of different lengths. The phosphorylation motif is represented within 
the kinase domain by the amino acid abbreviation, as well as the homology percentage in regard to ERK1. Different 
additional domains are also present in ERK5, including a transactivation domain (TAD) and a nuclear localization 
sequence (NLS). (Figure adapted from (Cargnello and Roux, 2011)). 
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 In addition to the above mentioned classical MAPKs, other MAPKs, referred to as atypical, 

have been described, such is the case for ERK4-3, NLK (Nemo-Like Kinase) and ERK7/8 (Coulombe 

and Meloche, 2007). 

 

1.3.2. MAPKs cascades 

Signal transduction pathways that utilize MAPKs are highly conserved across evolution. 

Indeed, the assembly of the first MAPK pathway was unravelled in yeast. In this organism MAPK 

cascades regulate key biological processes such as mating, budding, cell wall biosynthesis and 

osmoregulation (Pearson et al., 2001). The main difference between MAPKs pathways in yeast and 

in mammalian cells is that in yeast the response to specific stimuli is undertaken by a unique MAPK 

route, whereas in mammalians a given stimulus can activate multiple MAPKs simultaneously 

(Raman and Cobb, 2003).  

All MAPKs are activated by a cascade of phosphorylation events that occur in sequential tiers 

and involve different types of upstream-activating kinases. The first tier is composed of Mitogen-

Activated Protein Kinase Kinase Kinases (MAPKKKs), these are in general serine/threonine kinases. 

In turn, MAPKKKs phosphorylate and activate Mitogen-Activated Protein Kinase Kinases (MAPKKs), 

in all cases MAPKKs are dual-specificity protein kinases capable of phosphorylating their substrates 

in tyrosine and threonine residues. MAPKKs are the direct activators of MAPKs which are the last 

tier of the cascade. All MAPKs pathways are activated at their origin by small GTPases of the Ras 

superfamily (Chartier et al., 2013).  

The MAPKKK also named MEKK or MKKK are the first echelon of the MAPKs signalling 

cascades, these are serine/threonine kinases generally activated by phosphorylation, in response 

to the activation of small GTPases such as RAS, in the case of ERK1, 2 and 5, and Rho GTPases in the 

case of JNKs and p38 (Gutkind, 1998). Their activation is generally triggered by agonist stimulation 

of membrane receptors, even though, they can also be activated by internal stimuli such as 
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oxidative stress, DNA damage, etc (Chen and Thorner, 2007). There is a great structural diversity 

among MAPKKKs. Such variability is generally a consequence of the presence of different regulatory 

domains, which dictate the response of each MAPKKK to specific stimuli. The main MAPKKKs 

families are shown in figure 1.5. MAPKKKs are the direct upstream activators of MAPKKs (Raman 

and Cobb, 2003).  

MAPKKs include MEKs and MKKs, and make up the next step of the cascades. MAPKKs are 

enzymes with dual specificity as they can phosphorylate threonine and tyrosine residues. In spite 

of their ability to phosphorylate the lateral chains of aliphatic and aromatic amino acids, they 

exhibit a high substrate specificity and the number of their substrates is very limited. In such a way 

that, each MAPKK can phosphorylate only one or just a few MAPKs. MAPKKs specificity for MAPKs 

is determined by the phosphorylation motif, present in each MAPK family either TEY, TGY or TPY. 

Up to date, only 7 MAPKKs have been described, not including some alternative splicing isoforms: 

MEK1 and 2 or MKK1/2 are those responsible for activating ERK1 and 2; MKK3 and MKK6 activate 

p38 (Raingeaud et al., 1996), whereas MKK4 is capable of phosphorylating both p38 and JNKs 

Figure 1.5. A simplified and general scheme of the four classical MAPK three-tiered signalling pathways. The first tier 
represents the specific stimuli; ERK1/2, JNK, p38 and ERK5 MAPKs multi-enzyme cascades shown are described in the text 
and the last tier illustrate the biological outcomes of each pathway. GF=Growth factor. 
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(Dérijard et al., 1995). MKK7 is the upstream activator for JNKs (Fleming et al., 2000) and, finally, 

MKK5 is highly specific for ERK5 (Zhou, Bao and Dixon, 1995).  

 As already mentioned MAPKs are activated as a consequence of the conformational 

changes following the phosphorylation of the TXY motif in the activation loop. This double 

phosphorylation is essential to unleash their enzymatic activity (Robbins et al., 1993). MAPKs 

possess a highly characteristic tridimensional structure, they are globular proteins characterized by 

two lobes, a small N-terminal lobe (N-lobe) rich in beta-sheets and two alfa helices; and a C-terminal 

lobe mainly made up of a-helices, the active site is located between both lobes (Goldsmith and 

Cobb, 1994). The N-terminal lobe creates a pocket structure where the contacts with the ATP 

adenine ring take place. The C-terminal lobe includes the catalytic region typical of kinases and it 

comprises the magnesium binding site and the phosphorylation motif within the activation loop. 

Phosphorylation of the TXY motif causes a conformational reorganization of the loop which allows 

binding to the phospho-acceptor region of the substrates generating a functional catalytic center 

(Huse and Kuriyan, 2002) (Fig. 1.6). MAPKs belong to the functional family of proline-directed 

kinases. As such they phosphorylate serine or threonine residues immediately followed or 

preceded by a proline (P+1/-1) (Chang and Karin, 2001). 

Figure 1.6. ERK2 structure in its non-phosphorylated and inactive state (left) and its phosphorylated and 
active state (right). ERK2 is bi-phosphorylated on a threonine (pTyr-185) and a tyrosine (pTyr-183) residue 
within the phosphorylation lip (red). This phosphorylation provokes a conformational change in the lip and 
neighbouring structures (Figure obtained from (Canagarajah et al., 1997)). 
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1.4. THE ERK CASCADE: THE RAS/ERK PATHWAY. 

Undoubtedly one of the best characterized signalling pathways is the one that connects RAS 

stimulation to the switching-on of the cascade which brings about ERK activation (Fig. 1.7). This 

route is central in key biological processes such as the regulation of cellular proliferation, 

differentiation, survival, migration and many cell-type specific functions, in addition to multiple 

developmental processes. Furthermore, the unregulated function of this signalling route is involved 

in multiple developmental alterations and serious adulthood pathologies including cancer (Kim and 

Choi, 2010, 2015).  

 

Figure 1.7. RAS/ERK pathway activation by sequential phosphorylations. Upon activation by ligand binding, 
receptor tyrosine kinase autophosphorylates at multiple tyrosine residues on its cytoplasmic domain. This brings 
about the recruitment of the SH2 domain containing adaptor protein Grb-2, which recruits the guanine nucleotide 
exchange factor (GEF) SOS. SOS provokes the release of GDP from Ras which subsequently binds to GTP (active 
state). GTP-RAS recruits RAF to the membrane where it becomes activated. RAF phosphorylates two serine 
residues in the activation loop of MEK1/2. MEK is a dual specificity kinase that phosphorylates ERK on both 
threonine and tyrosine residues in the TEY motif of its activation loop. Activated ERK can phosphorylate a huge 
number of substrates at the cytoplasm in its dimeric form or it can translocate into the nucleus as a monomer 
where it activates transcription factors among other nuclear substrates. P=phosphate. 
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The RAS/ERK pathway is generally switched-on by external agonists acting on membrane 

receptors, usually of the tyrosine kinase type (Hubbard and Miller, 2007; Lemmon and Schlessinger, 

2010), though not excluding G protein-coupled receptors and cytokine receptors (Gutkind, 1998; 

Jain et al., 2018; Watson et al., 2018). Engagement of the membrane receptors brings about the 

activation of Guanine nucleotides Exchange Factors (GEFs) by different mechanisms, depending on 

the receptor type (Zhang et al., 2005). GEFs acting on RAS are generally those of the SOS (Son Of 

Sevenless) and RasGRF families. In the first case, they are mainly activated by tyrosine kinase 

receptors, whereas, the latter usually respond to the activation of G protein-coupled receptors 

(Mckay and Morrison, 2007; Fernández-Medarde and Santos, 2011; Rojas, Oliva and Santos, 2011).  

GEFs catalyze nucleotide exchange on RAS family GTPases (Stanley and Thomas, 2016). Under 

resting conditions, RAS is bound to GDP, GEFs promote the expulsion of GDP and its exchange for 

GTP, that is more abundant in the cytoplasm. GTP binding induces a structural change on RAS to its 

active conformation, in which it can interact with its effector molecules. To date, seven bona fide 

RAS effector have been described including: PI3K, RalGDS, RIN, TIAM-1, PLCe, RASSF1 and RAF 

family kinases, ARAF, BRAF and CRAF (Marshall, 1996; Mott and Owen, 2015; Nakhaeizadeh et al., 

2016). RAF kinases are the MAPKKKs that will initiate the activation of the ERK cascade. The exact 

mechanism whereby RAF family kinases are activated is still unclear, though it is known that it 

requires the interaction with GTP-bound Ras at the plasma membrane (Nussinov, Tsai and Jang, 

2019); the phosphorylation of tyrosine residues by SRC family tyrosine kinases (Bunda et al., 2014) 

and the interaction with HSP90 chaperones and 14-3-3 scaffold proteins (Fischer et al., 2008; Mitra 

et al., 2016). RAF activity is also subject to regulation by negative feedback loops generated via 

MEK- and ERK-mediated phosphorylation (Chong, Lee and Guan, 2001; Lake, Corrêa and Müller, 

2016). 

Upon activation, RAF kinases will phosphorylate MAPKK of the MEK (MAPK ERK Kinase) family, 

composed of two members with high homology, MEK1 and MEK2 (Kocieniewski and Lipniacki, 

2013). MEKs are activated by serine phosphorylation (S218 and S222 in MEK1) within their 
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activation loop that contains the motif S-X-A-X-S/T typical of all MAPKKs. Apart from RAF, MEK can 

also be phosphorylated by TPL-2, MOS and MEKK1 in addition to p21 PAK1 (Salmeron et al., 1996; 

Hagemann, Troppmair and Rapp, 1999; Pearson et al., 2001). As such all of these kinases can also 

be considered MAPKKKs. In a similar fashion to RAF, MEK can also be regulated by negative 

feedback loops. Specifically, by the retro-phosphorylation in Threonine 292 by ERKs (Eblen et al., 

2004). MEK phosphorylation unleashes its dual specificity kinase activity exerted on its hitherto only 

known substrates ERK1 and 2 (Liu et al., 2018). 

In addition to its role as a direct ERK1/2 upstream activator, MEK1 also functions as an ERKs 

cytoplasmic anchor (Fukuda, Gotoh and Nishida, 1997). Under resting conditions, ERKs are located 

in the cytoplasm bound to several anchoring proteins, including MEK1 (Lidke et al., 2010; 

Whitmarsh, 2011). Upon phosphorylation, MEK-ERK interaction is broken and ERKs are free to 

diffuse to multiple cellular locations (Caunt and McArdle, 2010). Furthermore, upon activation, 

MEK1 translocates to the nucleus, but it is rapidly exported to the cytoplasm guided by the nuclear 

export signal (NES) located in its N-terminus, and in so doing, it takes ERK back to the cytoplasm 

(Fukuda, Gotoh and Nishida, 1997; Adachi, Fukuda and Nishida, 2000). This mechanism requires 

the participation of shuttling proteins such as CRM-1 that is inhibited by leptomycin B (LMB) whose 

treatment prevents ERK nucleo-cytoplasmic shuttling (Fukuda et al., 1997; Kudo et al., 1998).  

 

1.4.1. ERK activity  

As mentioned before, ERK1 and 2 are the only known MEK substrates. ERKs appear throughout 

the evolutionary scale, originating as a primitive ERK that yields ERK1 and ERK2 by gene duplication, 

with the advent of amniote (Li, Liu and Zhang, 2011; Buscà et al., 2015). In mammalians ERK1 and 

ERK2 are ubiquitously expressed and share a 90% homology in their amino acid sequence (Boulton 

et al., 1991). In agreement with their high homology, they appear to be redundant in their functions 

(Lloyd, 2006; Lefloch, Pouysségur and Lenormand, 2008; Voisin et al., 2010; Saba-El-Leil, Frémin 

and Meloche, 2016). ERK1 knock-out mice are perfectly viable (Pagès et al., 1999; Mazzucchelli et 
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al., 2002; Nekrasova et al., 2005), whereas ERK2-defective mice are embryonic lethal (Hatano et al., 

2003; Saba-El-Leil et al., 2003). However, it has been recently shown that overexpression of ERK1 

can overcome ERK2 deficiency during development, indicating that both proteins share similar 

functions (Frémin et al., 2015). 

ERK phosphorylation by MEK entails different regions within ERK, both in its N- and C-

terminus, such as the regions spamming amino acids 19-25 and 320-321 (Rubinfeld, Hanoch and 

Seger, 1999; Eblen et al., 2001) and also require the interaction between MEK D-domain and ERK 

CD-domain which induces a conformational change on ERK structure exposing the canonical sites 

Thr183 and Tyr185 (in ERK2) for phosphorylation. Phosphorylation by MEK enhance ERK kinase 

activity by 5 or 6 orders of magnitude above its basal activity (Zhang et al., 1994). Upon 

phosphorylation, the G-helix in the C-lobe is involved in the formation of a pocket structure 

surrounded by hydrophobic residues that constitute the region that recognizes the proline in the 

substrates, enabling their phosphorylation (Clark-Lewis, Sanghera and Pelech, 1991). 

Upon phosphorylation ERKs dimerize. These are ERK1 or ERK2 homodimers, heterodimers are 

unstable. Even though ERK can also dimerize when unphosphorylated, its Kd is 3,000 times below 

the value corresponding to the dimer formed by phosphorylated ERK (Khokhlatchev et al., 1998). 

The role of ERK dimerization is unclear, it has been proposed that it is relevant for the sustainability 

of ERK activity levels (Philipova and Whitaker, 2005) and it was initially believed to play a role on 

nuclear translocation (Khokhlatchev et al., 1998). However, previous data from our laboratory 

demonstrated that ERK dimers are formed, and most remain, at the cytoplasm associated to 

scaffold proteins (Casar, Pinto and Crespo, 2008). In such a way that scaffold proteins serve as ERK 

dimerization platforms where ERK dimers are assembled, forming complexes competent for 

phosphorylating ERK cytoplasmic substrates. Contrarily to the cytoplasm, phosphorylated ERK 

enters the nucleus mainly as monomers (Casar, Pinto and Crespo, 2009). 
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Phosphorylated ERK will distribute throughout the cell. As previously mentioned, about 50% 

of the ERK molecules will remain at the cytoplasm, in dimeric form, and a similar fraction will 

translocate to the nucleus as monomers. The mechanism whereby ERKs translocate to the nucleus 

is not yet fully understood and, apparently, it can take place by different modes. It must be noticed 

that ERK does not possess a nuclear localization signal (NLS) (Maik-Rachline, Hacohen-Lev-Ran and 

Seger, 2019). ERK can diffuse freely and energy-independently into the nucleus (Yazicioglu et al., 

2007). In this respect, ERK has been shown to directly bind to the FXFG sequences of nucleoporins, 

at the nuclear pore complex (Whitehurst et al., 2002). However, the main mechanism whereby 

activated ERK enters the nucleus requires the participation of nuclear shuttles, such as Importin 7. 

In Drosophila, this nuclear shuttle has been shown to interact with ERK and transport it to the 

nucleus (Lorenzen et al., 2001). Another nuclear shuttle is the p38a isoform, Mxi2, capable of 

binding to ERK and promoting its nuclear accumulation, by a mechanism that requires direct 

interaction between both proteins and also Mxi2 binding to nucleoporins (Casar et al., 2007). The 

duration of ERK residence at the nucleus is a critical factor for its biological activity and it depends, 

both, on its interaction with nuclear anchors, such as the phosphatase DUSP5 (Mandl, Slack and 

Keyse, 2005; Rushworth et al., 2014), and on its binding to proteins that will mediate in its 

translocation back to the cytoplasm, such as MEK (Adachi, Fukuda and Nishida, 2000; Michailovici 

et al., 2014; Maik-Rachline, Hacohen-Lev-Ran and Seger, 2019). 

 

1.4.2. ERK substrates 

Up to date, 500 proteins have been described as substrates subject to ERK phosphorylation 

(Yang et al., 2019; Smorodinsky-Atias, Soudah and Engelberg, 2020). About half of these are nuclear 

proteins and the rest are distributed through extranuclear regions. Many types of proteins have 

been identified as ERK substrates, including: membrane receptors, signalling molecules, kinases, 

metabolic enzymes, transcriptions factors, DNA binding proteins, structural components, etc. (Yoon 

and Seger, 2006). As previously mentioned, all ERK substrates are phosphorylated in the motif 

Ser/Pro P+/-1, however, the presence of such motif does not necessary imply that it will be 
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phosphorylated by ERK. What defines an ERK-interacting protein, including substrates, is the 

presence of defined docking domains:  

-D domain: it is present in the vast majority of ERK-interacting proteins, including substrates 

and other types of proteins such as: regulatory proteins and its activator MEK. This domain is 

composed of two or more basic amino acids followed by a series of hydrophobic residues (Leu, Iso 

or Val) [(K/R)2-3-X1-6-φL,I,V-X-φL,I,V] (Kallunki et al., 1994). This domain is not specific for ERK as 

it also serves as a docking site for other MAPKs such as p38 and JNK. It was initially described in the 

c-Jun transcription factor and was lately identified in many other transcription factors, 

phosphatases and scaffold proteins (Sharrocks, Yang and Galanis, 2000). It provides a high affinity 

binding site for ERK and other MAPKs. D domains interact with ERK CD domain, a region rich in 

acidic and hydrophobic residues of which D316 and D319 are critical (Tanoue et al., 2000; Lee et 

al., 2004), in such a way that binding of the D domain to the CD domain involves both electrostatic 

and hydrophobic interactions.  

-DEF domain (Docking site for ERK; FXFP): It comprises the sequence Phe-X-Phe-Pro. This 

sequence is generally found close to the phosphorylation site, including residues 185 to 261 next 

to the activation loop. Unlike the CD-domain, it is not present in all ERK substrates, suggesting that 

it serves as a high specificity binding motif (Sharrocks, Yang and Galanis, 2000; Fantz et al., 2001). 

The DEF domain binds to the DEF motif Binding Pocket (DBP) present in ERK. The DBP is found in 

the hydrophobic cleft known as the insert region, that is only accessible when ERK is 

phosphorylated. DEF domains have been identified in transcription factors (c-Fos and ELK-1), 

scaffold proteins (KSR) and phosphatases (MKP1 and DUSP4) (Jacobs et al., 1999). Even though it is 

preferentially utilized by ERK, under some circumstances other proteins can also bind to this motif. 

There are some ERK substrates which harbour both docking domains, such is the case for the 

transcription factor ELK-1 (Yang et al., 1998; Fantz et al., 2001).  
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Since they are mostly mediated by the same types of binding motifs, ERKs interactions with 

substrates, upstream activators and regulatory proteins are generally mutually exclusive. As such, 

a mechanism of action has been proposed, according to which ERK activation by MEK will occur in 

the first place, after which substrate phosphorylation will ensue and ERK inactivation by 

phosphatases will follow (Tanoue et al., 2001).  

 

1.4.3.  ERK regulation 

It is nothing but logical that a protein playing such important roles in signal transduction is 

subject to a tight regulation, both in its activation and its inactivation. Indeed, both the duration 

and the amplitude of ERK-mediated signals are the resultant of the equilibrium reached between 

the activating and inactivating processes.  

1.4.3.1.  ERK regulation by phosphatases 

ERK inactivation takes place mainly by the cleavage of the phosphate group in one or both of 

its phosphorylated residues. This is undertaken by protein phosphatases that can be classified 

according to their ability to dephosphorylate such residues (Yao and Seger, 2005). These include: 

Ser/Thr phosphatases (PPs): these are protein phosphatases with the ability to eliminate the 

phosphate group from the threonine in the TEY motif. The main phosphatases involved in ERK 

dephosphorylation belonging to this class are the PP1A and PP1B family phosphatases. These 

phosphatases can dephosphorylate ERK, both, in the nucleus and the cytoplasm. They are highly 

promiscuous and undertake the dephosphorylation of multiple proteins (Alessi et al., 1995; Sun and 

Wang, 2012).  

 Tyr phosphatases (PTPs): these are enzymes capable of removing the phosphate group 

from the tyrosine in the TEY motif. Most of these belong to the PTP-SL (Step like PTP), STEP (striatum 

enriched phosphatase) and HePTP (hematopoietic PTP) families. Most of these are membrane 
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bound phosphatases and they mainly participate in cytoplasmic processes (Pulido, Zúñiga and 

Ullrich, 1998; Toledano-Katchalski et al., 2003). 

 Dual Specificity phosphatases (DUSPs): also named MKPs (MAPK phosphatases). These are 

protein phosphatases with the ability to dephosphorylate both, threonine and tyrosine residues in 

their substrates. They are highly specific for MAPKs, this specificity is dictated by their N-terminus, 

where they harbour a sequence of hydrophobic residues named MKB (MAPK binding) which 

mediates in the specific interaction with MAPKs (Fig. 1.8) (Theodosiou and Ashworth, 2002). Some 

of them like MKP3 bind to ERK under resting conditions, functioning as a cytoplasmic anchor. Their 

activity can be induced, both by growth and stress signals. MKPs are the main inactivators of MAPKs 

and they act both at the cytoplasm and the nucleus. Some MKPs display a high specificity for a given 

MAPK family, whereas others are more promiscuous. For example, MKP1 can dephosphorylate ERK, 

JNKs and p38, whereas MKP3 is highly specific for ERK (Sun et al., 1993).  

 

Figure 1.8. Dual Specificity phosphatases (DUSPs) mechanism. These phosphatases are able to dephosphorylate 
both, threonine and tyrosine residues in their substrates. In their N-terminus they possess the MAPK binding (MKB) 
sequence which binds to the MAPK substrate and the C-terminus dephosphorylates the Threonine (T) and Tyrosine 
(Y) residues 
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1.4.3.2.  ERK regulation by feedback loops 

Positive and negative feedback loops are among the complex molecular mechanisms whereby 

ERK signals are fine-tuned (Shin et al., 2009). Once phosphorylated, ERK is able to feed back on its 

own activation pathway at different levels, both inducing (positive feedback loops) or inhibiting 

(negative feedback loops) (Fig. 1.9) the signal flux which ultimately shapes the duration and the 

intensity of its own signals and, as a consequence, its biological outcomes (Kolch, 2005), modulated 

up or down by the feedback loops. 

Among the ERK negative feedback loops that restrain signal flux and restore the basal 

activation state of the pathway, are those that target RAF, MEK and SOS.  

An important negative feedback loop is aimed at the guanine nucleotide exchange factor SOS, 

which is responsible of RAS activation. SOS phosphorylation by ERK at residues S1132, S1167, S1178 

and S1193 prevents its interaction with Grb-2, blocking SOS translocation to the plasma membrane 

(Chen et al., 1996; Corbalan-Garcia et al., 1996). Also phosphorylation at S1134 and S1161 is 

undertaken by serine/threonine kinase RSK2, whose activation at the cytoplasm is ERK-dependent 

(Porfiri and McCormick, 1996; Shin et al., 2009; Kamioka et al., 2010). These phosphorylations 

generate a binding site for 14-3-3 proteins localizing SOS at the cytoplasm and preventing its 

interaction with RAS (Douville and Downward, 1997; Saha et al., 2012). 

In the case of RAF, ERK phosphorylates it at six sites: S29 and S43 in its N-terminus, S642 at its 

C-terminus and S289, S296 and S301 at the flexible hinge between the regulatory and catalytic 

domains. This hyperphosphorylation impairs RAF interaction with RAS and enhances RAF 

dephosphorylation by the phosphatase PP2A (Dougherty et al., 2005; Hekman et al., 2005).  

Regarding the negative feedback loop exerted over MEK, activated ERK phosphorylates MEK 

at Thr292 (Eblen et al., 2004) and Thr212 (Sundberg-Smith et al., 2005). The phosphorylation at 

T292 impedes MEK activation by PAK1 essential to enhance MEK-CRAF interaction, as a 

consequence RAF-induced phosphorylation of MEK at its activating sites S218 and S222 is 
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attenuated (Slack-Davis et al., 2003) leading to a drop on MEK activity that, ultimately, decreases 

ERK activation. 

An alternative, indirect negative feedback system is the ERK-mediated transcriptional 

upregulation of phosphatases such as DUSP1, DUSP2, DUSP5 and DUSP9 (Owens and Keyse, 2007). 

In addition, ERK phosphorylates DUSP1 stabilizing the protein and increasing its half-life (Brondello 

et al., 1997; Brondello, Pouysségur and McKenzie, 1999). The functional difference between these 

two processes, is that whereas posttranslational modifications, such as phosphorylation, have an 

immediate effect, the consequences of de novo synthesis of phosphatases are felt in the long run. 

The main positive feedback loops mediated by ERK impinge on RAF and DUSP6. Just as ERK 

can inhibit RAF by multiple phosphorylations, some of these phosphorylation sites such as S289, 

S296 and S302 can have an enhancing effect on RAF activity (Balan et al., 2006). Likewise, ERK-

induced phosphorylation of the cytosolic phosphatase DUSP6 (MKP3) at S159 and S197 targets 

Figure 1.9. The Ras/ERK pathway feedback regulation mechanisms. Activated ERK triggers positive and negative 
regulatory feedback loops: the main negative feedback loops act on SOS, RAF and MEK, while the major positive 
feedback loops inactivate DUSP6 and RKIP and activate RAF. 
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DUSP6 for degradation in the proteasome (Marchetti et al., 2005), thereby retarding ERK 

dephosphorylation. Finally, another positive feedback loop is directed at RKIP, which is a negative 

regulator of the interaction between MEK1 and CRAF. ERK phosphorylation inhibits RKIP kinase 

activity, and by that means its inhibitory function is prevented and the signal flux along the pathway 

is increased (Yeung et al., 1999, 2000; Shin et al., 2009). 

 

 

1.5. SCAFFOLD PROTEINS 
 

It is striking that the RAS/ERK pathway is activated in response to multiple stimuli to generate 

a broad variety of biochemical and biological responses, something difficult to reconcile with a 

pathway initially envisioned as a linear signalling route. Thus, it is conceivable that additional levels 

of regulation could confer variability to ERK signals. ERKs signal output is not shaped exclusively as 

a consequence of the phosphorylation events that take place within the different echelons of the 

pathway. In addition to the kinases included in the different tiers, and the phosphorylation-

mediated regulatory mechanisms described above, past evidence has discovered the participation 

of other types of regulatory proteins that add further levels of control to the flow of signals. A group 

of such proteins known as Scaffold Proteins serve this purpose by fine-tuning amplitude and 

intensity and conferring spatial selectivity to ERKs signals (Dhanasekaran et al., 2007).  

As of today, the accepted requisite for a protein to be considered as a “scaffold”, is its ability 

to bind to at least two members of the signalling cascade simultaneously, forming a complex with 

functional stability (Fig. 1.10). The first scaffold protein serving this role in a MAPK cascade was 

Ste5, identified in the budding yeast Saccharomyces pombe. It was found that Ste5 stabilized the 

complex formed by Fus3 (MAPK), Ste7 (MAPKK) and Ste11 (MAPKKK) at the tips of mating 

projections, following stimulation with mating pheromones (Choi et al., 1994; Yablonski, Marbach 
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and Levitzki, 1996). Since then, scaffold proteins have also been identified in mammalian cells and, 

to date, the list of proteins that qualify as scaffolds for the RAS/ERK pathway has grown up to 15 

members. Intriguingly, in spite of their common role, there is not a significant sequence homology 

among these proteins, and they do not resemble Ste5, for which hitherto no mammalian 

homologue has been identified (Kolch, 2005; Dhanasekaran et al., 2007). Even though MAPKs 

scaffold proteins remain enigmatic on many aspects, it is clear that their functions are more 

complex than just serving as hubs for the assembly of the kinases (Witzel, Maddison and Blüthgen, 

2012).  

 

Structurally, it is believed that scaffold proteins optimize signalling by clustering enzymes and 

substrates, thereby increasing their effective concentrations. In addition to positioning these 

proteins in optimal orientation relative to each other, thereby facilitating phospho-transfer 

reactions (Fig. 1.11 A) (Scott, Haystead and Haystead, 1995; Levchenko, Bruck and Sternberg, 2000). 

Furthermore, other proteins or small molecules can associate to scaffold proteins working as 

allosteric regulators. Such binding provokes a conformational change in the scaffold inducing or 

inhibiting signal transduction along the pathway (Fig. 1.11 B). For example, in the case of KSR it has 

been shown that its overexpression enhances RAF activation, as a consequence of its kinase-

Figure 1.10. Illustration of a scaffold protein. By definition, a protein can be considered a 
scaffold when it is able to bind simultaneously, at least, two members of the cascade 
forming a functional stable complex. 
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homology domain directly binding to RAF, thereby inducing its kinase activity (Rajakulendran et al., 

2009). In the same vein, KSR interaction with RAF in cis, evokes a conformational switch on MEK, 

resulting in the exposure of its activation loop making it available for phosphorylation by RAF in 

trans (Brennan et al., 2011).  

Another mechanism whereby scaffold proteins optimize MAPKs signalling is by shielding the 

components of the cascade from dephosphorylation, by preventing their interaction with soluble 

phosphatases (Fig. 1.11 C) (Levchenko, Bruck and Sternberg, 2000). However, this notion is 

somewhat controversial as it questions whether they promote or impede signal amplification. 

Conceptually, since free kinases can phosphorylate multiple substrates, it is believed that the signal 

is amplified exponentially along the pathway. This implies that when proteins are locked onto a 

scaffold, a kinase can only phosphorylate its accompanying substrate, preventing signal 

amplification. However, in an environment with a high concentration of phosphatases, in which 

signalling based on freely diffusing kinases will be strongly inhibited, scaffolding will achieve a 

“local” concentration effect and, as a consequence, signal amplification; as it will increase the 

chances for a successful encounter between active kinases in spite of the surrounding high levels 

of deactivating phosphatases (Locasale, Shaw and Chakraborty, 2007).  

In addition to the aforementioned functions, it is now clearly established that scaffold proteins 

are essential determinants of ERK signals spatial regulation, by orchestrating ERKs activity in a 

sublocalization-specific fashion (Fig. 1.11 D). Hitherto all of the proteins that have been identified 

as ERK scaffolds are extranuclear proteins. In agreement, a broad collection of studies demonstrate 

that scaffold proteins participate in ERK signalling at multiple extranuclear sites: KSR1 regulates 

ERKs signals generated at the plasma membrane in lipid rafts domains (Matheny et al., 2004). MP1 

works primarily at endosomes (Teis, Wunderlich and Huber, 2002), SEF regulates ERKs functions at 

the Golgi complex (Torii et al., 2004) and Paxillin mainly at focal adhesions (Ishibe et al., 2003). 

Furthermore, it has been demonstrated that spatial selectivity provided by scaffold proteins is an 

essential factor for defining ERKs substrate specificity. In this respect, it has been shown that the 
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type of membrane from which ERK is being activated by RAS incoming signals, dictates which 

substrates are amenable for phosphorylation, and this is achieved by the intervention of defined 

scaffolds proteins (Casar et al., 2009).  

The molecular mechanism whereby scaffold proteins determine ERK substrate specificity has 

been recently unravelled, and it is based on the scaffold proteins capacity for promoting the 

formation of ERK dimers. The interaction of scaffolds with ERK in dimeric form makes possible that 

one ERK monomer binds to the scaffold and the other to the pertinent substrate (Casar, Pinto and 

Crespo, 2008). Therefore, scaffold proteins function as ERK dimerization platforms thereby 

facilitating the assembly of the ERK enzymatic complexes competent for the activation of its 

cytoplasmic substrates (Fig. 1.11 E).  

Figure 1.11. Scaffold protein functions. Scaffold proteins serve as an assembly platform for the kinases orienting them 
and facilitating phospho-transfer reactions (A). They have a regulatory function when a small molecule binds to them 
it can induce or inhibit signal transduction (B). Scaffolds protect kinases from dephosphorylation by soluble 
phosphatases and from signal interferences from other pathways (C). Scaffolds confer spatial regulation for ERK 
signals due to the specific subcellular localization (D). And they function as dimerization platforms for ERK dimers, 
where they can activate cytoplasmic substrates (E).  
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In support of this notion, results from our lab have shown that ERKs cytoplasmic substrates 

like cPLA2, RSK1 and PDE4, specifically associate to ERK in dimeric form (Casar, Pinto and Crespo, 

2008, 2009; Herrero et al., 2015). In agreement with these findings, it had been previously shown 

that the overexpression of scaffolds like KSR1, b-arrestin and SEF enhanced ERK activity at the 

cytoplasm (Sugimoto et al., 1998; DeFea, Zalevsky, et al., 2000; Tohgo et al., 2002; Torii et al., 2004) 

and, at the same time, it downregulated ERK nuclear events. At the nucleus, as previously 

mentioned, ERK activity is mainly undertaken in monomeric form (Casar, Pinto and Crespo, 2008). 

A central notion concerning scaffold proteins, supported by a wide array of data, is that 

scaffolds function at an optimal concentration that yields maximum signal output.  As such, scaffold 

proteins promote a bell-shaped MAPK activation kinetics. As a consequence, sub-optimal MAPK 

activation takes place when the scaffolds concentration is low; therefore, there are not enough 

scaffolds to productively assemble all of the available signalling cascade constituents.  An excessive 

scaffold concentration has the same effect as MAPKs, MAPKKs and MAPKKKs are scattered in 

incomplete complexes. This phenomenon has been called “combinatorial inhibition” and “prozone 

effect” (Fig. 1.12) (Levchenko, Bruck and Sternberg, 2000; Heinrich, Neel and Rapoport, 2002).  

Figure 1.12. A change on scaffold proteins expression reduces ERK signalling. Scaffolds expression levels are in an 
optimal stoichiometric proportion with MEK and ERK in order to maximize signalling. Due to this fact, a low expression 
of scaffold proteins results in a free diffusion of the kinases, decreasing the interaction between them (A). And, on the 
other hand, a high concentration of scaffold proteins produces the dispersion of the kinases in incomplete scaffolds 
(B).  
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Following this rationale, it can be envisioned that the regulation of scaffold concentrations 

could be an efficient mode for regulating MAPKs signal output. In theory, maximum MAPK signal 

output would be achieved only when scaffolds concentrations are optimal. Therefore, up- or 

downregulating scaffolds expression could be an effective way for attenuating MAPK signalling. It 

is noteworthy, that the expression of the majority of scaffold proteins, in most cell types, is quite 

stable and not subject to immediate changes in response to external stimuli that govern MAPKs 

activation. This does not invalidate that alterations on scaffolds levels, when they happen, can 

result in profound, long-term consequences on MAPKs biological outcomes, in some cases 

contributing to pathological processes. In this respect, there is ample data showing that some ERK 

scaffold proteins display altered expression in some types of tumours (www.oncomine.com; 

www.cBioportal.com). 

 

1.5.1. Coordination among scaffold proteins 

As of today, about 15 scaffold proteins have been described for the RAS/ERK pathway, and the 

available data suggests that they function independently from each other. However, this is difficult 

to reconcile with results showing that altering the expression of anyone of them, affects much more 

profoundly ERK signals intensity than should be expected from interfering with just one of the 

fifteen scaffolds. For example, when KSR1 levels are downregulated by gene knock-out or siRNA, 

over an 80% drop on ERK activation levels is detected (Nguyen et al., 2002; Lozano et al., 2003). 

This is also the case for IQGAP1 (Roy, Li and Sacks, 2004; Jameson et al., 2013), and for MP1 (Sharma 

et al., 2005; Teis et al., 2006). Overall, these data are hard to reconcile with the notion that scaffold 

proteins function independently. 

In light of these observations it could be hypothesized that scaffold proteins act in conjunction, 

influencing the activity of each other (Casar and Crespo, 2016). In this respect, it is quite evident 

how up- or downregulation on the expression levels of any scaffold could affect others, since they 

compete for the same pool of kinases. For example, reducing the levels of a given scaffold would, 



1. INTRODUCTION 
 

 38 

on one hand, reduce signalling through its own pathway and, on the other hand, could enhance 

signalling as mediated by another scaffold, by increasing the number of available free kinases, 

thereby increasing the amount of complete complexes for the second scaffold (Fig. 1.13).  

 

 

Furthermore, even though it is believed that scaffold proteins function autonomously from 

each other, regulating ERK signals at specific sub-localizations as induced by defined stimuli, it 

cannot be discarded that they also act in a coordinated fashion to some extent. In this respect, 

recent data clearly demonstrated that some scaffold proteins can associate among themselves. It 

is not unprecedented that protein serving regulatory functions such as docking and scaffold 

proteins interact among themselves forming macro-complexes (Pan et al., 2012). With regards to 

Figure 1.13. A change on the expression of a single scaffold can drive to a change in the signalling through other 
scaffolds. The overexpression of a given scaffold can attenuate signalling through it or through other scaffolds due to 
the dispersion of the kinases, for which they are competing, in incomplete scaffolds (A). While its depletion can result 
in an increasement in the signalling through another scaffold decreasing its own signals, due to a higher amount of 
available kinases for the other scaffold (B). 
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scaffold proteins of the RAS/ERK pathway, there have been described interactions between: MP1 

and MORG1 (Vomastek et al., 2004); IQGAP1 and MP1 (Schiefermeier et al., 2014); paxillin and 

GAB1 (Ren et al., 2004); and IQGAP1 and b-arrestin2 (Feigin et al., 2014). Even though the 

functional meaning of these associations is largely unknown and the processes and mechanisms 

regulating interactions among scaffolds are completely unveiled, in some cases they appear to have 

important biological implications. As an example, during cellular migration IQGAP1 binding to MP1 

plays a critical role in the regulation of focal adhesion dynamics (Schiefermeier et al., 2014).  

 

1.5.2. Scaffold Proteins Species 
 
 

1.5.2.1. SEF 

Initially discovered in zebrafish as an inhibitor of the RAS/ERK pathway following FGF 

stimulation. SEF can bind to MEK activated mutants, inhibiting the dissociation of the MEK-ERK 

complex and blocking ERK nuclear translocation without affecting its cytoplasmatic activity 

(Fürthauer et al., 2002; Tsang et al., 2002). Unlike most scaffolds, SEF is not a soluble protein, it is 

associated to membrane systems particularly the Golgi complex. SEF overexpression can inhibit ERK 

nuclear signal (Preger et al., 2004; Torii et al., 2004). The details of SEF interaction with ERK and 

other constituents of the RAS/ERK pathway have not been described. Extranuclearly, SEF intervenes 

in cPLA2 activation by ERK induced by RAS signals coming from the Golgi complex (Casar et al., 

2009). With respect to its biological relevance ERK retention at the cytoplasm by SEF inhibits the 

differentiation of PC12 cells induced by NGF or FGF2 (Xiong et al., 2003). SEF 2 is downregulated in 

a broad number of human tumors (Zisman-Rozen et al., 2007). Its downregulation positively 

correlates with highly invasive metastatic prostate cancer (Darby et al., 2006). In prostate cancer 

cells, SEF inhibits FGF tumorigenic effects and has been considered a potential tumor suppressor 

(Darby et al., 2009). 
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1.5.2.2. PAXILLIN 

A 68 kDa protein initially described as a substrate for tyrosine kinases and localized in focal 

adhesions (Glenney and Zokas, 1989; Turner, Glenney and Burridge, 1990). There, upon FGF 

stimulation, paxillin is tyrosine phosphorylated and associates with ERK. It also binds to MEK in a 

constitutive fashion and to RAF following HGF treatment. ERK binds to paxillin through an FXF 

domain and paxillin Y118 is essential for this interaction, in fact, mutation of this residue prevents 

ERK binding and the scattering of epithelial cells provoked by HGF. It has been shown that HGF 

promotes ERK-induced phosphorylation of paxillin at S83, mutation of this residue blocks the 

interaction between paxillin and FAK and the subsequent activation of Rac (Ishibe et al., 2003). As 

such the ERK-paxillin complex is considered as the main regulator of FAK and RAC stimulation at 

focal adhesions, implying this association on lamellipodia formation and focal adhesion recycling, 

both needed for migratory responses in tumour cells (Ishibe et al., 2004). 

 

1.5.2.3. b-ARRESTIN 

b-arrestin family is composed of two isoforms, b-arrestin-1 and b-arrestin-2, of around 46 kDa, 

ubiquitously expressed in mammalian tissues (Luttrell and Lefkowitz, 2002). Both play a critical role 

on GPCR signalling. It is long known that these proteins act as blockers of the signals that emanate 

from GPCRs, by uncoupling the receptors and their associated G proteins (Lefkowitz and Shenoy, 

2005; Moore, Milano and Benovic, 2007). In addition to receptor desensitation, b-arrestins are also 

related to trafficking, recycling and degradation of GPCRs upon stimulation by agonists (Moore, 

Milano and Benovic, 2007). 

In addition to its activation by tyrosine kinase receptors, the RAS/ERK pathway is also 

switched-on by GPCRs, this activation can take place either through G proteins or through b-arrestin 

(Wei et al., 2003). The kinetics and molecular consequences of ERK activation as triggered by either 

mechanism are different: in HEK293 cells, that express the angiotensin II type receptor, G-protein 

activation results in an acute ERK activity peak and the distribution of ERK both in the nucleus and 
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the cytoplasm (Wei et al., 2003). Contrarily, the signal mediated by b-arrestin, yields a prolonged 

ERK activation and prevents ERK nuclear localization. b-arrestin-dependent effects on ERK 

activation as induced by GPCRs are related to b-arrestin role as a scaffold protein. In this respect, 

protein complexes formed by RAS/ERK pathway components and b-arrestin had been detected in 

response to GPCR stimulation (Ahn et al., 2004). This could explain the retarded kinetics and the 

blockage of ERK nuclear translocation provoked by b-arrestin, acting as a cytoplasmic anchor and a 

spatial regulator for ERK, retaining it at early endosomes (DeFea, Vaughn, et al., 2000; Tohgo et al., 

2002). 

 

1.5.2.4. DYSTROGLYCAN 

It is a dimeric protein made up of two glycosylated isoforms generated by the same gene (Weir 

and Muschler, 2003). The alpha subunit is extracellular and the beta subunit is a type 1 

transmembrane protein that binds a-dystroglycan C-terminus extracellularly and to acting 

intracellularly (Bozzi et al., 2009). The cytoplasmic region of b-dystroglycan has putative ERK 

binding regions. Specifically, the ELM motif (Moore and Winder, 2010). Both activated MEK and 

ERK have been shown to interact with this region, though, surprisingly, dystroglycan interaction 

with MEK and with ERK differs in subcellular localization: whereas active ERK co-localizes with 

dystroglycan in focal adhesions, activated MEK co-localizes mainly in ruffles (Spence et al., 2004). 

The reason for this is uncertain but it may be related to dystroglycan antagonist role in ERK 

activation by integrins, where dystroglycan would intervene separating MEK from ERK (Ferletta et 

al., 2003). 

 

1.5.2.5. MORG1 

It is a 35 kDa protein belonging to the WD40 family. It was initially described as a binding 

partner for MP1 (Vomastek et al., 2004). Lately, it has been shown to be part of a protein macro-
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complex that also includes p14 and p18 and it is particularly enriched at endosomes, where it 

participates in vesicular trafficking during cellular migration processes (Schiefermeier et al., 2014). 

While included in this complex, MORG1 has been found to associate to CRAF, BRAF, MEK1/2 and 

ERK1/2. MORG1 overexpression enhances ERK activation in response to serum, whereas its 

silencing attenuates this response. MORG1 has also been shown to mediate in ERK response to 

phorbol esters and lysophosphatidic acid (LPA). But it does not participate on ERK activation by EGF 

suggesting that MORG1 is implicated on signal transduction from G protein-coupled receptors but 

not RTKs (Vomastek et al., 2004; Kolch, 2005). Interestingly, MORG1 knockout mice are 

embryonically lethal due to defective vascularization. And MORG1 expression is reduced in 

ischemic human brains, suggesting that MORG1 may play an important role in vasculogenesis 

(Haase et al., 2009).  

 

1.5.2.6. MP1 

MP1 is a 13.5 kDa protein initially identified as a MEK1 binding partner (Schaeffer et al., 1998). 

MP1 interacts with MEK1 and ERK1, but not ERK2, though other authors suggest that MP1 can bind 

inactive ERK1 and 2 (Brahma and Dalby, 2007). And its overexpression can potentiate ERK1 

activation. As previously mentioned for MORG1, MP1 forms a macro-complex with p14 at late 

endosomes, where MEK1 and ERK1 are recruited (Teis et al., 2006; Schiefermeier et al., 2014). 

Downregulating the expression of MP1 or p14 attenuates the duration MEK1/ERK1 signals, 

suggesting that MP1-p14 could be involved in prolonging ERK1 activation (Teis, Wunderlich and 

Huber, 2002). MP1 is involved on PAK1-dependent ERK activation that takes place during cell 

adhesion and colony dissemination. During colony dissemination stimulated by fibronectin MP1 is 

required for PAK1-evoked MEK phosphorylation and the subsequent ERK1 activation. Likewise, 

MP1-mediated MEK/ERK activation is required for the suppression of ROCK (Rho-Rho-associated 

coiled coil-containing protein kinase) signalling, an essential requisite for cellular adhesion. On the 

other hand, in the same process, MP1 is dispensable for ERK activation by PDGF. This data suggests 
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that MP1 plays a role in the activation of the ERK cascade in response to adhesion to fibronectin 

while isolating it from PDGF-generated signals (Pullikuth et al., 2005).  

 

Figure 1.14. Scaffold proteins subcellular localization. Scaffold proteins are involved in the spatial regulation of ERK 
signals from different sublocalizations of the cell: b-arrestins regulate RAS signals arising from G protein-coupled 
receptors; KSR from lipid rafts; b-dystroglycan at the plasma membrane; paxillin and IQGAP from focal adhesions; 
MORG1 and MP1 from late endosomes; and Sef from the Golgi complex. 
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1.6. KSR 
 

The aforementioned scaffold Ste5 was described in 1994 by Choi and collaborators as a novel 

component in the yeast pheromone response pathway. Ste5 is able to link simultaneously Ste11, 

Ste7 and FUS3 forming a functional activating complex, that facilitates two sequential 

phosphorylation reactions (Choi et al., 1994). 

A year later, in 1995, a protein was discovered by a genetic screen for downstream effectors 

of RAS performed, simultaneously, in Drosophila virilis/Drosophila melanogaster (Therrien et al., 

1995) and Caenorhabditis elegans (Kornfeld, Hom and Horvitz, 1995; Sundaram and Han, 1995). 

This protein was recognized as the most likely equivalent of the yeast MAPK scaffold protein Ste5 

in mammalians. The novel locus identified, SR3-1 (Suppressor of RAS1 3-1), encoded a protein 

closely related to RAF family, both belonging to the TKL group of kinases (Fig. 1.15) (Manning et al., 

2002). The phenotypes of the KSR1 loss of function mutants were able to inhibit RAS signals. 

Figure 1.15. KSR location in the phylogenetic tree of human protein kinases. The part of the dendrogram where the 
Tyrosine kinase like (TKL) group is found is amplified on the right and the RAF/KSR kinase family is highlighted with a 
black circle. Figure adapted from Manning et al., 2002.  
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Because of this SR3-1 was renamed Kinase Suppressor of RAS (KSR) (Kornfeld, Hom and Horvitz, 

1995; Therrien et al., 1995). 

Even though KSR was originally described in Drosophila and C. elegans, a homologous protein 

was also isolated in mouse and human, this suggested that KSR had an evolutionary conserved 

function (Therrien et al., 1995). Indeed, while most of the studies regarding its biochemistry and 

biology have been performed using the murine protein, in most cases the results are extrapolable 

to lower organisms. 

The KSR family is made up of two members, KSR1 (Therrien et al., 1995) and KSR2 

(Channavajhala et al., 2003). Both of them are 105 kDa proteins composed by 5 Conserved Areas: 

CA1-CA5 (Therrien et al., 1995) (Fig. 1.16). CA1 to CA4 comprise the N-terminal region and 

constitute the regulatory domain, while the CA5 is found at the C-terminus and harbours the 

pseudokinase region. CA1 is the only region with not known homology, this domain is part of a 

coiled-coil fused to a sterile α-motif (CC-SAM) implicated in KSR localization at membrane ruffles. 

CA1, together with CA5, participates in BRAF binding in a CC-SAM-independent manner  (McKay, 

Ritt and Morrison, 2009; Koveal et al., 2012). CA2 is rich in proline residues and it is believed to 

function as SH3 binding domain. The CA3, a cysteine-rich domain (CRD), is a lipid binding domain 

similar to those of PKC and CRAF and it is implicated in KSR subcellular localization, being essential 

to target KSR to the plasma membrane following RAS activation (Driedger and Blumberg, 1980; 

Michaud et al., 1997; Zhou et al., 2002; Clapéron and Therrien, 2007). CA4 is a region rich in 

serine/threonine residues and includes the FXFP docking motif where ERK binds to (Therrien et al., 

1996; Jacobs et al., 1999; Fantz et al., 2001). Lastly, the CA5 region contains the MEK-binding 

(Denouel-Galy et al., 1998) and the RAF-binding (Xing, Kornfeld and Muslin, 1997) domains; and the 

eleven subdomains typical of all protein kinases (Hanks, Quinn and Hunter, 1988; Hanks and 

Hunter, 1995).  

However, even if KSR had kinase activity it is not clear whether it would be a Tyr or a Ser/Thr 
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kinase, as the sequence YI(L)APE in subdomain VIII, conserved in all known Ser/Thr kinases, is found 

in all KSR genes cloned as far; but in C. elegans and D. melanogaster the sequence HKDLR 

characteristic of Tyr kinases, is also present. Whereas Drosophila and C. elegans KSR possesses the 

same catalytic sequence as conventional protein kinases (VAVK), in mammals, KSR has an arginine 

in subdomain II of the CA5 catalytic domain instead of the highly evolutionary conserved lysine 

among the kinases (Clapéron and Therrien, 2007). This lysine residue is required to orient ATP 

(Weinmaster, Zoller and Pawson, 1986), and no other residue at this position seems to replace it 

(Hanks, Quinn and Hunter, 1988). The mutation of the intact lysine in Drosophila and C. elegans 

does not compromise KSR function, supporting RAF activation and increasing ERK signalling 

(Stewart et al., 1999; Roy et al., 2002). These results are consistent with a noncatalytic role of KSR. 

For this reason, KSR has been classified as a pseudokinase (Boudeau et al., 2006; Hu et al., 2011; 

Eyers and Murphy, 2013; Zhang et al., 2013). However, it has been a central point of controversy 

since KSR discovery. Indeed, while some studies have reported a residual kinase activity (Zhang et 

al., 1997; Brennan et al., 2011; Goettel et al., 2011; Hu et al., 2011), others have failed to detect it 

(Michaud et al., 1997; Stewart et al., 1999; Roy et al., 2002). 

Figure 1.16. Schematic depiction of KSR1. The KSR family proteins are structurally formed by five conserved domains: 
a domain unique to the KSR proteins (CA1), a proline-rich region (CA2), a cysteine-rich domain (CA3), a 
serine/threonine-rich region (CA4), and a putative kinase domain (CA5). The main interacting proteins are shown 
below their corresponding interaction domain. Arrows originating in the proteins that, in addition to interact, 
phosphorylate KSR indicate phosphorylation sites. 
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 In vivo KSR1 is a phosphoprotein. Up to twelve serine/threonine phosphorylation sites have 

been identified, even though some of the kinases responsible for these phosphorylations are 

unknown. It is known that ERK can phosphorylate KSR at T260, T274, S320 and S443 (Fig. 1.16)  in 

response to growth factor stimulation or Ras activation (Cacace et al., 1999; Volle et al., 1999; 

McKay, Ritt and Morrison, 2009). Even though the functional significance of these phosphorylations 

is still unclear, some studies suggest that the phosphorylation of these sites by ERK contribute to 

BRAF-KSR1 dissociation and relocates KSR1 from the plasma membrane to the cytoplasm (McKay 

and Morrison, 2007). Phosphorylation of KSR1 on S297 and S392 by the kinase C-TAK1 creates 14-

3-3 binding sites whose dephosphorylation by PPA2 is required to localize KSR to triton resistant 

microdomains (lipid rafts) (Cacace et al., 1999; Müller et al., 2001; Ory et al., 2003). Also, KSR 

phosphorylation has been associated with its nucleo-cytoplasmic shuttling (Brennan et al., 2002). 

However, KSR nuclear localization is controversial. 

Both KSR1 and KSR2 have a cytoplasmic localization, however, upon stimulation with serum, 

EGF or LPA, among other agonists, and RAS activation, KSR rapidly translocates to the plasma 

membrane, by means of the CA3 region, where it interacts with RAF ensuing MEK phosphorylation. 

To date, KSR has not been found to interact with RAS. Within the plasma membrane, KSR exhibits 

selectivity towards defined microdomains, responding preferentially to signals that emanate from 

lipid rafts. It has been shown that interaction with the E3 ligase IMP (Impedes Mitogenic signal 

Propagation) promotes the recruitment of KSR to triton-resistant structures that sequester KSR1 

and block ERK activation (Matheny et al., 2004; Chen, Lewis and White, 2008). RAS activation 

catalyzes IMP proteasome degradation, facilitating KSR-mediated ERK activation (Matheny and 

White, 2006). In this respect, results from our group have shown that KSR selectively couples RAS 

signals from lipid rafts to the activation of cPLA2 by ERK (Casar, Pinto and Crespo, 2009). 

In cells, KSR is part of a macromolecular complex over 1,000 kDa that also includes the 

components of the ERK cascade; heat shock proteins such as HSP90, HSP70 and HSP68; proteins 

belonging to the 14-3-3 family (Cacace et al., 1999; Stewart et al., 1999); bg subunits from 
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heterotrimeric G proteins (Bell et al., 1999); and other proteins of unknown function (p33, p34, p36 

and p60) (Stewart et al., 1999). It is unclear if KSR binds directly to all of these proteins, but its role 

as a scaffold protein for the ERK cascade is beyond doubt. The initial studies in this respect showed 

that KSR binds to MEK constitutively, whereas binding both to RAF and to ERK occurs in response 

to RAS activation, following agonist stimulation (Therrien et al., 1996; Xing, Kornfeld and Muslin, 

1997; Denouel-Galy et al., 1998; Yu et al., 1998).  

KSR proteins exhibit a significant degree of homology with RAF family kinases (Manning et al., 

2002), both in amino acid sequence and in the domain distribution in its tertiary structure (Therrien 

et al., 1995; Clapéron and Therrien, 2007). RAF proteins are known to homodimerize and 

heterodimerize among family members, likewise RAF proteins, in particular BRAF, also 

heterodimerize with KSR. KSR heterodimerization with RAF induces the formation of side-to-side 

heterodimers believed to trigger RAF activation. Furthermore, it is described that KSR and RAF 

share an identical dimer interface (Rajakulendran et al., 2009; Verlande et al., 2018). Apart from 

KSR-RAF interaction through the C-terminus, selective heterodimerization of RAF with KSR1 occurs 

through direct contacts of N-terminal regulatory region of each protein, involving the coiled-coil-

sterile alpha motif (CCSAM) in KSR (Koveal et al., 2012). Interestingly, MEK binding to the CA5 

domain of KSR1 promotes KSR heterodimerization with RAF. As a result of KSR-RAF dimerization, 

KSR acts as an allosteric activator of RAF enhancing its catalytic activity, in addition to its function 

as a scaffold, by which it connects RAF with its substrate MEK (Rajakulendran et al., 2009). On the 

other hand, KSR dimerization with RAF triggers a conformational change in KSR as a result of which 

MEK activation loop is exposed facilitating its phosphorylation. Following the model proposed by 

Brennan and collaborators in 2011 (Brennan et al., 2011), once KSR and BRAF form a heterodimer, 

the MEK activating sites, T218 and T222, are unmasked to be phosphorylated by another catalytic 

active RAF molecule in trans (Fig. 1.17). 
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In a similar fashion to what occurs with RAF proteins, KSR1 can also homodimerize, forming 

side-to-side dimers as well. KSR1 homodimerization occurs through its C-terminus (Matheny and 

White, 2009; Rajakulendran et al., 2009). In D. melanogaster KSR arginine 732 (Arg 615 in mouse) 

plays a critical role in this process, since its mutation to histidine prevents KSR1 dimerization 

(Douziech et al., 2006). KSR2 also forms homodimers forming a side-to-side interface specifically 

dependent on R718 (Rajakulendran et al., 2009). The mutation of this site blocks RAS activity 

suggesting that KSR dimerization may play an important role on RAS signals. However, how 

dimerization affects KSR role as a regulator of RAS/ERK signals and its biological implications are 

unknown hitherto. 

 

1.6.1. KSR biological roles 

Most of what we know about KSR physiological and biological roles comes from animal 

studies. Seminal studies in Drosophila demonstrated that loss of KSR suppresses RAS signalling and 

prevented the rough eye phenotype induced by constitutive RAS activity (Therrien et al., 1995). In 

Figure 1.17. Schematic representation of RAF-mediated activation of MEK. When KSR homodimerize in a side-to-
side fashion, the activation segment of the MEK molecule interacting face-to-face remains inaccessible (left). On the 
other hand, the side-to-side heterodimerization with RAF regulatory molecule provokes the conformational change in 
MEK exposing the activation segment. A catalytic RAF molecule, different from the one heterodimerizing with KSR, 
will phosphorylate MEK in the activating sites. 
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the same vein, loss of function mutations in C. elegans KSR1 suppressed the multiple vulva 

phenotype (Kornfeld, Hom and Horvitz, 1995; Sundaram and Han, 1995; Yoder et al., 2004). In 

mammalian KSR1 knock out mice are viable and fertile with no overt abnormalities. Of note, KSR1 

-/- mice resemble EGF receptor -/- mice in defective hair follicles suggesting that KSR1 may 

participate downstream from EGF signals. Probably the most significant biological consequence of 

KSR1 loss in mice, is their resistance to RAS-dependent tumour formation. In this respect, 

carcinogens that induce mammary and skin tumours, by promoting H-RAS mutations, are markedly 

reduced in KSR1 -/- mice (Hansen et al., 1997; Nguyen et al., 2002; Lozano et al., 2003). These data 

clearly point to KSR1 as a potential target for antineoplastic therapeutic intervention. Contrarily to 

KSR1, KSR2 -/- mice have reduced fertility and become spontaneously obese; adaptive 

thermogenesis, metabolic rate and leptin sensitivity are compromised in these mice. In agreement, 

humans harbouring KSR2 mutations present early onset obesity (Revelli et al., 2011; Pearce et al., 

2013; Henry et al., 2014). Interestingly, whereas KSR1 is ubiquitously expressed (Giblett et al., 2002; 

Nguyen et al., 2002), KSR2 is almost exclusively found in brain and pituitary. Brain specific disruption 

of KSR2 is enough to cause obesity in mice (Guo et al., 2017). 

 

 

1.7. IQGAP1 

IQ motif-containing GTPase Activating Protein (IQGAP) 1, a 1657-amino acid protein, was first 

identified in 1994 by Weissbach and collaborators in a screen to reveal novel matrix 

metalloproteases (Weissbach et al., 1994). But it was not described as scaffold protein of the 

Ras/ERK pathway until 2004 (Roy, Li and Sacks, 2004). IQGAPs are a family of multidomain proteins 

highly conserved throughout evolution. In mammals there are 3 members IQGAP1, IQGAP2 (Brill et 

al., 1996; McCallum, Wu and Cerione, 1996), and IQGAP3 (S. Wang et al., 2007) which share a 58% 

homology with IQGAP1. All of them encode proteins of 190 kDa, of these, IQGAP1 is the best 

studied. IQGAP proteins exhibit different tissue expression patterns: whereas IQGAP1 is ubiquitous 
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(Weissbach et al., 1994), IQGAP2 is mainly expressed in liver and in the gastro-intestinal and 

urogenital track (Schmidt et al., 2003; Cupit et al., 2004) and IQGAP3 can be found mainly in brain, 

lung and testicles (Nojima et al., 2008). Regarding its subcellular localization IQGAP1 is a 

cytoplasmic protein and it is mainly associated to the cytoskeleton, being markedly enriched in 

zones of cell-to-cell contacts (Li et al., 1999). Conversely, IQGAP2 and IQGAP3 distribution is not 

very well described, but they have been observed in the nucleus and in cell-to-cell junctions, 

respectively, as well as diffused in the cytoplasm, depending on the cellular context (Zhou et al., 

2003; Chew et al., 2005).  

IQGAP1 harbours different structural domains that participate in distinct molecular processes. 

At its N-terminus, it harbours a Calponin Homology Domain (CHD), this domain participates in the 

interaction with the cytoskeleton, in particular with F-actin (Mateer et al., 2004) and it is also known 

to bind calmodulin/Ca2+ under particular circumstances (Ho et al., 1999). Further downstream, 

there is a WW domain with two conserved Trp residues (W). WW domains are known to bind to 

proline-rich regions in the binding partners. IQGAP WW domain is peculiar in the sense that its main 

binding partners, ERK1/2, lack such regions (Roy, Li and Sacks, 2004). IQGAP also harbours an IQ 

domain that binds to its typical partners such as calmodulin (Li and Sacks, 2003), in addition, IQGAP 

utilizes this domain to bind to EGF receptor (McNulty et al., 2011), MEK (Roy, Li and Sacks, 2005), 

BRAF (Ren, Li and Sacks, 2007) and the small GTPase RAP1 (Jeong et al., 2007). The IQ motif is also 

important as it mediates the formation of IQGAP dimers and oligomers (Ren et al., 2005). At its C-

terminus there is the GAP Related Domain (GRD) which defines IQGAP as a GTPase activating 

protein (GAP) for Rho GTPases such as Cdc42 and RAC1 (Owen et al., 2008; Kurella et al., 2009).  

Despite their family name and structural similarity to GAPs, IQGAPs have not yet been 

demonstrated to exhibit GAP activity (Brill et al., 1996; Hart et al., 1996). Noticeably, in this GAP 

domain the conserved arginine is replaced by a threonine, the lack of this residue allows IQGAP1 to 

stabilize small GTPases in their GTP state. IQGAPs bind to the Rho family GTPases RAC1 and Cdc42, 

and this association inhibits GTP hydrolysis by these GTPases, stabilizing their GTP-bound state 
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(Hart et al., 1996; Swart-Mataraza, Li and Sacks, 2002). At its distal C-terminus, there is a RGCT (Ras 

GAP C-terminus) domain, this region is unique to IQGAP and it binds diverse targets, for example 

phosphoinositides, this phosphpoinositide binding region differs from all previously identified 

phosphoinositide binding regions described in other proteins (Choi et al., 2013) (Fig. 1.18). Overall, 

the unique binding capabilities of IQGAPs involve these proteins in the formation of multiple 

signalling complexes to regulate a broad variety of biochemical routes and cellular processes.  

 

Among IQGAP1 biochemical functions is its role as a scaffold for the RAS/ERK pathway (Roy, Li 

and Sacks, 2004). As mentioned before, IQGAP1 can bind both MEK and ERK (Roy, Li and Sacks, 

2005), in addition, it can also interact with BRAF and modulate its functions (Ren, Li and Sacks, 

2008), particularly in response to EGF signals and CD44 engagement (Bourguignon et al., 2005). EGF 

stimulation evokes the binding of the different components of the ERK cascade to IQGAP1. 

Noticeably, IQGAP1-bound BRAF has higher kinase activity than free BRAF, though it is unclear if 

binding to IQGAP1 promotes this BRAF high activity or, contrarily, if highly activated BRAF has a 

preference for binding to IQGAP (Ren, Li and Sacks, 2008). Upon EGF stimulation, IQGAP1 binding 

to MEK1 increases, while binding to MEK2 decreases. In this respect, it has been suggested that 

MEK1 binding to IQGAP1 promotes proliferation whereas binding to MEK2 induces differentiation 

Figure 1.18. Schematic depiction of IQGAP1. IQGAP1 structure consists in 5 domains: CHD (Calponin homology 
domain); WW, ERK interaction domain with two conserved Trp (W) residues; IQ domain MEK interaction domain with 
4 repeats of isoleucine- and glutamine-containing motifs (IQ) motif; GRD (RAS-GAP related domain); and RGCT 
(RasGAP C-terminus). The numbers above indicate the position of the limiting amino acid residues of each domain. 
Some of the most important IQGAP1 interacting proteins are indicated below. 
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(Ussar and Voss, 2004). Contrarily to MEK and BRAF, ERK1/2 binding to IQGAP is constitutive (Roy, 

Li and Sacks, 2004). The isoform IQGAP3, in addition to interacting with the aforementioned ERK 

cascade components, also interacts with H-RAS (Nojima et al., 2008), whereas IQGAP1 interacts 

with K-RAS (Matsunaga et al., 2014). Though these interactions only occur when IQGAP1 or IQGAP3 

are overexpressed (Morgan et al., 2019) With respect to IQGAP1 participation on EGF signalling, 

IQGAP1 has been shown to directly bind to EGFR and to modulate its activation (McNulty et al., 

2011). Interestingly, IQGAP1 serves as the scaffold protein that promotes EGFR phosphorylation by 

ERK when RAS signals emanate from lipid raft domains (Casar et al., 2009). Regarding its role as a 

scaffold protein, IQGAP1 can form complexes with other ERK pathway scaffolds such as b-arrestin-

2 (Alemayehu et al., 2013) and MP1 (Schiefermeier et al., 2014), even though, to date, the purpose 

of these interactions is unknown. 

The best-known role for IQGAP1 is in the control of cell migration, as a regulator of the 

cytoskeleton. Specifically, IQGAP1 has a major role in the regulation of focal adhesions, a 

requirement for cell motility (Noritake et al., 2005; Watanabe, Wang and Kaibuchi, 2015). Stimuli 

that promote the formation of focal adhesions, such as PDGF, stimulate the assembly, at these 

sites, of complexes containing IQGAP1 and the focal adhesion proteins vinculin and paxillin (Kohno 

et al., 2013). During migration, a coordinated assembly and disassembly of focal adhesions is 

necessary. MP1 plays a role in this process by scaffolding MEK and ERK to late endosomes via p14. 

Knock down of MP1 impairs migration by the formation of abnormal focal adhesions that 

accumulate IQGAP1, suggesting that the interaction between IQGAP1, MP1 and the ERK cascade 

plays a major role in this process (Schiefermeier et al., 2014).  

IQGAP1 also participates in signalling from integrins and the regulation of the leading edge in 

migrating cells. In these, IQGAP1 is detected at the leading edge and promotes cell migration in a 

RAC1- and Cdc42-dependent fashion. In response to integrin engagement, IQGAP1 forms a complex 

with filamin A to recruit RAC1GAP, which inactivates RAC1. Decreased expression of IQGAP1, 
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filamin or RAC1GAP results in uncontrolled formation of membrane protrusions, resulting in 

impaired directional cell migration (Jacquemet et al., 2013).  

F-actin crosslinking is a key step in the regulation of cytoskeleton processes such as the 

formation of focal adhesions and filopodia, essential for cellular migration (Watanabe et al., 2004). 

IQGAP1 is known to bind F-actin and participates in F-actin crosslinking stimulated by high Cdc42 

activity, stabilized by IQGAP1 (Fukata et al., 1997, 2002). Interestingly, the participation of IQGAP1 

in this process is highly dependent on its complexity: IQGAP1 monomers cannot crosslink F-actin, 

as a consequence of which adherent junctions are destabilized. Contrarily, IQGAP1 dimers, formed 

in response to Cdc42 activity, are competent for F-actin crosslinking and the generation of strong 

adherent junctions (LeCour et al., 2016). 

 

1.8. THE RAS/ERK PATHWAY: IMPLICATIONS IN CANCER 

The RAS/ERK pathway is unquestionable linked to the origin and progression of malignant 

tumours in mammals, particularly in humans. About 40% of human malignant tumours harbour 

activating mutations in some component of this signalling route (Karnoub and Weinberg, 2008; 

Baines, Xu and Der, 2011). However, this figure as important as it is, fades when we consider the 

incidence of RAS/ERK pathway mutations in specific types of tumours, that, in some cases, can raise 

up to 95% (Waters and Der, no date; Jones et al., 2008).  

RAS is the component that appears mutated with the highest frequency, about 27% of all 

human tumours (Prior, Lewis and Mattos, 2012; Hobbs, Der and Rossman, 2016). The incidence of 

RAS mutations varies significantly depending on the organ; ranging from: 90% in pancreas (Hruban, 

Wilentz and Kern, 2000), 50% colon (Serebriiskii et al., 2019), 50% thyroid (Lemoine et al., 1989), 

25% lung (Naidoo and Drilon, 2016) and 20% melanoma (Fedorenko, Gibney and Smalley, 2013), to 

highly infrequent in tumours such as prostate (Moul et al., 1992), mammary (von Lintig et al., 2000) 

and brain (Knobbe, Reifenberger and Reifenberger, 2004). RAS mutations also vary significantly 
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depending on the isoform. The RAS isoform that appears most frequently mutated in cancer is KRAS 

which accounts for about 85% of the cases; followed by NRAS (11%) and HRAS (4%) (Hobbs, Der 

and Rossman, 2016; Kodaz et al., 2017). In addition to activating point mutations, RAS oncogenes 

appear frequently overexpressed in many types of tumours, something that contributes to their 

transforming potential (Bai et al., 2017). Also, loss of heterozygosity for the wild type allele is 

common in human tumours as well (Osaka et al., 1997). 

RAS mutations primarily appear in codons 12, 13 and 61 (Prior, Lewis and Mattos, 2012). These 

mutations render RAS proteins constitutively active, by locking them in a permanent GTP-bound 

state, as their GTPase activity becomes insensitive to the enhancing effect of GAP proteins 

(Simanshu, Nissley and Mccormick, 2017). As a result of RAS constitutive activation, its effector 

pathways are constantly engaged conveying aberrant signals to the interior of the cell (Rajalingam 

et al., 2007). 

RAF family serine/threonine kinases also appear mutated in a large number of cancer cases; 

about 10% of all tumours. Almost invariably, the mutated isoform is BRAF (Davies et al., 2002). As 

before, the frequency of BRAF mutations increases enormously when we consider specific types of 

tumours. As such, nearly 60% of melanoma cases harbour mutant BRAF (Ascierto et al., 2012), and 

high incidence of BRAF mutations is also found in colorectal (10%) (Costigan and Dong, 2020), 

thyroid (45%) (Cohen et al., 2003)and lung tumours (2%) (Leonetti et al., 2018). Similarly to the RAS 

case, BRAF genes also appear amplified and/or overexpressed in many tumours. Over 80% of the 

BRAF mutations that appear in cancer involve a glutamic acid to valine substitution at codon 600. 

This mutation increases BRAF kinase activity several orders of magnitude and makes it largely RAS-

independent in its activity (White et al., 2018).  

Unlike RAS and RAF, mutations in MEK are highly infrequent in human tumours. Only a few 

have been described, particularly in melanoma. These are mainly point mutations and truncations 

that enhance MEK kinase activity, but their frequency is insignificant (Nikolaev et al., 2012; Maust, 
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Whitehead and Sebolt-Leopold, 2018). MEK overexpression has also been described in a few 

melanoma cases (Huynh et al., 2003). Likewise, mutations in ERK are notably unusual (Jaiswal et 

al., 2018).  

A remarkable feature of the RAS/ERK pathway mutations is that they occur in a mutually 

exclusive fashion (Gorden et al., 2003; Platz et al., 2008). Tumours in which mutations in more than 

one component of the RAS/ERK pathway overlap are extremely rare. This clearly indicates that the 

constitutive activation of just one component of the signalling route is sufficient to convey 

transforming signals. Aberrant RAS/ERK signals, irrespective of being a consequence of RAS or BRAF 

mutations have been shown, in multiple cellular and animal models, to induce cellular 

transformation (McCubrey et al., 2007). Likewise, these signals are well known to trigger, or at least 

to facilitate, most features characteristic of tumour progression, such as: blockade of 

differentiation; promotion of cell survival and/or inhibition of apoptosis; cell migration; 

degradation of the surrounding extracellular matrix and local invasion; intravasation; survival in the 

bloodstream, extravasation; colonization of distant tissues and secondary metastatic growth 

(McCubrey et al., 2007; Roskoski, 2012; Gimple and Wang, 2019). 

Similarly to the main players in the RAS/ERK pathway, scaffold proteins have also been shown 

to participate in neoplastic processes, such is the case of IQGAP1 (White, Brown and Sacks, 2009). 

IQGAP1 levels are normally elevated in many tumour types, including colon, lung, gastric and brain 

tumours such as oligodendroglioma, similar results have been observed in cultured cells. Indeed, 

IQGAP1 has been proposed as an oncogene since its overexpression can stimulate cell proliferation 

and favour transformation of human epithelial cells (Johnson, Sharma and Henderson, 2009). 

Likewise, overexpressed IQGAP1 has been utilized as a model of prostate cancer (White, Brown and 

Sacks, 2009). In the same vein, downregulating IQGAP1 levels in MCF7 cells using siRNAs diminishes 

cell migration, proliferation and prevents tumour formation in xenografted mice (Mataraza et al., 

2003; Jadeski et al., 2008).  
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In tumours, no mutations with known functional consequences have been identified in 

IQGAP1, though the gene is amplified in some tumours (Sugimoto et al. 2001). IQGAP1 was 

identified as being overexpressed in lung, endometrial, ovarian, gastric, colon, and breast cancer, 

as well as hepatocellular carcinoma (HCC) and melanoma (Johnson et al. 2009). In gastric cancer 

and HCC, IQGAP1 increased in protein and mRNA levels while IQGAP2 mRNA levels were down 

regulated (Morris et al. 2005, Xia et al. 2014). For some authors, this suggests that IQGAP1 acts as 

an oncogene, and IQGAP2 as a possible tumour suppressor. 

 

1.8.1. Inhibitors of the RAS/ERK pathway 

In light of the unquestionable relevance of RAS/ERK pathway in the upbringing of cancer, it is 

hardly surprising that this route has attracted huge attention as a therapeutic target. And colossal 

efforts have been devoted both by industry and academia to find a molecular target and optimal 

drugs to curtail aberrant signalling through this pathway. Ever since the discovery in 1982 of RAS 

involvement in human cancer, multiple strategies have aimed at the RAS molecule as a potential 

antitumor target (Saxena et al., 2008; Cox and Der, 2010). Initial moves aimed at reverting 

oncogenic RAS GTP-bound state were unsuccessful, mainly as a consequence of RAS picomolar 

range affinity towards GTP. Thus, RAS was considered for a long time as a undruggable target (Cox 

et al., 2014; Mörchen et al., 2019). This shifted the focus towards RAS posttranslational 

modifications, as a means to inhibit RAS localization to the plasma membrane, an essential requisite 

for RAS activity (Arozarena, Calvo and Crespo, 2011). 

Farnesyl-transferase inhibitors, which block RAS farnesylation was highly successful in mouse 

models(Buss and Marsters, 1995), however, these results were not reproduced in clinical trials 

(Appels, 2005; Bagchi et al., 2018), largely because KRAS and NRAS evade these inhibitors as they 

can be also geranyl-geranylated (Wang and Casey, 2016). Another strategy has been based on the 

inhibition of the prenylated protein methtyl transferase (PPMTase) which is involved in the 

methylation of RAS proteins C-terminus (Marom et al., 1995). However, its inhibitor, salirasib, has 
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had modest success in first clinical trials (Rotblat et al., 2008). More recently, the attention has been 

reverted to targeting RAS activity and new drugs have appeared aimed at oncogenic KRAS G12C 

that can revert its preference to GDP. These are presently under clinical evaluation (Stephen et al., 

2014; Ostrem and Shokat, 2016). 

Parallel strategies have focused on the kinases downstream from RAS. In the early 90s 

PD098059 appeared as the first of such inhibitors, targeting MEK1/2 (Dudley et al., 1995). However, 

pharmacological limitations (not be sufficiently soluble and bioavailable) precluded its further 

development, even though its mechanism of action, a non-ATP competitive allosteric inhibitor, set 

the tempo for the development of new inhibitors. PD184352 followed as the first MEK inhibitor 

with clear antitumor effect in animal models (Sebolt-Leopold et al., 1999). This was the lead 

molecule from which new generations of derivatives have evolved and escalated to the final stages 

of clinical evaluation (Wang et al., 2007). These include trametinib and cobimetinib, approved both 

by the FDA and the EMA for the treatment of BRAF mutant melanoma (Wu and Park, 2015; Cheng 

and Tian, 2017).  

The discovery at the turn of the century of oncogenic mutation in BRAF in a significant number 

of human tumours has let to great developments in this realm. Sorafenib was the first BRAF 

inhibitor to be approved, however, it displayed modest clinical efficacy in BRAF mutant tumours 

and it is now used in some types of cancer like kidney due to its inhibitory effect over other kinases 

(Strumberg, 2005; Eisen et al., 2006). Structure-based initiatives unveiled compounds that 

specifically bound to BRAF V600E. Included among these, was Vemurafenib (PLX4032) (Bollag et al., 

2012), to be followed by Dabrafenib (GSK2118436) (Rheault et al., 2013). These ATP-competitive 

inhibitors are highly selective for this BRAF-mutant form and have been approved by FDA and EMA 

for their use against BRAF-mutant melanoma. Both of them have yielded significant clinical efficacy, 

both with respect to overall survival and disease-free progression. However, their efficacy is short-

lived as drug resistance appears almost invariably after about one year, leading to a fatal end 

(Samatar and Poulikakos, 2014). 
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In the last few years compounds targeting ERK have made their appearance. The first of these, 

FR180204 (Ohori et al., 2005) did not progress as a consequence of pharmacological shortcomings, 

but served as a guide for structure-based studies that have led to the development of VTX11E 

(Aronov et al., 2009) and its derivative ulixertinib (BVD523) (Germann et al., 2017). Both of these 

compounds are reversible ATP-competitive inhibitors and are now undergoing phase I clinical trials, 

and have shown efficacy in NRAS- and BRAF-mutant tumours. Another ERK inhibitor, SCH772984 

(Wong et al., 2014), has been shown to inhibit the phosphorylation and, subsequently, the 

activation of ERK, and its derivative MK8353 (Boga et al., 2018) is currently in phase I trials, after 

promising results in pre-clinical models using BRAF-mutant tumours. Alternative strategies aiming 

at ERK have yielded other types of inhibitors such as DEL-22379 targeting ERK dimerization. This 

compound has shown a remarkable efficiency with mild toxicity in pre-clinical models both of BRAF- 

and RAS- mutant tumours (Herrero et al., 2015). 

 

1.8.2. KSR as an antitumoral target 

Due to KSR1 relevance as an orchestrator of the RAS/ERK pathway, and in light of the 

resistance to tumorigenesis displayed by KSR1 KO mice, targeting KSR1 is an attractive strategy for 

attacking RAS-driven tumours. The absence of deleterious effects on KSR1 KO mice suggests a 

reduced toxicity if KSR1 was inhibited in patients. In this line, the inhibition of KSR1 expression in 

xenografts of RAS-driven pancreatic tumours, by continuous infusion of phosphothioate anti-sense 

oligonucleotides causes the regression of the tumours without overt toxicity in mice (Zhang et al., 

2008). 

 KSR mutational analyses showed that KSR mutations adjacent to its ATP binding pocket 

suppressed transforming RAS signals (Kornfeld, Hom and Horvitz, 1995; Sundaram and Han, 1995; 

Therrien et al., 1995), suggesting that targeting of the ATP binding cleft may be a therapeutic 

option. In this line a small molecule APS-2-79 binds to and stabilizes KSR in an inactive conformation 

interfering with KSR-RAF heterodimerization, preventing KSR-bound MEK phosphorylation and 



1. INTRODUCTION 
 

 60 

inhibiting oncogenic RAS signalling. However, in spite of its conceptual validity, APS-2-79 has 

exhibited only modest inhibitory effect on the viability of RAS-mutant and does not affect RAF-

mutant tumour cells. On the other hand, it did exhibit a synergistic effect with MEK inhibitors in 

RAS-mutant cells suggesting a potential use in combinatorial therapy (Dhawan, Scopton and Dar, 

2016; Neilsen et al., 2017). 

APS-2-79 modest effects do not, however, question KSR validity as a therapeutic target in 

cancer. But rather raise doubts whether the mechanism of action of this drug, a stabilizer of KSR 

inactive conformation, is the appropriate strategy for approaching the inhibition of this scaffold 

protein. The notion of KSR as a valid antitumor target is clearly endorsed by the phenotype 

exhibited by KSR-null mice, as mentioned above (Lozano et al., 2003). Furthermore, as we have 

previously demonstrated, preventing ERK dimerization has been shown to be a valid antineoplastic 

strategy that has yielded effective antitumor drugs, at least in preclinical settings (Herrero et al., 

2015). Since it has been demonstrated that KSR, like other scaffolds, functions as an ERK 

dimerization platform, another way of interfering with ERK dimerization would be by preventing 

either: i) ERK interaction with KSR or ii) KSR-bound ERK phosphorylation; something that could be 

avoided by blocking KSR-MEK interaction. Thus, KSR-ERK and/or KSR-MEK interactions constitute 

attractive targets for the generation of novel types of scaffold inhibitors. Unravelling which of these 

two interactions is the best suited as a molecular target is an open question.  
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As mentioned in the introduction, scaffold proteins are, at least conceptually, attractive 

antineoplastic targets. However, the only small molecule developed thus far as a scaffold inhibitor, 

APS-2-79 targeting KSR, has shown somewhat disappointing effects in preclinical models (Dhawan, 

Scopton and Dar, 2016). One possibility is that even though APS-2-79 is blocking KSR in its inactive 

conformation it fails to prevent the phosphorylation of KSR-bound ERK, something that was not 

ruled out in the original publication. Thus, one of the aims of this thesis is to unravel whether this 

is the case.  

In this respect, since it has been shown that scaffold proteins can interact among themselves 

(Ren et al., 2004; Vomastek et al., 2004; Feigin et al., 2014; Schiefermeier et al., 2014), another of 

our aims will be to investigate if KSR interaction with some other scaffold protein/s can explain APS-

2-79 inefficacy as a blocker of KSR-mediated signals.  

Undisclosing a mechanistic interaction between scaffold proteins of different species would 

add and additional level of regulation for the phosphorylation/activation of scaffold-bound ERK. It 

is presumable that this process would be highly dependent on the affinity that each of the scaffold 

species exhibit for ERK. It is noteworthy that the affinity for ERK has not been measured for most, 

if not all, of the scaffold proteins described hitherto. So, another of our objectives will be to 

investigate whether different scaffold species exhibit different affinities for ERK. 

Objective 1. To evaluate APS-2-79 as an inhibitor of KSR-mediated ERK 

phosphorylation/activation and of its biological consequences. 

Objective 2.  To investigate if KSR interactions with some other scaffold protein/s underlie in 

APS-2-79 inefficacy as a blocker of KSR-mediated signals. 

Objective 3.  To investigate whether different scaffold species exhibit different affinities for 

ERK. 
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3.1. DNA MANIPULATION AND ANALYSIS 
 
 

3.1.1.  Plasmidic DNA purification from bacterial cultures 

The purification of plasmidic DNA was carried out from bacterial cultures derived from 

bacterial competent cells, DH5α, an Escherichia coli strain modified to maximize transformation 

efficiency. The transformed bacteria were inoculated in 400 ml (maxiprep) or 5 ml (miniprep) of 

Luria-Bertani Broth (LB) culture medium with their specific resistance antibiotic provided by the 

plasmid, usually ampicillin or kanamycin at a concentration of 50 μg/ml. They grew shaking 

overnight (O/N) at 140 rpm in a 37ºC incubator. In order to harvest the bacterial cells, the cultures 

were centrifuged at 4ºC at 6000 rmp for 15 minutes (maxiprep) or at 4000 rpm for 5 minutes 

(miniprep). In the case of maxiprep (Qiagen Plasmid Maxi Kit), the pellet was resuspended in 10 ml 

of resuspension buffer (50mM Tris/HCl pH 8, 10Mm EDTA, 10 μg/ml RNase A). After this, cells were 

lysed with 10 ml of lysis buffer (200mM NaOH y 1% SDS) mixed by inverting 6 times and it was 

incubated with the buffer 5 minutes at room temperature and a neutralization solution was added 

(3M CH3COOH pH 5,5) and it was incubated during 5 minutes. Then, the mix was centrifuged at 

12000 rpm for 5 minutes. The precipitated material contains genomic DNA, proteins, cell debris, 

and SDS and the supernatant, where the plasmidic DNA is, was filtrated in a properly equilibrated 

anion-exchange Qiagen column by gravity flow. After two washes the DNA was eluted with 5 ml of 

elution buffer and 10 ml of isopropanol were added to precipitate the DNA. This mix was 

centrifuged at 10000 rpm 30 minutes at 4ºC, and then washed with 1 ml of ethanol 70%. Once dried 

was resuspended in 300 μl of distilled deionized water (ddw).  

In the case of bacterial cultures of lower scale (5 ml volume), the bacterial culture was 

processed by GeneJET Plasmid Miniprep Kit (Thermo Fisher). In this procedure the harvested 

bacteria were resuspended by adding 250 μL of Resuspension Solution and vortexed, 250 μL of Lysis 

Solution was then used to lyse bacteria and incubated 5 minutes at room temperature and 350 μL 

of Neutralization Solution was added and centrifuged at 13000 rpm for 5 minutes. The supernatant 
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was then transferred to a Thermo Scientific GeneJET Spin Column and centrifuged at 13000 rpm for 

1 minute. After that, columns were washed twice with 500 μL of washing buffer. To elute the 

purified DNA 40 μL of Elution Buffer were added to the column and incubated 10 minutes. Finally, 

it was centrifuged for 2 minutes at 10000 rpm and the flow-through containing the plasmidic DNA 

was collected.  

The plasmidic DNA obtained was analyzed in the NanoDrop to check the yield and quality. 

And, in parallel, it was loaded in an 8% agarose gel electrophoresis, run at 80 V in TAE buffer (0.09 

M Tris-acetate, 2 mM EDTA) and visualized by staining with SYBER safe (Invitrogen). A loading buffer 

with bromophenol blue to monitor the progress of the electrophoresis was added to the DNA 

sample. And, finally, it was stored at -20ºC until subsequent uses to perform transfection or cloning. 

 

3.1.2. Plasmid description 

All the plasmid (Table 3.1), as well as iRNA (Table 3.2), utilized in the experiments of this thesis 

are described in the following table.  

PLASMID DESCRIPTION 

pCEFL  Mammal expression vector. EF-1a Promoter/ bGH poly-A 

Plasmid used as a control to equalize the amount of DNA 
to transfect. 

pCMV FLAG KSR 1 WT Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the scaffold protein KSR1 fused to N-Terminal 
FLAG epitope. 

Source: J. Lozano (Joneson et al., 1998) 

pCMV FLAG KSR1 C809Y Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 mutant unable to bind MEK fused to N-
Terminal FLAG epitope.  

Source: J. Lozano 
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pCMV FLAG KSR1 ASAP Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 mutant unable to bind ERK fused to N-
Terminal FLAG epitope.  

Source: J. Lozano 

pCMV FLAG KSR1 R615H Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 mutant unable to homodimerize fused 
to N-Terminal FLAG epitope.  

Generated by site-directed mutagenesis in this thesis. 

pCMV FLAG KSR1 R615H C809Y 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 mutant unable to homodimerize and 
bind MEK fused to N-Terminal FLAG epitope.  

Generated by site-directed mutagenesis in this thesis. 

pCMV FLAG KSR1 176 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 deletion mutant including aa from 1 to 
176 fused to N-Terminal FLAG epitope.  

Source: J. Lozano 

pCMV FLAG KSR1 305 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 deletion mutant including aa from 1 to 
305 fused to N-Terminal FLAG epitope.  

Source: J. Lozano 

pCMV FLAG KSR1 402 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 deletion mutant including aa from 1 to 
402 fused to N-Terminal FLAG epitope.  

Source: J. Lozano 

pCMV FLAG KSR1 521 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 deletion mutant including aa from 1 to 
521 fused to N-Terminal FLAG epitope.  

Source: J. Lozano 

pCMV FLAG KSR1 DN 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the KSR1 C-terminal region including aa from 541 
to 873 fused to N-Terminal FLAG epitope.  

Source: J. Lozano 

pBHEN Mammal expression vector. SV40 Promoter/ poly-A 



3. MATERIALS AND METHODS  

 70 

pBABE retroviral vector with modified polilinker (HindII-
BamHI-EcoRI-NotI). 

Plasmid used as a control to equalize the amount of DNA 
to transfect. 

Source: A. Herrero 

pBHEN FLAG KSR1 WT  Mammal expression vector. SV40 Promoter/ poly-A 

Encodes the scaffold protein KSR1 fused to N-Terminal 
FLAG epitope. 

Generated by subcloning from pCMV FLAG KSR1 WT. 

pBHEN FLAG KSR1 ASAP  Mammal expression vector. SV40 Promoter/ poly-A 

Encodes the KSR1 mutant unable to bind ERK fused to N-
Terminal FLAG epitope.  

Generated by subcloning from pCMV FLAG KSR1 ASAP. 

pBHEN FLAG KSR1 C809Y  Mammal expression vector. SV40 Promoter/ poly-A 

Encodes the KSR1 mutant unable to bind MEK fused to N-
Terminal FLAG epitope.  

Generated by subcloning from pCMV FLAG KSR1 C809Y. 

pBHEN FLAG KSR1 R615H Mammal expression vector. SV40 Promoter/ poly-A 

Encodes the KSR1 mutant unable to homodimerize fused 
to N-Terminal FLAG epitope.  

Generated by subcloning from pCMV FLAG KSR1 R615H. 

pBHEN FLAG KSR1 R615H C809Y Mammal expression vector. SV40 Promoter/ poly-A 

Encodes the KSR1 mutant unable to homodimerize and 
bind MEK fused to N-Terminal FLAG epitope.  

Generated by subcloning from pCMV FLAG KSR1 
R615H/C809Y. 

pBHEN FLAG KSR1 WT  Mammal expression vector. EF-1a Promoter/ bGH poly-A 

Encodes the scaffold protein KSR1 fused to N-Terminal 
FLAG epitope. 

Generated by subcloning from pCMV FLAG KSR1 WT. 

pCEFL FLAG KSR1 ASAP  Mammal expression vector. EF-1a Promoter/ bGH poly-A 

Encodes the KSR1 mutant unable to bind ERK fused to N-
Terminal FLAG epitope.  

Generated by subcloning from pCMV FLAG KSR1 ASAP. 
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pCEFL FLAG KSR1 C809Y  Mammal expression vector. EF-1a Promoter/ bGH poly-A 

Encodes the KSR1 mutant unable to bind MEK fused to N-
Terminal FLAG epitope.  

Generated by subcloning from pCMV FLAG KSR1 C809Y. 

pCEFL FLAG KSR1 R615H Mammal expression vector. EF-1a Promoter/ bGH poly-A 

Encodes the KSR1 mutant unable to homodimerize fused 
to N-Terminal FLAG epitope.  

Generated by subcloning from pCMV FLAG KSR1 R615H. 

pCEFL FLAG KSR1 R615H C809Y Mammal expression vector. EF-1a Promoter/ bGH poly-A 

Encodes the KSR1 mutant unable to homodimerize and 
bind MEK fused to N-Terminal FLAG epitope.  

Generated by subcloning from pCMV FLAG KSR1 
R615H/C809Y. 

pCDNA3 Ksr1 GLU Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the scaffold protein KSR1 fused to C-Terminal 
GLU (PYO) epitope.  

Source: W. J. Fantl (Yu et al., 1998) 

pEF-BOS MYC IQGAP1 

 

Mammal expression vector. EF-1a Promoter 

Encodes the scaffold protein IQGAP1 fused to N-terminal 
MYC epitope.  

Source: K. Kaibuchi 

pCDNA3 IQGAP1 WW 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the scaffold protein IQGAP1 deletion mutant 
lacking WW domain (aa missing 643-744), unable to bind 
ERK, fused to N-Terminal Myc epitope.  

Source: D. Sacks 

pCDNA3 IQGAP1 DIQ 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the scaffold protein IQGAP1 deletion mutant 
lacking IQ domain (aa missing 699-905), unable to bind 
MEK, fused to N-Terminal Myc epitope.  

Source: D. Sacks 

pCDNA3 IQGAP1 DCHD 

 

Mammal expression vector. CMV promoter/ bGH poly-A 
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Encodes the scaffold protein IQGAP1 deletion mutant 
lacking CHD domain (aa missing 37-265) fused to N-
Terminal Myc epitope.  

Source: D. Sacks 

pCDNA3 IQGAP1 N1 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the first half (aa 1-431) of the N-terminal region 
of the scaffold protein IQGAP1, fused to N-Terminal Myc 
epitope.  

Source: D. Sacks 

pCDNA3 IQGAP1 N2 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the second half (aa 432-863) of the N-terminal 
region of the scaffold protein IQGAP1, fused to N-Terminal 
Myc epitope.  

Source: D. Sacks 

pCDNA3 IQGAP1 N 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the N-terminal region (aa 1-863) of the scaffold 
protein IQGAP1, fused to N-Terminal Myc epitope.  

Source: D. Sacks 

pCDNA3 IQGAP1 C 

 

Mammal expression vector. CMV promoter/ bGH poly-A 

Encodes the C-terminal region (aa 864-1657) of the 
scaffold protein IQGAP1, fused to N-Terminal Myc 
epitope.  

Source: D. Sacks 

pGEX 4T-3 KSR1 ERK BD 

 

 

Bacterial expression vector. Tac Promoter 

Encodes GST fused to ERK binding domain of KSR1 (aa: 
901-1203). 

Source: A. Herrero 

pGEX HA IQGAP1 WW 

 

Bacterial expression vector. Tac Promoter 

Encodes GST fused to ERK binding domain of IQGAP1.  

Source: M. Morante 

pGEX 4T MP1 

 

 

Bacterial expression vector. Tac Promoter 

Encodes GST fused to MP1.  

Source: L. Huber 

pNpT 7-5 His ERK2 Bacterial expression vector. T7 Promoter 
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Encodes N-terminal His-tagged ERK2.  

Source: M. Cobb 

Table 3.1. Description of the plasmids used for mammal and bacterial expression 

 

 

iRNA Company 

siRNA against KSR1 (human) 10 µM sc-35762, Santa Cruz Biotechnology 

siRNA against IQGAP1 (human) 10 µM sc-35700, Santa Cruz Biotechnology 

shRNA against KSR1 (human) TRCN 006226, TRCN 006227, TRCN 006229, 
TRCN 006230 

XM 290793, Sigma-Aldrich 

shRNA against KSR2 (human) TRCN 007062, TRCN 335901, TRCN 199619, 
TRCN 199136, TRCN 195374 

NM 173593, Sigma-Aldrich 

shRNA against IQGAP1 (human) TRCN 47485, TRCN 47487, TRCN 298928, 
TRCN 298930, TRCN 298931 

Sigma-Aldrich 

Table 3.2. iRNAs used to knock down scaffold proteins 

 

3.1.3. Plasmid cloning 
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For subcloning the different constructs of pCMV Flag KSR1 mentioned above (Table 3.1) into 

the pBHEN vector, the restriction sequences were introduced amplifying the gene of interest (Flag-

KSR1 WT; ASAP; C809Y; R615H; R615H/C809Y) by PCR using primers targeting the 5’ and 3’ of the 

gene. In this case the restriction sites EcoRI (5’) and NotI (3’) were introduced by PCR (Table 3.3) 

using the following primers: 

EcoRI Flag KSR1:  5’ GGT GGT GAATTC ATG GAC TAC AAG GAC GAT 

KSR1 NotI:  3’ TGC TTC GCGGCCGC CTA CAT CTT TGG ATT ACC 

- The PCR reaction to perform the amplification of the fragments was as follow: 

10 μl of 5X reaction buffer 

1 μl of dsDNA template (50 ng/μl) 

2.5 μl of each oligonucleotide primer (10 μM) 

1 μl of dNTP mix (10 mM) 

ddH2O to a final volume of 50 μl 

Then add 0.5 μl of Phusion High-Fidelity DNA Polymerase (2 U/µL, ThermoFisher) on ice. 

- The parameters to run the PCR were: 

Step Cycles Temperature Time 

Denaturing 1 X 98ºC 30 seconds 

Denaturing  

30 X 

98 ºC 30 seconds 

Primers Annealing  68 ºC 30 seconds 

Extending 72 ºC 2 min 
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Elongation 1 X 72 ºC 10 min 

Hold 1 X 4ºC ¥ 

Table 3.3. Cloning PCR conditions 

PCR product was digested with the restriction enzymes specific for the inserted restriction 

sites following the manufacturer’s protocol (ThermoFisher). DNA fragments were separated by 

agarose gel electrophoresis at 0.8% w/v. Agarose gels were prepared by dissolving agarose (% w/v) 

in 1X Tris acetic acid EDTA (TAE) buffer. SYBR safe (Invitrogen) was added to allow visualization of 

DNA under UV lights. DNA samples were mixed with DNA loading buffer (0.005% (w/v) 

bromophenol blue (Sigma) and 30% of glycerol (Sigma) and run at 80-100 V.  1Kb DNA ladder was 

used as molecular weight marker. DNA band, corresponding to the desired fragment, was excised 

and purified from agarose gel using Thermofisher column, according to the manufacturer’s 

instructions. Once vector and DNA insert were purified, ligation mediated by T4 DNA ligase 

(Promega) was performed. Ligation reaction was carried out O/N at 22 ºC, in a final volume of 20 

μL using ligation buffer (300 mM Tris-HCl, pH 7.8, 100 mM MgCl2, 10 mM ATP, 100 mM DTT).  

Finally, 4-6 µL of ligation mix were transformed into DH5α Escherichia coli competent cells 

(Invitrogen). 2 μl of the ligation product was added over the competent bacteria, they were kept 

on ice for 30 minutes. The mix was exposed to a heat shock for 1 minute and, finally, to 5 minutes 

on ice. The transformation product was incubated during 1 hour at 37ºC in SOC medium antibiotic-

free, to allow the expression of the resistance antibiotic gene. Transformed bacterial were then 

seeded in LB-agar plates made dissolving 1.5% of agar and 50 μg/mL of ampicillin for selection. 

Some colonies were inoculated into LB media O/N and purified for verification by digestion and 

sequencing. 

On the other hand, the subcloning of the aforementioned genes (KSR1 WT; ASAP; C809Y; 

R615H; R615H/C809Y) into pCEFL was carried out by digestion of the insert from the pBHEN 

generated constructs, as well as pCEFL vector, by EcoRI and NotI restriction enzymes. The DNA 
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fragments were run in an agarose gel, cut, purified and ligated to the new pCEFL vector following 

the same process previously described. 

 

3.1.4. Site-directed mutagenesis 

The QuickChange II site-directed mutagenesis kit (Agilent Technologies) was used to introduce 

point mutations, to replace a given aminoacid. The procedure utilizes a supercoiled double-

stranded DNA (dsDNA) vector with an insert of interest and two synthetic oligonucleotide primers, 

both containing the desired mutation. To design these primers, we considered a length between 

25 and 45 bases with a melting temperature (Tm) ≥78°C.  

The following formula was used for estimating the Tm of the primers:  

Tm =81.5+0.41(%GC)−(675/N)−%mismatch  

For calculating Tm:  

• N is the primer length in bases  

• values for %GC and % mismatch are whole numbers  

Both of the mutagenic primers must contain the desired mutation preferably in the middle 

and anneal to the same sequence on opposite strands of the plasmid. The primers optimally should 

have a minimum GC content of 40% and should terminate in one or more C or G bases.  

The primers (Hylabs) used to introduce the point mutation R615H in pCMV Flag KSR1 and in 

pCMV Flag KSR1 C809Y were: 

Mutation R615H: R>H = CGG>CAT 
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Oligonucleotide 5’-3’: GAACTACCGGCAGACGCATCATGAGAACGTGGTGC 

Oligonucleotide 3’-5’: GCACCACGTTCTCATGATGCGTCTGCCGGTAGTTC 

Length: 35 nucleotides  

Mismatch=2 (5.71%) 

GC=20 (57.14%) 

Tm= 79.93 

- The PCR reaction to perform the mutagenesis was as follow: 

5 μl of 10X reaction buffer 

1.5 μl of dsDNA template (100 ng/μl) 

1.2 μl of each oligonucleotide primer (10 μM) 

1 μl of dNTP mix (10 mM) 

ddH2O to a final volume of 50 μl 

Then add 1 μl of PfuUltra HF DNA polymerase (2.5 U/μl) on ice 

 

- The parameters to run the PCR for KSR1 mutants were: 

Step Cycles Temperature Time 

Denaturing 1 X 95ºC 2 minutes 

Denaturing  

30 X 

95ºC 30 seconds 

Annealing primers 60ºC 2 minutes 

Extending 65ºC 10 minutes 

Elongation 1 X 72ºC 20 minutes 
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Hold 1 X 4ºC ¥ 

Table 3.4. PCR conditions to introduce the point mutation R615H into pCMV Flag KSR1 and pCMV Flag 
KSR1C809Y 

The PCR product was placed on ice. Then, 1 μl of the Dpn I restriction enzyme (target sequence: 

5 ́-Gm6ATC-3 ́) (10 U/μl) was added directly to each amplification reaction and it was incubated 1 

hour and 30 minutes at 37ºC in order to digest the parental methylated DNA template to select for 

mutation-containing synthesized DNA. The last step was to transform the 10 μl of PCR product into 

competent bacteria by heat shock: Incubate DNA and bacteria 30 minutes on ice, 1 minute heat 

shock at 42ºC and 5 minutes on ice to close again the bacterial wall. Add 200 μl of culture medium 

without antibiotic selection and place the tubes at 37ºC for 1 hour and 30 minutes. Then, the 

transformation product was added to LB agar plates with the specific antibiotic selection and leave 

them growing O/N at 37ºC. The day after, some colonies were grown O/N on LB medium and the 

DNA extracted by miniprep was analyzed by sequencing. 

 

3.2. TISSUE CULTURE 
 
 

3.2.1. Cell lines 

The cell lines utilized during this thesis are listed in the following table (3.5). 

CELL LINE DESCRIPTION 

HEK 293T  Epithelial cells derived from Human Embryo Kidney. 
Immortalized with SV40 T-antigen 

HeLa  Epithelial cells derived from human cervical carcinoma. 
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MEFs Mice Embryonic fibroblasts.   

MEFs KSR1 -/- Mice Embryonic fibroblasts. KSR1 Knock Out. (Nguyen et al., 
2002) 

Source: J. Lozano 

A375P Epithelial human metastatic melanoma cells. B-RAF mutant 

501-MEL Epithelial human metastatic melanoma cells. B-RAF mutant 

SKMEL28 Epithelial human metastatic melanoma cells. B-RAF mutant 

SKMEL2 Epithelial human metastatic melanoma cells. N-Ras mutant 

MEL-JUSO Epithelial human metastatic melanoma cells. N-Ras mutant 

CJM Epithelial human metastatic melanoma cells. N-Ras mutant 

Table 3.5. Cell lines used in this thesis. 

Culture Medium: These cell lines were grown in Dulbecco ́s Modified Eagle Medium (DMEM) 

(Thermo Fisher) supplemented with 10% Fetal Bovine Serum (Gibco) and 1% Penicillin- 

Streptomycin (10000 U/mL) (Thermo Fisher).  

Basal medium: DMEM culture mediium without Fetal Bovine Serum.  

All cells were grown at a 37ºC and 5% CO2.  

Throughout this thesis: 

 EGF (Epidermal Growth Factor) has been used to stimulate cells at 50 ng/ml for 5 minutes.  
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The KSR inhibitor APS-2-79 (Med-Chem Express) was administered to HEK293T and to 

melanoma cells at 5 μM for from 2 hours, O/N or 48 hours, depending on the experiment. 

The MEK inhibitor Vemurafenib (Selleck Chemicals) (PLX4032) was used in melanoma cells at 

10 μM for 48 hours. 

 

3.2.2. Mammalian cell transfection 
 

3.2.2.1.  Polyethylenimine (PEI) 

Polyethylenimine (PEI) condenses DNA into positively charged particles that bind to anionic 

cell surfaces. Consequently, the DNA:PEI complex is endocytosed by the cells and the DNA is 

released into the cytoplasm (Longo et al., 2013).  

HEK293T cells were split into p60 plates 24 hours before transfection because the cells are 

actively proliferating and, in this way, it is easier that DNA reaches the nucleus. The cells are 

transfected when they are at around 60% of confluence. PEI (1 mg/ml) (Polysciences, Inc.) is used 

in a ratio 1:4 (DNA:PEI). 8 μg of PEI were added to 500 μL of Opti-MEM medium (Gibco) and 2 μg 

of DNA was diluted in the same tube. The mix was vortexed and spinned down and incubated 15 

minutes at room temperature. Before adding the mix to the cells, they were washed with 1X PBS 

(Phosphate-Buffered Saline), and 10% FBS DMEM was added to a final volume of 2.5 ml. For an 

optimal expression the cells were not harvested before 48 hours post-transfection. 

3.2.2.2. Lipofectamine LTX 

Lipofectamine contains lipids that can form liposomes in an aqueous environment which 

catches the DNA plasmids. The cationic liposomes form a complex with negatively charged DNA to 

overcome the electrostatic repulsion of the cell membrane. (Cardarelly et al., 2016) 

HeLa cells were transfected using Lipofectamine LTX (Invitrogen. Thermo Fisher). Cells were 

split 24 hours before transfection to reach 80% of confluence at transfection. 8 μL of LTX was diluted 
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in 250 μL Opti-MEM medium (Gibco. Thermo Fisher). Then, 2 μg of DNA was diluted in another 

Eppendorf tube containing 250 μL Opti-MEM medium and 4 μL of PLUS Reagent was added. After 

5 minutes at room temperature, the content of the DNA tube was added to the Lipofectamine LTX 

Reagent tube and was incubated at room temperature for 10 minutes. Meanwhile, the cells were 

washed with 1X PBS and the DNA-lipid complex was added to the cells. Next day, the medium was 

changed and cells were incubated for 24 hours more before collecting them.  

3.2.2.3. Lipofectamine 2000 

A375P melanoma cells were transfected following an adapted protocol of Lipofectamine 2000 

(Invitrogen. Thermo Fisher). Two Eppendorf tubes with 500 μL of Opti-MEM medium were 

prepared, in one of them 2 μg of DNA was added and, in the other one, 8 μL of Lipofectamine 2000 

reagent (ratio 1:4). They were incubated separately at room temperature for 5 minutes. Then, they 

were mixed, vortexed and incubated for 30 minutes at room temperature. The cells were washed 

with 1X PBS before adding the transfection mixture and, once added, the cells were incubating with 

this 1 ml mixture for 30-45 minutes at 37ºC, 5% CO2. After this incubation, 10% FBS DMEM was 

added to a total volume of 3 ml. For an optimal expression the cells were harvested at least 48 

hours post-transfection. 

3.2.2.4. Lipofectamine 3000 

The SKMEL2 melanoma cells transfection was done with Lipofectamine 3000 (Invitrogen. 

Thermo Fisher).  2 μg of DNA plus 14 μL of P3000 reagent were diluted in 250 μL of Opti-MEM 

medium and 7 μL of Lipofectamine 3000 reagent were added to another tube with 250 μL of Opti-

MEM medium. They were incubated separately for 5 minutes at room temperature and, then, the 

content of the DNA tube was added to the one with Lipofectamine. They were incubated for 10 

minutes and added to the cells previously washed with 1X PBS. 2 ml of 10% FBS DMEM were added. 

For an optimal expression, the cells should not be harvested before 48 hours post-transfection. 
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3.2.2.5. Lipofectamine RNAiMAX 

The small interfering RNA (siRNA) against scaffold proteins were transfected with 

Lipofectamine RNAiMAX (Invitrogen. Thermo Fisher). 10 μL of 10 μM siRNA were diluted in 250 μL 

of Opti-MEM medium and in other tube with 250 μL of Opti-MEM medium 10 μL of Lipofectamine 

RNAiMAX were added. They were incubated separately for 5 minutes at room temperature and, 

then, they were mixed and vortexed and incubated together for 10 minutes at room temperature. 

After this incubation, the mix was added to the cells after a wash with 1X PBS. For an optimal 

knocking down, cells should not be collected before 48 hours post-transfection. 

3.2.2.6.  Nucleofection 

Electroporation is a physical transfection method that permeabilizes the cell membrane by 

applying an electrical pulse and moves molecules via the electrical field into the cell. 

Mice embryonic fibroblasts (MEFs) were transfected by nucleofection. Around 8 millions of 

cells were washed with 1X PBS and trypsinized to detach them. They were centrifuged at 1500 rpm 

for 5 minutes and the pellet was resuspended in 400 μL of electroporation solution (Ingenio® 

Electroporation Kit. Mirus). The resuspended cells were split in four Eppendorf tubes (100 μL per 

tube) and around 2-3 μg of the corresponding DNA were added. They were gently mixed avoiding 

bubbles and transferred to an electroporation cuvette. The cells in suspension were electroporated 

by an electrical pulse, duration and voltage of the pulse is detailed by the MEFs specific program (A 

023) in the nucleofector (Lonza). After the pulse, the nucleofected cells were resuspended in 800 

μL of 10% FBS DMEM and 200 μL were seeded in each well of a T24 plate. For an optimal result the 

cells need 48 hours of expression after transfection. 

3.2.2.7. Stable cell lines generation 

2 µg of the Flag-tagged plasmids constructs (Table 3.1): pHBEN KSR1 WT, pHBEN KSR1 C809Y, 

pHBEN KSR1 R615H and pHBEN KSR1 R61H/C809Y were transfected in the parental cell line MEFs 

KSR1 -/- following the aforementioned lipofectamine 3000 transfection method. The pHBEN vector 

contains an antibiotic-resistance gene for puromycin which functions as a drug-resistance positive 

marker in the transfectants. The selection antibiotic, puromycin, was added at the optimal 
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concentration of 1 µg/ml replacing the media with selection antibiotic every 2 days up to a week 

selecting the transfecting cells. The ectopic expression of each cell subline was verified by western 

blot, using either Flag or KSR1 antibodies.  

 

3.2.3. Cell proliferation assay 

This assay was used to determine the effect of the silencing of IQGAP1 and KSR1 scaffold 

proteins in B-RAF and N-Ras melanoma cell lines. Therefore, 24 hours post- transfection with the 

different shRNAs, the cells were counted by Neubabuer chamber or Nucleocounter (method based 

on propidium iodide staining), and 6000 cells were plated per well in three 96-well plates, one for 

each time point (24, 48 and 72 hours) and three replicates per condition. At the estimated time, 10 

μL of room temperature AlamarBlue Reagent was added and incubated in the dark at 37ºC and the 

absorbance was read every 30 minutes from one hour after the reagent was added.  

The AlamarBlue Cell Viability Reagent (Thermo Fisher), used to perform proliferation assays, 

has as an active component a non-toxic, cell-permeable non-fluorescent blue compound called 

Resazourin. This molecule can be reduced by several mitochondrial reductases (NADPH, NADH, 

FADH) as it acts as an intermediate electron acceptor in the electron transport chain and as well by 

cytochromes and other enzymes as flavin reductase or NAD(P)H: quinone oxidoreductase. This 

indicates viability and metabolic activity and, indirectly, number of cells by medium colour change 

to a red highly fluorescent compound that is Resorufin. In consequence, this change of colour can 

be measure using absorbance-based plate readers using 600 nm as a reference wavelength and 

monitoring reagent absorbance at 570 nm.  
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3.2.4. Apoptosis assay 

A million cells were plated per T6 plate well. 24 hours later, the cells were transfected with 

the corresponding shRNAs, one well was transfected with an empty vector as a negative control, in 

other well APS-2-79 (5 µM; 48 h) (Med-Chem Express) was added. And, in another one, 

Staurosporine (1 µM) (Sigma) was added for 12 hours as positive control. In parallel, the same 

transfections were carried out in p60 plates to check the expression or silencing. 

48 hours post- transfection the medium was collected into a 5 ml Eppendorf tube, 250 µl of 

10X trypsin were added in each well and the cells were resuspended with the same medium 

previously collected. The cells were collected by centrifugation at 800 rpm for 5 minutes at 4ºC. 

They were washed with 1 ml of filtrated 3 mM EDTA PBS and centrifuged again. The pellet was 

resuspended in 300 µl of binding buffer (BB) (10X BB: HEPES 0.1 M pH 7.4, NaCl 1.4 M, CaCl2 25 

mM) and placed in cytometry tubes. Then, 1 µl of FITC Annexin V (BD Pharmagen) and 10 µl of FBS 

were added to avoid unspecific interactions. The mix was incubated 30 minutes in dark at 4ºC. After 

incubation, one wash with 1 ml 3 mM EDTA PBS was done and the cells were collected by 

centrifugation and resuspended in 250 µl of 3 mM EDTA PBS to do the flow cytometry. Apoptosis 

rate was determined in MACSQuant VYB (Miltenyi Biotec) and the results were analyzed with Flow 

Logic software (Miltenyi Biotec).  

To analyze the apoptotic effect of pCMV Flag KSR1 WT and pCMV Flag KSR1 C809Y 

overexpression SKMEL2 cells were plated in a T6 plate (1 million cells per well) and transfected with 

increasing amounts (0.5, 1 and 2 µg) of the corresponding DNA’s following the Lipofectamine 3000 

transfection protocol. 48 hours post-transfection the apoptosis was assessed by Annexin V + as 

previously described. 

In the case of APS apoptotic effect analysis, A375, SKMEL28 and 501-Mel BRAF-mutant 

melanoma cell lines and SKMEL2, CJM and Mel-Juso NRAS-mutant melanoma cells were plated in 

a T6 plate (1 million cells per well). These cells were treated with APS (5 µM 48 hours), PLX4032 (10 
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µM 48 hours) as RAS/ERK pathway specific inhibitor or Staurosporine (0.5 µM 48 hours) as a 

positive control of apoptosis. The Annexin V + analysis was carried out as mentioned above. 

 

3.3. PROTEIN ANALYSES 

 

3.3.1. SDS-PAGE and western blotting  

Cell plates were collected on ice, the culture medium was removed and the cells were washed 

in cold 1X PBS and harvested in 200-500 μl of lysis buffer. 

Then, to remove cell debris and DNA and keep the proteins, the lysates were centrifuged at 13000 

rpm for 10 minutes at 4ºC. After that, the supernatant was collected into a new tube and proteins 

samples were quantified according to the absorbance at 620 nm wavelength using the Bradford 

Method. A Bovine Serum Albumin (BSA) standard curve was used to calibrate unknown 

concentrations. 5X laemli loading buffer was added to around 30 μg of protein and the mix was 

boiled at 95ºC for 5 minutes. 

Proteins were resolved in sodium dodecyl sulfate (SDS)- poliacrylamide gel electrophoresis 

(PAGE). SDS-gel was composed of a stacking part and a resolving part. The vertical electrophoresis 

was performed in a Mini-Protean Bio-Rad device with running buffer. Then, proteins were 

electrophoretically transferred to Nitrocellulose membranes (Thermo Fisher) at 400 mA constant 

amperage (1 minute for each 1 kDa of the protein) at 4ºC in transfer solution. Membranes were 

then blocked in Tris Buffered Saline-Tween (TBS-T) containing 4% BSA (blocking solution) for 1 hour 

shaking at room temperature. Blots were incubated from 1 hour at room temperature to O/N at 

4ºC (depending on the antibody affinity) with the different antibodies (Table 3.6) prepared in 

blocking solution. The blots were washed 3 times for 10 minutes with TBS-T and incubated for 1 

hour shaking at room temperature with anti-rabbit Immunoglobulin (Ig) (Bio-Rad) or anti-mouse Ig 

(Bio-Rad) secondary antibodies conjugated with peroxidase (1:10000) in 2% milk (GE Healthcare) 
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TBS-T. After that, membranes were washed (3 x 10‘) with TBS-T and the proteins were detected by 

chemiluminescence with an enhanced chemiluminescent system (ECL) and an autoradiography 

with Konica films was performed to develop the blots.  

Buffers used: 

- Lysis buffer: 20 mM HEPES pH 7.5, 10 mM EGTA, 40 mM β-Glycerophosphate, 1% NP40, 

2.5 mM MgCl2, 1 mM NaVO4, 1 mM DTT and protease inhibitors: 10 μg/ml of aprotinin and 10 μg/ml 

of leupeptin. 

- 5X laemli loading buffer: 100 mM Tris pH 6.8, 4% SDS, 20% glycerol, 20 mM DTT and 0.005% 

bromophenol blue. 

- Poliacrylamide gels:  

o Stacking gel part: 4% acrylamide, 125 mM Tris-HCl pH 6.8, 0.4% SDS, 0.1% Ammonium 

Persulfate (APS) and 0.1% Tetramethylethylenediamine (TEMED) in H2O. 

o Resolving gel part: acrylamide (percentage depends on the molecular weight of the 

protein), 375 mM Tris-HCl pH 8.8, 0.4% SDS, 0.1% APS and 0.1% TEMED in H2O. 

- Running buffer: 25 mM Trizma base, 192 mM Glycine, 0,1% SDS. 

- Transfer buffer: 25 mM Trizma base and 192 mM Glycine. 

- Tris Buffered Saline-Tween (TBS-T): 20 mM Tris, pH 7.4, 137 mM NaCl and 0.05% tween. 

Enhanced chemiluminescent system (ECL):  

Solution 1: 1M TRIS HCl pH 8.5, 90 mM Coumaric Acid, 250 mM Luminol. 

Solution 2: 1M TRIS HCl pH 8.5, 30% H2O2 (Hydrogen Peroxide). 

ANTIBODIES 

ANTIBODY SPECIFICITY DILUTION SOURCE 

Flag Mouse 
monoclonal 

1:5000 (WB) 

IP: 0.5 μg 

F1804, Sigma 
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1:150 (IF) 

Glu-Glu (Pyo) Rabbit policlonal 1:1000 (WB) AB3788, Millipore 

ERK2  Mouse 
monoclonal 

1:1000 (WB) sc-1647, Santa Cruz  

MAPK (ERK1/2)  Rabbit policlonal 1:1000 (WB) Cell Signalling 4695S 

p-ERK1/2 (Tyr 204) Mouse 
monoclonal 

1:1000 (WB) sc-7383, Santa Cruz  

Activated MAP Kinase 
(Diphosphorylated 
ERK-1/2: Thr183 and 
Tyr185)  

Mouse 
monoclonal 

IP: 0.5 μg 

 

M9692, Sigma  

Activated MAP Kinase 
(Diphosphorylated 
ERK-1/2: Thr183 and 
Tyr185)  

Mouse 
monoclonal 

1:1000 (WB) 

1:100 (IF) 

M8159, Sigma 

p-MEK1/2 
(S217/S221) 

Rabbit policlonal 1:3000 (WB) 9154S, Cell Signalling 

MEK Rabbit policlonal 1:500 (WB) 8727S, Cell Signalling 

a-Tubulin Mouse 
monoclonal 

1:5000 (WB) T5168, Sigma  

Myc tag Mouse 
monoclonal 

1:1000 (WB) 06-549, Millipore 

Myc tag Mouse 
monoclonal 

IP: 1 μg (9E10) MA1-980, Thermo 
Fisher 

KSR1 Mouse 
monoclonal 

IP: 1 μg sc-515924, Santa Cruz 

KSR1 Rabbit policlonal 1:500 (WB) (EPR2421Y) ab68483, Abcam 

IQGAP 1 Mouse 
monoclonal 

1:1000 (WB) 610611, BD Bioscience  
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IQGAP 1 Mouse 
monoclonal 

IP: 1 μg sc-376021 Santa Cruz 

Anti-Mouse-HRP 
(Mouse IgG) 

Goat 1:10000 170-5047, Bio-Rad  

Anti-Rabbit-HRP  

(Rabbit IgG) 

Goat 1:10000 170-5046, Bio-Rad  

Alexa Fluor 488 
(Mouse IgG) 

Goat 1:300 A-11034, ThermoFisher 

Alexa Fluor 594 
(Rabbit IgG) 

Goat 1:800 A-11032, ThermoFisher 

Table 3.6. Antibodies used for western blot, immunoprecipitation and immunofluorescence analysis. 

 

3.3.2. Protein interaction by co-immunoprecipitation assay 

Previous to collecting the cells, they were washed with cold PBS. The total lysates were 

centrifuged at 13000 rpm at 4ºC for 10 minutes. The cleared lysates were quantified and around 30 

μg of protein from the total lysate were separated and loading buffer Laemli 5X was added. 0.5-1 

μg of the specific antibody for immunoprecipitation was added to 300 μg of protein, and it was 

incubated rocking at 4ºC from 2 hours to O/N. After this, 20 μl of protein G-Sepharose 4B (GE 

Healthcare, 17-0756-01) were added to the lysates with antibody and it was incubated 20 minutes 

at 4ºC shaking. The protein G is going to bind the immunoglobulins which allows to precipitate the 

immunocomplexes (protein-antibody) by centrifugation. The next step was washing the beads once 

with lysis buffer and twice with cold 1X PBS 1% NP-40. Finally, the beads were resuspended in 20 

μl of loading buffer Laemli 2.5 X and boiled 5 minutes at 95ºC. The protein interaction was analyzed 

by SDS-PAGE as previously described. 
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3.3.3. Protein interaction by proximity ligation assay + 
immunoflorescence  

Proximity Ligation Assay (PLA) (Duolink®) is a technology which allows to detect in situ protein 

interaction. For these purpose two primary antibodies, raised in different species, specific for each 

protein of interest are used. These primary antibodies are detected by secondary antibodies (PLA 

probes) bound to a short single strand DNA sequence. When both probes are close enough (<40 

nm), the DNA strands are able to hybridize forming a rolling circle DNA (ligation reaction). During 

the amplification reaction, concatemeric product of this nucleotide sequence were synthesized at 

the same time that a fluorophore, detected at 594 nm wave length, is intercalated. The signal is 

easily observed in the microscope as red fluorescent spots in the cellular localization where the 

analyzed proteins are interacting. 

The transfected HeLa cells were grown to subconfluence in a glass of 10 mm of diameter. The 

cells were washed with 1X PBS and were fixed with 4% paraformaldehyde in 1X PBS during 10 

minutes at room temperature. Later they were washed twice with 1X PBS during 5 minutes, 

followed by one wash with 0.1 M glycine and two with 1X PBS. Subsequently, they were 

permeabilized during 10 minutes with a solution composed by 0.1 M glycine, 0.5% Triton X-100 in 

PBS, followed by three washes with 1X PBS for 5 minutes. Then, the cells were blocked during 15 

minutes by adding one drop over each glass of 3% BSA, 0.01% Triton X-100 in 1X PBS. The primary 

antibodies were prepared in blocking solution in a dilution from 1:75 to 1:200 depending on the 

antibody specificity, they were also added as a drop over the glass and incubated for 1 hour in a 

humidity chamber to prevent drying. During the incubation the MINUS and PLUS PLA probe solution 

was prepared in a ratio 1:3 with blocking buffer and the mix was incubated for 20 minutes at room 

temperature. After the primary antibody incubation, the cells were washed twice 5 minutes with 

buffer A (0.15 M NaCl, 0.01 M TRIS base, 0.05 % Tween 20 pH 7.4 filtered) and then a drop of PLA 

probe solution was added per glass and the humidity chamber was left incubating at 37ºC for 1 

hour. During incubation the ligation solution (ligation buffer diluted 1:5 and ligase 1:40 in ultrapure 

water) was prepared, adding the ligase just before to use. One drop of ligation solution was added 
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over the glasses after two 5-minutes washes with buffer A and it was incubated at 37ºC for 30 

minutes. After ligation, the cells were washed twice with buffer A, followed by the addition of the 

amplification solution (amplification buffer diluted 1:5 and polymerase 1:80 in ultrapure water). 

The amplification step lasts 100 minutes at 37ºC. After the incubation period the cells were washed 

twice for 10 minutes with buffer B (0.1 M NaCl, 0.2 M TRIS base, TRIS HCl pH 7.5) and they were 

left at 4ºC O/N. The day after, a secondary antibody (conjugated with a fluorophore), specific for 

the primary antibody which recognizes the transfected protein, was added for 1 hour in the 

humidity chamber and washed twice with 1X PBS. Finally, the glasses were set over a slide in 

mounting media with DAPI and sealed with clear nail polish. 

The cells were examined by fluorescence microscopy (photomicroscope Axiophot, Carl Zeiss). 

The images were processed using Image J software. 

3.3.4. Cytosolic Phospholipase A2 activation assay 

MEFs KSR1 -/- were nucleofected, as previously described, with the different KSR1 

constructions. 48 hours post-transfection the cells were deprived of serum and 1 μCi/ml tritiated 

arachidonic acid (Perkin Elmer) was added to the medium in order to be incorporated into the 

plasma membrane. After 18 hours of incubation, the cells were washed twice with fatty acids- free 

DMEM, 5mM Hepes pH 7,5, 0.2% BSA, the medium was replaced by this and EGF was added (50 

ng/ml, 2 hours) where it corresponded. 2 hours later, 500 μl of the medium were taken and mixed 

with 2 ml of scintillation liquid in a counting vial. The radioactive emission was measured by 

scintillation counter. 

In this way, the marked arachidonic acid released to the medium is a phospholipase A2 

activation indicator. 

3.3.5. GST and pull-down assays 

- Obtaining recombinant proteins for in vitro protein binding assays 
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The gene fusion system GST (Glutatione S-tranferase) is a useful method to purify proteins 

from E. coli as fusion with GST from Schistosoma japonicum. The pGEX plasmids are deigned to 

obtain high inducible expression levels of whole genes or genes fragments. 

The recombinant fusion proteins (pGEX KSR1 ERK BD, pGEX IQGAP1 WW and pGEX MP1) were 

transformed in E. coli, and, then, inoculated in 50 ml of LB medium with the corresponding 

antibiotic resistance O/N at 37ºC. The day after, this inoculum was diluted in 400 ml of LB medium 

and it was grown for 4 hours at 37ºC. Induction of the recombinant proteins was carried out by 

adding to the culture 0.2 mM of IPTG (isopropil-β-D- tiogalactopiranoside, Sigma) shaking at 37ºC 

for 3 hours. The bacteria were collected by centrifugation at 6000 rpm for 10 minutes and the pellet 

was resuspended in 10 ml of 1X PBS, 1% NP-40, 10 μg/ml aprotinine and 10 μg/ml leupeptine. They 

were sonicated on ice at 80% amplitude, 0.9 cycles for 7 minutes. The extract from sonication was 

centrifuged at 3500 rpm for 30 minutes at 4ºC, and 500 μl de Glutation-Sepharose 4B (GE) were 

added to the supernatant in order to precipitate the GST protein. The mix was incubated rocking at 

4ºC for 3 hours. The resin Glutation-Sepharose 4B bound to the proteins was washed three times 

with cold washing buffer, twice with cold 1X PBS and one more time with MLB buffer: 25 mM Hepes 

pH 7,5, 150 mM NaCl, 1% Nonidet-P40, 10% glycerol, 25 mM NaF, 10 mM MgCl2, 1mM EDTA, and 

1mM sodium ortovanadate. It can be stored at 4ºC for up to 10 days. The quantification of GST was 

done using a BSA standard concentrations by SDS-PAGE dyed with Coomasie brilliant blue (Sigma) 

- Pull down in vitro assay 

The GST purified proteins were incubated with total lysates of HEK293T cells lysed in MLB 

buffer during 2 hours in a roter at 4ºC. After incubation, the precipitated Glutation-Sepharose beads 

were washed twice with cold 1X PBS, twice with cold 1X PBS 1% NP-40 and, finally, twice with MLB 

buffer. The beads were resuspended in loading buffer 2X Laemli and loaded in a 12% SDS-PAGE, as 

described above. 
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3.3.6. KD determinations by in vitro binding assays 

The first step was to generate 35S radiolabelled ERK2 in rabbit reticulocytes (TNT® Coupled 

Reticulocyte Lysate Systems. Promega). To synthesize this radiolabelled ERK2, in L-methionine 

residues (Perkin Elmer Cat.# NEG709A), it was prepared the following reaction (Table 3.7): 

Components Volume 

TnT® Rabbit Reticulocyte Lysate 12.5 μl 

TnT® Reaction Buffer 1 μl 

TnT® RNA Polymerase T7 0.5 μl 

Amino Acid Mixture, minus Methionine, 1 mM 0.5 μl 

[35S]-Methionine (>1,000Ci/mmol at 10mCi/ml) 1 μl 

Ribonuclease Inhibitor (40 U/µl) 0.5 μl 

DNA template(s)  1 μg 

Nuclease-Free Water to a final volume of 25 μl 

Table 3.7. ERK2 [35S]-Methionine radiolabelling reaction. 

 

This mixture reaction was incubated in a water bath at 30ºC for 90 minutes. During this period 

of time, the transcription of the DNA and the translation of the protein occurred, in this way the 

product is [35S]-L-methionine- ERK2. 

Then, increasing concentrations of the purified GST-proteins (0, 20, 40, 100, 200 nM) were 

incubated with a fixed amount of [35S]-L-methionine- ERK2 (20 nM) at 30ºC for 2 hours. Once the 

binding reaction is done, 20 μl of loading buffer Laemli 2X were added and the proteins were 

resolved by SDS-PAGE. The [35S] L-methionine- ERK2 was quantified by autoradiogram with the 

ImageJ software and by scintillation counter adding 2 μl of the reaction to 3 ml of scintillation liquid. 
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The KD values were calculated with the software GraphPad Prism. 

 

3.4. BIOINFORMATIC ANALYSES 

- Statistical analysis: Data was processed and analyzed using the GraphPad Prism 7 Software 

(GraphPad Software, Inc., San Diego, CA).  

In bar graphs data is given as Mean ± SEM and Two tailed unpaired Student’s t-test was used 

to determine differences between data sets and significance (*p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001).  

The dissociation constant (KD values) from binding assays were calculated using Dissociation-

One phase exponential decay analysis (non-linear regression). 

- The western blot analyses and confocal images processing was carried out and analyzed 

using Fiji-Image-J Software.  

- The apoptosis results were analyzed by Flow Logic Software (Miltenyi Biotec). 

- The bibliography was sorted by Mendeley reference management Software. 
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4.1. APS-2-79 biological and biochemical effects in connection with 
its role as a KSR inhibitor. 

 
4.1.1. Effects of APS-2-79 and KSR disruption on cell viability. 

APS-2-79 has been described as a KSR inhibitor (Dhawan, Scopton and Dar, 2016), however, 

the original publication showed that APS-2-79 displayed no effect at all on the cell viability of BRAF-

mutant cells such as SKMEL239 and A375; and only modest effects on RAS-mutant cell lines such 

as HCT116 and A549. To further extend these findings we analyzed the effects of APS-2-79 on cell 

viability, on a broader panel of BRAF- and NRAS-mutant melanoma lineages, including A375, 

SKMEL28 and 501-MEL BRAF-mutant and SKMEL2, CJM and MEL-JUSO NRAS-mutant cell lines. As 

Figure 4.1. Induction of apoptosis by APS-2-79 in tumour cell lines harbouring RAS/ERK pathway oncogenes. The 
shown BRAF- and NRAS-mutant cell lines were treated for 48 h with APS-2-79 (5 µM), PLX4032 (10 µM) or 
staurosporine (0.5 µM). Apoptosis was evaluated by annexin V detection using MACSQuant cytometer and results 
were analyzed with FlowLogic software. The graph shows annexin V positive cells. Results show Mean ± SEM of three 
independent experiments normalized to the levels of control (DMSO treated) cells. 
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shown in figure 4.1, APS-2-79 displayed no significant apoptotic effects compared to staurosporine, 

as an unspecific apoptosis inducer, and to PLX4032 that specifically kills BRAF-mutant cell lines.  

These findings reproduced the results exhibited in the original publication. 

As APS-2-79 displayed no effect on cell viability, we investigated if this result correlated with 

KSR function. To this end, we compared the effects of the drug to those resulting from KSR 

depletion by shRNAs, in two representative cell lines. Since there are two KSR isoforms, KSR1 and 

KSR2, and both of them are targeted by APS-2-79, we analysed the depletion of both proteins 

separately and in combination. As shown in figure 4.2 neither KSR depletion nor APS-2-79 

treatment had any effect on cell viability in the BRAF-mutant cell line A375P, as evaluated by the 

amount of annexin V positive cells.  

Figure 4.2. APS-2-79 treatment and KSR1/2 ablation have no apoptotic effect in A375P. Cells were transfected with 
the corresponding shRNAs (0.5 µg each), with an empty vector as a negative control (C) or treated with APS-2-79 (5 
µM; 48 h). Staurosporine treatment (1 µM, 16 h) was used as a positive control. Apoptosis was evaluated 48 h post-
transfection by annexin V detection using MACSQuant cytometer and results were analyzed with FlowLogic software. 
The graph shows the percentages of annexin V positive cells obtained from the respective histograms. Results show 
Mean ± SEM of three independent experiments. The silencing of KSR1 was verified by western blot 48 h after 
transfection (bottom right) KSR2 expression was not monitored due to the unacceptable quality of all commercially- 
available antibodies for KSR2. 
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However, in SKMEL2 NRAS-mutant melanoma cells, the silencing of each KSR isoform, 

separately or at the same time, resulted in a high proportion of Annexin V positive cells, reflecting 

a pronounced apoptotic effect. Surprisingly, this was not the case when cells where treated with 

the KSR inhibitor APS-2-79 (Fig.4.3), indicating that KSR inhibition, as exerted by APS-2-79, did not 

have the same effect as KSR depletion. 

 

4.1.2. Effect of KSR1 inhibition/depletion on ERK activation. 

In the same vein, similarly to the effect observed on apoptosis, it was found that treatment 

with APS-2-79 did not affect total ERK phosphorylation as profoundly as KSR1 depletion (Fig.4. 4). 

Figure 4.3. APS-2-79 does not mirror the apoptotic effect of KSR1/2 ablation. SKMEL2 cells were transfected with 
the corresponding shRNAs (KSR1 or KSR2 or KSR1 + KSR2), with an empty vector as a negative control (C) or treated 
with APS-2-79 (5 µM; 48 h). Staurosporine treatment was used as a positive control. Apoptosis was evaluated 48 h 
post-transfection by annexin V detection using MACSQuant cytometer and results were analyzed with FlowLogic 
software. The graph shows the percentages of annexin V positive extracted from the histograms. Results show Mean 
± SEM (N=3). The silencing of KSR1 and KSR2 was checked by western blot 48 h after transfection (bottom right) KSR2 
expression was not monitored due to the unacceptable quality of all commercially-available antibodies for KSR2. 
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This could be concluded by the observation that the drop on ERK phosphorylation levels in response 

to treatment with APS-2-79 was significantly lower than that resulting from shRNA-mediated 

suppression of KSR1 expression. In spite of the fact that APS-2-79 treatment affects all the cells, 

whereas the effect of KSR1 suppression is restricted to a smaller fraction of cells, i.e. those that 

uptake the shRNAs. 

Moreover, when analyzing the effect of APS-2-79 on the fraction of phosphorylated ERK bound to 

KSR1 following EGF stimulation, coimmunoprecipitation assays demonstrated that such levels were 

Figure 4.4. Divergent effects of KSR1 depletion and KSR1 inhibition on ERK activation. HEK293T cells were treated 
with APS-2-79 (5 µM; 2 h) or transfected with shRNAs against KSR1 for 48 h and ERK activation was analyzed after 
stimulation with EGF (50 ng/ml; 5’) where shown (+) after 18 h starvation. 

Figure 4.5. APS-2-79 does not affect KSR1-bound phosphorylated ERK levels. HEK293T cells were transfected 
with Flag-tagged KSR1 (2 µg) and stimulated with EGF (50 ng/ml; 5’) where shown (+), after APS-2-79 treatment 
(5 µM; 2 h) where indicated. Phosphorylated ERK associated to KSR1 was determined by western blotting after 
anti-Flag immunoprecipitation. IP= Immunoprecipitation. TL=Total Lysates. 
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unaltered by APS-2-79 in comparison to untreated cells (Fig. 4.5).  

Overall, these results revealed APS-2-79 deficiency as an inhibitor of KSR-mediated ERK 

activation and as an inhibitor of neoplasia driven by RAS/ERK pathway oncogenes such as NRAS and 

BRAF. 

 

4.2. Analyses on the regulation of ERK activity and functions by 
KSR1 

 

4.2.1. Effect of KSR1 overexpression on ERK activation and apoptosis. 

It was intriguing that KSR inhibition, as executed by APS-2-79, did not have evident effects on 

apoptosis, whereas down-regulation of KSR expression did. Since KSR is a scaffold protein and these 

are known to exert their activity following the “pro-zone effect” (Burack and Shaw, 2000; Ha, Kim 

and Ferrell, 2016), we reasoned that any fluctuation on KSR expression levels could have similar 

consequences. Therefore, in SKMEL2 cells, we tested how KSR overexpression affected cell viability. 

To this end, we transfected increasing concentrations of KSR1 WT. As an additional control, we also 

tested the effect of a KSR1 mutant, defective for binding MEK (C809Y). It was found that the 

overexpression of ectopic KSR1 WT induced apoptosis in a dose-dependent fashion following a bell-

shaped kinetics. Most surprisingly, even though KSR1 C809Y was expected to be non-functional 

because of its inability to bind MEK, it had an effect on apoptosis similar to that observed with the 

WT protein (Fig. 4.6). Likewise, the overexpression of both KSR1 forms had a similar effect on ERK 

activation, also following a bell-like effect, causing a slight reduction on ERK activation levels as 

their concentration increased (Fig. 4.7). 
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Figure 4.6. Effect of KSR1 WT and C809Y overexpression on apoptosis. Apoptosis was evaluated in SKMEL2 
melanoma cells, 48 h post-transfection by annexin V detection, using MACSQuant cytometer. The results were 
analyzed with FlowLogic software. Data shows mean ± SEM of three independent experiments, normalized to the 
negative control (cells transfected with an empty vector).  

Figure 4.7. Effect of KSR1 WT and C809Y overexpression on ERK activation. SKMEL2 cells were transfected 
with increasing concentrations (0.5-4 µg) of the indicated Flag-tagged KSR1 constructs. Phosphorylated ERK 
levels were monitored by western blotting and quantitated by ImageJ. Data shows a representative experiment 
of two. ev=empty vector 
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In light of this unexpected result, we also analyzed the effect of the aforementioned KSR1 

MEK-binding mutant on ERK activation in HEK293T cells. In these cells, KSR1 overexpression did not 

induce apoptosis (data not shown). Once again, the C809Y mutant behaved similarly to WT KSR1, 

only that in this case the overexpression of both KSR1 forms enhanced ERK phosphorylation (Fig. 

4.8), even more pronouncedly in the case of KSR1 C809Y.  

It was very surprising that the C809Y mutant, incapable of binding MEK, always behaved 

similarly to WT KSR1, regardless of the fact that, in theory, its inability to bind MEK should render 

it defective for conveying RAF-ERK signals. In order to gain further insights into this conundrum, we 

analyzed the competence of the KSR1 C809Y mutant for conveying signals that lead to ERK 

activation. Remarkably, and most surprisingly, it was found that this mutant, in spite of its inability 

to bind MEK, incorporated phosphorylated ERK as effectively as the WT KSR1 upon EGF stimulation 

Figure 4.8. Overexpression of MEK-binding deficient KSR1 potentiates ERK activation. ERK activation levels were 
analyzed by western blot in HEK293T cells transfected with increasing concentrations (0.5-5 µg) of the shown 
Flag-tagged KSR1 constructs, upon EGF stimulation (50 ng/ml; 5’) (+) after 18h starvation. 
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(Fig. 4.9). 

The results obtained by co-immunoprecipitation analyses were further ascertained in vivo, by 

means of proximity ligation assays (PLA) performed in HeLa cells. By this method, it was verified 

that ectopically-expressed KSR1 C809Y could associate to endogenous ERK, and that this interaction 

mainly took place at the cytoplasm (Fig. 4.10). 

Figure 4.10. KSR1 C809Y mutant binds to phosphorylated ERK in vivo. HeLa cells were transfected with KSR1 C809Y 
(2 µg) and Proximity Ligation Assays (PLA) were performed in cells starved for 18 h and after treatment with EGF (50 
ng/ml; 5’) as shown. Interaction between overexpressed Flag KSR1 C809Y (green) and endogenous, phosphorylated 
ERK is shown by red fluorescence. Nuclei are stained in blue.  

Figure 4.9. KSR1 C809Y mutant, unable to bind MEK, incorporates phosphorylated ERK. HEK293T cells were 
transfected with the indicated Flag-tagged KSR1 constructs (2 µg) and stimulated with EGF (50 ng/ml; 5’) where 
shown (+) after 18 h starvation. ERK and MEK associated to KSR1 were determined by co-immunoprecipitation upon 
anti-Flag immunoprecipitation (IP: Flag) and subsequent western blotting for the indicated proteins. 
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These results demonstrated that a MEK-binding defective KSR1 is competent for conveying 

upstream signals that bring about the phosphorylation/activation of its bound ERK. In addition, 

these data open the possibility that some other protein could be complementing KSR1 C809Y 

deficiency for binding MEK, in order to induce the phosphorylation of its bound ERK.  

 

4.2.2. Transphosphorylation among KSR homodimers. 

Previous data has demonstrated that KSR proteins have the ability to homodimerize  

(Rajakulendran et al., 2009). Indeed, we have observed that the KSR1 C809Y mutant retains this 

ability (Fig 4.11).  

 

In light of these previous data, it was possible that the presence of phosphorylated ERK bound 

to KSR1 C809Y could be the consequence of ERK being phosphorylated in trans by a MEK molecule 

bound to another KSR1 WT protein, forming a homodimer with KSR1 C809Y. A second possibility 

existed: in the sense that ERK bound to KSR1 C809Y could be phosphorylated by free, soluble MEK. 

Figure 4.11. KSR1 C809Y maintains its homodimerization capacity. KSR1 homodimerization was tested by a co-
immunoprecipitation assay in HEK293T cells transfected with Glu- and Flag-tagged KSR1 WT and Flag-tagged KSR1 
C809Y (1.5 µg each) upon EGF stimulation (50 ng/ml; 5’) where indicated (+). C- NT= untransfected cells. C- no ab= lysates 
incubated only with beads. 
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To put these hypotheses to test, two KSR1 mutants were generated: on one hand, a mutant unable 

to homodimerize, due to the disruptive point mutation R615H, that affects the KSR-KSR interaction 

interface (Stewart et al., 1999). And, on the other hand, a double mutant which, in addition to the 

R615H mutation, harboured the aforementioned C809Y mutation which prevents KSR1 interaction 

with MEK.  

In these mutants, we analyzed their ability to bind phosphorylated ERK. It was found that the 

R615H dimerization-deficient mutant retained its ability to bind phosphorylated ERK, probably as a 

consequence of the RAF-ERK signal flowing through itself. However, no phosphorylated ERK was 

found associated to the MEK-, dimerization-defective C809Y, R615H double mutant (Fig. 4.12).  

This result suggested that, indeed, ERK phosphorylation within KSR1 C809Y was being 

supported by a trans-acting MEK, bound to another homodimerizing KSR1 molecule, and excluded 

the possibility that free, cytoplasmic MEK was the responsible for such phosphorylation. In light of 

these data, we have termed this mechanism “transphosphorylation”. 

The results obtained by co-immunoprecipitation assays were, once again, validated in vivo, by 

Proximity ligation assays performed in HeLa cells. These ascertained that KSR1 dimerization-

Figure 4.12. KSR1 MEK-, dimerization- defective C809Y, R615H double mutant fails to bind phosphorylated ERK. 
KSR1 interaction with phosphorylated ERK was analyzed by a co-immunoprecipitation assay in HEK293T cells 
transfected with the indicated Flag-tagged KSR1 constructs (2 µg each), in starved cells (-) or upon EGF stimulation 
(50 ng/ml; 5’) where indicated (+). C- = untransfected cells. TL= total lysates. 
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defective but not the double mutant could bind to endogenous, phosphorylated ERK at the 

cytoplasm. As an additional control we transfected cells with a KSR1 mutant incapable of binding 

ERK (KSR1 ASAP) which, as expected, also failed to bind endogenous, phosphorylated ERK (Fig. 

4.13). 

 

In order to confirm our transphosphorylation hypothesis, we used another approach: it has 

been described that cytosolic phospholipase A2 (PLA2) is activated by ERK when its signals are 

specifically scaffolded by KSR1 (Casar et al., 2009). Therefore, we tested if the KSR1 C809Y mutant, 

was capable of mediating on PLA2 activation. In order to do this, ectopic KSR1 WT and the C809Y 

mutant were overexpressed in KSR1 -/- MEFs, to determine the extent to which EGF-induced PLA2 

activation could be rescued by the overexpressed proteins. In this assay we also included the KSR1 

mutant defective for binding ERK (ASAP). In agreement with the previous results, it was found that 

both, WT and C809Y KSR1 behaved in an identical fashion, facilitating a potent EGF-induced PLA2 

Figure 4.13. KSR1 C809Y, R615H mutant fails to bind phosphorylated ERK in vivo. HeLa cells were transfected 
with the indicated KSR1 constructs (2 µg) and Proximity Ligation Assays (PLA) were performed in cells starved 
for 18 h (ST) and after treatment with EGF (50 ng/ml; 5’) as shown. Interaction between overexpressed Flag 
KSR1 constructs and endogenous, phosphorylated ERK is shown by red fluorescence. Nuclei are stained in blue. 
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activation. Conversely, the control ASAP mutant was incapable of supporting PLA2 activation, as 

expected from its inability to bind ERK (Fig. 4.14).  

 

Remarkably, in this case the ability of C809Y KSR1 for activating PLA2 could not be explained 

through its transphosphorylation by an endogenous KSR molecule because these are absent in KSR1 

-/- fibroblasts. So, the possibility existed that other scaffold protein species could also participate 

in the transphosphorylation process by heterodimerizing with KSR1 C809Y. 

To further substantiate this point, we also monitored the ability of the different KSR1 

constructs for matching the differences on proliferative potential displayed by WT and KSR1 -/- 

fibroblasts. As shown in figure 4.15, KSR1 -/- fibroblasts proliferate at a faster rate than their WT 

counterparts. Their proliferative capacity was returned to WT levels by the ectopic expression of 

Figure 4.14. MEK-binding deficient KSR1 rescues the activation of cPLA2 in KSR1 -/- MEFs. cPLA2 activity was 
measured by radiolabelled arachidonic acid release. In KSR1 -/- MEFs transfected with the indicated KSR1 constructs 
(2 µg each) under starvation conditions (ST) or upon EGF stimulation (50 ng/ml; 5’). Right panel: The graph 
represents the activation fold of each condition normalized to the value of KSR1 WT (ST). Results show Mean ± SEM 
(N=2) using two-tailed unpaired Student T-Test (**p<0.01). Left panel: KSR1 expression levels were detected by 
western blot. 
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KSR1 WT or by the mutant forms defective for binding MEK (C809Y) and for homodimerization 

(R615H) and also by the MEK-, dimerization- defective C809Y, R615H double mutant. This result 

was, again, suggestive of some other type of scaffold being capable of supporting the activity of the 

KSR1 C809Y, R615H double mutant, via transphosphorylation. 

 

4.2.3. IQGAP1 as a candidate for supporting transphosphorylation. 

Previous publications have unveiled that scaffold proteins are capable of interacting among 

themselves, for example, MORG1 has been shown to interact with MP1 (Vomastek et al., 2004). 

Likewise, IQGAP1 can interact with MP1 and also b-arrestin2 (Feigin et al., 2014). So, the possibility 

existed that some other scaffold species could also be intervening on KSR-bound ERK 

transphosphorylation. With the aim of identifying other scaffolds supporting ERK 

transphosphorylation in KSR, a mass spectrometry was carried out to unveil proteins which 

associate to KSR1. These analyses identified IQGAP1 as a KSR1-interacting protein (data not shown). 

Figure 4.15. KSR1 MEK-, dimerization-defective double mutant restores normal proliferation in KSR1 -/- MEFs. 
Proliferation was analyzed in KSR1 WT (+/+) and -/- MEFs stably expressing the indicated KSR1 constructs. Results 
show Mean ± SEM (N=3). 
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Furthermore, in light of this finding we analysed tumour data bases looking for potential 

correlations between KSR1 and IQGAP1 expression and mutational status patterns. Remarkably, in 

tumours where IQGAP1 and KSR1 exhibited genetic alterations, these occurred in a mutually 

exclusive fashion. This was the case in tumours where mutations in the RAS/ERK pathway are 

common, such as melanoma, lung adenocarcinoma and bladder carcinoma; but, also, in some types 

of tumours where RAS/ERK pathway mutations are infrequent such as prostate adenocarcinoma 

and breast carcinoma (Fig 4.16). The fact that genetic alterations in two proteins are mutually 

exclusive suggest that such proteins may be participating in the same signalling route. For example,  

such is the case with BRAF and RAS mutations (Alsina et al., 2003). 
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Figure 4.16. Mutual exclusivity of KSR1 and IQGAP1 genetic alterations in tumours. Oncocharts obtained from the 
TCGA database for the genetic alterations in KSR1 and IQGAP1 genes, detected in the indicated types of tumours. The 
distribution of NRAS and BRAF mutations in melanoma is also shown as a typical mutual exclusivity pattern. 
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To further substantiate these observations, in the previously utilized melanoma cell lines (Fig. 

2 and 3) we evaluated whether depletion of IQGAP1 had similar effects to those found for KSR1 

down-regulation. Indeed, it was observed that the proliferation of BRAF-mutant A375P cells was 

unaffected by the depletion of either scaffold; whereas the proliferation of NRAS-mutant SKMEL2 

cells was attenuated to similar extents by the down-regulation of KSR1 or of IQGAP1 (Fig 4.17), 

once again suggestive that KSR1 and IQGAP1 could be participating in the regulation of the same 

processes in the same cellular settings. 

Figure 4.17. KSR1 and IQGAP1 down-regulation affect proliferation of NRAS- but not BRAF-mutant cells. 
Proliferation was evaluated in the indicated cells after transfection of siRNAS (2 µg each) for the indicated scaffolds. 
The graph represents the rate of Alamar Blue reduction at the indicated time point, normalized to the value of the 
untreated control cells. Results show Mean ± SEM (N=3) using two-tailed unpaired Student T-Test (*p<0.05, **p<0.01, 
***p<0.001 and ****p<0.0001). Right panels: KSR1 and IQGAP1 expression levels were detected by western blot. 
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It was of the utmost interest to verify if KSR1 and IQGAP1 physically interacted. In order to put 

this notion to test, we performed co-immunoprecipitation assays in HEK293T cells, in which it was 

found that endogenous IQGAP1 and KSR1 readily co-immunoprecipitated upon the 

immunoprecipitation of either protein (Fig. 4.18), demonstrating that, indeed, both scaffold 

proteins can associate in the context of entirely physiological settings. 

In line with the previous result showing that KSR1 and IQGAP1 can bind to each other, a 

possible explanation for the data shown in figure 4.14, demonstrating the ability of KSR1 C809Y to 

activate PLA2 in the absence of endogenous KSR (since KSR1 -/- MEFs  do not express KSR2 either 

(Fernandez, Henry and Lewis, 2012)), stemmed from the observation that in such cells, IQGAP1 was 

overexpressed (Fig. 4.19). This suggested that in KSR1 -/- fibroblasts IQGAP1 could substitute 

endogenous KSR as a “transphosphorylating” partner for the ectopic KSR1 C809Y mutant. 

Figure 4.18. IQGAP1 and KSR1 interaction. Left: immunoprecipitation of endogenous IQGAP1. Right: 
immunoprecipitation of endogenous KSR1, in HEK293T cells serum-starved for 18 h (-) or EGF-
stimulated (50 ng/ml; 5). C- no ab= lysates incubated only with beads. 

Figure 4.19. IQGAP1 is overexpressed in the absence of KSR1 in MEFs. The levels of endogenous 
IQGAP1 and KSR1 were analyzed by western blotting in both MEFs WT and KSR1-less (-/-) 
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To further substantiate this notion, we tested whether the different KSR1 mutants were 

capable of binding to IQGAP1. Noticeably, both the MEK-binding and the homodimerization-

deficient KSR1 mutants were capable of binding to IQGAP1, both under starvation and EGF-

stimulated conditions though to a slightly lesser extent. However, it was quite remarkable that the 

KSR1 C809Y, R615H double mutant could interact with IQGAP1 under starvation conditions, but 

such interaction was broken upon EGF stimulation (Fig. 4.20).  

 It was necessary to understand the reason why in HEK293T the KSR1 double mutant C809Y, 

R615H could not incorporate phosphorylated ERK, in spite of the fact that these cells express 

IQGAP1. We hypothesized that this could be a matter of the stoichiometry governing KSR1-IQGAP1 

interaction. In such way that in HEK293T cells the levels of IQGAP1 are not sufficiently high to 

produce a significant transphosphorylation on overexpressed KSR1 C809Y, R615H, which exhibits a 

reduced capacity to bind IQGAP1 under stimulation, in comparison to the endogenous WT KSR1. 

As such, the possibility existed that the overexpression of IQGAP1 could bring about KSR1 C809Y, 

R615H transphosphorylation in HEK293T cells. To put this notion under test, we repeated the 

previous experiment (Fig. 1.12) in the presence of overexpressed, ectopic IQGAP1. Under these 

premises, it was found that KSR1 C809Y, R615H could bind to IQGAP1 and readily incorporated 

phosphorylated ERK upon EGF stimulation (Fig. 4.21), demonstrating that, under optimal 

Figure 4.20. IQGAP1 interaction with KSR1 mutants. IQGAP1 interaction with the different KSR1 mutants was 
analyzed by a co-immunoprecipitation assay in HEK293T cells co-transfected with the indicated Flag-tagged KSR1 
constructs (1.5 µg each), upon EGF stimulation (50 ng/ml; 5’) where indicated (+). No ab= lysates incubated only with 
beads. 
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stoichiometric proportions, IQGAP1 could associate to the ectopic KSR1 MEK-, dimerization- 

defective C809Y, R615H double mutant and transphosphorylate its bound ERK. 

In light on the above data, it was necessary to verify that IQGAP1 was, indeed, the scaffold 

responsible for supporting KSR1 C809Y activity in KSR1 -/- MEFs. To this end, in these cells, we 

downregulated IQGAP1 levels using shRNAs and analysed its impact on the ability of the different 

KSR1 mutant forms for incorporating phosphorylated ERK. It was found that IQGAP1 depletion did 

not have any effect on phosphorylated ERK levels bound to WT KSR1, as this protein would not 

require IQGAP1 for phosphorylating its bound ERK. However, it significantly reduced the levels of 

phospho-ERK associated to the C809Y and R615H mutant forms and completely abolished it in the 

case of the double mutant (Fig. 4.22). We posit that in the case of the C809Y mutant the drop on 

its phospho-ERK levels would be a consequence of the depletion of IQGAP1, its essential 

transphosphorylation partner. In the case of R615H mutant, this form would be capable of signalling 

either by itself, as a monomer, or by IQGAP1-mediated heterodimerization/transphosphorylation. 

Downregulation of IQGAP1 would prevent the transphosphorylation component thereby reducing 

its phospho-ERK bound levels by almost 50%.   

Figure 4.21. IQGAP1 rescues KSR1 double mutant ability for interacting with activated ERK. KSR1 interaction 
with phosphorylated ERK was analyzed by a co-immunoprecipitation assay in HEK293T cells transfected with the 
indicated Flag-tagged KSR1 constructs (1.5 µg each), in addition to Myc-tagged IQGAP1 (1.5  µg), in starved cells 
(-) or upon EGF stimulation (50 ng/ml; 5’) where indicated (+). NT = untransfected cells. No ab= lysates incubated 
only with beads 



4. RESULTS  
 

 116 

Overall, these results demonstrate that IQGAP1 can associate to KSR1 and to KSR1 mutant 

forms incapable of binding to MEK and of homodimerizing. Furthermore, they reveal that IQGAP1 

can complement KSR1 MEK-binding mutant forms deficiency for phosphorylating their bound ERK, 

unveiling IQGAP1 as a KSR1 transphosphorylation partner. 

 

4.2.4. Identification of the IQGAP1-binding motif in KSR1 

Since KSR1 is a multidomain protein, it was important to identify the region/s whereby KSR1 

was interacting with IQGAP1. To this end, we used a series of deletion mutants spanning through 

the whole KSR1 molecule (Fig. 25), and determined which of these harboured the ability to bind to 

IQGAP1 by co-immunoprecipitation assays. The results of these analyses suggest that KSR1 mainly 

binds to IQGAP1 through the CA4 region spanning aminoacids 402-521, though not through the 

FXFP domain, included in this region, as the ASAP mutant (Phe > Ala substitution in the FXFP 

domain) retains its ability to bind IQGAP1 (Fig. 4.23).  

However, our results are suggestive that other KSR1 regions may also be participating in 

binding to IQGAP1. For instance, it is remarkable that the KSR1 construct 1-521, which lacks the 

CA5 region, binds with much greater efficiency that the WT and the ASAP constructs which, in 

addition to the CA4, harbour the CA5 region. This could imply that the CA5 region could, to some 

extent, attenuate binding to IQGAP1. In this respect, the KSR1 double mutant C809Y/R615H, 

Figure 4.22. IQGAP1 depletion prevents phosphorylatied ERK binding to KSR1 mutants. KSR1 interaction with 
phosphorylated ERK was analyzed by a co-immunoprecipitation assay in MEFs KSR1 -/- stably expressing KSR1 constructs 
and transfected with shRNA against IQGAP1 where indicated (shIQ1) and upon EGF stimulation (50 ng/ml; 5’) (+).  
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harbouring mutations within the CA5 region, binds to IQGAP1 with less efficiency (Fig. 4.20), also 

suggestive of the CA5 domain regulating to some extent the binding to IQGAP1. 

 

Figure 4.23. KSR1 IQGAP1-binding domain is localized between amino acids 402-521. Top panel: Depiction of the 
KSR1 deletion mutants utilized. Lower panel: HEK293T cells were transfected with the indicated Flag-tagged KSR1 
constructs, in addition to Myc-tagged IQGAP1 (1.5 µg each) and stimulated with EGF (50 ng/ml; 5’) after 18 h 
starvation. The KSR1 constructs associated to IQGAP1 were determined by co-immunoprecipitation upon anti-Myc 
immunoprecipitation and subsequent anti-Flag western blotting. 
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4.2.5. Identification of the KSR1-binding motif in IQGAP1 

Since IQGAP1 is also a multidomain protein, in order to identify which IQGAP1 region is 

mediating on its interaction with KSR1 we utilized the same strategy as above, and used a battery 

of IQGAP1 deletion mutants for the different domains present in the protein. By co-

immunoprecipitation assays, it was found that all those constructs that contain the C-terminal 

region spanning from aa 864-1657, which include the GRD and the RGCT domains, could bind to 

KSR1. While construct devoid of this region could not (Fig. 4.23). 

Figure 4.23. IQGAP1 KSR1-binding domain is localized the C-terminal region. Top panel: Depiction of the IQGAP1 deletion 
mutants utilized. Lower panel: HEK293T cells were transfected with the indicated Myc-tagged IQGAP1 constructs, in addition 
to Flag-tagged KSR1 (2 µg) and stimulated with EGF (50 ng/ml; 5’) after 18 h starvation. The IQGAP1 constructs associated to 
KSR1 were determined by co-immunoprecipitation upon anti-Flag immunoprecipitation and subsequent anti-Myc western 
blotting. 
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4.2.6. The transphosphorylation could be reciprocal between KSR1 and 
IQGAP1  

Since we have observed that ERK bound to KSR1 could be transphosphorylated by another 

scaffold such as IQGAP1, we asked if IQGAP1 was subject to the same phenomenon.  In a similar 

fashion to the previous experiments performed with KSR1, we used an IQGAP1 mutant defective 

for binding MEK (DIQ) and analyzed its ability to bind phosphorylated ERK. It was found that, 

indeed, IQGAP1 defective for binding MEK was capable of associating to phosphorylated ERK (Fig. 

4.24). This result demonstrated that IQGAP1 could also be transphosphorylated by some yet 

unidentified scaffold protein, which could be another IQGAP1 molecule, through 

homodimerization, or KSR1 via heterodimerization.  

4.2.7. Effects of APS-2-79 on transphosphorylation 

 As demonstrated in our aforementioned experiments, APS-2-79 is highly inefficient for 

preventing KSR1-bound ERK phosphorylation, in spite of locking KSR1 in its inactive form and 

preventing the phosphorylation of KSR1-bound MEK (Dhawan, Scopton and Dar, 2016). In light of 

our discovery of KSR1 transphosphorylation by IQGAP1, a possible explanation could be that APS-

2-79 would not prevent KSR1-IQGAP1 heterodimerization and, as a consequence, the 

Figure 4.24. ERK transphosphorylation in IQGAP1 DIQ mutant, unable to bind MEK. HEK293T cells were 
transfected with the indicated Myc-tagged IQGAP1 constructs (2 µg) and stimulated with EGF (50 ng/ml; 
5’) where shown (+) after 18 h starvation. Phosphorylated ERK associated to IQGAP1 was determined by co-
immunoprecipitation upon anti-Myc immunoprecipitation (IP: Myc) and subsequent western blotting for the 
indicated proteins. 
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transphosphorylation of KSR1-bound ERK by IQGAP1-bound MEK. To put this notion under test, we 

analysed whether APS-2-79 treatment could impede KSR1-IQGAP1 heterodimerization. For this we 

performed co-immunoprecipitation experiments in HEK293T cells treated with the drug and found 

that APS-2-79 did not affect KSR1-IQGAP1 interaction whatsoever (Fig. 4.25).  

 

 

4.3.  Analyses of scaffolds-ERK affinity 

Previous data demonstrates: 1) That IQGAP1 and KSR1 can intervene in different ERK-

mediated biochemical processes, both with respect to the subcellular localizations where they act 

and the substrates whose activation they regulate (Casar et al., 2009). and 2) The data presented 

herein, shows that the flux of RAS/ERK pathway signals through IQGAP1 and KSR1 can take place 

by direct phosphorylation of their respective cascade components and also through 

transphosphorylation between each other’s components. Thus, the decision direct 

phosphorylation vs transphosphorylation could have important consequences regarding the 

spectrum of substrates being subject to ERK-mediated activation. Therefore, it is very likely that the 

Figure 4.25. APS does not affect KSR1-IQGAP1 interaction. HEK293T cells were treated with APS-2-79 (5 µM; 
48 h) and stimulated with EGF (50 ng/ml; 5’) where shown (+) after 18 h starvation. Endogenous KSR1 
associated to IQGAP1 was determined by co-immunoprecipitation upon anti-IQGAP1 immunoprecipitation (IP: 
IQGAP1) and subsequent western blotting for the indicated proteins. 
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bifurcation phosphorylation vs transphosphorylation, is a tightly regulated step, that may tilt one 

way or the other depending on the circumstances. 

An essential factor in the prevalence of either the direct phosphorylation or of the 

transphosphorylation component could be highly dependent on the differences in affinity towards 

ERK exhibited by each of the participating scaffolds, in addition to the affinity whereby the different 

scaffolds bind to each other. Surprisingly, and in spite of the fact that scaffold proteins have been 

around for over a decade, the literature is, to the best of our knowledge, entirely devoid of 

measurements of scaffold-ERK affinities for all of the ERK scaffold proteins identified thus far. To 

fill this gap, and as an initial step towards understanding the above postulate, we aimed at 

unravelling if different scaffolds species exhibit differences in their affinity for ERK, towards finding 

its implications in transphosphorylation. 

4.3.1. Calculation of the dissociation constant (Kd) values for MP1, KSR1 
and IQGAP1 interaction with ERK2. 

To analyze if distinct scaffold proteins exhibit differences on their affinity for ERK, we 

performed in vitro binding assays to determine the dissociation constant (Kd) values for the 

interactions between the aforementioned scaffold proteins and ERK2. To this end, we generated 

constructs expressing GST fusion proteins for the ERK-binding domains of KSR1 (EBD) and IQGAP1 

Figure 4.26. Representative autoradiographs corresponding to MP1-, KSR1- and IQGAP1-ERK2 
bindings. Increasing concentrations of radiolabelled ERK2 were incubated with a fixed amount 
(20 nM) of purified MP1, KSR1 and IQGAP1 



4. RESULTS  
 

 122 

(WW), or the MP1 whole protein. A fixed concentration of the GST-scaffold proteins bound to 

glutathione-sepharose beads, was incubated with increasing concentrations of in vitro-synthesized 

methionine S35 radiolabelled ERK2, up to saturation, and the binding constants for the different 

scaffolds were calculated after quantification by autoradiography (Fig .4.26). The results obtained 

(Fig. 4.27) demonstrated that the distinct scaffold proteins exhibit different affinities towards ERK2 

with MP1 displaying the greatest affinity (Kd= 0.1359 µM) followed by KSR1 (Kd= 0.1511 µM) and 

IQGAP1 (Kd= 0.2681 µM) showing the lowest. 

 

 

4.3.2. In vivo binding ascertains KSR1 and IQGAP1 different affinities 
towards ERK. 

We wanted to ascertain if the differences on scaffold-ERK Kd’s determined in vitro also held in 

vivo. In order to do so, by co-immunoprecipitation assays we analyzed ERK binding to the different 

scaffolds upon dose-response analyses using increasing concentrations of EGF (Fig.4.28). It was 

Figure 4.27. Quantification of the dissociation constants (Kd) for ERK2 interaction with the indicated scaffold 
proteins. Kd values were calculated by Dissociation-One phase exponential decay analysis (non-linear 
regression) analysis using GraphPad Prism 7 software. Results show Mean ± SEM of 4 independent experiments. 
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found that KSR1 co-immunoprecipitated with phosphorylated ERK under minimal stimulation, 

whereas IQGAP1 binding was only evident upon stimulation with 10 ng/ml of EGF, suggesting that 

KSR1 binds to ERK with a greater affinity than IQGAP1. Unfortunately, there are no good 

commercially available antibodies for MP1, so we could not perform the same assays for this 

scaffold. 

Finally, we evaluated how KSR1 and IQGAP1 interacted with ERK following its 

activation/phosphorylation kinetics in response to EGF stimulation. For this purpose, HEK293T cells 

were stimulated with EGF for different times and the amount of scaffold proteins associated to ERK 

were monitored through the activation period. Once again, it was found that KSR1 could bind to 

ERK under basal conditions, when no IQGAP1-ERK association was detected, this only became 

apparent after 2 min stimulation. Interestingly, IQGAP1 binding to ERK coincided with a drop on 

ERK-bound KSR levels, that peaked again once IQGAP1 had dissociated from ERK (Fig. 4.29). This 

result could suggest that, under some circumstances KSR1 and IQGAP1 could be competing for the 

same pool of ERK. 

Figure 4.28. KSR1 binds ERK2 with higher affinity than IQGAP1. HEK293T cells were stimulated with increasing 
concentrations of EGF during 5 minutes and phosphor-ERK was immunoprecipitated in order to analyze co-
immunoprecipitated KSR1 and IQGAP1 levels.  
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Figure 4.29. Kinetics of ERK interaction with IQGAP1 and KSR1 upon EGF stimulation. HEK293T cells were 
stimulated with EGF (50 ng/ml) for the indicated times after 18 h starvation. The scaffold proteins 
associated to ERK were determined by co-immunoprecipitation with phosphorylated ERK and subsequent 
western blotting for the indicated proteins. 
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For the past decades the quest for inhibitors of the RAS/ERK pathway has attracted enormous 

efforts. As the strategies for targeting the kinase activities of the different components of the 

pathway have become almost exhausted, attention has been placed on regulatory molecules of 

different types including scaffold proteins. As mentioned in the introduction, due to their mode of 

action, scaffold proteins offer attractive possibilities as therapeutic targets, in order to curtail 

aberrant RAS/ERK signalling (Calvo, Agudo-Ibáñez and Crespo, 2010; Langeberg and Scott, 2015; 

Zaballos et al., 2019). This novel concept for antitumor drugs has already yielded the first compound 

at the preclinical stage: APS-2-79. APS-2-79 has emerged in a screening guided by KSR mutations 

that selectively suppress oncogenic but not WT RAS signalling. This small molecule apparently 

stabilizes KSR in an inactive state previously unknown. As a consequence, APS-2-79 locks KSR in a 

structural conformation that prevents RAF heterodimerization and precludes the conformational 

changes necessary for the phosphorylation and activation of KSR-bound MEK, thereby preventing 

ERK phosphorylation/activation (Dhawan, Scopton and Dar, 2016).  

 However, in spite of its theoretical efficacy, as reported in the original publication, the 

antiproliferative/antiapoptotic effects of APS-2-79 on tumour cell lines harbouring RAS/ERK 

pathway oncogenes are, at best, modest. APS-2-79 does not work at all as monotherapy, and only 

displays some efficacy in combination with MEK inhibitors in RAS- but not BRAF-mutant cell lines 

(Dhawan, Scopton and Dar, 2016). Indeed, we have extended this initial observation in a broader 

panel of BRAF- and NRAS-mutant melanoma cell lines and ascertained the inefficacy of this 

compound for inducing apoptosis. Moreover, it is quite surprising that the original publication did 

not thoroughly address APS-2-79 effects on ERK phosphorylation, both total and KSR-bound. 

Herein we have filled in this gap and have found that APS-2-79 has little, if any, effect on ERK 

phosphorylation, both with respect to its total levels and the KSR-bound fraction. This is in sharp 

contrast with the consequences of downregulating KSR expression levels. In this respect, previous 

publications have shown that ablation of KSR1 yields mice with a remarkable resistance to RAS-

induced carcinogenesis (Lozano et al., 2003). In the same vein, herein we have demonstrated that 
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downregulating KSR levels, using shRNAs, induces a potent apoptotic response in melanoma cell 

lines harbouring oncogenic NRAS but not BRAF. This result hints for the necessity of KSR in RAS 

oncogenic signalling and on its dispensability for oncogenic BRAF functions. This is in line with 

previous publications showing that KSR can antagonize mutant BRAF oncogenic signalling via 

heterodimerization (Mckay, Freeman and Morrison, 2011; Mckay, Ritt and Morrison, 2011), and 

suggest that BRAF does not require KSR for effectively activating ERK. In addition, we also 

demonstrate that KSR downregulation, unlike APS-2-79 treatment, markedly diminishes total ERK 

activation levels. In light of these data we can conclude that APS-2-79 is a highly ineffective inhibitor 

of aberrant RAS/ERK signals and its pathological consequences. 

The question remains as to why APS-2-79, in spite of maintaining KSR in its inactive 

conformation, does not phenocopy KSR down-regulation, neither in its biochemical consequences, 

with respect to ERK phosphorylation, nor in its biological results. In this respect we have observed 

that both KSR downregulation and overexpression affect ERK phosphorylation levels in NRAS-

mutant cells and, probably as a consequence, induce apoptosis. Regarding KSR overexpression, 

downregulation of ERK phosphorylation and apoptosis induction follow a bell-shaped kinetics, as 

would be expected from a scaffold protein.  

In the course of these experiments we utilized the mutant form KSR1 C809Y, impaired for 

binding MEK (Stewart et al., 1999). While we were expecting that this mutant behaved in a 

dominant inhibitory fashion or, at least, would not have any effect, quite surprisingly we have 

observed that this mutant behaves similarly to KSR1 WT, both with respect to ERK activation and 

to apoptosis induction. In our quest to understand the mechanisms underlying in this unexpected 

behaviour we have found that KSR1 C809Y, in spite of its inability to bind MEK can incorporate 

phosphorylated ERK under EGF stimulation, as demonstrated by biochemical and cell biology 

analyses. This finding is in full agreement with a previous report showing that KSR1 C809Y can 

support RAS-induced senescence in KSR1 -/- MEFs as efficiently as WT KSR1 (Kortum et al., 2006). 
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All together, these data demonstrate that KSR1 C809Y is an active protein that can efficiently 

convey ERK signals.  

Previously, we had hypothesized the possibility that a direct interaction between two scaffold 

molecules could compensate for one of the molecules deficiency for binding MEK, via cross-

phosphorylation. Whereby the ERK molecule on the deficient scaffold could be activated by MEK 

bound to the other scaffold (Casar and Crespo, 2016). In light of previous publications 

demonstrating that KSR1 can homodimerize (Rajakulendran et al., 2009) we have tested whether 

such homodimerization could explain the presence of phosphorylated ERK in KSR1 C809Y. Indeed, 

the introduction of the mutation R615H in KSR1 C809Y, which precludes its homodimerization, 

prevents it from incorporating phosphorylated ERK. It is noteworthy that in the previous publication 

(Kortum et al., 2006) the ability of KSR1 C809Y for mediating in RAS-induced senescence, was 

interpreted as KSR1 C809Y-bound ERK being phosphorylated by soluble MEK. Our results showing 

that KSR1 C809Y/R615H does not bind phosphorylated ERK speaks against this possibility, as ERK 

bound to this mutant should also be subject to phosphorylation by soluble MEK. Alternatively, it 

points to what we have coined as “transphosphorylation” as the mechanism responsible for such 

process.  

Transphosphorylation implies that scaffold proteins can interact among themselves, 

something demonstrated by KSR1 heterodimerization, and that such association can make possible 

the phosphorylation of the different kinase tiers by upstream kinases bound to the associated 

scaffolds.  

We have observed that KSR1 C809Y can intervene on ERK-regulated processes, such as PLA2 

activation, in cellular contexts devoid of endogenous KSR molecules such as KSR1 -/- MEFs. 

Something that would invalidate the possibility of KSR1 C809Y being transphosphorylated by a 

homodimerizing, endogenous KSR oligomer. In this realm, we have observed that the deficiency for 

endogenous KSR can be compensated by another scaffold protein species: IQGAP1. Indeed, we 
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have unveiled that KSR1 and IQGAP1 can directly associate. This result adds KSR1 to the list of 

scaffold proteins species previously shown to bind IQGAP1, namely: MP1 (Schiefermeier et al., 

2014) and b-arrestin2 (Alemayehu et al., 2013; Feigin et al., 2014).  

Furthermore, we have mapped IQGAP1 KSR1-binding region in its C-terminus; and KSR1 

IQGAP1-binding region in its CA4 region, close to the FXFP motif whereby it binds to ERK, even 

though it cannot be discarded that other regions in KSR1, such as the CA5 region, also contribute 

to some extent to IQGAP1 binding in a negative way, as KSR1 forms which include this region bind 

with lower efficiency. In this respect, our results suggest that IQGAP1-KSR1 binding is subject to a 

stringent stoichiometric relationship. We have found that in HEK293T cells, which express 

endogenous IQGAP1, KSR1 R615H/C809Y does not bind to IQGAP1 upon EGF stimulation, probably 

due to its reduced affinity when compared to KSR1 WT. However, it does when IQGAP1 is 

overexpressed. To explain this observation, we posit that under stimulation IQGAP1 could have 

greater affinity, either for itself through homodimerization (Ren et al., 2005) or for other partners, 

than for KSR1 R615H/C809Y. This binding deficiency would be compensated by high IQGAP1 levels 

resulting from overexpression. 

In this respect, we demonstrate that IQGAP1 can function as the transphosphorylating partner 

on KSR1 R615H/C809Y, since in parental HEK293T cells this mutant does not incorporate 

phosphorylated ERK, but it does so when IQGAP1 is overexpressed. In addition, the unquestionable 

proof that points to IQGAP1 being capable of mediating transphosphorylation on KSR1 comes from 

our very preliminary data showing that IQGAP1 mutant forms deficient for binding MEK or for 

interacting with KSR1 cannot promote KSR1 binding to phosphorylated ERK. This result would 

exclude the possibility of IQGAP1 inducing ERK phosphorylation by other means.  

Overall, our results support the notion that cross phosphorylation can occur across different 

scaffold species. In this respect, we also present preliminary results demonstrating that IQGAP1 

deficient for binding MEK can incorporate phosphorylated ERK. Even though further 
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experimentation will be necessary to identify KSR1 as the responsible for such an effect, if this was 

the case it would mean that transphosphorylation can happen in both directions. However, at this 

moment, we cannot exclude that some other scaffold protein is responsible for 

transphosphorylating IQGAP1.  

Whatever the case, our data clearly show that KSR1 and IQGAP1 can physically associate and 

both interact in the regulation of ERK activation. Not excluding the possibility that both scaffolds 

can act on their own, our results provide strong evidence to support that both proteins could be 

acting in combination for the regulation of yet unknown cellular and biological processes. In this 

respect, the data that we have gathered from the TCGA tumour data repository shows that genetic 

alterations in IQGAP1 and KSR1 occur in a mutually exclusive fashion, both in tumours with high 

and low frequency of RAS/ERK pathway oncogenic mutations. As it is well-known, in tumours, the 

mutually exclusive mutational pattern is characteristic of genes/proteins involved in the same 

processes. The best example for this is the non-overlaping occurrence of BRAF and NRAS mutations 

(Gorden et al., 2003). Further supporting this notion, we show that IQGAP1 downregulation is as 

effective as that of KSR1 for preventing proliferation in NRAS-mutant cells, while neither of them 

affect the growth of BRAF-mutant cells. 

We have previously shown that IQGAP1 and KSR1 regulate the activation of different 

substrates by ERK (Casar et al., 2009). By these scaffolds acting in a coordinated fashion, such as via 

transphosphorylation, it is possible that the spectrum of ERK substrates is broadened. In agreement 

with this notion, it has been shown that MORG1 participates in ERK activation induced by serum 

but not by EGF (Vomastek et al., 2004), whereas MP1 mediates in EGF- (Teis, Wunderlich and 

Huber, 2002) but not serum-induced signalling (Sharma et al., 2005). Considering these cases, if the 

pools of ERK substrates defined by MORG1 and MP1 were different, EGF or serum stimulation 

would yield activation of a narrow repertoire of substrates. Contrarily, if transphosphorylation also 

occurred between MORG1 and MP1 it would facilitate the whole spectrum of substrates both to 

serum- and to EGF-induced ERK signals. 
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The available data, though scarce, appears to hint for the existence of higher-order 

associations among regulatory proteins, in which the involvement, probably in a coordinated 

fashion, of different scaffolds, could provide an additional degree of complexity to the already 

highly complex regulation of signal flux through the RAS-ERK pathway. In this respect, and based 

on our current knowledge showing that different scaffold species engage distinct pools of 

substrates (Casar, Pinto and Crespo, 2009), it can be envisioned that complexes made up of 

different scaffolds, competent for cooperating among themselves, may constitute a novel type of 

regulatory node, whereby distinct incoming signals are integrated and outgoing signals are 

diversified with respect to substrate usage (Casar and Crespo, 2016).  

Our results demonstrate for the first time the cooperation of two scaffold species in the 

regulation of a signalling pathway. Such cooperativity between scaffold species would open the 

possibility that scaffolds missing one or more kinases could associate in trans with other incomplete 

scaffolds of other species to allow signal flux. This coordination between different scaffolds would 

allow the complementation and compensation of each other’s deficiencies. As such, incomplete 

scaffold proteins, theoretically incompetent in their role, as is the case for our KSR1 and IQGAP1 

MEK-binding mutants, would be fit for signalling, as we demonstrate. In this fashion, signal 

transmission could take place under circumstances where different scaffold species would fail if 

acting on their own. Cooperation of this nature would be particularly beneficial in cases where the 

collaborating scaffolds display different affinities for a kinase whose concentration is limiting.  

It is noteworthy that the affinity for ERK has not been measured for most, if not all, of the 

scaffold proteins described hitherto. In this respect, we have filled in this gap by measuring the 

affinities towards ERK displayed by KSR1, IQGAP1 and MP1. Our data demonstrates that, indeed, 

these different scaffold species bind to ERK with different affinities, MP1 showing the highest and 

IQGAP1 the lowest affinity. In agreement, we also showed for KSR1 and IQGAP1 that this 

differences in Kd dictate the kinetics of the interaction of these scaffold proteins with ERK under 

stimulation in vivo. 
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In light of all these data, it can be envisioned that the flux of ERK signals through two scaffold 

species that can interact and transphosphorylate each other, will be dependent on, at least, five 

Kds (Fig): if KdAB is higher than KdAA or KdBB signalling will flow through scaffolds A and B 

independently. However, if, on the contrary, A or B display more affinity for each other than for 

themselves heterodimerization and transphosphorylation will occur. If this happens, within the 

scaffolds heterodimer there would be a prevalence for the signal flowing either through A or B 

depending on the Kd that each scaffold protein displays for ERK. Out of this it can be deduced that 

the whole process would be highly complex and subject to tight regulation, since it is conceivable 

that the previously mentioned affinities could vary depending on structural changes triggered by 

different stimuli. Likewise, changes on scaffold concentrations could also influence significantly the 

flux of signals one way or another. 

Both the original publication and our present data, show that APS-2-79 is highly inefficient as 

an inhibitor of KSR1-mediated ERK signals and its oncogenic consequences. In spite of the fact that 

APS-2-79 locks KSR in an inactive conformation effectively preventing KSR-bound MEK 

phosphorylation. The results that we present herein could provide an explanation for APS-2-79 

failure. We demonstrate that APS-2-79 cannot prevent KSR1-IQGAP1 interaction and IQGAP1-

mediated transphosphorylation of KSR1-bound ERK. As such this drug, even though it can inhibit 

Figure 5.1. The flux of ERK signals through two scaffold species able to interact and transphosphorylate each other, 
will be dependent on, at least, five Kds. The triggered ERK-dependent response would eventually depend on the 
affinity of self-association of each scaffold, the affinity between each other and the affinity towards ERK of each of 
them.  
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the activation of the KSR-bound upper tiers of the ERK cascade, it cannot prevent ERK 

phosphorylation. Indeed, in the original publication it is shown that APS-2-79 markedly inhibits MEK 

but not ERK phosphorylation (Dhawan, Scopton and Dar, 2016). 

APS-2-79 inefficiency does not discard KSR1 as a promising antitumoral target. Indeed, in 

agreement with previous publications (Lozano et al., 2003; Llobet et al., 2011; Li et al., 2013; 

Stebbing et al., 2015; Zhou et al., 2016) we showed that KSR ablation has clear antineoplastic 

effects. This indicates that what is invalid is not the therapeutic target, but rather the mechanism 

of action of the drug. However, alternative mechanisms of action can be envisioned for preventing 

the flux of ERK signals through KSR. For example, drugs that physically block the interaction of KSR 

with either MEK or ERK. In this respect, the results presented herein are of great value, as we show 

that, as a consequence of transphosphorylation, drugs aimed at preventing KSR1 interaction with 

MEK would be inefficient because they would fail to impede KSR1-bound ERK transphosphorylation 

by IQGAP1-bound MEK. Therefore, our results clearly indicate that the most efficient mechanism 

for preventing KSR1-mediated RAS/ERK pathway oncogenic signals is by blocking the interaction 

between KSR1 and ERK. 
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1. APS-2-79 is highly inefficient as an inhibitor of RAS/ERK pathway mediated oncogenesis. 

Probably as a consequence of its inability to interfere with KSR-bound ERK phosphorylation. 

2. Scaffold proteins such as KSR1 and IQGAP1 deficient for binding MEK can incorporate 

phosphorylated ERK.  

3. In the case of KSR1, transphosphorylation is undertaken not by free MEK, but by MEK bound 

either to another homodimerizing KSR molecule, or to a heterodimerizing IQGAP1 molecule. 

4. KSR1 binds to IQGAP1. Such interaction occurs through KSR1 CA4 region and IQGAP1 C-

terminus, and it is highly dependent on KSR1-IQGAP1 stoichiometry. 

5. APS-2-79 failure to inhibit KSR-bound ERK phosphorylation is a consequence of its inability 

to prevent its transphosphorylation, probably as this drug cannot interfere with KSR1-IQGAP1 

interaction. 

6. Scaffold proteins such as MP1, KSR1 and IQGAP1 exhibit different binding affinities towards 

ERK. These differences dictate kinetics of ERK interaction with the different scaffold species in 

response to stimulation. 
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