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Abstract

Many nonlinear phenomena, whose numerical simulation is not straightfor-

ward, depend on a set of parameters in a way which is not easy to predict

beforehand. Wildland fires in presence of strong winds fall into this category,

also due to the occurrence of firespotting. We present a global sensitivity

analysis of a new sub-model for turbulence and fire-spotting included in a

wildfire spread model based on a stochastic representation of the fireline. To

limit the number of model evaluations, fast surrogate models based on gen-

eralized Polynomial Chaos (gPC) and Gaussian Process are used to identify

the key parameters affecting topology and size of burnt area. This study

investigates the application of these surrogates to compute Sobol’ sensitiv-

ity indices in an idealized test case. The performances of the surrogates for

varying size and type of training sets as well as for varying parameterization

and choice of algorithms have been compared. In particular, different types
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of truncation and projection strategies are tested for gPC surrogates. The

best performance was achieved using a gPC strategy based on a sparse least-

angle regression (LAR) and a low-discrepancy Halton’s sequence. Still, the

LAR-based gPC surrogate tends to filter out the information coming from

parameters with large length-scale, which is not the case of the cleaning-

based gPC surrogate. The wind is known to drive the fire propagation. The

results show that it is a more general leading factor that governs the genera-

tion of secondary fires. Using a sparse surrogate is thus a promising strategy

to analyze new models and its dependency on input parameters in wildfire

applications.

Keywords: Sensitivity Analysis, generalized Polynomial Chaos, Gaussian

Process, Wildland fire
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Nomenclature1

Table 1: List of abbreviations

Abbreviation Meaning
ABL Atmospheric Boundary Layer
FT Free Atmosphere
GP Gaussian Process
gPC generalized Polynomial Chaos
LAR Least Angle Regression
LSM Level Set Method
MSR Minimum Spanning Rectangle
PDF Probability Density Function
ROS Rate of Spread
SLS Standard Least Squares
STD STandard Deviation
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Table 2: List of important static and dynamic model parameters.

Model quantities Units
B(t), burnt area at time t –
f , PDF of the random process m−2

G(x; t), isotropic bivariate Gaussian PDF of turbulence m−2

q(l), lognormal PDF of firebrand landing distance m−1

x = (x1, x2), horizontal space variable m
nfr, normal direction to the fireline –
nU, unit vector aligned with the mean wind direction –
t, time s
φ, level-set function –
Ω, 2–D computational domain –
|Ω|, area of the computational domain m2

Physical Model Parameters Value/Units
Cd, drag coefficient –
D, turbulent diffusion coefficient m2 s−1

g, acceleration due to gravity 9.8 m s−2

h, dimension of convective cell 100 m
H, fire plume height m
I, fireline intensity kW m−1

Pf0, reference fire power 106 W
U, horizontal wind vector field at mid-flame height m s−1

‖U‖, horizontal wind magnitude m s−1

V , rate of spread m s−1

zp, pth percentile 0.45
∆hc, heat of combustion of wildland fuels 18,620 kJ kg−1

(µ, σ) , parameters of the log-normal PDF q(l) –
ρa, air density 1.2 kg m−3

ρ∗f , wildland fuel density (Pinus Ponderosa) 542 kg m−3

ω0, oven-dry mass of wildland fuel 2.243 kg m−2

τ , ignition delay of firebrands s
χ, air thermal diffusivity 2 · 10−5 m2 s−1

∆T , temperature difference of convective cell 800-923 K
`, firebrand landing distance m
ν, kinematic viscosity 1.5 · 10−5 m2 s−1

γ, thermal expansion coefficient K−1

αH , βH , γH , δH , coefficients for fire plume height H –
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Table 3: List of important algorithmic parameters.

At, burnt area ratio at time t
d, dimension of the stochastic space (d = 3)
DN , training set of size N
M, forward model
Mpc, gPC-expansion
N , size of the training set
P , total polynomial order
q, hyperbolic truncation parameter
r, number of terms in the surrogate basis
St, minimum spanning rectangle ratio at time t
y, quantity of interest
ŷ, estimate of the quantity of interest y
y(k), kth realization of the quantity of interest y
A, set of selected multi-indices in gPC-expansion
α, multi-index for gPC-expansion
δ, Kronecker delta-function
θ = (θ1, · · · , θd), vector of uncertain input parameters, [‖U‖ , I, τ ] or [µ, σ,D]
θ(k), kth realization of the uncertain input vector θ
ζ = (ζ1, · · · , ζd), vector θ in standard probabilistic space
ρθi , marginal PDF of ith input parameter in θ
ρζ, joint PDF of θ in standard probabilistic space
Ψα, αth basis function for surrogate model
Φαi

, ith one-dimensional basis function
γα, αth coefficient in the surrogate basis
γ, vector of surrogate coefficients(
ω(k), ζ(k)

)
, kth quadrature weight and root

`gp, correlation length-scale for GP-model
σgp, observable standard deviation for GP-model
τgp, nugget effect for GP-model
π(θ,θ′), correlation kernel for GP-model
εemp, empirical training error
Q2, cross-validation predictive coefficient
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1. Introduction2

Despite our recent progress in computer-based wildland fire spread mod-3

eling and remote sensing technology, our general understanding of wildland4

fire behavior remains limited. This is mainly due to the complexity of wild-5

fire dynamics that results from multi-scale interactions between biomass py-6

rolysis, combustion and turbulent flow dynamics, heat transfer as well as7

atmospheric dynamics [1, 2, 3, 4, 5, 6]. Turbulence plays an important role:8

wildland fires release large amounts of heat that lead to the development9

of a turbulent flow in the vicinity of the flame zone and thereby enhance10

the heat transfer to unburnt fuel, boosting biomass fuel ignition, combustion11

and fire spread. There is therefore a strong coupling between wildland fires12

and micrometeorology [7, 8, 9, 10, 11, 12]. When extreme conditions are13

met in complex terrain such as canyons in combination with strong winds14

and severe drought, highly destructive fires referred to as “megafires” can15

develop [13, 14, 15, 16]. For such fires, a massive buoyant smoke plume16

forms above the flame zone modifying micro-meteorological conditions [17]17

and thereby fire spread conditions. Windborne embers can be transported18

over large distances, causing fire spotting and further ignitions downstream19

from the current fire, leading to multiple “spot fires” that are difficult to20

stop by firefighters and that dramatically increase fire danger. Turbulence21

and fire-spotting result from very nonlinear effects that are still poorly un-22

derstood and that have been identified as a valuable research target with23

direct applications in fire emergency response, especially at wildland-urban24

interface [18].25

The representation of these processes is beyond the scope of current oper-26
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ational wildfire spread models. At regional scales (i.e. at scales ranging from a27

few tens of meters up to several hectares), a wildland fire is indeed represented28

as a two-dimensional propagating interface (referred to as the “fire front” or29

“fireline”) separating the burnt area to the unburnt vegetation; the local30

propagation speed is called the “rate of spread” (ROS). This front represen-31

tation is the dominant approach in current wildfire spread simulators such as32

FARSITE [19], FOREFIRE [20, 12], PROMETHEUS [21], PHOENIX Rapid-33

Fire [22], SFIRE [11] or ELMFIRE [23]. These simulators rely on an empiri-34

cal parametrization of the ROS that is derived from steady-state assumption35

and that is an analytic function of biomass fuel properties, topographical36

properties and micro-meteorological conditions [24]. The ROS submodel is37

included in an Eulerian or Lagrangian front-tracking solver to simulate the38

fireline propagation. This approach is limited in scope [25, 26, 27] due to39

the large uncertainties associated with the input parameters of the ROS40

model [28, 29], which can be partially reduced by integrating real-time fire41

front measurements through data assimilation [11, 30, 31, 32, 33, 34, 35, 36].42

This approach is also limited due to the lack of knowledge on the physics of43

the fire problem [5], in particular on the processes associated with turbulence44

and fire-spotting.45

These modeling limitations at regional scales have motivated investiga-46

tion of turbulence and fire-spotting effects both from experimental and mod-47

eling viewpoints [37, 38, 39, 40, 18, 41, 42, 43, 44]. To better characterize48

these nonlinear processes, there is a need to develop new submodels includ-49

ing the effects of random processes such as turbulence and fire-spotting in50

operationally-oriented wildfire spread models. This is one of the objectives of51
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the work proposed in [45, 46, 47, 48], which introduces a randomized repre-52

sentation of the fireline. A novel family of reaction-diffusion equations have53

been developed to link front models to reaction-diffusion ones and thereby54

integrate the effects of random processes in fire models. The front propaga-55

tion is randomized by adding to the driving function, a random displacement56

distributed according to a probability density function (PDF) corresponding57

to heat turbulent transport and fire-spotting landing distance. The driving58

equation of the resulting averaged process is analogous to an evolution equa-59

tion of the reaction-diffusion type, where the ROS controls the source term.60

In absence of random processes, the model is identical to the one given by61

the standard wildfire spread model, which is only driven by the ROS analytic62

function.63

Including new modeling components in wildfire spread simulators adds64

some complexity and in particular introduces new model parameters. There65

is therefore a strong need to perform sensitivity analysis to analyze in a66

rigorous way the model structure, i.e. the dependency between the input pa-67

rameters and the simulated quantities of interest (here, the topology and the68

extension of the burnt area at a given time). The objective in such an exten-69

sive global sensitivity analysis is two-fold. First, sensitivity analysis identifies70

the most influential parameters on the model predictions over a wide range71

of values for the model parameters, ranks them by order of importance and72

spots unimportant parameters [49, 50, 51]. This is helpful to provide hints73

and guidelines about the physical processes that are essential to account for74

to track wildland fire behavior. Second, sensitivity analysis is a mandatory75

step to select which are the estimation targets to consider when the wild-76
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fire spread model is integrated in a data assimilation framework to produce77

short-term predictions of wildfire behavior; the model parameters shall in-78

deed be uncertain and the quantities of interest shall be sensitive to changes79

in these model parameters to ensure data assimilation is efficient [52, 32, 35].80

When relying on stochastic non-intrusive methods (meaning that no mod-81

ification of the physical model, also referred to as the “forward model”, is82

required), global sensitivity analysis requires the use of an ensemble of model83

evaluations. This procedure can be divided into three steps: i) characteriza-84

tion of the variability in the model parameters based on available information85

and statistical sampling to obtain an ensemble of parameter values; ii) mul-86

tiple evaluations of the forward model while accounting for the identified un-87

certainties to obtain an ensemble of quantities of interest (the forward model88

is used as a “black-box”); and iii) computing Sobol’ sensitivity indices [53]89

that provides a relative measure of how the variability of the model response90

is affected by the variability in each uncertain parameter (this variability is91

measured in terms of variance). Computing these Sobol’ indices therefore92

requires to have access to an accurate mapping between the uncertain in-93

puts and the quantities of interest. This is computationally intensive when94

using standard Monte Carlo sampling method since this method features a95

slow convergence rate and thus requires a large ensemble to obtain reliable96

statistics. The cost of global sensitivity analysis is significantly reduced when97

the forward model is replaced by a surrogate model that mimics its response98

for the considered range of the model parameters. The formulation of such99

a surrogate requires a limited number of model evaluations, referred to as100

the “training set”. Then the surrogate can be evaluated multiples times at101
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almost no cost to evaluate uncertainties in the quantities of interest and/or102

perform sensitivity analysis [54, 55, 56, 57, 58].103

There are various ways of formulating a surrogate. In the present work,104

we focus our attention on generalized polynomial chaos (gPC) expansions [59,105

60, 61, 54, 62] and Gaussian process (GP) models [63, 64, 57, 55, 65, 66, 67].106

The gPC-approach formulates a polynomial expansion, in which the basis is107

defined according to the PDF of the uncertain parameters and in which the108

associated weights directly relate to the statistics of the quantities of interest.109

This implies that by construction the quantities of interest are projected110

upon the same basis as the input parameters. The GP-approach adopts a111

different viewpoint by considering the simulated quantities of interest as a112

realization of a Gaussian stochastic process conditioned by the training set.113

This stochastic process is fully characterized with mean and covariance kernel114

functions, which rely on the estimation of hyperparameters. Both gPC and115

GP surrogates are compared in the literature for uncertainty quantification116

and sensitivity analysis studies [57, 58, 68, 69]. Still, the ranking between117

gPC and GP approaches remains problem-dependent. It is thus of great118

interest to compare these approaches for application in wildland fires.119

In wildland fire applications, the performance of the gPC-approach has120

already been demonstrated within the framework of data assimilation to121

reduce the computational cost of sequential parameter estimation [32, 36].122

However, the gPC-algorithm relied on the use of a full basis and a stan-123

dard spectral projection method. Building the surrogate this way may be124

too costly for high-dimensional problems, i.e. when the number of uncertain125

parameters increases. There exists more advanced gPC-strategies in the lit-126
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erature to reduce the number of elements in the gPC basis and thus reduce127

the required size of the training set, see [70, 71, 72]. Due to the multiple128

sources of uncertainty in wildland fire models, there is a strong need to eval-129

uate the performance of gPC and GP approaches, i.e. for varying size and130

type of the training set as well as for varying parameterization and choice of131

the surrogate algorithms. In the present study, the objective is to determine132

what is the best surrogate strategy to compute Sobol’ sensitivity indices and133

thereby examine the relevance of the parameters that are part of the turbu-134

lence and fire-spotting submodel included in the wildfire spread model [47].135

Our objective is to identify the key parameters affecting the topology and136

the size of the burnt area that is simulated by an Eulerian-type fire spread137

model (LSFire+) and that corresponds to an idealized test case. For this138

purpose, we compare the performance of gPC-expansion and GP-model in139

their standard and sparse versions for a fixed size of the training set with dif-140

ferent designs of experiment (Monte Carlo random sampling, quasi-random141

Halton’s sequence, quadrature rule); a convergence study is carried out to142

determine the required size of the training set to ensure accuracy.143

The structure of the paper is as follows. Section 2 introduces the wild-144

fire spread model, the main sources of uncertainty, the quantities of interest145

and the idealized test case study. The gPC and GP approaches are de-146

tailed in Section 3 along with statistical analysis tools and error metrics.147

Section 4 presents the results of the comparative study between gPC and148

GP algorithms for different types of truncation, projection and training set.149

Conclusions and perspectives are given in Section 5.150
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2. Wildland Fire Model and Sources of Uncertainties151

2.1. Forward Model152

We focus the present study on Eulerian-type wildfire spread model (LSFire+)153

based on level-set methods [73, 74, 75]. This is similar to the approach154

adopted in the ELMFIRE fire simulator [23, 76] or the WRF-SFIRE coupled155

fire-atmosphere system [11].156

2.1.1. Deterministic Front Propagation157

To represent the time-evolving burning active areas over the computa-158

tional domain Ω ⊂ R2, we introduce an implicit function φ ≡ φ(x, t) as159

the fireline marker with φ : Ω × [0; +∞[→ R. The fireline is identified as160

the contour line φ(x, t) = φ∗ referred to as the “level set”. We thus denote161

the time-evolving two-dimensional burnt area as B(t) = {x = (x1, x2) ∈162

Ω |φ(x, t) > φ∗}.163

The temporal evolution of the level set φ(x, t) = φ∗ is governed by the164

Eikonal equation165

∂φ

∂t
(x, t) = V(x, t) ‖∇φ(x, t)‖ , φ(x, 0) = φ0(x), x ∈ Ω, t ≥ 0, (1)

where V corresponds to the ROS parameterization that is a function of the166

wind field U(x, t), orography and biomass fuel conditions, and where φ0(x)167

is the initial condition at time 0. The propagation of the fireline is assumed168

to be directed towards the normal direction to the front.169
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2.1.2. Random Front Formulation170

The stochastic approach that is adopted in the present study is based171

on the idea of splitting the motion of the fireline into a drifting part and a172

fluctuating part [47, 77, 48]. The drifting part corresponds to the resolution173

of the deterministic problem in Eq. (1). The fluctuating part results from a174

comprehensive statistical description of the dynamic system, which includes175

random effects in agreement with the physics of the system.176

The motion of each burning point can be random due to the effect of177

turbulence and/or fire-spotting. The effective indicator function, φe(x, t) :178

B× [0,+∞[→ [0, 1] emerges from the superposition of the front weighted by179

the distribution of fluctuations around the deterministic front, i.e.180

φe(x, t) =

∫
B
φ(x, t) f(x; t|x) dx, (2)

where f(x; t|x) denotes the PDF of the displacement of the active burning181

points around the mean position x. An arbitrary threshold value φe,fr is used182

as the criterion to separate burnt area and unburnt area. The effective burnt183

area is therefore defined as Be(x, t) = {x ∈ B | φe(x, t) > φe,fr}.184

Note that the PDF f(x; t|x) is associated with two independent random185

variables representing turbulence and fire-spotting, with fire-spotting a down-186

wind phenomenon acting along the wind direction. f(x; t|x) is expressed as187

188

f(x; t|x) =



∫ ∞
0

G(x− x− ` nU ; t) q(`; t) d` , n · nU ≥ 0 ,

G(x− x; t), otherwise ,

(3)
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where nU is the unit vector aligned with the mean wind direction, where189

G(x− x; t) is the PDF associated with turbulent diffusion, and where q(`; t)190

is the PDF associated with firebrand landing distance `. We follow the191

same choices as in [47, 77, 48]. Hence, we assume that turbulent diffusion is192

isotropic and represented as a bivariate Gaussian PDF193

G(x− x; t) =
1

4πD t
exp

{
(x1 − x1)2 + (x2 − x2)2

4D t

}
, (4)

where D is the turbulent diffusion coefficient. We also assume that the194

downwind distribution of the firebrands follows a log-normal distribution195

q(`; t) =
1√

2π σ `
exp

{
−(ln `/`0 − µ)2

2σ2

}
, (5)

where µ ≡ µ(t) = 〈ln `/`0〉 and σ ≡ σ(t) =
√
〈(ln `/`0 − µ)2〉 are the mean196

and the standard deviation (STD) of ln `/`0, respectively, and where `0 is a197

unit reference length.198

Since fuel ignition due to hot air and firebrands is not instantaneous, a199

suitable criterion related to ignition delay is introduced. This criterion is200

based on heating-before-burning mechanism as follows:201

ψ(x, t) =

∫ t

0

φe(x, η)
dη

τ
, (6)

where ψ(x, 0) = 0 corresponds to the initial unburnt biomass fuel, and where202

τ is a reference time for ignition delay. A point x is considered ignited at203

time t when ψ(x, t) = 1. In this case, x ∈ B(t).204
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2.1.3. Rate of Spread Submodel and Test Case Study205

Since the focus is here on sensitivity analysis methodology, we consider206

a simplified version of the ROS parameterization required in Eq. (1). The207

maximum value of the ROS, V(x, t), is specified by means of Byram’s for-208

mula [78, 79]:209

V0 =
I

∆hc ω0

, (7)

where I [kW m−1] is the fireline intensity, ∆hc [kJ kg−1] is the fuel heat of210

combustion and ω0 [kg m−2] is the oven-dry mass of fuel consumed per unit211

area in the active flaming zone. By analogy to the approach adopted in [47],212

the effect of the near-surface wind U on the ROS is accounted for through a213

corrective factor fw as follows:214

V = V0
(1 + fw)

αw

, (8)

where fw is computed following the choices made in the fire-Lib and Fire215

Behaviour SDK libraries (http://fire.org; see also [11], in the case of the216

NFFL – Northern Forest Fire Laboratory – Model 9), and where αw is a217

suitable angle parameter for ensuring that the maximum ROS in the upwind218

direction is equal to the ROS prescribed by Byram’s formula (7).This choice219

makes the ROS dependent on the wind direction rather than on its magnitude220

to constrain the well-known dominant role of the wind in the fire propagation221

and to allow for the emergence, if they exist, of second-order effects due to222

other factors.223

In the present study, we consider an idealized test case of wildland fire.224

The computational domain is 7, 200 m×6, 000 m. Terrain is flat. Vegetation225
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is homogeneous. The wind is uniform and constant. Fire ignition is repre-226

sented as a circular front characterized by a radius rc = 130 m and a center227

located at xc = (1, 500 m; 3, 000 m).228

2.2. Model Input Description229

The set of uncertain parameters is noted θ ∈ Rd, where d is the number230

of parameters to consider for sensitivity analysis. We consider two different231

sets of uncertain model parameters in the present work with d = 3. To232

carry out sensitivity analysis, we need to prescribe a PDF representing the233

statistics of each parameter and thereby its variability; this corresponds to234

step. i) discussed in the Introduction.235

2.2.1. Sensitivity analysis for macroscopic/microscopic quantities236

The first set of parameters mixes macroscopic and microscopic quantities:237

the wind speed magnitude ‖U‖, the fireline intensity I and the ignition delay238

τ . Sensitivity analysis with θ = (‖U‖ , I, τ)T corresponds to a preliminary239

step: we consider uniform marginal distributions that spanned around the240

mean values adopted in previous work [47, 77, 48], see Table 4.

Table 4: Ranges of variation and uniform marginal PDFs for θ = (‖U‖ , I, τ)
T

. Note that
the uniform distribution is formulated as U (a; b) with a the minimum value and b the
maximum value of the parameter.

Parameter Uniform distribution
Wind ‖U‖ [m s−1] U (6; 14)

Fireline intensity I [kW m−1] U (15, 000; 25, 000)
Reference time for ignition delay τ [s] U (0.6; 1.4)

241
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2.2.2. Sensitivity analysis for microscopic parameters242

The focus of the present work is to explore the dependence of the wildfire243

spread model on a set of microscopic variables. We therefore determine a244

suitable Bayesian description for the uncertain parameters θ = (µ, σ,D)T ,245

which relate exclusively to the fluctuating part of the forward model. Recall246

that µ and σ are two parameters of the log-normal PDF q(`; t) (Eq. 5) that247

describes the ember landing position. Recall also that D is the diffusive coef-248

ficient of turbulent hot air involved in the Gaussian PDF G(x− x; t) (Eq. 4)249

that describes turbulent diffusion. Some functional dependence is explored250

for each parameter and their marginal PDFs are determined using a Monte251

Carlo random sampling. The resulting Beta-distributions are summarized in252

Table 5.253

Physical parameterization. We assume that all turbulent processes are rep-254

resented in the forward model through the standalone turbulent diffusion255

coefficient D. We only consider turbulent fluctuations, implying that the es-256

timation of D is independent of the wind U. Since we consider a flat terrain257

and an extension of the wildland fire that is not limited to the computational258

domain Ω under consideration, we assume horizontal isotropy. Even though259

an exact estimation of D is beyond the scope of the present study, a quanti-260

tative estimation of D is required to carry out sensitivity analysis related to261

turbulence and fire-spotting. D corresponds to the turbulent heat convection262

generated by the fire.263

We shall adopt for such quantitave estimation the analytical representa-264
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tion whose derivation can be found in [48]. Thus, D will read265

D ' 0.1χ

[
γ∆T g h3

νχ

]1/3

− χ, (9)

where χ is the air thermal diffusivity, γ is the thermal expansion coefficient,266

∆T is the temperature difference in the convective cell, h is the dimension of267

the convective cell, g is the gravity constant and ν is the kinematic viscosity268

(see Table 2).269

The selected parameterization for fire spotting as well is derived in [48].270

Firebrand transport is characterized through the log-normal parameters µ271

and σ. µ describes firebrand lofting inside the convective column. The272

relative density and the atmospheric drag impact the buoyant forces acting273

on the firebrands; hence, it is appropriate to include these quantities in the274

definition of µ to describe the maximum allowable height for each firebrand275

for varying fireline intensity. The density ratio ρa/ρf also limits the maximum276

allowable height for each firebrand. µ is thus defined as277

µ = H

(
3 ρaCd

2 ρ∗f

)1/2

, (10)

where H [m] represents the plume height, which is related to the maximum278

loftable height Hp via the relation Hp = λH, and where ρ∗f = ρf/λ
2 [kg m−3]279

is the biomass fuel density that accounts for the correlation factor λ between280

smoke plume height and maximum allowable height for firebrands. We adopt281

the analytic formulation of H with respect to the fireline intensity I used282
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in [80], i.e.283

H = αH HABL + βH

(
I

dPf0

)γH
exp

(
δH

N2
FT

N2
0

)
, (11)

where αH , βH , γH and δH are empirical constant parameters, Pf0 [W] is the284

reference fire power (Pf0 = 106W ), Habl [m] is the height of the atmospheric285

boundary layer (ABL), and the subscript FT stands for free troposphere.286

The parameter σ characterizes the wind-aided transport of firebrands287

after they are ejected from the convective column. In a wind-driven regime288

of fire-spotting, the flight path of the firebrands is affected by their size, and289

firebrands beyond a critical size cannot be steered by the prevailing wind.290

This critical size is defined as the maximum liftable radius rmax = ||U||2/g. It291

is interesting to note that the dimensionless ratio ||U||2/(rg) (r is the brand292

radius) is also known as the Froude number: it quantifies the balance between293

inertial and gravitational forces applying on firebrands. So σ is computed as294

295

σ =
1

2zp

ln

(
‖U‖2

rg

)
. (12)

Note that zp corresponds to the pth percentile and can be estimated from the296

z-tables (http://www.itl.nist.gov/div898/handbook/eda/section3/eda3671.htm).297

We assume that the pth percentile represents the maximum landing distance298

for firebrands under different situations and no ignition is possible beyond299

this cut-off. The cut-off criteria is chosen empirically so that zp = 0.45 as300

in [48], which corresponds to the 67th percentile point.301

Statistical Description.. The following strategy is adopted to obtain a sta-302

tistical description of these three parameters {D, σ, µ}, which depend on a303
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large set of subparameters.304

The subparameters are perturbed around their nominal values found in305

the literature following uniform PDFs. To obtain a range of variation for306

D, we modify the parameters ∆T and h. As for parameters σ and µ, we307

modify the following parameters: αH , βH , γH , δH , Habl in Eq. (11); ρa, ρf308

in Eq. (10); zp and r in Eq. (12). For the parameters αH , βH , γH and δH ,309

the extrema of the uniform PDF correspond to the highest and lowest values310

encountered in all the possible configurations described in [80]. ∆T varies311

in the range [800; 923] K. For all other parameters, the extrema are defined312

such as adding a perturbation of 20 % to the values adopted in [48].313

Once uniform PDFs are defined for each subparameter, we sample them314

through a Monte Carlo random sampling with sample size N = 10, 000.315

Based on Eqs. (9)–(12), we thus obtain 10,000 realizations of the three pa-316

rameters of interest {D, σ, µ}. We can then analyze their empirical statistical317

distribution by fitting the resulting histograms with different types of PDF.318

Figure 1 presents the fits obtained when using a Beta-distribution for each319

sample. We adopt such distribution due to the requirement for positiveness,320

limitlessness, and compatibility with the available surrogates, in particular321

with the gPC given the Wiener–Askey scheme, see [81]. Table 5 presents the322

characteristics of each Beta-distribution and the associated range of variation323

for each parameter in θ = (µ, σ,D)T . We recall the analytic formulation for324

the Beta-distribution denoted by Beta, with a and b (a, b > 0) the “shape325

parameters”:326

Beta(x; a, b) =
Γ(a+ b) xa−1 (1− x)b−1

Γ(a)Γ(b)
, (13)
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for x ∈ (0, 1), with Γ(x) the Gamma function. To shift and/or scale the distri-327

bution, the “location” and “scale” parameters are introduced. More specifi-328

cally, Beta(x, a, b, location, scale) is equivalent to Beta(y, a, b)/scale with y =329

(x− location)/scale.330

2.3. Simulated Quantities of Interest331

We now define two scalar indices to represent the evolution of a fire over332

a time period [0; T ]. We consider first the percentage of the computational333

domain Ω that is burnt at a given time t:334

At =

∫
Ω
IB(t)(x, t) dx

|Ω|
, (14)

where |Ω| [m2] corresponds to the area of the computational domain and IB(t)335

is the indicator function of the burnt area, which returns 1 inside of the burnt336

area and 0 elsewhere. At corresponds to a normalized burnt area. However,337

this quantity does not give information on the topology of the fire, which338

can be complex in the case of fire-spotting. To overcome this limitation, we339

also consider an indicator St that describes the minimum spanning rectangle340

(MSR) of the burnt area over the area of the computational domain |Ω| at a341

given time:342

St =
|MSR(t)|
|Ω|

. (15)

The MSR is a geometrical quantity that corresponds to the smallest rectangle343

within which all burnt grid points lie at a given time t. So |MSR(t)| [m2] mea-344

sures the area of this rectangle. As an example, Fig. 2 presents an ensemble345

of 100 firelines at time 50 min, where each fireline corresponds to a different346

set of parameters D, µ and σ (i.e. a different realization of θ = (µ, σ,D)T )347
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obtained by sampling the Beta-distributions given in Table 5. For each fire-348

line, Fig. 2 shows the corresponding normalized MSR as defined in Eq. (15)349

at time 50 min. Low MSR values (rose colors) indicate simple topology of350

the fireline, while for high MSR values (yellow colors) the fireline presents351

more irregularities and a more complex propagation induced by turbulence352

and fire-spotting.353

In this work, we analyze the time dependency of the quantities At and354

St by comparing them at two different times, t1 = 26 min and t2 = 34 min.355

The resulting scalar quantities (or “observables”) are noted A1, A2, S1 and356

S2.357

2.4. Numerical Implementation358

The code LSFire+ is developed in C and Fortran, where the turbulence359

and fire-spotting parametrization routines, labeled as RandomFront 2.3b,360

act as a post-processing routine at each time step in a level-set-method (LSM)361

code for the front propagation implemented through the library LSMLIB [83]362

and the ROS is computed by using the library FireLib [84]. The numer-363

ical library LSMLIB is written in Fortran2008/OpenMP. It advects the fire-364

line through standard algorithms for the LSM, including also fast march-365

ing method algorithms. The aforementioned routines are freely available at366

the official git repository of BCAM, Bilbao, https://gitlab.bcamath.org/367

atrucchia/randomfront-wrfsfire-lsfire.368
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3. Surrogate Modeling369

3.1. Principles and Notations370

The objective of the present paper is to build surrogate models (or “re-371

sponse surfaces”) that represent how the normalized burnt area At or the372

normalized MSR St (the generic scalar output is noted y ∈ R) changes with373

respect to a selection of the most relevant input parameters (the set of un-374

certain parameters is noted θ ∈ Rd). The input stochastic space is defined375

either by θ = (U, I,D)T or θ = (µ, σ,D)T (see Sec. 2.2); the size of the input376

stochastic space is d = 3.377

The key idea of a surrogate is to replace the fire spread model y =M(θ)378

by a weighted finite sum of basis functions that can be generally expressed379

as380

ŷ (θ) =
∑
α∈A

γα Ψα (θ) , (16)

where the coefficients γα and the basis functions Ψα are to be determined, A381

being the set of indices that defines the basis size. In practice, the coefficients382

and basis functions are calibrated by the training set (or “database”) DN383

that corresponds to a limited number N of forward model integrations (or384

“training set”) such that385

DN = (Θ,Y) =
{(

θ(k), y(k)
)

1≤k≤N

}
, (17)

where y(k) = M(θ(k)) corresponds to the integration of the forward model386

M (LSFire+ in the present study) for the kth set of input parameters θ(k).387

Two types of surrogate models are compared in the following: the gPC-388

expansion that retrieves the global forward model behavior on the one hand,389
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the GP regression that is a local interpolator of the forward model behavior390

at the training points on the other hand. Different types of surrogate are391

tested to determine what is the best choice in the present application. For392

gPC-expansion, the user needs to determine the appropriate total polynomial393

order of the expansion as well as the appropriate type and number of basis394

functions Ψα. There are also different projection strategies to compute the395

coefficients γα. For GP regression, the user needs to choose the type of396

correlation structure and to estimate its associated hyperparameters.397

3.2. Generalized Polynomial Chaos (gPC) Expansion398

θ is defined in the input physical space and its counterpart in the stan-399

dard probabilistic space is noted ζ = (ζ1, · · · , ζd), with ζi the random vari-400

able associated with the ith uncertain parameter θi in θ characterized by its401

marginal PDF ρθi . θ is thus rescaled in the standard probabilistic space to402

which the gPC framework applies.403

3.2.1. Polynomial Basis404

θ is projected onto a stochastic space spanned by the orthonormal poly-405

nomial functions {Ψα(ζ)}α∈A. The basis functions are orthonormal with406

respect to the joint PDF ρζ(ζ), i.e.407

〈Ψα(ζ),Ψβ(ζ)〉 =

∫
Z

Ψα(ζ) Ψβ(ζ)ρζ dζ = δαβ, (18)

with δαβ the Kronecker delta-function and Z ⊆ Rd the space in which ζ408

evolves. In practice, the orthonormal basis is built using the tensor prod-409

uct of one-dimensional polynomial functions, Ψα = φα1 . . . φαd
with φαi

the410
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one-dimensional polynomial function. The choice for the basis functions de-411

pends on the probability measure of the random variables. According to412

Askey’s scheme, the Jacobi polynomials form the optimal basis for random413

variables following Beta-distribution, and the Legendre polynomials are the414

counterpart for uniform distribution [81].415

Assuming that the solution of the fire spread model is of finite variance,416

each quantity of interest y (see Sec. 2.3) can be considered as a random417

variable for which there exists a gPC expansion of the form418

ŷ (θ) =Mpc(θ(ζ)) =
∑
α∈A

γα Ψα (ζ) . (19)

Ψα is the αth multivariate basis function chosen in adequacy with the PDF419

ρθ associated with the parameters θ (all random variables in θ are assumed420

independent so that ρθ is the product of the marginal PDFs {ρθi}i=1,··· ,d).421

α = (α1, · · · , αd) is a multi-index in A, which identifies the components of422

the multivariate polynomial Ψα.423

Note that Eq. (19) represents how the normalized burnt area At or the424

normalized MSR St varies according to changes in the input vector θ. Once425

the PDF ρθ is chosen, {γα}α∈A are the unknowns to determine to build the426

surrogate Mpc.427

3.2.2. Truncation Strategy428

For computational purposes, the sum in Eq. (19) is truncated to a finite429

number of terms r that is associated with the total polynomial order P430

of the gPC-expansion. There are several ways of choosing the number of431

terms r referred to as the “truncation strategy”. Note that we will use the432
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concept of “enumeration functions” in the following: a linear (or hyperbolic)433

enumeration function is a mapping I from N to Nd, which establishes a434

bijective mapping between a given integer i and a multi-index α.435

Linear Truncation Strategy. The standard truncation strategy (referred to as436

“linear”) consists in retaining in the gPC-expansion all polynomials involving437

the d random variables of total degree less or equal to P . Hence, α =438

(α1, · · · , αd) ∈ {0, 1, · · · , P}d. The number of terms r is therefore constrained439

in this linear case by the number of random variables d and by the total440

polynomial order P so that441

rlin =
(d+ P )!

d! P !
. (20)

The set of selected multi-indices for the multi-variate polynomials A is de-442

fined as443

Alin ≡ Alin(d, P ) = {α ∈ Nd : |α| ≤ P} ⊂ Nd, (21)

where |α| = ||α||1 = α1 + · · ·+αd is the “total order” of the multi-index. In444

this case, we refer to the basis as the “full basis” for a given total polynomial445

order P .446

Hyperbolic Truncation Strategy. As an alternative to the linear truncation447

strategy, the “hyperbolic” truncation strategy consists in eliminating a priori448

high-order interaction terms (i.e. polynomial terms involving more than one449

component of θ), see [70]. A more general way than Eq. (21) to define the450

number of terms r in the gPC expansion consists in introducing q-quasi-451
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norms:452

Ahyp ≡ Ahyp(d, P, q) =
{
α ∈ Nd : ||α||q ≤ P

}
, (22)

where the q-semi-norm is given by453

||α||q ≡

(
d∑
i=1

(αi)
q

)1/q

. (23)

The number of terms in the gPC-expansion is expressed by the cardinality of454

A, which varies according to P and q for a fixed dimension d. The adoption455

of such semi-norms penalizes high-rank indices and high-order interactions.456

The lower the value of q, the higher the penalty in the determination of457

A. When q = 1 we retrieve the linear truncation strategy and therefore458

a full basis of cardinality Alin(d, P ). In the following, we will study how459

the performance of the surrogate depends on the choice of the hyperbolic460

parameter q ∈ [0, 1].461

Sparse Truncation Strategies. There are alternatives to reduce the number462

of terms in the gPC-expansion. We will now schematically represent three463

of them, ordered by complexity: 1-“sequential strategy”, 2- “cleaning strat-464

egy”, 3- “least angle regression”.465

1- The sequential strategy [85] consists in constructing the gPC-expansion in466

an incremental way, starting from the first term Ψ0 (K0 = {0}) and adding467

one term at a time in the basis (Ki+1 = Ki ∪ {Ψi+1}). The terms that are468

sequentially added to the basis are ordered according to the adopted enu-469

meration strategy (linear or hyperbolic). The response surface is therefore of470

increasing complexity, since the enumeration functions in both cases increase471
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the polynomial complexity when increasing the index. In the present study,472

the construction process is stopped when a given accuracy is achieved, or473

when the number of terms in the gPC-expansion reaches the maximum size474

of the basis rmax specified by the user.475

2- An alternative to the sequential strategy is the cleaning strategy [85], which476

builds a gPC-expansion containing at most rmax significant coefficients, i.e. at477

most rmax significant basis functions, starting from the full basis (still retain-478

ing the constraint of hyperbolic truncation if selected). The key idea of the479

cleaning strategy is to discard from the active basis the polynomials Ψα that480

are associated with coefficients of low magnitude, i.e. satisfying481

|γα| ≤ ε · max
α′∈A′

|γα′| (24)

where ε is the significance factor set to 10−4, and where A′ represents the482

current active basis. This selection procedure means that the terms in the483

gPC-expansion are not ordered according to the degree of the polynomial484

functions but instead according to the magnitude of the coefficients.485

3- In complement to the sequential and cleaning strategies, there is a more486

advanced approach called least-angle regression (LAR) to select the active487

polynomial terms. The key idea of the LAR approach is to select at each488

iteration a polynomial among the r terms of the full basis (or eventually489

the hyperbolic-truncated basis) based on the correlation of the polynomial490

term with the current residual. The selected term is added to the active491

set of polynomials. The coefficients of the active basis are computed so492

that every active polynomial is equicorrelated with the current residual until493

convergence is reached. Thus, LAR builds a collection of surrogates that are494
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less and less sparse along the iterations. Iterations stop either when the full495

basis has been looked through or when the maximum size of the training set496

has been reached. When the iterations stopped, the polynomial coefficients497

are computed via the least-square algorithm presented below. More details498

can be found in [71, 70, 86].499

3.2.3. Projection strategy500

In this work, we focus on non-intrusive approaches based on `2−minimization501

methods to numerically compute the coefficients {γα}α∈A using the N snap-502

shots from the training set DN .503

Galerkin Pseudo-Spectral Projection. This Galerkin-type projection relies on504

the orthonormality property of the polynomial basis. Using this approach,505

the αth coefficient γα is computed using the definition of the inner prod-506

uct that is numerically approximated using tensor-based Gauss quadrature507

(referred to as “quadrature” in the following) as follows508

γα = 〈y,Ψα〉 ∼=
N∑
k=1

y(k) Ψα(ζ(k))w(k), (25)

where y(k) =M(θ(k)) is the kth snapshot of the DN -database corresponding509

to the LSfire+ simulation for the kth quadrature root θ(k) of Ψα, and where510

wk is the weight associated with ζ(k) (corresponding to θ(k) in the standard511

probabilistic space). When considering a full basis, (P + 1) is the number of512

quadrature roots required in each uncertain direction to ensure an accurate513

calculation of the integral 〈y,Ψα〉. Hence, in our problem, we have N =514

(P + 1)3 simulations in the training set to build the PC surrogates through515
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Galerkin pseudo-spectral projection.516

Least-Square Minimization.. With this approach, the estimation of the coef-517

ficients {γα}α∈A is done by solving a least-square minimization problem,518

i.e. by minimizing the approximation error between the (exact) LSfire+519

model evaluations and the PC-surrogate estimations at the points of the520

training set DN . The least-square projection solves a minimization problem521

over the given basis as follows:522

γ̂ = argmin
γ∈Rr

N∑
k=1

(
y(k) −

∑
α∈AP

γα Ψα

(
x(k)
))2

(26)

which is achieved through classical linear algebra algorithms. Note that the523

sample size N required by this strategy for the problem to be well posed is524

at least equal to (r + 1), where r is the number of gPC-coefficients (i.e. the525

cardinality of the set A). Note also that least-square minimization is used526

here to compute the coefficients selected by the sparse truncation methods527

(sequential, cleaning or LAR). When using non-sparse truncation strategies,528

this projection method is referred to as the standard least-square (SLS) ap-529

proach.530

3.2.4. Workflow scheme for constructing the gPC-expansion531

A complete algorithm relative to the implementation of the gPC-surrogate532

can be summarized as follows:533

1. choose the polynomial basis {Ψα}α∈A according to the assumed marginal534

PDFs of the inputs θ = (‖U‖ , I,D)T or θ = (µ, σ,D)T ;535
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2. choose the total polynomial degree P according to the complexity of536

the physical processes;537

3. truncate the expansion to rlin or rhyp terms corresponding to the multi-538

index setAlin orAhyp using linear or hyperbolic truncation (rlin depends539

on d, P ; rhyp depends on d, P and q with q the hyperbolic factor540

satisfying 0 < q ≤ 1);541

4. in the case of a sparse strategy (sequential, cleaning or LAR), find a542

suitable set of multi-indices A ⊂ Alin,hyp with a cardinality r ≤ rlin, hyp,543

otherwise skip this step;544

5. apply a projection strategy (quadrature or least-square) to compute545

the coefficients {γα}α∈A⊂Nd using N = (P + 1)d snapshots from the546

simulation database DNref
;547

6. formulate the surrogate model Mpc, which can be evaluated for any548

new pair of parameters θ∗ = (‖U‖∗ , I∗, D∗)T or (µ∗, σ∗, D∗)T .549

3.3. Gaussian Process (GP) surrogate model550

As stated by [67], a GP is a random process (here the observable from551

the fireline evolution y) indexed over a domain (here Rd), for which any552

finite collection of process values (here
{

y(θ(k))
}

1≤k≤N ,θ
(k) ∈ Θ) has a joint553

Gaussian distribution. Concretely, let ỹ be a Gaussian random process fully554

described by its zero mean and its correlation π:555

ỹ(θ) ∼ GP
(
0, σ2

gp π(θ,θ′)
)
, (27)

with π(θ,θ′) = E [ỹ(θ)ỹ(θ′)]. In the present case, the correlation function π556

(or kernel) is chosen as a squared exponential (also known as “RBF kernel”,557
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RBF standing for radial basis function):558

π(θ,θ′) = exp

(
−‖θ − θ′‖2

2 `2
gp

)
, (28)

where `gp is a length-scale representing the model output dependency be-559

tween two inputs θ and θ′, and where σ2
gp is the variance of the observable.560

The surrogate model is thus the mean of the GP, resulting of conditioning ỹ561

on the training set Y =
{

y
(
θ(k)
)}

1≤k≤N . The quantity of interest provided562

by the GP-surrogate for any given θ∗ ∈ Rd satisfies563

ygp(θ∗) =
N∑
k=1

βk π
(
θ∗,θ(k)

)
, (29)

where564

βk =
(
Π + τ 2

gp IN
)−1 (

y(θ(1)) . . . y(θ(N))
)T
, (30)

565

Π =
(
π(θ(j),θ(k))

)
1≤j,k≤N , (31)

and where τgp (referred to as the “nugget effect”) is used to avoid ill-conditioning566

issues for the matrix Π. The hyperparameters {`gp, σgp, τgp} are optimized567

through maximum likelihood applied to the dataset DN using a basin hop-568

ping technique [87].569

3.4. Design of Experiments570

We build several datasets to analyze the performance of the gPC- and GP-571

surrogates in an extensive way in Section 4; these datasets are summarized572

in Table 6. Note that estimating the generalization error of the surrogate573
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model requires the use of an independent dataset, that is why we use a574

Monte Carlo random sampling including N = 216 members for validation.575

Note also that the Halton’s low-discrepancy sequence is involved in this work576

in order to explore the hypercube defined by the distribution of the uncertain577

parameters. This design of experiment will be compared to a tensor-based578

Gauss quadrature in terms of performance of the surrogate model. The reader579

shall refer to Section 2.2 for more details on the range of variation and the580

marginal PDFs of each uncertain parameter.

Table 6: Datasets DN of LSfire+ simulations used in this work for building surrogates
(“training”) or for validating them (“validation”).

Sampling Strategy Purpose Sample size

θ = (‖U‖ , I,D)T

Halton’s sequence Training 216
Monte Carlo random sampling Validation 216

θ = (µ, σ,D)T

Halton’s sequence Training 216
Quadrature rule Training 216

Monte Carlo random sampling Validation 216

581

3.5. Error Metrics582

In the present study, two error metrics are used to assess the quality of the583

surrogate predictions: the empirical error between the surrogate prediction584

and the LSfire+ model prediction (also known as “training error”) on the585

one hand, and the Q2 predictive coefficient [55] on the other hand.586

3.5.1. Empirical Error εemp587

The truncation of the gPC-expansion can eventually introduce an approx-588

imation error at the training points, which can be computed posterior to the589
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surrogate construction. This empirical error denoted by εemp reads590

εemp =
1

N

N∑
k=1

(
y(k) − ŷ(k)

)
, (32)

with y(k) the kth element of the training set DN (either the Halton’s low591

discrepancy sequence or the quadrature database, see Table 6) and ŷ(k) the592

corresponding value predicted by the surrogate for the same element of the593

training set.594

However, this error estimator has several drawbacks. First, the GP-model595

(built without noise in the kernel) is an interpolator so that the approxima-596

tion error is expected to be εemp = 0. Second, this estimator may severely597

underestimate the magnitude of the mean square error. When the size of the598

training set N comes closer to the cardinality of the gPC-expansion A, εemp599

may tend to zero, while the actual mean square error does not; this issue is600

known as “overfitting”.601

3.5.2. Predictive coefficient Q2602

We require a more robust error estimator suitable for both gPC-expansion

and GP-model. In this work, we use the Q2 predictive coefficient based

on cross-validation. The computation of Q2 relies on two distinct datasets:

the current training set DN (either the Halton’s sequence or the quadrature

database) and a Monte Carlo sample DNref
that is independent of the surro-

gate construction and that is therefore referred to as the “validation dataset”.
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Q2 is computed as

Q2 = 1−

Nref∑
k=1

(
y(k) − ŷ(k)

)2

Nref∑
k=1

(
y(k) − yref

)2

, (33)

with y(k) the kth element of the Monte Carlo sample DNref
, ŷ(k) the surrogate603

prediction for the same element of DNref
and yref the empirical mean over the604

Monte Carlo sample DNref
. Note that computing Q2, the training set DN is605

only used to construct the surrogate model and to obtain the estimation ŷ606

of the quantity of interest y. The target value for Q2 is 1.607

3.6. Statistical Analysis608

Once the surrogates are available for the different observables (A1, A2,609

S1, S2 – see Section 2.3), the statistics of the quantities of interest can be610

obtained. For the gPC-expansion, they can be derived analytically from the611

coefficients. For the GP-surrogate, we evaluate the surrogate predictions over612

a new dataset DNsample
of size Nsample = 10, 000 that is a subset of R3 and that613

is obtained using a standard Monte Carlo random sampling; this dataset is614

only used as input to the surrogate model and not to LSfire+.615
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3.6.1. Estimation of Statistical Moments616

The mean value and STD of the observable y can be estimated as617

µŷ =
1

Nsample

Nsample∑
k=1

ŷ(k), (34)

σŷ =

√√√√ 1

Nsample − 1

Nsample∑
k=1

(
ŷ(k) − µŷ

)2
, (35)

with ŷ(k) the kth element of the dataset DNsample
containing the surrogate618

evaluations over the aforementioned Monte Carlo sampled points.619

Using the gPC-surrogate, the statistical moments can be derived ana-620

lytically from the coefficients {γα}α∈A⊂Nd such that the mean and the STD621

read:622

µŷpc = γ0, (36)

σŷpc =

√√√√ ∑
α∈A⊂Nd

α 6=0

γ2
α. (37)

3.6.2. Sensitivity Analysis Diagnostics623

Sobol’ indices [53, 49] are commonly used for sensitivity analysis based624

on variance analysis. They provide the quantification of how much of the625

variance in the quantity of interest is due to the variance in the input param-626

eters assuming (1) these input random variables are independent and (2) the627

random output is squared integrable.628

The variance of an output random variable y denoted by V[y] can be629
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decomposed as630

V[y] =
d∑
i=1

Vi(y) +
d∑

j=i+1

Vij(y) + · · ·+ V1,2,...,d(y), (38)

where Vi(y) = V [E(y|θi)], Vij(y) = V [E(y|θi, θj)]− Vi(y)− Vj(y) and more631

generally,632

VI(y) = V [E(y|θI)]−
∑

J⊂I s.t. J 6=I

VJ(y), ∀I ⊂ {1, . . . , d} (39)

Based on this variance decomposition, the first-order Sobol’ index Si associ-

ated with the ith parameter of θ is given by

Si =
Vi(y)

V(y)
, (40)

and corresponds to the ratio of the output variance V(y) that is uniquely

related to the ith input parameter; Si ranges between 0 and 1. The corre-

sponding total Sobol’ index STi measures the whole contribution of the ith

input parameter (including interactions with other parameters of θ) on the

output variance. Its definition reads

STi =
∑

I⊂{1,...,d}
I3i

SI . (41)

By definition, STi ≥ Si. If both first-order and total indices are not equal,633

this means that the input parameter θi share some interactions with other634

parameters of θ.635

For the GP-surrogate approach, Sobol’ indices are stochastically esti-636

38



mated using Martinez’ formulation since this estimator is stable and provides637

asymptotic confidence intervals for first-order and total-order indices [88].638

For the gPC-expansion approach, Sobol’ indices can be directly derived639

from the gPC-coefficients. For the ith component of the input random vari-640

able θ, the Sobol’ index Spc,i reads:641

Spc,i =
1

(σŷpc)
2

∑
α∈Ai⊂Nd

α 6=0

(γα)2 , (42)

where σŷpc is the STD computed in Eq. (37), and where Ai is the set of642

multi-indices selected in A such that the computation of Spc,i only includes643

terms that depend on the input variable θi, namely644

Ai = {α ∈ Nd, |α| ≤ P | αi > 0, αk 6=i = 0}. (43)

3.7. Numerical Implementation645

The GP implementation relies on the Python package scikit-learn [89]646

(see http://scikit-learn.org/). The gPC-implementation relies on the Python647

package OpenTURNS [85] (see www.openturns.org). The batman [90] Python648

package is used to build datasets and perform statistical analysis.649

4. Results650

The objective of this study is two-fold. First, we provide an extensive651

comparison of the performance of different surrogate strategies ( see Table 7)652

for a given training set DN ; We evaluate their impact on the predicted653

quantities of interest At and St in terms of mean value and STD, but also their654
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impact on the predicted Sobol’ sensitivity indices. This extensive analysis655

is carried out for the case θ = (µ, σ,D)T , related to the fluctuating part of656

the model. Second, we use this framework to rank the uncertain parameters,657

either θ = (‖U‖ , I, τ)T or θ = (µ, σ,D)T , by order of importance and identify658

the most influential input parameters.659

4.1. Comparison of surrogate performance660

4.1.1. Error assessment661

Table 8 presents the error metrics (i.e. the εemp empirical error and the662

Q2 predictive coefficient) obtained for different types of surrogate (gPC on663

the one hand, and GP on the other hand) with respect to θ = (µ, σ,D)T but664

for a given size of the training set N = 216. The performance of the gPC-665

surrogate is analyzed in details for varying truncation and projection schemes666

summarized in Table 7; the GP-surrogate is obtained using a standard RBF667

kernel and is considered here as a basis for comparison in order to evaluate668

the quality of the gPC-surrogates. For each approach, one surrogate model669

is built for each of the four observables {A1, A2, S1, S2} corresponding to the670

two quantities of interest At and St at times t1 = 26 min and t2 = 34 min.671

In Table 8 we first focus on the results obtained with linear truncation672

(q = 1), meaning that the basis of polynomial functions is full for a given673

total polynomial order P . Figure 3 (right figure of each pair) presents cor-674

responding scatter plots (referred to as “adequacy plots”) of the surrogate675

predictions with respect to the physical model predictions. These plots quan-676

tify the adequacy of the surrogate to the physical model at the training points677

in terms of predicted burnt area ratio A2. It is found that the Q2 predictive678

coefficient is over 0.9 only for the LAR and cleaning sparse methods for all679
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observables. The empirical error is of the same order of magnitude, varying680

between 10−3 for the MSR ratio St and 10−4 for the burnt area ratio At. Note681

that for a given observable at a given time, there is no significant difference682

among the surrogate strategies in terms of empirical error. We therefore fo-683

cus the following analysis on the standalone Q2 predictive coefficient. Note684

also that the performance of each surrogate is time independent since for a685

given observable, the Q2 predictive coefficient is similar at times t1 and t2.686

We therefore focus on results at time t2 in the following.687

When moving to hyperbolic truncation schemes (q = 0.75 or q = 0.5), we688

reduce a priori the number of coefficients to compute in the gPC-expansion,689

while the size of the training set remains the same (N = 216). The lower the690

value of q, the smaller the number of gPC-coefficients r. Figure 4 (right plot691

of each pair) presents adequacy plots for hyperbolic truncation with q = 0.5;692

this is to compare to the adequacy plots obtained for linear truncation in693

Figure 3 (right plot of each pair). Results show that the performance of the694

quadrature approach does not improve when q decreases. In the opposite,695

the performance of the SLS approach improves and features a Q2 predictive696

coefficient over 0.9 for A2 and over 0.8 for S2 when using hyperbolic trunca-697

tion. This improvement is also noticeable in Figure 4 (right plot of each pair),698

where hyperbolic truncation allows to better represent the model response699

for low values of the burnt area ratio (A2 < 0.03). The sequential sparse700

method also provides better results for a hyperbolic coefficient q = 0.5. The701

performance of LAR and cleaning sparse methods remains similar as in the702

linear case q = 1.703

LAR appears as the most accurate gPC strategy and has a Q2 predic-704
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tive coefficient that is similar to that obtained with the GP-model based on705

RBF kernel. Hyperbolic truncation does not add much value to the results706

compared to linear truncation, except for the SLS strategy. This may be707

explained by the fact that the terms that are important to retain in the708

gPC-expansion are not located in an isotropic way in the three dimensions709

(d = 3). It is therefore of interest to identify which polynomial terms are710

important to keep in the basis in order to obtain a good performance of the711

surrogate in each of the three dimensions.712

4.1.2. Sensitivity of gPC-surrogates to total polynomial order P713

In Table 8, the results for SLS and LAR methods are obtained by choosing714

the optimal value of the total polynomial order P in the sense that the715

surrogate was obtained by finding the value of P that maximizes the Q2716

predictive coefficient; P varying between 1 and 14. Recall that the total717

polynomial order P determines the size of the full basis used to construct718

the surrogate when using linear truncation. The SLS method considers the719

full basis, while the LAR method selects the most influential terms among720

the full basis. Since the size of the training set is fixed to N = 216 and since721

(P + 1)3 = 216 for P = 5, we know that the problem becomes ill-posed for722

a full basis when the total polynomial order is over 5. This is not an issue723

for LAR since it selects inline the influential coefficients in the basis. It is724

therefore of interest to investigate if the LAR method features an improved725

performance when P > 5.726

Figure 5 presents the Q2 predictive coefficient for P varying between 1727

and 14 for SLS and LAR surrogates obtained for the burnt area ratio A2.728

As expected, Fig. 5a shows that the best performance of the SLS method729
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with linear truncation is obtained for P = 5 and that it degrades very fast730

when increasing P (the Q2 predictive coefficient is below 0.4 for P > 6).731

When moving to hyperbolic truncation with q = 0.5, Fig. 5c shows that732

the Q2 predictive coefficient remains over 0.4 for P > 5. The resulting733

surrogate is therefore improved in this configuration as already pointed out in734

Table 8. Hyperbolic truncation allows the SLS approach to include high-order735

polynomials in the basis without generating an ill-posed problem (i.e. without736

having more coefficients to compute than the size N of the training set). Still,737

results show that the Q2 predictive coefficient does not follow a monotonically738

increasing function toward the target value 1 in this hyperbolic configuration;739

this configuration is therefore not robust. In the opposite, the LAR method740

shows a monotonic convergence towards the target value 1 when increasing741

P in Figs. 5b–d. A good performance of LAR is obtained for P = 10 for742

both linear and hyperbolic truncation schemes.743

This sensitivity study shows that a total polynomial order P higher than 5744

is required to build the response surface of the burnt area ratio. Similar re-745

sults are obtained for the MSR ratio (not shown here). This demonstrates746

the benefits from sparse schemes when having a fixed and limited training747

set DN . Improving the performance of the SLS approach using linear trunca-748

tion would require a higher total polynomial order P and therefore a larger749

training set.750

4.1.3. Identification of the influential gPC-coefficients751

Figure 3 (left figure of each pair) presents a three-dimensional schematic752

(referred to as “sparsity plot”) of the coefficients retained in the gPC-expansion753

using linear truncation, each dimension corresponding to one stochastic/uncertain754
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dimension. The three dimensions are here the turbulent diffusion coefficient755

D and the lognormal parameters µ and σ.756

Quadrature and SLS methods have the same full basis for a given poly-757

nomial order P (here P = 5 since the size of the training set is N = 216);758

they are associated with a typical “pyramidal” sparsity plot, where the first759

coefficient corresponding to the mean estimate of the burnt area ratio A2760

has the highest magnitude (approximately equal to 0.04). For sparse meth-761

ods (LAR, cleaning, sequential), the number of coefficients is significantly762

reduced since the terms with the least impact are automatically filtered out763

of the sparse basis. The sparsity plot has no longer a “pyramidal” shape.764

LAR and sequential strategies feature instead a two-dimensional structure765

(along the vertical plane) indicating that the burnt area ratio A2 is not sen-766

sitive to the third dimension, here the lognormal parameter µ, but only to767

the lognormal parameter σ and to the turbulent diffusion coefficient D. Only768

the cleaning strategy retains a three-dimensional structure by accounting for769

interaction terms involving the lognormal parameter µ. This highlights the770

presence of influential interaction terms involving several parameters. How-771

ever, all sparse strategies indicate that one direction is dominant since the772

number of coefficients in this direction is high and the basis terms can go773

up to a total polynomial order P = 12 in the case of cleaning and P = 8 in774

the case of LAR (instead of the constrained P = 5 for quadrature and SLS).775

This dominant direction corresponds to the lognormal parameter σ.776

Note that Figure 4 (left figure of each pair) presents similar plots as Fig-777

ure 3 (left figure of each pair) but for hyperbolic truncation with q = 0.5.778

The magnitude of the coefficients does not change for quadrature, explaining779
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why hyperbolicity does not improve the performance of the surrogate based780

on quadrature. This is not the case of SLS, which now features high magni-781

tude for the coefficients along the direction D for polynomial terms having782

a degree between 4 and 8. This highlights the need to have polynomials783

of higher degree to capture underlying physical processes. Still, SLS with784

hyperbolicity is not sufficient to capture the same structure as sparse meth-785

ods. Note that sparse methods converge to the same structure using linear or786

hyperbolic truncation schemes, indicating the robustness of these methods.787

The influence of the three parameters on the behavior of the burnt area ra-788

tio A2 can be quantified using Sobol’ sensitivity indices. Table 9 presents the789

Sobol’ indices using sparse methods and linear truncation for the burnt area790

ratio A2 (same results are obtained using hyperbolic truncation with q = 0.5791

– not shown here). Table 10 presents similar quantities for the MSR ratio S2.792

Results confirm that the lognormal parameter σ is the most influential one793

for both quantities of interest A2 and S2 with a first-order sensitivity index794

above 0.98 for A2 and above 0.92 for S2. This means that more than 90 % of795

the variance in A2 and S2 is explained by uncertainties in the lognormal pa-796

rameter σ. Results also show interaction effects are limited but still present797

between the lognormal parameter σ and the turbulent diffusion parameter798

D as foreseen in sparsity plots. Note that all sparse gPC-surrogates as well799

as the GP-model exhibit the same global trend. The main differences lie in800

the relevance of the lognormal parameter µ. LAR and sequential strategies801

cut out any contribution of µ in the variability of the predicted quantities802

of interest. This is not the case of the cleaning strategy that has a non-zero803

total Sobol’ index for µ as the GP-model.804
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We can evaluate the impact of the choice in the surrogate strategy on805

the predicted mean and STD estimates of the quantities of interest. Ta-806

ble 11 presents the mean and STD estimate of the burnt area ratio A2 and807

of the MSR ratio S2 obtained for different gPC- and GP-surrogates. Re-808

sults show the consistency of the statistical moments obtained using sparse809

gPC-expansions and GP-model for both A2 and S2. The SLS approach using810

linear truncation is able to retrieve accurate mean and STD estimates (about811

1 % deviation with respect to GP-model predictions). In the opposite, the812

quadrature approach provides mean and STD estimates with more than 10 %813

deviation with respect to GP-model predictions.814

This highlights the importance of having high-order polynomial terms in815

some uncertain directions to build an accurate gPC-expansion and have ac-816

curate estimate of the statistical moments in the present study. These direc-817

tions can be identified using Sobol’ sensitivity indices. Sparse gPC-strategies818

are relevant to address such issues due to the flexibility of selecting the most819

influential polynomial terms during the construction of the surrogate (linear820

and hyperbolic schemes are defined a priori).821

4.1.4. Sensitivity to the size of the training set822

So far the analysis was obtained for a fixed training set of size N = 216823

(generated using Halton’s low discrepancy sequence or tensor-based Gauss824

quadrature in the case of quadrature). It is of interest to study if the same825

level of accuracy could be obtained for sparse gPC-surrogates built with a826

reduced training set (N < 216). To answer this question, we provide a con-827

vergence test for a training size N varying between 10 and 216 with respect828

to the observable S2. For each size of the training set, a LAR gPC-surrogate829
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is built and cross-validated using the available Monte Carlo database (Ta-830

ble 3.4) through the computation of the Q2 predictive coefficient. We carry831

out this convergence test for different truncation strategies, i.e. for different832

levels of hyperbolicity q ∈ {1, 0.75, 0.5}. Figure 6 presents the evolution of Q2833

with respect to the size of the training set N . Results show the convergence834

of Q2 to a constant value for N > 100. Linear truncation and hyperbolic835

truncation (q = 0.5) provide similar performance for N > 100. As before,836

we note that the hyperbolic solution obtained using q = 0.75 is not the best837

option.838

4.2. Analysis of the physical model predictions839

Results show that the LAR gPC-strategy features a good performance. In840

the following, we will use this strategy to further analyze the fire-spotting and841

turbulence submodel included in LSFire+. We summarize in Table 13 and842

Table 15 the error metrics as well as the mean and STD estimate of the burnt843

area ratio A2 and of the MSR ratio S2 at time t2 for the two sets of uncertain844

parameters θ = (‖U‖ , I, τ)T and θ = (µ, σ,D)T , respectively. Table 12 and845

Table 14 present the corresponding Sobol’ Indices. Note that the following846

analysis holds for any time t since we show that results can be considered847

as time-independent. Note also that the empirical error εemp and the Q2848

predictive coefficient are in acceptable range for all tested configurations; we849

focus here on the physics of the problem.850

Sobol’ sensitivity indices order by relevance each parameter. In the case851

θ = (‖U‖ , I, τ)T , a clear dominance of the wind speed ‖U‖ is observed for852

the considered range of the fireline intensity I. This is a rather interesting853

result, since the normalization performed on the ROS model (i.e. parameter854
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αw in Eq. 7) makes the propagation of the deterministic fireline depending855

solely on the orientation of the wind vector and not on its magnitude. This856

means that the wind has a more general and fundamental role as reflected857

also in the enhancement of fire-spotting and secondary fire generation.858

The ballistic term σ in Eq. (5) strongly depends on the value of ‖U‖.859

This is in line with the results of the second set of input parameters. In the860

case θ = (µ, σ,D)T , σ is the most influential parameter when considering861

Sobol’ indices, far above D and µ (in order of relevance). The trend for the862

observables At and St is comparable, still St gives slightly more relevance to µ863

and D inputs than At. As expected, for both parameter sets, the mean of the864

S2-observable is larger than that of A2. Its STD is also larger. Uncertainties865

in {‖U‖ , I, τ} induce a more significant spread of the fireline position and866

shape compared to uncertainties in {µ, σ,D}. This is due to the fact that in867

the first case we also vary the ember ignition time scale.868

In summary, these results highlight the importance of the mean wind869

factor, on the main fire propagation but also on the generation of secondary870

fires. This is consistent with the phenomenology of wildland fires and with871

the process of fire-spotting. In particular, fire-spotting refers to independent872

ignitions located far away from the main fireline. This process is accounted873

in the model via the lognormal parameter σ. The importance of σ is a proper874

mathematical feature of the adopted lognormal PDF for firebrand landing875

distance, since it controls the tail of the density function, the kurtosis of the876

lognormal density being equal to e4σ2

+ 2e3σ2

+ 3e2σ2 − 3. Hence this study877

shows that the new submodel correctly includes the double role of the mean878

wind, enhancing the propagation of the main fireline on the one hand, and879
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carrying away firebrands for secondary ignitions on the other hand.880

5. Discussion and Conclusions881

This study presents an extensive comparative study of surrogate ap-882

proaches to the nonlinear and multi-scale problem of turbulence and fire-883

spotting in wildland fire modeling, fire-spotting being a random process in884

which firebrand generation, emission and landing distance are intrinsically885

governed by the fire strength. A surrogate modeling approach is useful to886

analyze in a cost-effective way, how the fireline position and topology change887

according to variations in the input parameters for the new physical sub-888

model introduced by Pagnini et al [45, 46, 47, 48] based on a randomized889

representation of the fireline. Results are presented from both algorithmic890

and physical perspectives. From an algorithmic viewpoint, it is of interest to891

compare several approaches to carry out global sensitivity analysis and to se-892

lect which ones are accurate and computationally efficient. From a wildland893

fire perspective, uncertainty quantification and sensitivity analysis is a good894

practice to analyze any new submodel, spot unimportant parameters and895

identify which parameters are dominant for obtaining a good representation896

of turbulence and fire-spotting.897

In this work, fast surrogate models based on generalized Polynomial898

Chaos (gPC) and Gaussian Process (GP) were used to limit the required899

number of physical model evaluations to at least 100. We analyzed the per-900

formance of different formulations of the gPC-surrogate in terms of design of901

experiments (how to choose the training points? how many training points902

are required to achieve a certain accuracy?), polynomial basis structures903
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(how to select the influential terms of the polynomial basis?) and projec-904

tion schemes (how to compute the coefficients of the gPC-expansion?). The905

generalization error of these surrogates was classically estimated using the906

Q2 predictive coefficient. Sparse gPC-methods have shown their accuracy in907

line with the GP model based on RBF kernel, but with a less cumbersome908

representation for Sobol’ indices and statistical moments. Sparse methods909

provide more flexibility to select high-order polynomial terms in a given di-910

rection of the uncertain space, without requiring more physical model evalu-911

ations and therefore without increasing the computational cost of sensitivity912

analysis. The best performance for the gPC-surrogate was obtained using a913

sparse least-angle regression (LAR) with a training set built using a Halton’s914

low discrepancy sequence. Using this approach, the new parametrization915

RandomFront 2.3b for turbulence and fire-spotting was found to be a non-916

linear model with a remarkable range of variations in the size and topology917

of the fire due to uncertainties in its input parameters. There is a clear918

dominance of the lognormal parameter σ characterizing firebrand downwind919

transport and of the wind magnitude ‖U‖, which confirms that fire-spotting920

is a wind-driven, ballistic phenomenon.921

Several issues can be met when building a robust surrogate model. First,922

when the problem is multi-scale, i.e. when uncertain parameters have corre-923

lation length-scales differing by several order of magnitudes. Sparse methods924

may filter out the less influential parameters. The LAR-based gPC surrogate925

was found to filter out the information coming from parameters with large926

length-scale. The cleaning-based surrogate proved to preserve these informa-927

tion, which may be important in a multi-scale problem such as fire-spotting.928
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Second, when choosing how to sample the stochastic space and construct the929

training set. Standard projection schemes such as tensor-grid Gauss quadra-930

ture and standard least-square methods have shown their limitations: a large931

part of the training set was wasted in regions of the parameter space far932

from the nonlinear processes to be explored. In the opposite, sparse methods933

based on least-square projection were found to identify in which stochastic934

direction the physical processes are more complex and require higher order935

polynomials or high-order interaction terms. Using hyperbolic truncation936

was not flexible enough for this purpose.937

The increasing strength and occurrence of megafires due to climate change938

calls for the development of new tools for the prediction of fire occurrence,939

growth and frequency at regional scales. Reliable wildland fire spread models940

are a promising approach to provide short-term variability of fire danger.941

Statistical methods such as uncertainty quantification and sensitivity analysis942

also have an important role to play [91, 92, 93]. Present work pushes toward943

the integration of fire-spotting into regional-scale operational wildland fire944

spread simulators. This is the main direction of the future developments of945

this research. Future work will also include the extension of the surrogate946

approaches to vectorial inputs and outputs, in order to analyze the sensitivity947

of the fire behavior to a wind field and to describe the fire situation as a map948

instead of a scalar variable.949
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(a) Fire-spotting parameter µ.

(b) Fire-spotting parameter σ.

(c) Turbulent diffusion parameter
D [m2 s−1].

Figure 1: Histograms and corresponding fits with Beta-distribution (solid lines) for the
three parameters µ, σ (fire-spotting effects) and D (turbulence effect) following a Monte
Carlo random sampling with 10,000 realizations in the ensemble. Fits performed with the
aid of the Python library SciPy [82].
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Figure 2: Ensemble of 100 fireline positions over the 2-D computational domain Ω after
50 min of LSFire+ model integration obtained when varying D, µ and σ as presented in
Table 5. The black circle is the initial fireline that is the same for all simulations. The
colormap corresponds to the normalized MSR St at time t = 50 min (Eq. 15).
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Table 8: Error metrics εemp and Q2 for gPC-expansions and GP-model detailed in Table 7.
The size of the training set is N = 216. One type of surrogate is built for each of the four
observables, A1, A2, S1 and S2.

gPC expansion – Linear truncation (q = 1)
A1 A2 S1 S2

εemp Q2 εemp Q2 εemp Q2 εemp Q2

Quad. 1.4 · 10−4 0.84 2.7 · 10−4 0.86 5.5 · 10−4 0.77 4.6 · 10−4 0.83
SLS 3.0 · 10−4 0.83 6.3 · 10−4 0.88 1.0 · 10−3 0.74 2.3 · 10−3 0.75
LAR 1.0 · 10−4 0.99 4.2 · 10−4 0.970 5.0 · 10−4 0.96 2.3 · 10−3 0.95

Cleaning 1.0 · 10−4 0.96 4.1 · 10−4 0.95 5.5 · 10−4 0.96 1.2 · 10−3 0.95
Sequential 3.3 · 10−4 0.85 6.7 · 10−4 0.89 1.1 · 10−3 0.77 2.5 · 10−3 0.85

gPC expansion – Hyperbolic truncation (q = 0.75)
A1 A2 S1 S2

εemp Q2 εemp Q2 εemp Q2 εemp Q2

Quad. 3.7 · 10−4 0.76 8.6 · 10−4 0.77 1.6 · 10−3 0.67 3.7 · 10−4 0.66
SLS 1.5 · 10−4 0.93 1.8 · 10−4 0.93 1.0 · 10−3 0.84 2.5 · 10−3 0.84
LAR 2.0 · 10−4 0.94 5.6 · 10−4 0.95 1.0 · 10−3 0.84 2.6 · 10−3 0.86

Cleaning 9.9 · 10−5 0.94 3.3 · 10−4 0.90 5.0 · 10−4 0.96 1.1 · 10−3 0.96
Sequential 1.9 · 10−4 0.94 4.7 · 10−4 0.94 8.7 · 10−4 0.86 1.9 · 10−3 0.92

gPC expansion – Hyperbolic truncation (q = 0.5)
A1 A2 S1 S2

εemp Q2 εemp Q2 εemp Q2 εemp Q2

Quad. 1.8 · 10−4 0.83 2.0 · 10−4 0.87 6.2 · 10−4 0.74 3.6 · 10−4 0.83
SLS 1.4 · 10−4 0.96 9.6 · 10−5 0.95 7.4 · 10−4 0.86 1.9 · 10−3 0.86
LAR 1.5 · 10−4 0.97 4.3 · 10−4 0.97 6.5 · 10−4 0.93 1.6 · 10−3 0.94

Cleaning 8.8 · 10−5 0.95 3.3 · 10−4 0.94 4.5 · 10−4 0.92 9.2 · 10−4 0.98
Sequential 1.3 · 10−4 0.97 4.2 · 10−4 0.96 6.4 · 10−4 0.93 1.5 · 10−3 0.95

GP model
RBF −− 0.99 −− 0.98 −− 0.88 −− 0.99
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(a) SLS, q = 1.
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(b) LAR, q = 1.
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(c) SLS, q = 0.5.
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(d) LAR, q = 0.5.

Figure 5: Sensitivity of the Q2 predictive coefficient with respect to the total polynomial
order P . Comparison of the SLS (a)–(c) and LAR (b)–(d) surrogate methods for linear
truncation (top panels) and hyperbolic truncation with q = 0.5 (bottom panels) for 1 ≤
P ≤ 14.

Table 9: Comparison of Sobol’ sensitivity indices associated with the burnt area ratio A2

and obtained for Halton’s low discrepancy sequence.

Sµ Sσ SD ST,µ ST,σ ST,D
gPC expansion – Linear truncation q = 1

LAR 0. 0.986 5.67 · 10−3 0. 0.994 1.35 · 10−2

Cleaning 0. 0.984 5.89 · 10−3 4.70 · 10−3 0.994 1.62 · 10−2

Sequential 0. 0.987 4.84 · 10−3 0. 0.995 1.33 · 10−2

GP model
RBF kernel 4.59 · 10−4 0.982 5.97 · 10−3 0.001 0.992 0.012
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Table 10: Same caption as Table 9 but for the MSR ratio S2.

Sµ Sσ SD ST,µ ST,σ ST,D
gPC expansion – Linear truncation q = 1

LAR 0. 0.948 1.49 · 10−2 0. 0.985 5.22 · 10−2

Cleaning 0. 0.925 1.66 · 10−2 2.66 · 10−3 0.983 7.18 · 10−2

Sequential 0. 0.954 1.45 · 10−2 7.15 · 10−3 0.978 4.63 · 10−2

GP model
RBF kernel 5.43 · 10−4 0.941 9.89 · 10−3 0.002 0.975 0.047

Table 11: Mean and STD estimate of the burnt area ratio A2 (left column) and of the MSR
ratio S2 (right column) using linear truncation scheme (q = 1), Halton’s low discrepancy
sequence and gPC or GP surrogate approach.

A2 S2

gPC expansion – Linear truncation (q = 1)
mean ± STD mean ± STD

Quad. 0.0406 ± 0.175 0.102 ± 0.322
SLS 0.0458 ± 0.198 0.114 ± 0.333
LAR 0.0464 ± 0.194 0.114 ± 0.324

Cleaning 0.0469 ± 0.194 0.115 ± 0.327
Sequential 0.0458 ± 0.196 0.113 ± 0.319

GP model
mean ± STD mean ± STD

RBF kernel 0.0463 ± 0.194 0.114 ± 0.327
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Figure 6: Convergence test with respect to Q2 predictive coefficient for the LAR gPC-
surrogate built using Halton’s low discrepancy sequence (cross-validated using the Monte
Carlo random sampling). Solid line with square symbols corresponds to linear truncation;
dash-dotted line with star symbols corresponds to hyperbolic truncation with q = 0.75;
and dashed line with circle symbols corresponds to hyperbolic truncation with q = 0.5.

Table 12: Sobol’ indices (first-order in black and total-order in gray) using LAR gPC-

surrogate and linear truncation; θ = (U, I, τ)
T

; N = 216. Left: Sobol’ indices associated
with the burnt area ratio A2. Right: Sobol’ indices associated with the MSR ratio S2.

U I TAU
0.000

0.111

0.222
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0.444

0.556

0.667

0.778

0.889

1.000
Sobol indices

Total Sobol indices

U I TAU
0.000
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0.222

0.333

0.444

0.556

0.667

0.778

0.889

1.000
Sobol indices

Total Sobol indices

Table 13: Mean and STD of observables A2 and S2 as well as error metrics εemp and Q2

using LAR gPC-surrogate and linear truncation; θ = (U, I, τ)
T

; N = 216.

Quantity of interest Mean STD εemp Q2

A2 0.07 0.06 9 · 10−4 0.95
S2 0.19 0.13 2 · 10−3 0.96
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Table 14: Same caption as in Table 12 but for θ = (µ, σ,D)
T

.
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Total Sobol indices
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0.778

0.889

1.000 Sobol indices

Total Sobol indices

Table 15: Same caption as in Table 13 but for θ = (µ, σ,D)
T

.

Quantity of interest Mean STD εemp Q2

A2 0.05 0.04 4 · 10−4 0.97
S2 0.11 0.11 2 · 10−3 0.95
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