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Abstract. In this paper, we consider optimal control problems associated
with semilinear elliptic equation equations, where the states are subject to

pointwise constraints but there are no explicit constraints on the controls. A

term is included in the cost functional promoting the sparsity of the optimal
control. We prove existence of optimal controls and derive first and second

order optimality conditions. In addition, we establish some regularity results

for the optimal controls and the associated adjoint states and Lagrange multi-
pliers.

1. Introduction. In this paper, we analyze the following optimal control problem

(P) min
u∈Uad

J(u)

with J(u) = F (u) + κj(u), κ > 0,

F (u) =
1

2

∫
Ω

(yu(x)− yd(x))2 dx+
ν

2

∫
Ω

u2(x) dx and j(u) =

∫
Ω

|u(x)| dx,

where yd ∈ L2(Ω) and ν > 0 are given. We define

Uad = {u ∈ L2(Ω) : |yu(x)| ≤ γ ∀x ∈ Ω̄}
with some γ > 0, where yu is the solution of the semilinear elliptic partial differential
equation {

Ay + a(x, y(x)) = u in Ω,
y = 0 on Γ.

(1.1)
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Above, Ω ⊂ Rn, n = 2 or 3, is a bounded open set with a Lipschitz boundary Γ.
For the differential operator A we assume that

Ay = −
n∑

i,j=1

∂xj [aij(x)∂xiy], aij ∈ L∞(Ω) for 1 ≤ i, j ≤ n (1.2)

and

∃Λ > 0 such that Λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ∀ξ ∈ Rn and for a.a. x ∈ Ω. (1.3)

We also assume that a : Ω × R −→ R is a Carathéodory function of class C2 with
respect to the second variable satisfying

a(·, 0) ∈ L2(Ω), 0 ≤ ∂a

∂y
(x, y) ∀y ∈ R, (1.4)

∀M > 0 ∃CM > 0 :
∣∣∣∂ja
∂yj

(x, y)
∣∣∣ ≤ CM ∀|y| ≤M and j = 1, 2, (1.5)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∂2a

∂y2
(x, y2)− ∂2a

∂y2
(x, y1)

∣∣∣ < ρ ∀|yi| ≤M with |y2 − y1| < ε,
(1.6)

for almost all x ∈ Ω.
There are many papers devoted to the analysis of control problems with pointwise

state constraints. As far as we know, control constraints are also included in all
of them, except for a few papers dealing with error estimates for the numerical
approximation; see [10], [14], [17]. Of course, the analysis is more involved when
both type of constraints are present. However, stronger results can be proved if
there is no explicit constraint on the controls. In this paper, we want to show these
results that are not available under explicit control constraints.

After a second section, where we present some preliminary results, we prove first
order optimality conditions for local solutions in §3. A linearized Slater assumption
is usually made to derive the first order optimality conditions in a qualified form.
However, for our control problem we prove that this condition is automatically ful-
filled, it does not have to be assumed. An additional difficulty to get the optimality
conditions is the presence of the non-differentiable term j(u) in the cost functional
that promotes the sparsity of the optimal control. This difficulty was overcome in
[11] by using an abstract result of [3, Theorem 2.1]. In this paper, we provide a new
abstract result under less restrictive assumptions; see Theorem 3.2. The presence of
j in the cost functional promotes the sparsity of the optimal control; see Corollary
3.5. Actually, the size of the support of the optimal control can be monitored by
the sparse parameter κ.

Assuming that the set of points where the state constraint is active has a zero
Lebesgue measure, we prove the uniqueness of the Lagrange multiplier associated
to the state constraints. This assumption is typically satisfied. Indeed, the set of
points x such that ȳ(x) = γ, where ȳ denotes an optimal state, is most of the times
reduced to a finite number of points or (most frequently, see Theorem 3.8) it defines
a line if n = 2 or a surface if n = 3. As a conclusion, we obtain also the uniqueness
of the adjoint state ϕ̄ and the multiplier λ̄ corresponding to the non-differentiable
term j(u). Finally, under a very weak assumption on the nonlinear term of the
state equation, we prove that the adjoint state belongs to L∞(Ω) ∩ H1

0 (Ω). This
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regularity is transferred to the optimal control. All these results are presented in
Section 3.

In §4 we derive second order conditions for local optimality. We also prove that
the different notions of local solution are equivalent for our control problem. Fur-
thermore, we obtain that the usual quadratic growth inequality for local solutions is
satisfied in an L2(Ω)-neighborhood of an optimal control if and only if it is satisfied
in an L∞(Ω)-neighborhood of the optimal state.

2. Preliminary results. In this section we analyze the state equation and the
cost functional J . The results are already known, but we recall them to fix the
notation and for convenience of the reader. We start with a well known theorem on
existence, uniqueness and regularity of the solution of (1.1).

Theorem 2.1. Under the assumptions (1.2)–(1.5), for every u ∈ L2(Ω) the state
equation (1.1) has a unique solution yu ∈ H1

0 (Ω) ∩ C0,α(Ω̄) for some α ∈ (0, 1).
Moreover, there exists a constant Ky such that

‖yu‖H1
0 (Ω) + ‖yu‖C0,α(Ω̄) ≤ Ky(‖u‖L2(Ω) + ‖a(·, 0)‖L2(Ω)) ∀u ∈ L2(Ω). (2.1)

In addition, if uk ⇀ u in L2(Ω), then yuk → yu strongly in H1
0 (Ω) ∩ C(Ω̄).

The proof of existence of a unique solution yu ∈ H1
0 (Ω) ∩ L∞(Ω) is well known;

see, for instance, [9, page 7] or [21, § 4.2]. The Hölder regularity follows from [16,
Theorem 8.29]. The last part of the theorem is a consequence of the compactness
of the embeddings L2(Ω) ⊂ H−1(Ω) and C0,α(Ω̄) ⊂ C(Ω̄).

Remark 2.2. The theorem is still valid, for different numbers α ∈ (0, 1) and Ky,
if the assumption u, a(·, 0) ∈ L2(Ω) is replaced by u, a(·, 0) ∈ Lp(Ω) with p > n

2 , see
[21, § 4.2] and [16, Theorem 8.29].

Now, we prove the differentiability of the control-to-state mapping. Let us denote
by G : L2(Ω) −→ H1

0 (Ω) ∩ C0,α(Ω̄) the mapping defined by G(u) = yu

Theorem 2.3. Assume that (1.2)–(1.5) hold. Then G is of class C2; furthermore,
if u, v ∈ L2(Ω) and zv = DG(u)v, then zv is the solution in H1

0 (Ω)∩C0,α(Ω̄) of the
Dirichlet problem  Az +

∂a

∂y
(x, yu(x))z = v in Ω,

z = 0 on Γ.
(2.2)

Finally, for every u, v1, v2 ∈ L2(Ω), zv1,v2
= D2G(u)(v1, v2) is the solution of Az +

∂a

∂y
(x, yu(x))z +

∂2a

∂y2
(x, yu(x))zv1zv2 = 0 in Ω,

z = 0 on Γ,
(2.3)

where zvi = DG(u)vi for i = 1, 2.

Proof. This result is an easy consequence of the implicit function theorem. Indeed,
we define

V = {y ∈ H1
0 (Ω) ∩ C0,α(Ω̄) : Ay ∈ L2(Ω)}

and endow this space with the graph norm. Then V is a Banach space. Now, we
define the mapping F : V × L2(Ω) −→ L2(Ω) by F(y, u) = Ay + a(x, y) − u. It is
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obvious that F is a C2 mapping and its derivative
∂F
∂y

(y, u) : V −→ L2(Ω),

∂F
∂y

(y, u)z = Az +
∂a

∂y
(x, y(x))z,

is an isomorphism. Indeed, the injectivity and continuity of ∂F
∂y (y, u) is obvious.

Due to the open mapping theorem it is enough to prove that ∂F
∂y (y, u) : V −→

L2(Ω) is surjective. Given an element v ∈ L2(Ω), the existence of an element
z ∈ H1

0 (Ω) satisfying ∂F
∂y (y, u)z = v is a consequence of the Lax-Milgram theorem.

The Hölder regularity of z follows from [16, Theorem 8.29]. Moreover, we have
Az = v − ∂a

∂y (x, y(x))z ∈ L2(Ω) and therefore z ∈ V . Finally, since F(G(u), u) = 0,

the implicit function theorem implies the desired differentiability of G and simple
computations lead to the equations (2.2) and (2.3).

By a straightforward application of the chain rule we deduce the differentiability
of the functional F . Recall that F is the first summand of the cost functional J .

Theorem 2.4. The functional F : L2(Ω) −→ R is of class C2 and for every
u, v, v1, v2 ∈ L2(Ω) we have

F ′(u)v =

∫
Ω

(ϕu + νu)v dx, (2.4)

F ′′(u)(v1, v2) =

∫
Ω

([
1− ϕu

∂2a

∂y2
(x, yu(x))

]
zv1

zv2
+ νv1v2

)
dx, (2.5)

where zvi = DG(u)vi, i = 1, 2, and ϕu ∈ H1
0 (Ω) ∩ C0,α(Ω̄) is the adjoint state,

solution of  A∗ϕ+
∂a

∂y
(x, yu(x))ϕ = yu − yd in Ω,

ϕ = 0 on Γ.
(2.6)

Above, A∗ denotes the adjoint operator of A given by

A∗ϕ = −
n∑

i,j=1

∂xj [aji(x)∂xiϕ].

We finish this section by recalling some known properties of the functional j.
Obviously, j is convex and Lipschitz. A simple computation shows that λ ∈ ∂j(u)
if and only if 

λ(x) = +1 if u(x) > 0,

λ(x) = −1 if u(x) < 0,

λ(x) ∈ [−1,+1] if u(x) = 0

(2.7)

holds a.e. in Ω. Further, j has directional derivatives given by

j′(u; v) = lim
ρ↘0

j(u+ ρ v)− j(u)

ρ
=

∫
Ω+
u

v dx−
∫

Ω−u

v dx+

∫
Ω0
u

|v| dx, (2.8)

for u, v ∈ L1(Ω), where Ω+
u , Ω−u and Ω0

u represent the sets of points where u is
positive, negative or zero, respectively. Finally, the following relation holds

max
λ∈∂j(u)

∫
Ω

λ v dx = j′(u; v) ≤ j(u+ ρ v)− j(u)

ρ
∀ 0 < ρ ≤ 1. (2.9)
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We refer to Clarke [12, Chapter 2] and Bonnans and Shapiro [4, § 2.4.3] for more
details.

3. Existence of optimal controls and first order optimality conditions.
The goal of this section is to prove the first order optimality conditions satisfied by
any local solution of (P) and to deduce some important conclusions from the opti-
mality system. First we observe that the classical approach of taking a minimizing
sequence of (P) and to deduce its boundedness in L2(Ω), which follows from the
structure of the cost functional, produces weak limits that are solutions of (P). It is
enough to use Theorem 2.1 in the last step. Hence, we have the following existence
theorem.

Theorem 3.1. Under the hypotheses (1.2)–(1.5) and assuming that Uad 6= ∅, the
control problem (P) has at least one solution ū.

In the sequel, ū will denote a local solution of (P). Before proving the first order
optimality conditions satisfied by ū, we establish two preliminary results. The first
result is concerned with the optimality system for an abstract optimization problem
that covers (P) as a particular case.

Let U and Y be two topological vector spaces and K ⊂ U and C ⊂ Y two convex
sets. Given the mappings G : U −→ Y , f : U −→ R and g : U −→ (−∞,+∞], we
consider the optimization problem

(Q) min{f(u) + g(u) : u ∈ K and G(u) ∈ C}.
The next theorem provides the optimality conditions satisfied by any local solution
of (Q). The reader is referred to [3] for a related result.

Theorem 3.2. Let ū be a local solution of (Q). Assume that f and G are Gâteaux
differentiable at ū, g is convex and continuous at some point of K, and intC 6= ∅.
Then there exist a real number µ̄0 ≥ 0, a multiplier µ̄ ∈ Y ∗, and λ̄ ∈ ∂g(ū) such
that

(µ̄0, µ̄) 6= (0, 0), (3.1)

〈µ̄, y −G(ū)〉Y ∗,Y ≤ 0 ∀y ∈ C, (3.2)

〈µ̄0[f ′(ū) + λ̄] + [DG(ū)]∗µ̄, u− ū〉U∗,U ≥ 0 ∀u ∈ K. (3.3)

Moreover, if the linearized Slater condition

∃u0 ∈ K : G(ū) +DG(ū)(u0 − ū) ∈ intC (3.4)

is satisfied, then (3.3) holds with µ̄0 = 1.

Proof. Let us define the sets

A = {(y, t) ∈ Y × R : ∃u ∈ K such that y = G(ū) +DG(ū)(u− ū)

and t ≥ f ′(ū)(u− ū) + g(u)− g(ū)},
B = intC × (−∞, 0) ⊂ Y × R.

A and B are convex sets and B is open. Moreover, we have A ∩ B = ∅. Indeed, if
(y0, t0) ∈ A ∩B, then there exists u0 ∈ K such that y0 = G(ū) +DG(ū)(u0 − ū) ∈
intC and f ′(ū)(u0 − ū) + g(u0)− g(ū) ≤ t0 < 0. From here we infer the existence
of a number ρ0 ∈ (0, 1) such that ∀0 < ρ < ρ0 and uρ = ū+ ρ(u0 − ū)

G(ū) +
G(uρ)−G(ū)

ρ
∈ intC and

f(uρ)− f(ū)

ρ
+ g(u0)− g(ū) < 0.
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Then we have

G(uρ) = ρ
[
G(ū) +

G(uρ)−G(ū)

ρ

]
+ (1− ρ)G(ū) ∈ intC,

and with the convexity of g

f(uρ)− f(ū)

ρ
+
g(uρ)− g(ū)

ρ
≤ f(uρ)− f(ū)

ρ
+ g(u0)− g(ū) < 0.

The above inequalities imply f(uρ) + g(uρ) < f(ū) + g(ū) for every 0 < ρ < ρ0.
Since we have uρ ∈ K and G(uρ) ∈ C for every 0 < ρ < ρ0, this contradicts the
local optimality of ū. Therefore, we can separate the sets A and B (see, for instance,
[5, pp. 5–7]) by a continuous linear form (µ̄, µ̄0) ∈ Y ∗ × R:

〈µ̄, y1〉Y ∗,Y + µ̄0t1 > 〈µ̄, y2〉Y ∗,Y + µ̄0t2 ∀(y1, t1) ∈ A and ∀(y2, t2) ∈ B. (3.5)

From the strict inequality, (3.1) follows. Taking y1 = G(ū) and t1 > 0 arbitrarily
large, and fixing an element (y2, t2) ∈ B, (3.5) yields that µ̄0 ≥ 0. Now, by density
of B in C × (−∞, 0] and continuity of µ̄, we deduce from (3.5)

〈µ̄, y1〉Y ∗,Y +µ̄0t1 ≥ 〈µ̄, y2〉Y ∗,Y +µ̄0t2 ∀(y1, t1) ∈ A, ∀(y2, t2) ∈ C×(−∞, 0]. (3.6)

Taking in (3.6) y1 = G(ū), t1 = t2 = 0, and y2 = y ∈ C arbitrarily, we obtain
(3.2). To prove (3.3), we first set y1 = G(ū) +DG(ū)(u− ū), y2 = G(ū), t2 = 0 and
t1 = f ′(ū)(u− ū) + g(u)− g(ū) with arbitrary u ∈ K. Thus we get

〈µ̄0f
′(ū) + [DG(ū)]∗µ̄, u− ū〉U∗,U + µ̄0[g(u)− g(ū)] ≥ 0 ∀u ∈ K. (3.7)

This implies that ū is solution of the optimization problem

min
u∈U

I(u) = µ̄0f
′(ū)u+ µ̄0g(u) + 〈[DG(ū)]∗µ̄, u〉U∗,U + IK(u),

where IK denotes the indicator function of K. Since g is continuous at some point
of K, we can apply the subdifferential calculus to obtain

0 ∈ ∂I(ū) = µ̄0[f ′(ū) + ∂g(ū)] + [DG(ū)]∗µ̄+ ∂IK(ū).

Hence, there exists an element λ̄ ∈ ∂g(ū) such that (3.3) holds. Finally, we assume
the linearized Slater condition and prove that µ̄0 > 0, then we take 1

µ̄0
µ̄ as new

Lagrange multiplier. Renaming this multiplier by µ̄, we conclude the proof. To
show that µ̄0 > 0, we argue by contradiction. Assume that µ̄0 = 0. Inserting
u = u0 in (3.3) and y = y0 = G(ū) + DG(ū)(u0 − ū) in (3.2), we infer that
〈µ̄,DG(ū)(u0− ū)〉Y ∗,Y = 0. Let V be a neighborhood of 0 in Y such that y0 +V ⊂
intC. Then, with (3.2) we get

〈µ̄, y〉Y ∗,Y = 〈µ̄, y +DG(ū)(u0 − ū)〉Y ∗,Y = 〈µ̄, y + y0 −G(ū)〉Y ∗,Y ≤ 0 ∀y ∈ V.

This implies that µ̄ = 0, contradicting (3.1).

Before establishing the optimality system (3.1)–(3.3) for our control problem (P),
we prove that the linearized Slater condition is satisfied by any local solution ū of
(P). We say that ū is a local solution or a local minimizer of (P) if there exists
ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖u− ū‖L2(Ω) ≤ ε.

The reader is referred to Section 4, Definition 4.1, Theorem 4.2 and Remark 4.3 for
additional comments on this definition.
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Theorem 3.3. Let ū be a local solution of (P) with associated state ȳ and assume
that (1.2)–(1.5) hold. Then the linearized Slater condition

∃u0 ∈ L2(Ω) : |ȳ(x) + zu0−ū(x)| < γ ∀x ∈ Ω̄ (3.8)

is fulfilled, where zu0−ū = DG(ū)(u0 − ū) is the solution of (2.2) for v = u0 − ū.

Proof. Let us set v = Aȳ +
∂a

∂y
(x, ȳ(x))ȳ. Obviously we have that v ∈ L2(Ω). Fix

ρ ∈ (0, 1) and take u0 = ū−ρv. Then we have zu0−ū = −ρȳ. Indeed, it is enough to

check that zu0−ū and −ρȳ satisfy the same equation, namely Az +
∂a

∂y
(x, ȳ(x))z =

−ρv. Therefore, it follows

|ȳ(x) + zu0−ū(x)| = (1− ρ)|ȳ(x)| ≤ (1− ρ)γ < γ ∀x ∈ Ω̄.

Now, the optimality system satisfied by ū follows.

Theorem 3.4. If ū is a local solution of (P) with associated state ȳ and (1.2)–(1.5)

hold, then there exist ϕ̄ ∈ W 1,p
0 (Ω) for all 1 ≤ p < n

n−1 , λ̄ ∈ ∂j(ū), and µ̄ ∈ M(Ω)
such that  A∗ϕ̄+

∂a

∂y
(x, ȳ(x))ϕ̄ = ȳ − yd + µ̄ in Ω,

ϕ̄ = 0 on Γ,
(3.9)

∫
Ω

(y(x)− ȳ(x)) dµ̄(x) ≤ 0 ∀y ∈ Bγ(0), (3.10)

ϕ̄+ νū+ κλ̄ = 0. (3.11)

Proof. We apply Theorem 3.2 taking K = U = L2(Ω); Y = C0(Ω) = {y ∈ C(Ω̄) :

y = 0 on Γ}; C = Bγ(0) the closed ball of C0(Ω) with center 0 and radius γ;
f = F and g = κj. Moreover, G : L2(Ω) −→ C0(Ω) is the control-to-state mapping
u 7→ yu. We recall that the dual of C0(Ω) is the space M(Ω) of real and regular
Borel measures in Ω. Notice that under this identification of sets and functions,
(3.8) is the Slater assumption (3.4) corresponding to (P). Hence, the existence of
µ̄ ∈ M(Ω) and λ̄ ∈ ∂j(ū) satisfying the conditions (3.2) and (3.3) with µ̄0 = 1
follows from theorems 3.2 and 3.3. In our setting, the inequality (3.2) is the same
as (3.10). Moreover, since K = L2(Ω) is the whole space, (3.3) can be written as
an identity ∫

Ω

[F ′(ū) + κλ̄+ [DG(ū)]∗µ̄]v dx = 0 ∀v ∈ L2(Ω),

or equivalently with (2.4)∫
Ω

(ȳ − yd)zv dx+

∫
Ω

zv dµ̄+

∫
Ω

(νū+ κλ̄)v dx = 0 ∀v ∈ L2(Ω),

where zv = G′(ū)v is the solution of (2.2). Finally, let ϕ̄ ∈W 1,p
0 (Ω) for all 1 ≤ p <

n
n−1 be the solution of (3.9). Then the above identity can be written as∫

Ω

(ϕ̄+ νū+ κλ̄)v dx = 0 ∀v ∈ L2(Ω),

which is equivalent to (3.11).
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From this theorem, we get the following properties.

Corollary 3.5. Under the assumptions of Theorem 3.4, the following properties
hold

(1) λ̄ and ϕ̄ are related by the formula

λ̄(x) = Proj[−1,+1]

(
− 1

κ
ϕ̄(x)

)
for a.a. x ∈ Ω. (3.12)

Further, we have that λ̄ ∈ H1
0 (Ω) ∩ L∞(Ω).

(2) The regularity ū ∈W 1,p
0 (Ω) for every 1 ≤ p < n

n−1 is fulfilled.

(3) The sparsity relation ū(x) = 0⇔ |ϕ̄(x)| ≤ κ for a.a. x ∈ Ω holds.
(4) If µ̄ = µ̄+ − µ̄− is the Jordan decomposition of µ̄, then suppµ+ ⊂ Ω+

γ and

suppµ− ⊂ Ω−γ , where

Ω+
γ = {x ∈ Ω : ȳ(x) = +γ} and Ω−γ = {x ∈ Ω : ȳ(x) = −γ}.

(5) Let y0 be the state associated to the null control. We assume that y0 belongs
to the open ball Bγ(0) ⊂ C0(Ω). Then, there exists κ0 > 0 such that ū ≡ 0 is
the unique solution of (P) for every κ ≥ κ0.

(6) If y0 ∈ Bγ(0), then there exists Cµ > 0 such that ‖µ̄‖M(Ω) ≤ Cµ ∀κ ≥ 0.

Proof. The reader is referred to [8] for the proof of (3.12) and (3). The H1
0 (Ω)-

regularity of λ̄ follows from Lemma 3.6 below. Note that λ̄ ∈ L∞(Ω) is implied by
λ̄(x) ∈ [−1, 1] for a.a. x. This regularity and the one of ϕ̄ established in Theorem
3.4 along with (3.11) imply (2). A proof of (4) can be found in [6]; see also [10].

Proof of (5). Let us denote by (Pκ) the control problem corresponding to a fixed
value κ. With uκ and yκ we denote a local solution of (Pκ) and its associated state.
Thanks to Theorem 3.4 we know the existence of (λκ, µκ, ϕκ) satisfying (3.9)–(3.11).
Since 0 ∈ Uad, we have

J(uκ) ≤ J(0) =
1

2
‖y0 − yd‖2L2(Ω) ∀κ ≥ 0,

where y0 is the state associated with the control 0. From the above inequality we
infer

‖yκ − yd‖L2(Ω) ≤ ‖y0 − yd‖L2(Ω), (3.13)

‖uκ‖L2(Ω) ≤
1√
ν
‖y0 − yd‖L2(Ω), (3.14)

‖uκ‖L1(Ω) ≤
1

2κ
‖y0 − yd‖2L2(Ω). (3.15)

From (3.14) and (3.15), and Hölder’s inequality with q = 4
3 and q′ = 4, we obtain

‖uκ‖L7/4(Ω) ≤ ‖uκ‖
6/7
L2(Ω)‖uκ‖

1/7
L1(Ω) ≤

1
7
√

2ν3κ
‖y0 − yd‖8/7L2(Ω).

This implies that uκ → 0 strongly in L7/4(Ω) as κ→∞. Since 7
4 >

n
2 for n ∈ {2, 3},

we deduce from Theorem 2.1 and Remark 2.2 that yκ → y0 strongly inH1
0 (Ω)∩C(Ω̄).

Due to our assumption y0 ∈ Bγ(0), we conclude the existence of κγ > 0 such that
yκ ∈ Bγ(0) ∀κ ≥ κγ . Hence, the state constraint is not active for κ ≥ κγ and
(4) implies that µκ = 0. Now, from (3.9), Theorem 2.1, and (3.13), we infer the
existence of C1 > 0 such that

‖ϕκ‖C0(Ω) ≤ C1‖yκ − yd‖L2(Ω) ≤ C1‖y0 − yd‖L2(Ω) ∀κ ≥ κγ . (3.16)
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Finally, we take

κ0 = max
{
κγ , C‖y0 − yd‖L2(Ω)

}
.

We have proved that ‖ϕκ‖C0(Ω) ≤ κ for every κ ≥ κ0. Then, (3) implies that uκ ≡ 0
∀κ ≥ κ0.

Proof of (6). First we prove that

∃C > 0 such that ‖ϕκ‖L2(Ω) ≤ C ∀κ ≥ 0. (3.17)

To this end, first we assume that κ ≤ κ0. Then, from (3.11), (3.14) and the fact
that ‖λκ‖L∞(Ω) ≤ 1, we deduce

‖ϕκ‖L2(Ω) ≤ ν‖uκ‖L2(Ω) + κ‖λκ‖L2(Ω) ≤
√
ν‖y0 − yd‖L2(Ω) + κ0

√
|Ω| = C2.

If κ ≥ κ0, then from (3.16) it follows

‖ϕκ‖L2(Ω) ≤
√
|Ω|‖ϕκ‖C0(Ω) ≤

√
|Ω|C1‖y0 − yd‖L2(Ω) = C3.

Hence, if we take C = max{C1, C3}, the estimate (3.17) is proved. To get the
estimate for µκ we use (3.10), (3.9) and (1.1) as follows

γ‖µκ‖M(Ω) = sup
‖y‖C0(Ω)≤γ

∫
Ω

y dµκ ≤
∫

Ω

yκ dµκ =

∫
Ω

(
A∗ϕκ +

∂a

∂y
(x, yκ(x))ϕκ

)
yκ dx

−
∫

Ω

(yκ − yd)yκ dx =

∫
Ω

(
Ayκ +

∂a

∂y
(x, yκ(x))yκ

)
ϕκ dx−

∫
Ω

(yκ − yd)yκ dx

=

∫
Ω

(
uκ − a(x, yκ(x)) +

∂a

∂y
(x, yκ(x))yκ

)
ϕκ dx−

∫
Ω

(yκ − yd)yκ dx.

Finally, using (3.14), (3.17) and the fact that ‖yκ‖C0(Ω) ≤ γ, we conclude that the
last two integrals are bounded by a constant C independent of κ.

Lemma 3.6. Let µ ∈ M(Ω) and let ϕ ∈ W 1,p
0 (Ω) for all p < n/(n − 1) be the

solution of {
A∗ϕ+ a0(x)ϕ = µ in Ω,
ϕ = 0 on Γ

with a0 ≥ 0 and a0 ∈ L∞(Ω). Then, Proj[−M,M ](ϕ) belongs to H1
0 (Ω) for every

M > 0.

This result can be deduced from [13, Th. 10.1 and Eq. (2.22)] or [15, Eq.(7)].
See also [10] for a detailed proof.

Next we analyze the uniqueness of the Lagrange multiplier µ̄. If y0 ∈ Bγ(0), as
assumed in Corollary 3.5, (5) and (6), and ū ≡ 0, then µ̄ = 0 is obviously the only
Lagrange multiplier associated with ū. In the next theorem, we consider the case of
a non zero locally optimal control. First, we introduce some notation. We assume
that ȳ is the state associated with ū and

Kγ = {x ∈ Ω : |ȳ(x)| = γ}

denotes the set of points where the state constraint is active. Because of the conti-
nuity of ȳ and the boundedness of Ω, the set Kγ is compact.

Theorem 3.7. Let the assumptions (1.2)–(1.5) be fulfilled and suppose that aij ∈
C0,1(Ω̄) for 1 ≤ i, j ≤ n, ū is a nonzero local minimizer of (P), and Kγ has a
zero Lebesgue measure. Then the Lagrange multiplier µ̄ satisfying the optimality
conditions (3.9)–(3.11) is unique. As a consequence, ϕ̄ and λ̄ are unique as well.
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Proof. We introduce the set

Ωū = {x ∈ Ω \Kγ : |ϕ̄(x)| > κ},

where ϕ̄ is the adjoint state corresponding to ū. We observe that equation (3.9)
implies that ϕ̄ is continuous in the open set Ω \Kγ ; see [20, Theorem 9.3]. Hence,
Ωū is also an open set. The identity (3.12) implies that λ̄ ∈ C(Ω \ Kγ) as well.
Finally, we get from (3.11) that ū is also continuous in Ω\Kγ . Moreover, according
to Corollary 3.5-(3), we have that ū(x) 6= 0 holds for all x ∈ Ωū. Now, we define
the linear operator

T : L2(Ωū) −→ C(Kγ) by T (v) = zv,

where the elements v ∈ L2(Ωū) are extended by 0 to Ω and zv = G′(ū)v is the
solution of (2.2) for u = ū. The remaining proof is split into two parts.

1.- R(T ) = {Tv : v ∈ L2(Ωū)} is dense in C(Kγ). We argue by contradiction: if

R(T ) 6= C(Kγ), then we deduce the existence of a measure µ ∈ M(Kγ) = C(Kγ)∗

with µ 6= 0 such that ∫
Kγ

zv dµ = 0 ∀v ∈ L2(Ωū). (3.18)

Let ψ ∈W 1,p
0 (Ω) for all p < n/(n− 1) be the solution of A∗ψ +

∂a

∂y
(x, ȳ(x))ψ = µ in Ω,

ψ = 0 on Γ.
(3.19)

Then, for every v ∈ L2(Ωū) we have with (3.18)∫
Ωū

ψv dx =

∫
Ω

ψv dx =

∫
Ω

[
Azv +

∂a

∂y
(x, ȳ(x))zv

]
ψ dx

=

∫
Ω

[
A∗ψ +

∂a

∂y
(x, ȳ(x))ψ

]
zv dx =

∫
Kγ

zv dµ = 0, (3.20)

hence, ψ vanishes in Ωū. Moreover, we get from (3.19)

A∗ψ +
∂a

∂y
(x, ȳ(x))ψ = 0 in Ω \Kγ .

Then, we infer from a uniqueness result of [19] that ψ = 0 holds in Ω \Kγ . Since
|Kγ | = 0, we conclude that ψ = 0 in Ω and, hence, µ = 0, which contradicts our
assumption.

2.- Uniqueness of the Lagrange multiplier. Let us assume that µ̄1, µ̄2 ∈ M(Ω)
are Lagrange multipliers satisfying (3.9)–(3.11) with adjoint states ϕ̄1 and ϕ̄2, re-
spectively. We will prove that µ̄1 = µ̄2. We know from Corollary 3.5-(4) that
supp µ̄i ⊂ Kγ holds for i = 1, 2. Take an arbitrary v ∈ L2(Ωū) that is extended by
zero to Ω. Then, by definition of Ωū, (3.11) and (2.7) we have for i = 1, 2∫

Ω

ϕ̄iv dx = −ν
∫

Ω

ūv dx− κ
∫

Ω

λ̄iv dx = −ν
∫

Ω

ūv dx− κ
(∫

Ω+
ū

v dx+

∫
Ω−ū

v dx
)
,

where Ω+
ū and Ω−ū denote the sets of points of Ωū where ū takes positive and negative

values, respectively. Taking ψ = ϕ̄2−ϕ̄1, µ = µ̄2−µ̄1, and subtracting the equations
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for ϕ̄i, i = 1, 2, we get that ψ satisfies (3.19). Moreover from the above equality
and (3.20) we infer

0 =

∫
Ω

ψv dx =

∫
Ω

[
Azv +

∂a

∂y
(x, ȳ(x))zv

]
ψ dx =

∫
Kγ

zv dµ ∀v ∈ L2(Ωū).

Due to the density R(T ) = C(Kγ) we obtain that 〈µ, y〉M(Kγ),C(Kγ) = 0 for all
y ∈ C(Kγ), hence µ = 0, as desired. Finally, ϕ̄ is uniquely determined by the
equation (3.9) and λ̄ is given by (3.12).

We finish this section by a surprising regularity result.

Theorem 3.8. Suppose that the assumptions (1.2)–(1.5) hold. Let ū be an element
of Uad satisfying the optimality system (3.9)–(3.11) along with its associated state
ȳ. Assume in addition that at least one of the following two conditions holds

a(·, 0) ∈ L∞(Ω), (3.21)

∃ε ∈ (0, γ) : a(x,−s) ≤ 0 and a(x, s) ≥ 0 for a.a. (x, s) ∈ Ω× [γ − ε, γ]. (3.22)

Then, we have that ū, ϕ̄ ∈ H1
0 (Ω) ∩ L∞(Ω) and µ̄ ∈ H−1(Ω) ∩M(Ω).

The assumption (3.22) means that a(x, s) ≤ 0 is satisfied in a certain neighbor-
hood of −γ, and a(x, s) ≥ 0 in a neighborhood of γ. In particular, this holds if
a(x, 0) = 0 in Ω. Before proving this theorem, we recall a preliminary result whose
proof can be found in [11, Lemma 2.9]; see also [18].

Lemma 3.9. Let µ ∈ M(Ω) be a positive measure with a compact support in Ω
and let gA be the Green’s function corresponding to the Dirichlet problem associated
with A∗ + ∂a

∂y (x, ȳ(x))I. Define ϕµ as the solution to the problem A∗ϕµ +
∂a

∂y
(x, ȳ(x))ϕµ = µ in Ω,

ϕµ = 0 on Γ,

and

ϕ∗µ(x) :=

∫
Ω

gA(x, ξ) dµ(ξ) ∀x ∈ Ω.

Then it holds ϕ∗µ(x) = ϕµ(x) a.e. in Ω and

ϕµ ∈ L∞(Ω)⇔ sup
x∈supp µ

ϕ∗µ(x) <∞.

Proof of Theorem 3.8. It is enough to prove that ϕ̄ belongs to L∞(Ω). Then,
the regularity ϕ̄ ∈ H1

0 (Ω) is an immediate consequence of Lemma 3.6. Indeed, if
we take M = ‖ϕ̄‖L∞(Ω), then we immediately deduce that ϕ̄ = Proj[−M,M ](ϕ̄) ∈
H1

0 (Ω). The regularity ū ∈ H1
0 (Ω) ∩ L∞(Ω) follows from (3.11) and Corollary

3.5-(1). Finally, the adjoint state equation (3.9) implies that µ̄ ∈ H−1(Ω).
The proof of the boundedness of ϕ̄ is inspired by the proof of [11, Theorem 2.6].

Let us write ϕ̄ = ϕ̄0 + ϕ̄+ − ϕ̄−, where ϕ̄0, ϕ̄+ and ϕ̄− are the solutions of the
adjoint equation (3.9) with right hand side ȳ − yd, µ̄+, and µ̄−, respectively. Since
ȳ − yd ∈ L2(Ω), we know that ϕ̄0 ∈ H1

0 (Ω) ∩ C(Ω̄). We will prove that ϕ̄+ and ϕ̄−

belong to L∞(Ω). We observe that both functions are nonnegative. Thus, we only
need to prove that they are bounded from above. Let us define the open sets

Ω+ = {x ∈ Ω : ȳ(x) > γ − ε} and Ω− = {x ∈ Ω : ȳ(x) < −γ + ε},



12 EDUARDO CASAS AND FREDI TRÖLTZSCH

where ε = γ/2 if (3.21) is satisfied, otherwise ε is given by (3.22). Recall that
supp µ̄+ ⊂ Ω+ and supp µ̄− ⊂ Ω−. Then, following Stampacchia [20, Theorem. 9.3

and proof], we know that ϕ̄− ∈ C(Ω+), ϕ̄+ ∈ C(Ω−), and

∃Cγ > 0 such that max(‖ϕ̄−‖
C(Ω+)

, ‖ϕ̄+‖
C(Ω−)

) ≤ Cγ ‖µ̄‖M(Ω).

If assumption (3.21) holds, then we deduce from (1.5)

|a(x, t)| ≤ |a(x, 0)|+ ess sup(x,s)∈Ω×[−γ,+γ]

∣∣∣∂a
∂y

(x, s)t
∣∣∣

≤ ‖a(·, 0)‖L∞(Ω) + Cγγ = Mγ for a.a. (x, t) ∈ Ω× [−γ,+γ]. (3.23)

Let us set

M = νMγ + κ+ Cγ‖µ̄‖M(Ω) + ‖ϕ̄0‖L∞(Ω),

where we define Mγ = 0 if (3.22) holds. Let us prove that ϕ̄− is bounded. Analo-
gously, we can prove the boundedness of ϕ̄+. We argue by contradiction. Define

ϕ̄∗+ =

∫
Ω

gA(x, ξ)dµ̄+(ξ) and ϕ̄∗− =

∫
Ω

gA(x, ξ)dµ̄−(ξ),

and ϕ̄∗ = ϕ̄0 + ϕ̄∗+ − ϕ̄∗−. If ϕ̄− is not bounded, then we deduce from Lemma 3.9
the existence of x0 ∈ supp µ̄− such that ϕ̄∗−(x0) > M. The function ϕ̄∗− is lower
semicontinuous. This follows from Fatou’s Lemma and the integral representation
of ϕ̄∗−. In view of this, a ρ > 0 exists such that

ϕ∗−(x) > M ∀x ∈ Bρ(x0) and Bρ(x0) ⊂ Ω−.

This is possible due to

supp µ̄− ⊂ {x ∈ Ω : ȳ(x) = −γ}.

This implies

ϕ̄∗(x) = ϕ̄0(x) + ϕ̄∗+(x)− ϕ̄∗−(x) < ‖ϕ̄0‖L∞(Ω) + sup
x∈Ω−

ϕ̄∗+(x)−M

≤ ‖ϕ̄0‖L∞(Ω) + Cγ‖µ̄‖M(Ω) −M = −νMγ − κ ∀x ∈ Bρ(x0).

The last identity follows from the definition of M above. Therefore, since ϕ̄(x) =
ϕ̄∗(x) holds for almost all x ∈ Ω and ‖λ̄‖L∞(Ω) ≤ 1, we have

ū(x) = −1

ν
(ϕ̄(x) + κλ̄(x)) > Mγ for a.a. x ∈ Bρ(x0).

Under the assumption (3.22) we have that a(x, ȳ(x)) ≤ 0 for almost all x ∈
Bρ(x0) ⊂ Ω− and Mγ = 0. On the other hand, assumption (3.21) along with (3.23)

implies that Mγ − a(x, ȳ(x)) ≥ 0 for almost all x ∈ Bρ(x0). In any case we have

Aȳ = ū− a(x, ȳ) > 0 a.e. in Bρ(x0).

From the maximum principle for elliptic equations, we deduce

−γ = ȳ(x0) ≥ min
x∈Bρ(x0)

ȳ(x) = min
x∈∂Bρ(x0)

ȳ(x) ≥ −γ,

thus ȳ(x) ≡ −γ in Bρ(x0). Hence, we have

a(x,−γ) = Aȳ + a(x, ȳ(x)) = ū(x) > Mγ in Bρ(x
0),

which contradicts (3.22) and (3.23). Therefore, we have shown that ϕ̄ ∈ L∞(Ω). �
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4. Second order optimality conditions. The goal of this section is to set up
sufficient second order optimality conditions for a local solution of (P). First, let us
define the notion of local solution depending of the selected topology.

Definition 4.1. We say that ū is an Lp(Ω)-weak local solution of (P), p ∈ [1,+∞],
if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖Lp(Ω) ≤ ε. (4.1)

We say that ū is a strong local solution if there exists some ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖yū − yu‖L∞(Ω) ≤ ε. (4.2)

We say that ū is a strict (weak or strong) local solution if the above inequalities are
strict for u 6= ū.

As far as we know, the concept of strong local solution was introduced for the
first time in the framework of control of partial differential equations in [1]; see also
[2].

Theorem 4.2. The following statements hold:

1. If ū is an L2(Ω)-weak local solution, then ū is an L1(Ω)-weak local solution.
2. If ū is an Lp(Ω)-weak local solution, then ū is an Lq(Ω)-weak local solution

for every p < q ≤ ∞.
3. If ū is a strong local solution, then ū is an Lp(Ω)-weak local solution for every

p ∈ [1,∞].
4. If ū is an L2(Ω)-weak local solution, then it is a strong local solution.

Proof. Proof of 1.- Since ū is an L2(Ω)-weak local solution, there exists ε > 0 such
that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖L2((Ω)) ≤ ε. (4.3)

We argue by contradiction. If ū is not an L1(Ω)-weak local solution, then there
exists a sequence {uk}∞k=1 ⊂ Uad such that

J(uk) < J(ū) and ‖uk − ū‖L1(Ω) ≤
1

k
∀k ≥ 1. (4.4)

From the first inequality we infer

ν

2
‖uk‖2L2(Ω) ≤ J(ū) ∀k ≥ 1.

This estimate and the second inequality of (4.4) imply the existence of a subse-
quence, denoted in the same way, such that uk ⇀ ū in L2(Ω). We get with Theorem
2.1 and the weak lower semicontinuity of the last two terms of J

J(ū) ≤ lim inf
k→∞

J(uk) ≤ lim sup
k→∞

J(uk) ≤ J(ū).

This implies the convergence J(uk) → J(ū). Since yk = yuk → ȳ in L∞(Ω), we
deduce

lim
k→∞

(ν
2
‖uk‖2L2(Ω) + κ‖uk‖L1(Ω)

)
=
ν

2
‖ū‖2L2(Ω) + κ‖ū‖L1(Ω). (4.5)

From the weak convergence uk ⇀ ū in L2(Ω) we obtain

‖ū‖2L2(Ω) ≤ lim inf
k→∞

‖uk‖2L2(Ω) and ‖ū‖L1(Ω) ≤ lim inf
k→∞

‖uk‖L1(Ω). (4.6)
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From (4.5) and (4.6) it follows

ν

2
‖ū‖2L2(Ω) ≤ lim inf

k→∞

ν

2
‖uk‖2L2(Ω) ≤ lim sup

k→∞

ν

2
‖uk‖2L2(Ω)

≤ lim sup
k→∞

(ν
2
‖uk‖2L2(Ω) + κ‖uk‖L1(Ω)

)
− lim inf

k→∞
κ‖uk‖L1(Ω) ≤

ν

2
‖ū‖2L2(Ω),

hence we have the convergence of the norms ‖uk‖L2(Ω) → ‖ū‖L2(Ω). This conver-

gence and the weak convergence uk ⇀ ū in L2(Ω) are equivalent to the strong con-
vergence uk → ū in L2(Ω). Therefore, there exists kε such that that ‖uk−ū‖L2(Ω) ≤
ε for all k ≥ kε. Hence, (4.3) implies that J(ū) ≤ J(uk) for all k ≥ kε, wich contra-
dicts (4.4).

Proof of 2.- Since ū is an Lp(Ω)-weak local solution, there exists ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖Lp(Ω) ≤ ε. (4.7)

Taking into account that

‖u− ū‖Lp(Ω) ≤ |Ω|1−
q
p ‖u− ū‖Lq(Ω) ∀q ∈ (p,∞],

(4.7) implies that

J(ū) ≤ J(u) ∀u ∈ Uad with ‖ū− u‖Lq(Ω) ≤ ε′,

where ε′ = ε/|Ω|1−
q
p .

Proof of 3.- We have that ū satisfies (4.2) for some ε > 0. Let us take u ∈ Uad
arbitrarily. First we estimate ‖yu − ȳ‖L∞(Ω) in terms of ‖u− ū‖L2(Ω). To this end,
we set z = yu − ȳ. Subtracting the equations satisfied by yu and ȳ and applying
the mean value theorem we find Az +

∂a

∂y
(x, ŷ(x))z = u− ū in Ω,

z = 0 on Γ,

where ŷ(x) = ȳ(x) + θ(x)(yu(x)− ȳ(x)) for some measurable function 0 ≤ θ(x) ≤ 1.
Then, there exists a constant C2 independent of u such that

‖yu − ȳ‖L∞(Ω) = ‖z‖L∞(Ω) ≤ C2‖u− ū‖Lp(Ω);

see [20, §4]. Next we select ε′ = ε/C2 and deduce with (4.2)

J(ū) ≤ J(u) ∀u ∈ Uad with ‖u− ū‖L2(Ω) ≤ ε′.

Hence ū is a local solution of (P). Then, 1 and 2 imply that ū is an Lp(Ω)-weak
local solution of (P) for all p ∈ [1,∞].

Proof of 4.- Since ū is an L2(Ω)-weak local solution, (4.3) holds for some ε > 0. We
argue again by contradiction. If ū is not a strong local solution, then there exists a
sequence {uk}∞k=1 ⊂ Uad such that

J(uk) < J(ū) and ‖yk − ȳ‖L∞(Ω) ≤
1

k
∀k ≥ 1, (4.8)

where yk is the state associated with uk. Now we can argue as in the proof of (1) and
to deduce that ūk → ū strongly in L2(Ω). Hence, (4.3) implies that J(ū) ≤ J(uk)
for all sufficiently large k, which contradicts (4.8)
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Remark 4.3. Let us discuss a few consequences of this result, first for the problem
(P) posed here, where control constraints are not given and the feasible set is not
bounded in general. Observe that we assumed ν > 0 from the very beginning.

Since J(u) < ∞ if and only if u ∈ L2(Ω), this is the natural space to study the
control problem (P). In L2(Ω), ‖ · ‖Lp(Ω) is a norm if and only if p ∈ [1, 2]. Hence,
the natural concepts for a local solution of (P) are the Lp(Ω)-weak local solutions
with p ∈ [1, 2] and strong local solutions. However - for p ∈ [1, 2] - all these concepts
are equivalent as we deduce from Theorem 4.2.

Let us complete this observation by discussing the case of control problems with
pointwise control constraints and L∞-bounds, where the set of admissible controls
is bounded in L∞(Ω). Here, all the norms ‖ · ‖Lp(Ω) with p ∈ [1,∞] are reason-
able. Hence, it makes sense to consider Lp(Ω)-weak local solutions and strong local
solutions for arbitrary p ∈ [1,∞]. We can distinct between two cases:

Case ν > 0. Arguing as in Theorem 4.2, we find that for p ∈ [1,∞) any Lp(Ω)-
weak local solution is a strong local solution and any strong local solution is an
Lp(Ω)-weak local solution for all p ∈ [1,∞], i.e. even for p = ∞. Therefore, here
the notions of all weak local solutions and strong local solutions are equivalent with
one exception: The property of being an L∞(Ω)-weak local solution does not imply
the other types of local solution. Having in mind this exception, all the notions of
weak and strong local solutions are equivalent. We only have to distinguish between
L∞(Ω)-weak local and strong local solutions.

Case ν = 0. In this case, to assure the existence of a solution, we have to assume
some constraints on the controls. If the set of feasible controls is bounded in L∞(Ω),
then – a priori – there are three different type of local solutions: L∞(Ω)-weak local
solutions, Lp(Ω)-weak local solutions with 1 ≤ p < ∞, and strong local solutions.
Since all the topologies induced in Uad for the Lp(Ω) norms with 1 ≤ p < ∞ are
equivalent in an L∞-bounded set, the concepts of local solutions in the Lp(Ω) sense
are equivalent for p ∈ [1,∞). Once again arguing as in the proof of Theorem 4.2,
we are able to deduce that any strong local solution is an Lp(Ω)-weak local solution
for every p ∈ [1,∞], and every Lp(Ω)-weak local solution is an L∞(Ω)-weak local
solution, but the converses are maybe false: We cannot deduce that an Lp(Ω)-weak
local solution is a strong local solution or that an L∞(Ω)-weak local solution is an
Lp(Ω)-weak local solution for p <∞.

In order to establish a sufficient second order condition for local optimality, we
introduce the cone of critical directions. Thus, given ū ∈ Uad satisfying the first
order optimality conditions (3.9)–(3.11), we define

Cū =
{
v ∈ L2(Ω) :

∂L
∂u

(ū, µ̄) v + κj′(ū; v) = 0, (4.9)

zv(x)

{
≤ 0 if ȳ(x) = +γ
≥ 0 if ȳ(x) = −γ, (4.10)∫

Ω

|zv| d|µ̄| = 0
}
, (4.11)

where zv = G′(ū)v is the solution of (2.2) for u = ū. |µ̄| = µ̄+ + µ̄− is the total
variation measure associated with µ̄, and L : L2(Ω)×M(Ω) −→ R is the Lagrangian
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function defined by

L(u, µ) := F (u) +

∫
Ω

yu dµ. (4.12)

From Theorems 2.3 and 2.4, we deduce that L is of class C2 and

∂L
∂u

(u, µ)v = F ′(u)v +

∫
Ω

zv dµ =

∫
Ω

(ϕu + νu)v dx, (4.13)

∂2L
∂u2

(u, µ)v2 =

∫
Ω

{[
1− ∂2a

∂y2
(x, yu)ϕu

]
z2
v + νv2

}
dx, (4.14)

where ϕu ∈W 1,p
0 (Ω), for all p < n

n−1 , is the solution of A∗ϕ+
∂a

∂y
(x, yu)ϕ = yu − yd + µ in Ω,

ϕ = 0 on Γ.
(4.15)

According to (4.13) and the identity (3.11), we have

∂L
∂u

(ū, µ̄)v + κ

∫
Ω

λ̄v dx = 0 ∀v ∈ L2(Ω). (4.16)

Moreover, from (2.9) we also infer

∂L
∂u

(ū, µ̄)v + κj′(ū; v) dx ≥ 0 ∀v ∈ L2(Ω). (4.17)

The next theorem provides sufficient second order conditions for local optimality.

Theorem 4.4. Suppose that (1.2)–(1.6) hold. Assume that ū along with its asso-
ciated state ȳ satisfies (3.9)–(3.11). We also assume that

∂2L
∂u2

(ū, µ̄)v2 > 0 ∀v ∈ Cū \ {0}. (4.18)

Then there exist δ > 0 and ε > 0 such that

J(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ Uad ∩Bε(ū), (4.19)

where Bε(ū) denotes the L2(Ω) closed ball centered at ū with radius ε.

Proof. This proof is inspired in [7] and [11]. We argue by contradiction. Suppose
that ū does not satisfy the quadratic growth condition (4.19). Then there exists a
sequence {uk}∞k=1 ⊂ Uad such that

‖uk − ū‖L2(Ω) <
1

k
and J(ū) +

1

k
‖uk − ū‖2L2(Ω) > J(uk) ∀k ≥ 1. (4.20)

Let us take

ρk = ‖uk − ū‖L2(Ω) and vk =
1

ρk
(uk − ū).

Since ‖vk‖L2(Ω) = 1, we can extract a subsequence, denoted in the same way, such

that vk ⇀ v weakly in L2(Ω). Now we split the proof into several steps.

Step 1. ∂L
∂u (ū, µ̄)v + κj′(ū; v) = 0. In the following, we write yk = yuk . Since uk is

feasible, it holds that |yk(x)| ≤ γ for every x ∈ Ω̄. By (4.20) and (3.10), we obtain

F (ū) + κj(ū) +
1

k
‖uk − ū‖2L2(Ω) > F (uk) + κj(uk),∫

Ω

ȳ(x) dµ̄(x) ≥
∫

Ω

yk(x) dµ̄(x).
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Adding both inequalities we infer

L(ū, µ̄) + κj(ū) +
1

k
‖uk − ū‖2L2(Ω) > L(uk, µ̄) + κj(uk) ∀k ≥ 1. (4.21)

From the mean value theorem and (2.8)–(2.9), it follows

L(uk, µ̄) = L(ū, µ̄) + ρk
∂L
∂u

(ûk, µ̄)vk,

j(ū+ ρkvk)− j(ū) ≥ ρkj′(ū; vk),

where ûk = ū+ θk(uk − ū) for some number 0 ≤ θk ≤ 1. From these relations and
(4.21), we obtain

∂L
∂u

(ûk, µ̄)vk + κj′(ū; vk) <
1

ρkk
‖uk − ū‖2L2(Ω) =

1

k
‖uk − ū‖L2(Ω) <

1

k2
.

Then, with (2.8) we get

∂L
∂u

(ū, µ̄)v + κj′(ū; v) ≤ lim
k→∞

∂L
∂u

(ûk, µ̄)vk + κ lim inf
k→∞

j′(ū; vk) ≤ 0. (4.22)

This inequality and (4.17) prove that ∂L
∂u (ū, µ̄)v + κj′(ū; v) = 0.

Step 2. v ∈ Cū. We have to confirm (4.10) and (4.11). Let us prove (4.10). From
Theorem 2.3 we have

zv = G′(ū)v = lim
k→∞

yū+ρkhk − ȳ
ρk

in C(Ω̄) ∩H1
0 (Ω),

which implies for every x ∈ Ω̄ such that ȳ(x) = +γ

zv(x) = lim
k→∞

yū+ρkhk(x)− ȳ(x)

ρk
≤ 0.

The last inequality follows from the fact that uk ∈ Uad, ū + ρkhk = uk, and con-
sequently yū+ρkhk(x) = yuk(x) ≤ γ for every x ∈ Ω̄. Analogously we prove that
zv(x) ≥ 0 for every x ∈ Ω such that ȳ(x) = −γ.

Now, we confirm (4.11). Taking y = yuk in (3.10), we get∫
Ω

zv(x) dµ̄(x) = lim
k→∞

1

ρk

∫
Ω

(yū+ρkvk(x)− ȳ(x)) dµ̄(x)

= lim
k→∞

1

ρk

∫
Ω

(yuk(x)− ȳ(x)) dµ̄(x) ≤ 0. (4.23)

On the other hand, from (4.20) we find

F ′(ū)v + κj′(ū; v) ≤ lim inf
k→∞

{
F (ū+ ρkvk)− F (ū)

ρk
+ κ

j(ū+ ρkvk)− j(ū)

ρk

}
= lim inf

k→∞

J(uk)− J(ū)

ρk
≤ lim inf

k→∞

ρk
k

= 0. (4.24)

Then, the established identity ∂L
∂u (ū, µ̄)v + κj′(ū; v) = 0, (4.23), (4.24), and (4.13)

imply that

F ′(ū)v + κj′(ū; v) =

∫
Ω

zv(x) dµ̄(x) = 0.

Finally, from (4.10) and Corollary 3.5-(4) it follows∫
Ω

|zv(x)| d|µ̄|(x) =

∫
Ω

zv(x) dµ̄(x) = 0.
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Thus (4.11) holds, and we have that v ∈ Cū.

Step 3. v = 0. Taking into account (4.18), it is enough to prove that

∂2L
∂u2

(ū, µ̄)v2 ≤ 0. (4.25)

To this end, we evaluate the Lagrangian. By a second-order Taylor expansion, we
derive

L(uk, µ̄) = L(ū, µ̄) + ρk
∂L
∂u

(ū, µ̄)vk +
ρ2
k

2

∂2L
∂u2

(ûk, µ̄)v2
k,

where ûk = ū+ ϑk(uk − ū) with 0 ≤ ϑk ≤ 1. From here we get

ρk
∂L
∂u

(ū, µ̄)vk +
ρ2
k

2

∂2L
∂u2

(ū, µ̄)v2
k −

ρ2
k

2

[
∂2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(ûk, µ̄)

]
v2
k

= L(uk, µ̄)− L(ū, µ̄). (4.26)

For the functional j we deduce from (2.8)–(2.9)

ρkj
′(ū; vk) ≤ j(uk)− j(ū). (4.27)

Now, we write (4.21) as follows

L(uk, µ̄)− L(ū, µ̄) + κ[j(uk)− j(ū)] <
ρ2
k

k
.

Inserting (4.16) and (4.27) we infer

ρk

{
∂L
∂u

(ū, µ̄)vk + κj′(ū; vk)

}
+
ρ2
k

2

∂2L
∂u2

(ū, µ̄)v2
k

− ρ2
k

2

[
∂2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(ûk, µ̄)

]
v2
k <

ρ2
k

k
.

Using (4.17) and dividing the above inequality by ρ2
k/2, we get

∂2L
∂u2

(ū, µ̄)v2
k −

[
∂2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(ûk, µ̄)

]
v2
k <

2

k
. (4.28)

Since L(·, µ̄) : L2(Ω) −→ R is of class C2 and ûk → ū in L2(Ω), we infer∣∣∣∣[∂2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(ûk, µ̄)

]
v2
k

∣∣∣∣ ≤ ∥∥∥∥∂2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(ûk, µ̄)

∥∥∥∥
B(L2(Ω))

‖vk‖2L2(Ω)

=

∥∥∥∥∂2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(ûk, µ̄)

∥∥∥∥
B(L2(Ω))

→ 0 as k →∞, (4.29)

where B(L2(Ω)) is the space of quadratic continuous forms in L2(Ω). This conver-
gence and (4.28) imply (4.25).

Step 4. Final contradiction. We have proved that vk ⇀ 0 in L2(Ω), then zvk → 0
strongly in C(Ω̄). From this convergence, along with (4.14), (4.28), (4.29), and the
identity ‖vk‖L2(Ω) = 1, it follows

0 < ν = lim
k→∞

{
∂2L
∂u2

(ū, µ̄)v2
k −

[
∂2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(ûk, µ̄)

]
v2
k

}
≤ 0,

which is a contradiction.

Finally, let us notice that the quadratic growth property (4.19) holds, eventually
with a different radius ε, if we consider different neighborhoods of ū.
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Corollary 4.5. Suppose that (1.2)–(1.6) hold and let ū be an element Uad. Let
p ∈ [1, 2) be arbitrary. Then for all δ ∈ (0, ν) the following statements are equivalent

1. There exists ε > 0 such that (4.19) is fulfilled.
2. There exists εp > 0 such that

J(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ Uad : ‖u− ū‖Lp(Ω) ≤ εp. (4.30)

3. There exists ε∞ > 0 such that

J(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Ω) ≤ ε∞. (4.31)

Proof. Let us consider the optimization problem

(Pδ) min
u∈Uad

Jδ(u)

with

Jδ(u) =
1

2

∫
Ω

(yu − yd)2 dx+
ν − δ

2

∫
Ω

u2 dx+ κ

∫
Ω

|u| dx+ δ

∫
Ω

uū dx.

Notice that Jδ(u) is obtained from J by subtracting δ
2 (‖u− ū‖2L2(Ω) − ‖ū‖

2
L2(Ω)).

The statements of the corollary are equivalent to the claims that ū is an L2(Ω)-
weak local solution of (Pδ), an Lp(Ω)-weak local solution of (Pδ), and a strong
local solution of (Pδ), respectively. But, from Theorem 4.2, we know that these
three notions are equivalent for p ∈ [1, 2). Indeed, the last term of Jδ is linear and
continuous with respect to u and we have that ν − δ > 0. Consequently, the proof
of Theorem 4.2 is exactly the same if we replace the cost functional J by Jδ.
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[21] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Appli-
cations, Graduate Studies in Mathematics, 112. American Mathematical Society, Providence,

RI, 2010.

Received February 2018; revised December 2018.

E-mail address: eduardo.casas@unican.es

E-mail address: troeltzsch@math.tu-berlin.de

http://www.ams.org/mathscinet-getitem?mr=MR3180842&return=pdf
http://dx.doi.org/10.1137/130917314
http://dx.doi.org/10.1137/130917314
http://www.ams.org/mathscinet-getitem?mr=MR709590&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1760541&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2346365&return=pdf
http://dx.doi.org/10.1137/060652361
http://dx.doi.org/10.1137/060652361
http://www.ams.org/mathscinet-getitem?mr=MR2836350&return=pdf
http://dx.doi.org/10.3934/dcds.2011.31.1233
http://dx.doi.org/10.3934/dcds.2011.31.1233
http://www.ams.org/mathscinet-getitem?mr=MR737190&return=pdf
http://dx.doi.org/10.1007/978-3-642-61798-0
http://www.ams.org/mathscinet-getitem?mr=MR2440724&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3072225&return=pdf
http://dx.doi.org/10.1137/120889137
http://dx.doi.org/10.1137/120889137
http://www.ams.org/mathscinet-getitem?mr=MR645635&return=pdf
http://dx.doi.org/10.1016/0022-0396(82)90072-9
http://dx.doi.org/10.1016/0022-0396(82)90072-9
http://www.ams.org/mathscinet-getitem?mr=MR192177&return=pdf
http://dx.doi.org/10.5802/aif.204
http://dx.doi.org/10.5802/aif.204
http://www.ams.org/mathscinet-getitem?mr=MR2583281&return=pdf
http://dx.doi.org/10.1090/gsm/112
http://dx.doi.org/10.1090/gsm/112
mailto:eduardo.casas@unican.es
mailto:troeltzsch@math.tu-berlin.de

	1. Introduction
	2. Preliminary results
	3. Existence of optimal controls and first order optimality conditions
	4. Second order optimality conditions
	REFERENCES

