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Abstract The present paper is a follow-on of the work presented in Manzanas8

et al (2019) which provides a comprehensive intercomparison of alternatives for9

the post-processing (statistical adjustment, calibration and downscaling) of sea-10

sonal forecasts for a particularly interesting region, Southeast Asia. To answer the11

questions that were raised in the preceding work, apart from Bias Adjustment12

(BA) and ensemble Re-Calibration (RC) methods —which transform directly the13

variable of interest,— we include here more complex Perfect Prognosis (PP) and14

Model Outputs Statistics (MOS) downscaling techniques —which operate on a15

selection of large-scale model circulation variables linked to the local observed16

variable of interest.— Moreover, we test the suitability of BA and PP methods17

for the post-processing of daily —not only seasonal— time-series, which are often18

needed in a variety of sectoral applications (crop, hydrology, etc.) or to compute19

specific climate indices (heat waves, fire weather index, etc.). In addition, we also20

undertake an assessment of the effect that observational uncertainty may have for21

statistical post-processing.22

Our results indicate that PP methods (and to a lesser extent MOS) are highly case-23

dependent and their application must be carefully analyzed for the region/season/application24

of interest, since they can either improve or degrade the raw model outputs. There-25

fore, for those cases for which the use of these methods cannot be carefully tested26
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by experts, our overall recommendation would be the use of BA methods, which27

seem to be a safe, easy to implement alternative that provide competitive results in28

most situations. Nevertheless, all methods (including BA ones) seem to be sensitive29

to observational uncertainty, especially regarding the reproduction of extremes and30

spells. For MOS and PP methods, this issue can even lead to important regional31

differences in interannual skill. The lessons learnt from this work can substantially32

benefit a wide range of end-users in different socio-economic sectors, and can also33

have important implications for the development of high-quality climate services.34

1 Introduction35

The state-of-the-art General Circulation Models (GCMs) used for seasonal fore-36

casting suffer from important systematic biases (mean errors) and drifts (leadtime-37

dependent biases) and have horizontal resolutions which are typically coarser38

than those needed for practical applications (see, e.g., Doblas-Reyes et al, 2013;39

Manzanas et al, 2014a). Therefore, some form of post-processing (i.e. adjust-40

ment, calibration and/or downscaling) is needed in order to make their raw out-41

puts usable. In a recent study, Manzanas et al (2019) intercompared the per-42

formance of Bias Adjustment (BA) —e.g. quantile mapping— and ensemble Re-43

Calibration (RC) —e.g. non-homogeneous Gaussian regression— methods for the44

adjustment/calibration of seasonal aggregated forecasts. At this particular time-45

scale, they found that the RC methods can result in modest improvement of46

some quality aspects (in particular reliability), although other aspects can be de-47

graded. Nevertheless, these improvements are restricted to regions/seasons with48

high model skill. In addition, these methods can be negatively affected by the lim-49

ited length of state-of-the-art seasonal hindcasts (which typically have less than 3050

years). They also found that, beyond removing their systematic biases, BA meth-51

ods can not improve the skill of the raw model forecasts (even more, some quality52

aspects can be degraded), since they do not modify their temporal structure.53

However, the application of these methods is straightforward and may constitute54

a pragmatic and simple alternative when the resolution of the model is similar to55

that of the observational reference (BA methods are not suitable for downscal-56

ing), or for regions with no expected potential for downscaling (e.g. flat inland57

regions). Moreover, beyond the adjustment of monthly/seasonal values, Manzanas58

et al (2019) pointed out the fact that BA techniques can be also applied to adjust59

daily data, which are often demanded in a variety of sectoral applications in order60

to run impact models (crop, hydrology, etc.) or to compute specific climate indices61

(heat waves, length of growing index, thermal comfort index, fire weather index,62

etc.).63

Therefore, we put a special focus in this work on the post-processing of daily64

(rather than monthly/seasonal) values. For this aim, we consider not only BA65

methods acting directly on the variable of interest, but also more complex Perfect66

Prognosis (PP) downscaling techniques (see, e.g., Gutiérrez et al, 2013) which op-67

erate on a selection of large-scale model circulation variables (predictors) linked to68

the local observed variable of interest (predictand). Although there has been some69

indication that PP methods may add some value in terms of skill (e.g. interan-70

nual correlation) for cases where the dynamical model is better at reproducing the71

relevant large-scale features than the target variable being predicted (Manzanas72
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et al, 2018), they have the extra complexity of building the predictor-predictand73

relationship at a daily basis using reanalysis data (which provide day-to-day cor-74

respondence with observations). Typically, this requires a highly time-consuming75

screening process to detect robust predictors which are similarly represented in76

both the reanalysis and hindcast datasets. Moreover, PP methods may suffer from77

reanalysis uncertainty, which is particularly relevant in tropical regions (Brands78

et al, 2012; Manzanas et al, 2015). Therefore, in this type of methods, the existing79

windows of opportunity for improvement can be so narrow that the effort may be80

disproportionate to the benefit.81

Moreover, we also include in this study Model Output Statistics (MOS) down-82

scaling methods (see, e.g., Vannitsem and Nicolis, 2008), which are trained with83

predictors taken from the same GCM that is being postprocessed. A simple im-84

plementation of these methods considers as the only predictor variable the target85

predictand, e.g., coarse GCM precipitation for local precipitation. Following Man-86

zanas et al (2019), these methods are included as part of the RC approach in this87

work. Standard downscaling MOS implementations consider large-scale variables88

from the GCM as predictors (see, e.g., Manzanas et al, 2017). These are referred89

to as MOS hereafter. Note that, as the relationship between the large-scale sea-90

sonal forecasts and observational reference records is established using directly the91

hindcast (without passing through reanalysis), the complexity and requirements92

for MOS methods are much lower than for PP ones. However, as for the case of93

RC methods, the main shortcoming of these techniques is that they can only be94

applied on monthly/seasonal data, since GCM predictors do not keep temporal95

correspondence with the local observations at the daily scale.96

Given the complexity of this panorama, the relative merits and limitations of97

the approaches and techniques available for post-processing of seasonal forecasts98

need to be properly assessed. This is done here by intercomparing the performance99

of the alternatives described above based on different aspects of forecast quality:100

association, accuracy and discrimination for seasonally aggregated times-series and101

reproduction of extremes and spells for daily time-series. Besides, following from102

the fact that all the adjustment/calibration/downscaling methods rely on observa-103

tions for the training process, observational uncertainty (see, e.g. Kotlarski et al,104

2017; Herrera et al, 2018) may play a role in the statistical post-processing of105

model forecasts. To shed some light on this potential issue, we also undertake here106

a comprehensive assessment of the effect of this kind of uncertainty in the context107

of seasonal forecasting.108

Jointly with the work done in Manzanas et al (2019), this study provides prac-109

tical recommendations for the suitable post-processing of seasonal forecasts, which110

can substantially benefit a wide range of end-users in different socio-economic sec-111

tors, and can also have important implications for the development of high-quality112

climate services (see, e.g., Torralba et al, 2017).113

The paper is organized as follows. In Section 2 we describe the data used and114

introduce the different methods applied and the verification metrics considered.115

The results obtained are presented through Section 3. The main conclusions ob-116

tained and a set of practical user recommendations are outlined in Section 4.117
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Table 1 Potential predictor variables considered for the MOS and PP methods.

Code Variable Levels
SLP Mean sea level pressure Surface

Z Geopotential height 850, 500, 300 (mb)
T Temperature 850, 500, 300 (mb)
Q Specific humidity 850, 500, 300 (mb)
U Zonal component of wind 850, 500, 300 (mb)
V Meridional component of wind 850, 500, 300 (mb)

2 Data and Methods118

2.1 Data Used119

We focus in this work on one illustrative region (Southeast Asia: 95-140◦ E, 10◦
120

S-20◦ N) and season (boreal winter: DJF), for which overall good skill has been121

documented (see, e.g., Manzanas et al, 2014b). As explained later, the choice of122

this region is also supported by the fact that a high-quality observational grid is123

available —SA-OBS (van den Besselaar et al, 2017),— which allows for an inter-124

esting analysis of the effect of observational uncertainty on the results obtained125

from the different post-processing techniques (see Section 3.2).126

We consider one-month lead seasonal forecasts (i.e. predictions initialized in127

November) of both temperature and precipitation from the ECMWF-System4128

(Molteni et al, 2011), which provides the longest seasonal hindcast to-date —note129

that one of the main conclusions of Manzanas et al (2019) is that as long as130

possible hindcasts are needed for robust adjustment/calibration.— In particular,131

we use here all the 51 members that are available for the November initialization132

(only 15 members are available for other initializations) along the period 1982-133

2014.134

Besides the target variables of interest (temperature and precipitation) used135

for BA and RC methods, the large-scale variables listed in Table 1 were considered136

as potential predictors for MOS and PP methods in this work. For the training137

phase of the PP methods, these predictor variables are taken from ERA-interim138

reanalysis (Dee et al, 2011). In this case, ERA-Interim and ECMWF-System4 data139

are harmonized by performing a simple local scaling to the latter. In particular,140

for every large-scale model predictor, monthly mean values were adjusted towards141

the corresponding reanalysis values, gridbox by gridbox, avoiding thus problems142

that may arise due to the model mean biases.143

We consider ERA-Interim as the common observational reference along the144

study. Howewer, for the assessment of the effect of observational uncertainty un-145

dertaken in Section 3.2, we also consider two other datasets for precipitation:146

SA-OBS and MSWEP. SA-OBS a high-quality observational dataset which pro-147

vides daily gridded (0.25◦ spatial resolution) temperature and precipitation over148

land for Southeast Asia. It has been built based on more than 8000 meteorological149

stations and can be freely downloaded from http://sacad.database.bmkg.go.id.150

MSWEP (version 1) (Beck et al, 2017) is a global terrestrial precipitation dataset151

with a high 3-hourly temporal and 0.25◦ spatial resolution which combines gauge,152

satellite and reanalysis information. For the sake of comparability with the results153

shown in Manzanas et al (2019), all the different datasets used here (ECMWF-154

System4, ERA-Interim, SA-OBS and MSWEP) have been bi-linearly interpo-155
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Table 2 Validation metrics considered in this work.

Code Description Variable
Cor. Correlation Temp., precip.

CRPS Continuous Ranked Probability Score Temp., precip.
RPS Ranked Probability Score Temp., precip.

ROCA ROC Skill Area Temp., precip.
P2, P98 Percentile 2, percentile 98 Temp.
P98-wet Percentile 98 of wet (precip. >= 1 mm) days Precip.

R01 Frequency (in %) of wet days Precip.
ColdSpellP90 Percentile 90 of the length of cold spells Temp.

WarmSpellP90 Percentile 90 of the length of warm spells Temp.
WetSpellP90t Percentile 90 of the length of wet spells Precip.
DrySpellP90t Percentile 90 of the length of dry spells Precip.

lated from their native horizontal resolutions to the common 1◦ regular grid156

in which the C3S models are provided through the Climate Data Store (see157

http:/climate.copernicus.eu/seasonal-forecasts). Moreover, daily data have158

been used in all cases.159

2.2 Validation Metrics160

We have used for this study the Continuous Ranked Probability Score (CRPS),161

the Ranked Probability Score (RPS), the ROC Skill Area (ROCA) and the Pear-162

son correlation to validate the interannual series (the daily results from BA and163

PP are seasonally aggregated in this case). RPS and ROCA are used for tercile-164

based probabilistic predictions, being the terciles independently computed for the165

observations and the predictions. Therefore, whereas CRPS is sensitive to changes166

in the mean and variance (and hence to the effect of bias adjustment), the rest of167

measures are not so they allow to explore the added value of the post-processing168

techniques beyond the model bias removal. The reader is referred to Manzanas169

et al (2019) for further details about the metrics considered. Moreover, for those170

methods providing daily outputs, we also focus on further aspects of the forecasts171

such as extremes and spells, which are of special interest for many practical appli-172

cations. In particular, we have considered the 2nd and 98th percentiles for daily173

temperature and the 98th percentile for daily precipitation (for the latter, only174

wet days are considered). Additionally, for the case of precipitation, the frequency175

of rainy days is also validated. Besides, the 90th percentile of the length of spells is176

also analyzed. As in Maraun et al (2018), a cold/warm (dry/wet) spell is defined as177

an episode of two or more consecutive days with values below/above the 10/90th178

percentile (1 mm). These indicators are computed separately for each ensemble179

member and the results are validated in a deterministic way based on the ensemble180

mean. All the validation metrics considered in this work are shown in Table 2.181

2.3 Methods182

Among BA methods, we have considered two different implementations of quantile183

mapping; one parametric and one empirical. The latter corresponds to the EQM184

method presented in Manzanas et al (2019), which is applied here on daily (instead185
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of seasonal) data. The former (referred to as PQM henceforth) is based on the as-186

sumption that both observations and raw GCM outputs are well approximated by187

a given distribution (Gaussian for temperature and Gamma for precipitation), so188

only the parameters of the theoretical distributions are mapped (see, e.g., Themeßl189

et al, 2012). For the case of precipitation, the EQM method used here incorporates190

a frequency adaptation which is thought to alleviate the problem that arises when191

the frequency of dry days is larger in the model than in the observations (Themeßl192

et al, 2012). Note that quantile mapping is able to correct automatically the excess193

of light precipitation frequency or “drizzle effect”.194

As representative of the RC family, we have considered the LR method in-195

troduced in Manzanas et al (2019), which performs a linear regression between196

the ensemble mean and the corresponding observations. To correct the forecast197

variance, the standardized anomalies are rescaled by the standard deviation of the198

predictive distribution from the linear fit. LR was shown in Manzanas et al (2019)199

to provide in general good results with a relatively low computational cost. Recall200

that this method calibrates directly the model temperature (precipitation), based201

on observed temperature (precipitation). Besides, we have also considered a MOS202

downscaling configuration in which this same LR method is applied considering203

T850 (Q300) —see Table 1— as unique predictor to forecast temperature (precip-204

itation). As a compromise between capturing some skill in the model predictors205

(e.g. correlation with reanalysis data) and retaining a sufficiently large sample size206

for calibration, the LR method is applied in this work on the monthly means in207

both cases (referred hereafter to as LR and MOS-LR, respectively).208

Among the wide range of alternatives proposed in the literature for PP down-209

scaling, we have selected three of the most representative ones: Multiple Linear210

Regression (MLR), Generalized Linear Models (GLMs) and the analog technique.211

MLR (GLMs) are used in this work to downscale temperature (precipitation). The212

analog technique is common to both predictand variables. MLR is an extension213

of simple linear regression which attempts to model the relationship between two214

or more explanatory predictors and the predictand by fitting a linear equation by215

minimizing the sum of the residuals between the regression line and the observed216

data. A detailed description on the theory of this technique is provided by Helsel217

and Hirsch (2002). Regression-based methods have also been used in previous218

works to downscale seasonal forecasts of temperature (see, e.g., Pavan et al, 2005).219

GLMs were formulated by Nelder and Wedderburn (1972) in the 1970s and are220

an extension of the classical linear regression which allows to model the expected221

value for non-normally distributed variables. GLMs have been already applied222

to downscale seasonal forecasts (Manzanas et al, 2018). We follow here the two-223

stage implementation used in the latter reference, in which a GLM with Bernoulli224

error distribution and logit canonical link-function (also known as logistic regres-225

sion) is applied to downscale daily precipitation occurrence (as characterized by a226

threshold of 1mm) and a GLM with gamma error distribution and log canonical227

link-function is used to downscale daily precipitation amount. In order to increase228

the predicted variance, which is usually underestimated in deterministic config-229

urations (Enke, 1997), we introduce here a stochastic component in both GLMs230

(see Manzanas, 2016, for details). For this method, we considered as predictors231

the standardized anomalies of the predictors considered at the nearest model grid-232

box (for each predictand location). The popular analog technique (Lorenz, 1969)233

estimates the local downscaled values corresponding to a particular atmospheric234
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configuration (as represented by a number of model predictors defined over a cer-235

tain geographical domain) from the local observations corresponding to a set of236

similar (or analog) atmospheric configurations within a historical catalog formed237

by a reanalysis. Here, only the closest analog is considered (Zorita et al, 1995;238

Cubasch et al, 1996). Analogs are defined based on the standardized anomalies239

of the predictors considered at the 16 nearest model gridboxes (i.e., over a 4x4240

square centered around each predictand location which allows to encompass the241

main synoptic phenomena influencing the local climate) and the Euclidean norm242

is considered. Analog-based methods have been applied in several previous studies243

to downscale precipitation in the context of seasonal forecasting (see, e.g., Fŕıas244

et al, 2010; Wu et al, 2012; Shao and Li, 2013; Manzanas et al, 2018). In spite of245

its simplicity, the analog technique performs as well as other more sophisticated246

ones (Zorita and von Storch, 1999) and it is one of the most widely used.247

To avoid the artificial performance that may derive from model overfitting,248

all the methods considered in this work are applied under a Leave-One year-Out249

(LOO) cross-validation (Lachenbruch and Mickey, 1968) scheme, in which each250

year was separately considered for test, whilst the remaining ones were kept for251

training. Note that this is the most adequate framework to test the potential252

usefulness of any method for operational seasonal forecasting.253

2.4 Selection of predictors for MOS and PP methods254

To cope with the issue of predictor selection in PP methods (see, e.g., Gutiérrez255

et al, 2013; San-Mart́ın et al, 2016), Figure 1 shows the existing correlation between256

each of the large-scale variables listed in Table 1 and local temperature (left)257

and precipitation (right), computed on the daily time-series. The idea behind this258

analysis is that the higher the correlation (either positive or negative), the stronger259

the physical link between predictor and predictand is, which allows to make an260

initial selection of explicative predictors for PP downscaling. However, Manzanas261

et al (2018) have shown that the results coming out from PP methods in the262

context of seasonal forecasting also depend on the skill of the model predictors263

considered. Therefore, both the strength of the predictor-predictand relationship264

and the skill of the model in reproducing the large-scale should be taken into265

account when making the final selection of predictors for PP methods.266

Figure 2 shows the interannual correlation between ERA-Interim and ECMWF-267

System4 for each of the variables listed in Table 1. Whereas high skill (understood268

as the agreement between model and reanalysis) is found for SLP, geopotential269

height and temperatures, significant discrepancies appear for some humidity fields270

(in particular Q850) and winds (both U and V). For this reason, we have ex-271

cluded Q850 and winds from the set of potential predictor variables, since they272

might negatively affect the results obtained from PP (and MOS) methods. With273

this limitation in mind, and with the idea of keeping the predictor sets as sim-274

ple as possible, the final combination considered for temperature (precipitation)275

was SLP+T850 (SLP+Q300). Note that, for the particular case of precipitation,276

although Q850 may be more explicative than Q300 (Figure 1), the former vari-277

able was discarded in favor of the latter since it is not well reproduced by the278

ECMWF-System4 (Figure 2).279
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For consistency with the LR method, T850 (Q300) is considered as unique pre-280

dictor in the MOS configuration used here to predict temperature (precipitation).281

SLP

Z850 Z500 Z300

T850 T500 T300

Q850 Q500 Q300

U850 U500 U300

V850 V500 V300

−1.0

−0.5

0.0

0.5

1.0
ρ

SLP

Z850 Z500 Z300

T850 T500 T300

Q850 Q500 Q300

U850 U500 U300

V850 V500 V300

Temperature Precipitation

Fig. 1 Correlation between each of the large-scale predictors listed in Table 1 and local
temperature (left) and precipitation (right), computed on the daily time-series.

3 Results282

3.1 Intercomparison of approaches and methods283

The top/bottom panel in Figure 3 shows the validation results obtained for the284

raw and post-processed interannual predictions of temperature/precipitation, in285

terms of different metrics (in rows). In all cases, column 1 refers to the raw model286

outputs. The rest of columns correspond to the different methods considered from287

the different approaches (BC: columns 2-3, RC: column 4, MOS: column 5 and288

PP: columns 6-7). For all of them, results are expressed with respect to those289

shown in column 1, either as skill scores (CRPSS, RPSS and ROCSS) or as direct290

differences (for correlation). Thus, values above (below) 0, shown in blue (red),291

indicate that the particular method improves (degrades) the raw model prediction.292

Note that the RPSS and the ROCSS are computed for probabilistic forecasts of293

tercile categories, which are separately computed for the observations and the294

predictions (this entails an implicit bias adjustment in the forecasts).295
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This figure indicates that all the methods tested here provide a clear benefit in296

the CRPSS, which is a consequence of effectively removing the important model297

biases present over the region (see Figure 1 in Manzanas et al (2019)). Note that298

this result —which was already found for BA and RC methods in Manzanas et al299

(2019)— is key, since unbiased predictions are needed by many different commu-300

nities to run their seasonal impact models. However, beyond this improvement301

in the CRPSS, neither BA nor RC techniques (the latter represented by the LR302

method) are able to outperform the raw forecasts for any of the remaining met-303

rics, leading in general to slightly worse results over the entire domain for all of304

them. This deterioration is even more evident for the LR method, and especially305

for correlation —note that RC methods can lead to artificial anti-skill (i.e. anti-306

correlations) in regions of small (or negative) raw model correlations (Eade et al,307

2014).— It is worth to mention that the EQM tested here (and also the PQM) lead308

only to slightly better results than those shown for the same method in Manzanas309

et al (2019), where it was applied on the seasonal (instead of daily) time-series.310

Moreover, to assess the dependency of the results provided by BA methods on311

the temporal resolution considered, both EQM and PQM were also applied on the312

monthly time-series, finding only slightly worse (better) results than in the daily313

(seasonal) case. Therefore, we do not recommend the application of BA meth-314

ods on daily data in case only monthly/seasonal data is needed (note that the315

slight improvement found for higher temporal resolutions does not compensate316

the increasing computational costs).317

Differently from BA and RC, MOS and PP methods provide much more local318

results, being possible to find areas where the downscaled predictions either out-319

perform or degrade (notably in some cases) the raw model forecasts. These results320

are in agreement with those found in Manzanas et al (2018), who suggested that321

the suitable application of PP methods was subjected to particular (and limited)322

windows of opportunity for which 1) there exists a strong link between the large-323

and the local-scale and 2) the model is better at reproducing the relevant large-324

scale predictors considered for downscaling than the local predictand of interest325

(this can typically happen for variables needing some kind of parametrization,326

such as precipitation). Again, the results from this work warn on the unexpert use327

of MOS and PP methods, as they must be carefully analyzed for the particular328

case-study of interest.329

Figure 4 shows the results obtained for the extreme and spell indicators.330

Whereas column 1 corresponds to the observations, column 2 corresponds to the331

raw model outputs and columns 3-7 to the different the methods considered. In332

columns 2-7, the results are expressed as differences (e.g. bias) with respect to the333

observed values of column 1. Note that neither the RC nor the MOS version of334

the LR method are considered for this analysis since it cannot be applied at a335

daily scale. For temperature, the cold bias exhibited by the model in the analyzed336

percentiles is corrected by all methods except the MLR, which exhibits a warm337

(cold) bias for the 2nd (98th) percentile. This is due to an underestimation of the338

predicted variance which is typical of these methods, and could be alleviated by339

introducing some inflation procedure (see, e.g., Huth, 1999). For spells, the two BA340

methods maintain the same errors exhibited by the model (the more green/brown,341

the longer/shorter the predicted spell is, as compared to observations), since they342

are not able to modify its temporal structure. Differently, since PP methods can343

alter this temporal structure, they are found to modify the spatial patterns ex-344
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hibited for the model, being possible to find some areas where the model error is345

reduced. However, they can also introduce errors in new regions which can be even346

higher than those present in the raw model.347

For precipitation, the two BA methods lead to different results. In particular,348

similarly as for temperature, the PQM method inherits a great part of the errors349

exhibited by the raw model, which are only partially corrected (see the results350

obtained for the frequency of rainy days and the percentile 98th of rainy days).351

However, as a consequence of the frequency adaptation implemented, these errors352

are corrected to a higher extent in the EQM method. Despite they lead in general353

to higher errors than the EQM, the spatial patterns found for the PP methods are,354

in some cases, more uniform (see, e.g., the results obtained for the 98th percentile of355

rainy days in the GLM method). Note that, in such situations, simple a-posteriori356

corrections (e.g. scaling) could be easily applied to further improve the results357

obtained for PP methods.358

In summary, despite correcting marginal aspects such as extreme percentiles,359

our results indicate that BA methods are not in principle a good candidate to360

correct spells, since they mostly inherit the errors present in the model. However,361

for the particular case of precipitation, and provided that some form of frequency362

adaptation is applied, these methods can be a good alternative (see the results363

for the EQM). However, as main shortcoming, these methods do not improve (or364

even slightly degrade) the interannual model skill (see the results obtained for365

correlation, RPSS and ROCSS in Figure 3). Differently, PP methods are highly366

case-dependent and their application must be carefully analyzed for the case-study367

of interest, since they can either improve or degrade the raw model outputs. The368

strongest advantage of PP methods is that, whilst being competitive (as compared369

to BA ones) over some regions for predicting extremes and spells, it is possible to370

find windows of opportunity for which interannual model skill can be also improved371

(regions/seasons for which the model skill is higher for the large-scale than for the372

target predictand). Nevertheless, when the predictors selected for downscaling are373

not well reproduced by the model, PP methods can also lead to unsuitable results.374

For instance, if Q300 is substituted by Q850 in the predictor set used to downscale375

precipitation, the results shown in Figures 3 and 4 strongly worsen (not shown). As376

suggested in Manzanas et al (2018), an explanation for this behaviour comes from377

the fact that the model skill for reproducing Q850 is more limited (see Figure 2).378

As a result, the statistical link that is learnt using reanalysis data in PP methods379

becomes meaningless when applied to model predictors (the use of Q850 instead of380

Q300 leads to much better cross-validated results when using reanalysis predictors;381

not shown).382

3.2 The effect of observational uncertainty383

Observational uncertainty has been identified as one of the factors that may play384

a role in the statistical post-processing of model forecasts (see, e.g. Kotlarski et al,385

2017; Herrera et al, 2018), since all the adjustment/calibration/downscaling meth-386

ods rely on observations for the training process. To assess the potential impact387

of this factor, we repeat in this section some of the analysis above presented but388

replacing ERA-Interim by both SA-OBS and MSWEP.389
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In particular, we focus on precipitation —for which observational uncertainty390

is known to be larger— and consider SA-OBS (the only dataset purely based391

on gauge data) as the ground truth, since it has been found to closely resemble392

punctual gauge-based measures in terms of dry/wet frequency, timing of rainy393

days and extremes (van den Besselaar et al, 2017). Figure 5 provides a compari-394

son between ERA-Interim/MSWEP and SA-OBS (left/middle column), in terms395

of their interannual time-series. In addition, ERA-Interim and MSWEP are also396

compared (right column). Whereas ERA-Interim and MSWEP show in general397

good agreement (with correlation values above 0.8 in most of the gridboxes), im-398

portant differences are found between ERA-Interim and SA-OBS (with rather low,399

or even negative values over certain parts such as Sumatra). Comparison between400

ERA-Interim and MSWEP yields intermediate results. These findings point out401

the limitations of reanalysis data to reproduce the actual climate of the region,402

which presents thousands of islands, strong land-sea contrasts and a complex to-403

pography. In this regard, note that the inclusion of satellite information in MSWEP404

helps to correct the deviations from reality found in ERA-Interim.405

For each of the metrics shown in Figure 6 (7), the middle/bottom row would be406

the equivalent to those shown in Figure 3 (4) but using SA-OBS/MSWEP instead407

of ERA-Interim for both training and verification of the different methods. For408

direct comparison, the top row shows the same results presented in Section 3.1,409

but only over land. Whereas the results for the interannual time-series (Figure 6)410

are almost identical for ERA-Interim and MSWEP —note from the comparison411

against raw model outputs (left column) that both datasets are very similar,—412

some regional differences (see, e.g., over Borneo and Papua) appear with respect413

to the results found for SA-OBS, in particular for MOS and PP methods (this414

effect is less pronounced for BA ones). However, when it comes to the extreme and415

spell indicators (Figure 7), these differences become more relevant and not only for416

MOS and PP methods, but also for BA ones. For instance, important performance417

discrepancies are found for most of the indicators for the case of the PQM method418

depending on the reference considered (even between ERA-Interim and MSWEP).419

Although analyzing in detail all the differences found region by region and method420

by method is not the purpose here, Figures 6 and 7 reveal that the choice of421

observational dataset can have important effects for the post-processing of seasonal422

forecasts. This issue seems to be specially relevant for MOS and PP methods, for423

which notable differences are found even in terms of interannual skill. This poses an424

important challenge for seasonal forecasting; in particular over the tropics, where425

large observational uncertainty has been identified, not only for observations but426

also for reanalysis (see, e.g., Brands et al, 2012; Manzanas et al, 2015). Moreover,427

seasonal models tend to exhibit the highest interannual skill in tropical latitudes428

(see, e.g., Manzanas et al, 2014b), being thus difficult to improve their raw forecasts429

there. As a consequence of these limitations, BA methods may be, in general,430

a more secure alternative for downscaling in the tropics. Nevertheless, beyond431

interannual skill, it is very important to warn on the potential conflicts that may432

arise related to the choice of observational uncertainty, even for BA methods, in433

terms of other forecast aspects such as extremes and spells.434
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4 Conclusions and User Recommendations435

This section summarizes the main conclusions obtained in Manzanas et al (2019)436

and in this work and provides a set of recommendations for practitioners on the437

advantages and limitations of the different approaches available for the appro-438

priate post-processing of dynamical seasonal forecasts. These approaches, which439

aim to reduce the systematic model biases and increase their skill (as measured440

by different quality aspects), range from bias adjustment (BA) and ensemble re-441

calibration (RC) methods —both acting directly on the variable of interest; e.g.,442

model precipitation— to more complex statistical downscaling techniques such443

as Model Output Statistics (MOS) and Perfect Prognosis (PP) methods —which444

operate on a selection of large-scale circulation predictor variables (e.g. model445

geopotential and humidity at different vertical levels) linked to the predictand446

variable of interest (e.g. observed precipitation).—447

Besides the nature of the predictor/s used, one of the key differences between448

these approaches is the suitable temporal scale/s of application: daily for BA and449

PP and monthly/seasonal for RC and MOS methods (BA can be also directly450

applied to monthly/seasonal data; being thus the most versatile alternative). Note451

that MOS and PP are the most complex ones since they involve the selection of452

suitable large-scale predictors, which is typically a hard, time-consuming task that453

may require the guidance of an expert.454

In terms of performance, all these approaches effectively adjust the large bi-455

ases exhibited by the raw model predictions, which is of paramount importance456

for users, particularly when climate information is needed to run impact models457

for different sectors (e.g. hydrology, agriculture, health, etc.) or for the computa-458

tion of indices that depend on absolute values/thresholds. However, there is no459

single approach/technique that systematically provides further benefits in terms460

of bias-insensitive metrics. In case of BA methods, this is due to their incapability461

to modify the temporal structure of the raw model forecasts (see, e.g., Maraun462

et al, 2017). However, the application of these methods is straightforward and463

constitutes a pragmatic and versatile simple choice in cases where a quick post-464

processing is needed, no expert knowledge on the regional climate is available, the465

resolution of the model is similar to that of the observational reference considered466

(BA does not perform downscaling) and/or for regions with no expected potential467

for downscaling (e.g. flat inland areas). Moreover, although this approach suffers468

from some limitations (Maraun et al, 2017), its application to seasonal forecast-469

ing does not build on strong extrapolation assumptions as in the case of climate470

change applications.471

As compared to BA methods, RC ones can result in modest improvement of472

some quality aspects (in particular reliability, although other aspects can be de-473

graded). Nevertheless, these improvements are restricted to regions/seasons with474

high model skill. In addition, since they operate on a monthly/seasonal basis, RC475

methods can be negatively affected by the limited length of state-of-the-art sea-476

sonal hindcasts (which typically have less than 30 years; e.g. the C3S dataset)477

and, therefore, appropriate cross-validation (typically leave one-year out) is re-478

quired in order to avoid overfitting and spurious skill. Note however that this is479

not a worrying factor neither in PP methods nor in BA ones working with daily480

data.481
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Differently from BA and RC methods, MOS and PP methods can improve all482

quality aspects for particular and limited spatial regions for which the skill of the483

model is weaker for the target variable (e.g. precipitation) than for the informative484

predictors used in the downscaling process (e.g. humidity and/or winds). Never-485

theless, the reverse situation is also possible (see Manzanas et al, 2018, for a case486

study for PP methods), which warns on the uniformed use of these methods, as487

they must be carefully analyzed for the particular case-study of interest. Note that,488

although both MOS and PP methods rely on large-scale predictors, the complexity489

and requirements for the former are much lower than for the latter. Whereas MOS490

methods establish the relationship between the large-scale seasonal forecasts and491

observational reference records using directly the hindcast (with correspondence492

with observations at a monthly/seasonal scale), PP methods have the extra com-493

plexity of building the relationships at a daily basis using reanalysis data (with494

day-to-day correspondence with observations). This typically requires a compre-495

hensive screening process in order to detect robust predictors similarly represented496

in both the reanalysis and the model hindcast. Moreover, PP methods may suf-497

fer from reanalysis uncertainty, which is particularly relevant in the tropics (see,498

e.g., Brands et al, 2012; Manzanas et al, 2015), where seasonal forecasts exhibit499

the highest skill (see, e.g., Manzanas et al, 2014b). This supposes an extra over-500

head which needs to be appropriately assessed and planned before applying these501

techniques since, sometimes, the windows of opportunity for improvement are so502

narrow that the effort may result useless.503

Based on all these findings, our overall recommendation would be the use of504

versatile, easy to implement BA methods for those cases for which the use of505

MOS and PP methods cannot be carefully tested by experts. Note that BA are506

suitable for both daily and monthly timescales and provide competitive results507

in most situations (especially over the tropics). However, we want to remark the508

fact that the choice of observational dataset can have important effects for the509

post-processing of seasonal forecasts. Even though MOS and PP methods seem to510

be more affected by this issue (which can lead to important regional differences511

in term of interannual skill), also BA methods may be sensitive to observational512

uncertainty, especially regarding the reproduction of extreme and spell indicators,513

which are important for many practical applications.514

Finally, from a more practical point of view, it is also important to note that515

there are significant differences in terms of computational cost among distinct516

approaches (and even among different methods within the same approach) for517

adjustment/calibration/downscaling, which may be especially relevant for their518

potential usability in real-time user-tailored applications (e.g. certain climate ser-519

vices).520
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RM, Bosshard T, Pagé C, Boberg F, Gutiérrez JM, Isotta FA, Jaczewski A,582

Kreienkamp F, Liniger MA, Lussana C, Pianko-Kluczyńska K (2017) Obser-583
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variables (potential predictors) listed in Table 1. For completeness, results are also shown for
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Fig. 4 Validation results for a number of extreme indices obtained for the daily series of
temperature (top) and precipitation (bottom). See the text for details.
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Fig. 5 Comparison of ERA-Interim, SA-OBS and MSWEP precipitation, in terms of corre-
lation for the interannual time-series.
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Fig. 6 As bottom panel of Figure 3, but including the results obtained when using SA-
OBS/MSWEP for both training and verification of the different methods (middle/bottom row
of each metric). For direct comparison, the results shown in Figure 3 for ERA-Interim (top
row of each metric) are only displayed over land.
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Fig. 7 As bottom panel of Figure 4, but including the results obtained when using SA-
OBS/MSWEP for both training and verification of the different methods (middle/bottom row
of each metric). For direct comparison, the results shown in Figure 4 for ERA-Interim (top
row of each metric) are only displayed over land.




