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Barcelona Supercomputing Center. Universidad Politécnica de Cataluña. Barcelona, Spain
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Abstract

The emergence of heterogeneous systems has been very notable recently. The

nodes of the most powerful computers integrate several compute accelerators,

like GPUs. Profiting from such node configurations is not a trivial endeav-

our. OmpSs is a framework for task based parallel applications, that allows

the execution of OpenCl kernels on different compute devices. However, it does

not support the co-execution of a single kernel on several devices. This pa-

per presents an extension of OmpSs that rises to this challenge, and presents

Auto-Tune, a load balancing algorithm that automatically adjusts its internal

parameters to suit the hardware capabilities and application behaviour. The

extension allows programmers to take full advantage of the computing devices

with negligible impact on the code. It takes care of two main issues. First, the

automatic distribution of datasets and the management of device memory ad-

dress spaces. Second, the implementation of a set of load balancing algorithms

to adapt to the particularities of applications and systems. Experimental results

reveal that the co-execution of single kernels on all the devices in the node is

beneficial in terms performance and energy consumption, and that Auto-Tune

gives the best overall results.

Keywords: Heterogeneous systems, OmpSs programming model, OpenCL,

co-execution
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1. Introduction

The undeniable success of computing accelerators in the supercomputing

scene nowadays, is due not only to their high performance, but also to their

outstanding energy efficiency. Interestingly, this success comes in spite of the

fact that efficiently programming machines with these devices is far from trivial.5

Not long ago, the most powerful machines would have a set of identical proces-

sors. To further increase the computing power, now they are sure to integrate

some sort of accelerator device, like GPGPUs or Intel Xeon Phi. In fact, archi-

tects are integrating several such devices in the nodes of recent HPC systems.

The trend nowadays is towards highly heterogeneous systems, with computing10

devices of very different capabilities. The challenge for the programmers is to

take full advantage of this vast computing power.

But it seems that the rapid development of heterogeneous systems has caught

the programming language stakeholders unaware. As a result, there is a lack

of a convenient language, or framework, to fully exploit modern multi-GPU15

heterogeneous systems. Leaving the programmer to face these complex systems

alone.

It is true that several frameworks exist, like CUDA[1] and OpenCL[2], that

can be used to program GPUs. However, they all regard heterogeneous systems

as a collection of independent devices, and not as a whole. These enable pro-20

grammers to access the computing power of the devices, but do not help them

to squeeze all the performance out of the heterogeneous system, as each device

must be handled independently. Guided by the host-device model introduced by

these frameworks, programmers usually offload tasks, or kernels, to accelerator

devices one at a time. Meaning that during the completion of a task the rest25

of the machine is left idle. Hence, the excellent performance of these machines

is tarnished by an energy efficiency lower than could be expected. With several

devices in one system, using only one at a time is a considerable waste. Some

programmers have seen this flaw, and have tried to divide the computing tasks

among all the devices of the system [3, 4, 5]. But it is an expensive path in30
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terms of coding effort, portability and scalability.

This paper proposes the development of a means to assist the programmer

with this task. Because, code length and complexity considerations aside, load

balancing data-parallel applications on heterogeneous systems is a complex and

multifaceted problem. It requires deciding what portions of the data-set of a35

given kernel are offloaded to the different devices, so that they all complete it

at the same time [6, 7, 8].

To achieve this, it is necessary to consider the behaviour of the kernels them-

selves. When the data-set of a kernel is divided in equally sized portions, or

packages, it can be expected that each one will require the same execution time.40

This happens in well behaved, regular kernels but it is not always the case.

The execution time of the packages of some kernels may have a wide variation,

or even be unpredictable. These are considered irregular kernels. If how to

balance a regular kernel can be decided prior to the execution, achieving near

optimal performance, the same can not be said about irregular ones. Their45

unpredictable nature forces the use of a dynamic approach that marshals the

different computing devices at execution time. This however, increases the num-

ber of synchronisation points between devices, which will have some overhead,

reducing the performance and efficiency of the system. In conclusion, the di-

verse nature of kernels prevents the success of a single data-division strategy in50

maximising the performance and efficiency of a heterogeneous system.

Aside from kernel behaviour, the other key factor for load distribution is the

configuration of the heterogeneous system. For the load to be well balanced,

each device must get the right amount of work, adapted to the capabilities of

the device itself. Therefore, a work distribution that has been hand-tuned for a55

given system is likely to underperform on a different one.

The OmpSs programming model is an ideal starting point in the path to

hassle-free kernel co-execution. It provides support for task parallelism due to

its benefits in terms of performance, cross-platform flexibility and reduction of

data motion [9]. The programmer divides the code in interrelating tasks and60

OmpSs essentially orchestrates their parallel execution maintaining their control
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and data dependences. To that end, OmpSs uses the information supplied

by the programmer, via code annotations with pragmas, to determine at run-

time which parts of the code can be run in parallel. It enhances OpenMP

with support for irregular and asynchronous parallelism, as well as support for65

heterogeneous architectures. OmpSs is able to run applications on symmetric

multiprocessor (SMP) systems with GPUs, through OpenCL and CUDA APIs

[10].

However, OmpSs can only assign kernels to single devices, therefore not sup-

porting co-execution of kernels. An experienced programmer could decompose70

the kernel in smaller tasks so that OmpSs could send them to the devices. But

there would be no guarantee that the resources would be efficiently used or the

load properly balanced. The programmer would also be left alone in terms of

dividing the input data and combining partial results. This would lead to longer

code, which would be harder to maintain.75

As a solution to the above problems this article presents an OmpSs exten-

sion which enables the efficient co-execution of massively data-parallel OpenCL

kernels in heterogeneous systems. This has the advantage of providing a natural

way to program using all the available resources that was not previously avail-

able in OmpSs. Manually achieving an equivalent functionality would require80

rethinking the applications themselves to account for the heterogeneous devices,

creating different tasks with adequate granularities and even implementations.

Moreover, these extra manual work would need to be repeated if the system

configuration changed. By automatically using all the available resources, re-

gardless of their number and characteristics, the proposed extension presents an85

easy way to perform kernel co-execution and extracting the maximum perfor-

mance of these systems. It takes care of load balancing, input data partitioning

and output data composition.

The experimental results presented here show that, for all the used bench-

marks, being able to co-execute kernels on multiple devices has a positive impact90

on performance. In fact, the results indicate that it is possible to reach an ef-

ficiency of the heterogeneous system over 0.85. Furthermore, the results also
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show that, although the systems exhibit higher power demand, the shorter exe-

cution time grants a notable reduction in the energy consumption. Indeed, the

average energy efficiency improvement observed is 53%.95

The main contributions of this article are the following:

• The OmpSs programming model is extended with a new scheduler, that

allows a single OpenCL kernel instance to be co-executed by all the devices

of a heterogeneous system.

• The scheduler implements two classic load balancing algorithms, Static100

and Dynamic, for regular and irregular applications.

• Aiming to give the best performance on both kinds of applications, two

new algorithms are presented, HGuided and Auto-Tune, which is a pa-

rameterless version of the former.

• An exhaustive experimental study is presented, that corroborates that105

using the whole system is beneficial in terms of energy consumption as

well as performance.

The rest of this paper is organized as follows. Section 2 presents background

concepts key to the understanding of the paper. Next, Section 3 describes the

details of the load balancing algorithms. Followed by Section 4, that covers the110

implementation of the OmpSs extension. Section 5 presents the experimental

methodology and discusses its results. Finally, Section 7 offers some conclusions

and future work.

2. Background

This section explains the main concepts of the OmpSs programming model115

that will be used throughout the remainder of the article.

OmpSs is a programming model based on OpenMP and StarSs. Which has

been extended in order to allow the inclusion of CUDA and OpenCL kernels
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in Fortran and C/C++ applications, as a simple solution to execute on hetero-

geneous systems [9, 10]. It supports the creation of data-flow driven parallel120

programs that, through the asynchronous parallel execution of tasks, can take

advantage of the computing resources of a heterogeneous machine. The pro-

grammer declares the tasks through compiler directives (pragma) in the source

code of the application. These are used at runtime to determine when the tasks

may be executed in parallel.125

OmpSs is built on top of two tools:

• Mercurium is a source-to-source compiler that processes the high-level di-

rectives, and transforms the input code into a parallel application [11]. In

this manner, the programmer is spared of low level details like the thread

creation, synchronization and communication, as well as the offloading of130

kernels in a heterogeneous system.

• Nanos++ is a run-time library that provides the necessary services for

the execution of the parallel program [12]. Among others, these include

task creation and synchronization, but also data marshaling and device

management.135

In the pragma annotations, the programmer specifies the data dependences

between the tasks. Then, when the execution of the parallel program com-

mences, a thread pool is created. Of these, only the master thread is active,

and uses the services of the run-time library to generate tasks, identified by

work descriptors, and adding them to a dependence graph. The master thread140

then schedules the execution of the tasks to the threads in the pool as soon as

their input dependences are satisfied.

In terms of heterogeneous systems, OmpSs provides a target directive that

indicates a set of devices in which a given task can run. In addition to a task,

the target directive can be applied to a function definition. OmpSs also offers145

the ndrange clause that, together with the data-directionality clauses in and

out, guides the data transfer between the devices and the host CPU, so the

programmer perceives a single unified address space.
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However, OmpSs does not support the execution of a single kernel instance

in several devices. The extension proposed in this article modifies the Nanos++150

runtime system so that it can automatically divide a kernel into sub-kernels

and manage the different memory address spaces. In order to make the co-

execution efficient, four load balancing algorithms have been implemented to

suit the behavior of different applications.

3. Load Balancing Algorithms155

The behavior of the algorithms is illustrated in Figure 1. It shows the ideal

case in which in the execution of a regular application all devices finish simul-

taneously, thus achieving perfect load balance.

3.1. Static algorithm

This algorithm works before the kernel starts its execution by dividing the160

dataset in as many packages as devices are in the system. The division relies on

knowing the computing power of the devices in advance. Then the execution

time of each device can be equalized by proportionally dividing the dataset

among the devices. As a consequence, there is no idle time in any device, which

would signify a waste of resources. The idea of assigning a single package to165

each device is depicted in Figure 1.

A formal description of the algorithm can be made considering a heteroge-

neous system with n devices. Each device i has computational power Pi, which

is defined as the amount of work that a device can complete per time unit,

including the communication overhead. This value depends on the architecture170

of the device, but also on the application that is being run. These powers are

input parameters of the algorithm and can be extracted by a simple profiled

execution.

The application will execute a kernel over W work-items, grouped in G work-

groups of fixed size Ls = W
G . Since the work-groups do not communicate among175

themselves, it makes sense to distribute the workload taking the work-group as
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Static

CPU 1 2 3 4 5 6

GPU1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GPU2 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Dynamic

CPU 1 2 19 20 37 38

GPU1 3 4 7 8 11 12 15 16 21 22 25 26 29 30 33 34 39 40 43 44 47 48 51 52

GPU2 5 6 9 10 13 14 17 18 23 24 27 28 31 32 35 36 41 42 45 46 49 50 53 54

HGuided/Auto-Tune

CPU 1 2 3 4 39 40

GPU1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 41 42 43 44 48 49 52 53

GPU2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 45 46 47 50 51 54

Time

Figure 1: Depiction of how the four algorithms perform the data division among three devices.

The work groups assigned to each device, identified by numbers, are joined in packages shown

as larger rounded boxes. Note that the execution time of work groups in the CPU is four

times larger than in the GPUs.

the atomic unit. Each device i will have an execution time of Ti. Then the

execution time of the heterogeneous system will be that of the last device to

finish its work, or TH = maxni=1Ti. Also, since the whole system is capable of

executing W work-items in TH , it follows that its total computational power of180

the heterogeneous system is PH = W
TH

. Note that it also can be computed as

the sum of the individual powers of the devices.

PH =
W

TH
=

n∑

i=1

Pi

The goal of the Static algorithm is to determine the number of work-groups

to assign each device, so that all the devices finish their work at the same time.

This means finding a tuple {α1, ...αn}, where αi is the number of work-groups185

assigned to the device i, such that:
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TH = T1 = · · · = Tn ⇔
Lsα1

P1
= · · · = Lsαn

Pn

This set of equations can be generalised and solved as follows:

TH =
Lsαi

Pi
⇔ αi =

THPi

Ls
=
THPiG

W
=

PiG∑n
i=1 Pi

Since αi is the number of work-groups, its value must be an integer. For this

reason, the expression used by the algorithm is:

αi =

⌊
PiG∑n
i=1 Pi

⌋

If there is not an exact solution with integers then
∑n

i=1 αi < G. In this190

case, the remaining work-groups are assigned to the most powerful device.

The advantage of the Static algorithm is that it minimises the number of

synchronisation points. This makes it perform well when facing regular loads

with known computing powers that are stable throughout the dataset. However,

it is not adaptable, so its performance might not be as good with irregular loads.195

3.2. Dynamic algorithm

Some applications do not present a constant load during their executions.

To adapt to their irregularities, the dynamic algorithm divides the dataset into

small packages of equal size. The number of packages is well above the number

of devices in the heterogeneous system. During the execution of the kernel,200

a master thread in the host is in charge of assigning packages to the different

devices, following the next strategy:

1. The master splits the G work-groups in packages, each with the package

size specified by the user. This number must be a multiple of the work-

group size. If the number of work-items is not divisible by the package205

size, the last package will be smaller

2. The master launches one package on each device, including the host itself

if it is desired.
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3. The master waits for the completion of any package.

4. When device i completes the execution of a package:210

(a) The device returns the partial results corresponding to the processed

package.

(b) The master stores the partial results.

(c) If there are outstanding packages, a new one is launched on device i.

(d) If all the devices are idle and there are no more packages, the master215

jumps to step 5.

(e) The master returns to step 3.

5. The master ends when all the packages have been processed and the results

have been received.

This behaviour is illustrated in Figure 1. The dataset is divided in small,220

fixed size packages and the devices process them achieving equal execution time.

As a consequence, this algorithm adapts to the irregular behaviour of some

applications. However, each completed package represents a synchronisation

point between the device and the host, where data is exchanged and a new

package is launched. This overhead has a noticeable impact on performance.225

The Dynamic algorithm takes the size of the packages as a parameter.

3.3. HGuided algorithm

The two above algorithms are well known approaches to the problem of

load balancing in general. But none satisfy three key aspects. First, take

into account the heterogeneity of the system. Second, control the overhead230

of the synchronisation. And third, give reasonable performance with regular

and irregular applications. Thus a new load balancing algorithm method called

HGuided was proposed, which is based on the Guided method from OpenMP.

The main difference between the HGuided and the Dynamic algorithms is

the size and quantity of the packets. In Dynamic, the size of the packets is235

constant, while in HGuided they vary throughout the execution and between

the devices. As execution progresses, the size of the packets decreases with
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the remaining workload. This size is weighted with the relative computational

capacity of each device. This way the less powerful devices (CPUs in this case)

run smaller packets than they would in a homogeneous system, and the more240

powerful run larger packets. The package size for device i is calculated as follows:

package sizeH =

⌊
Gr

kN
· Pi∑N

j=1 Pj

⌋

Note that the first term gives diminishing size of the packages, as a function

of the number of pending work-groups Gr, the number of devices N and the

constant k. The latter is introduced due to the unpredictable behavior of the

irregular applications. It limits the maximum package size and, in the exper-245

imental evaluation of Section 5, was empirically fixed to 2. The second term

adjusts the package size with the ratio of the computing capacity of the device

Pi to the total capacity of the system.

On the other hand, in the dynamic algorithm, the programmer sets the

number of packages for each execution. However, in the HGuided, since the size250

of the packets depends on the device. Therefore, the number of packages will

vary according to the order in which the packets are assigned to the devices.

This can differ greatly between runs and especially in irregular applications.

Therefore, this algorithm reduces the number of synchronization points and the

corresponding overhead, compared to the Dynamic.255

Figure 1 shows how the size of the packages is large at the beginning of the

execution, and decreases towards the end.

3.4. Auto-Tune algorithm

The HGuided algorithm strikes a balance between adaptiveness and over-

heads, which makes it a good all-around solution that adequately distributes260

the workload for both regular and irregular applications. However, it still re-

quires two parameters to be provided by the programmer: the computing power

and the minimum package size. These have a key impact on performance and are

dependent on both the application to be executed and the system itself. More-

over, the HGuided algorithm is quite sensitive to these parameters, so choosing265

12
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6 1.8  2

S
p

e
e
d

Time(s)

GPU0
GPU1

CPU

Figure 2: Evolution of the computing power per device.

an adequate value for them is sometimes a demanding task that requires a thor-

ough experimental analysis. The sensitivity of the HGuided algorithm to its

parameters is further analyzed in Section 5.3.

In addition, determining the minimum package size parameter is compli-

cated, especially for GPUs, because it is essential to do a sweep to obtain a270

value that gives good results. The computing capability is easier to evaluate.

It only requires obtaining the response times in each device independently and

calculating the capacities.

The Auto-Tune algorithm is an evolution of the previous algorithm that

achieves near optimal performance for both regular and irregular loads without275

the hassle of parameters. It uses the same formula to calculate the package size,

but uses nominal parameter values that are adjusted at runtime and handles

the minimum package size differently depending on the device that each package

will be sent to.

The computing power for the first package launched at each device is calcu-280

lated using the theoretical GFLOPs of the hardware. These can be obtained at

the installation of OmpSs either by querying the available devices or by running

a simple compute intensive benchmark. For the successive packages, the power

is updated taking into account the computing speed displayed by each device.

This is calculated as the average number of work-items processed per second for285

the last three packages launched to each device. By using the average speed of

the last packages, a gradual adaptiveness is attained that keeps the algorithm

resistant to bursts of irregularity that would not be representative of the actual
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speed for the next packages. Figure 2 depicts the evolution of the computing

power during the execution of one of the applications used for experimentation.290

The nominal computing powers are used at the beginning of the execution until

all the devices have finished at least one package. Then, the computing powers

are updated at runtime. In the figure, the nominal power for the GPU was

higher than the actual one for the application. Note that the use of the nominal

powers for the initial packages does not disturb the load balancing, as all the295

devices are kept busy and do not delay the completion of the benchmark.

Package size also has an influence on the computing speed of throughput

based architectures, such as GPUs. Consequently, package size must be kept

relatively high to prevent an inefficient use of the hardware and overheads.

However, this is also a potential source for imbalance. If the computing power of300

the devices differs greatly, a high minimum package size that reduces overheads

is likely to be too big for slow devices, namely, CPUs, which would cause delays.

To prevent this, the Auto-Tune HGuided algorithm uses different minimum

values for CPUs and GPUs. The value selected for the CPU is one work-group

per CPU core, so no hardware is left unused and imbalance is avoided. This is305

because the CPU is not a throughput device, so its computing speed is usually

much less sensitive to package size than the GPUs. Moreover, CPUs are often

the least powerful device of the system, so using a small minimum package size

with them will improve the load balancing. Two values are considered for the

GPU minimum package size. First, the equations implemented in the CUDA310

Occupancy Calculator are used to obtain the minimum number of work-groups

that will achieve maximum occupancy for the current kernel and GPU. The

CUDA Occupancy Calculator is part of the CUDA Toolkit since version 4.1.

This value is a lower bound for the minimum package size, but might be too low

if the application launches a large amount of work-items, producing too many315

packages and high overheads. To prevent this, the number of work-items is also

analyzed and the final minimum package size is set to the maximum between the

value obtained by the Occupancy Calculator and 5% of the work-items. This

percentage has been experimentally set to keep the number of packages low and
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avoid performance degradation in the GPU.320

These enhancements give forth an algorithm with improved adaptiveness,

that delivers comparable performance to the HGuided approach for a fraction

of the effort. It completely eliminates the need to provide any parameter and

saves a great deal of pre-processing time per application and system, as will be

seen in Section 5.3.325

4. Implementation

As stated before, the OmpSs infrastructure relies on the combination of two

components: Mercurium, which is a source-to-source compiler, and Nanos++,

which is a runtime capable of managing tasks, their data and the Task De-

pendence Graph (TDG) they generate. As a first approach, the new load bal-330

ancing algorithms have been implemented focusing on making the changes as

self-contained as possible and minimizing the impacts on the OmpSs specifica-

tion, Mercurium and the rest of Nanos++. As a result, neither directives nor

clauses have been added to Mercurium. Nanos++ implements a set of differ-

ent schedulers that deal with the management of the tasks submitted to the335

runtime. To offer the work distribution strategies for a single OpenCL task

presented in the previous section, a new scheduler has been implemented as a

Nanos++ plugin, which has been called maat. The parameters of the algorithms

are the following:

• The device computing powers for Static and HGuided.340

• The package size for Dynamic.

• The minimum package size for HGuided.

To avoid altering the OmpSs specification, the selected algorithm and its pa-

rameters are set through environment variables, which is the normal way to

specify the scheduler in Nanos++.345

Figure 3 represents the outline of an OmpSs implementation of the Binomial

benchmark used later in the experimentation. It shows how a call to a function
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// Initializations

binomial_options(NUM_STEPS , SAMPLES ,

randArray , output );

#pragma omp taskwait

//Free resources

Figure 3: Basic outline of an OmpSs application.

#pragma omp target device(opencl) copy_deps \\

ndrange(1,samples *( numSteps +1), \\

numSteps +1)

#pragma omp task in([ samples]randArray) \\

out([ samples]output)

__kernel void binomial_options(int numSteps ,

int samples , const __global float4*

randArray , __global float4* output );

Figure 4: Header file for the task.

defined as a task is followed by a wait. The header of that function, which is

shown in Figure 4, indicates that the task must be run in an OpenCL device,

as well as its launch parameters, input and output data. Figure 5 displays the350

environment variables that need to be set to run the task with each of the four

algorithms presented in Section 3. As shown, the selection of the auto-tune

algorithm eliminates the need of specifying any other load balancing related

parameter.

Despite the efforts made to minimize the impact on Mercurium, a minor355

change was unavoidable. The original implementation did not make OpenCL

kernel configuration parameters available to Nanos++. This information is nec-

essary for the operation of the plugin, as it defines the amount of work that will

be performed. Nanos++ work descriptors do not hold this information either.

Consequently, a new Mercurium work descriptor creation function has been360
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# Static load balancing

NX_SCHEDULE=maat

NX_ALGORITHM=static

NX_GPU_POWER =34.0

# Dynamic load balancing

NX_SCHEDULE=maat

NX_ALGORITHM=dynamic

NX_DYN_PACKAGE_SIZE =409600

# HGuided load balancing

NX_SCHEDULE=maat

NX_ALGORITHM=hguided

NX_GPU_POWER =34.0

NX_MIN_PACKAGE_SIZE =115200

# Auto -Tune load balancing

NX_SCHEDULE=maat

NX_ALGORITHM=auto -tune

Figure 5: Environment variables to use standard OmpSs and the different load balancing

algorithms.

implemented, which behaves like the original but including these parameters.

When a work descriptor is submitted, the new scheduler manages its division

in as many work descriptors as the selected algorithm and parameters require.

These work descriptors are considered as children of the one submitted, and

represent an aggregate workload equivalent to that of their parent. For the365

Static and Dynamic algorithms, in which the number and size of the packages

are known when the launch of the workload is made, all the work descriptors

are created at the submission of their parent. They are stored in the scheduler

and adequately returned when a thread is idle, receptive to another task. In
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the case of the HGuided and Auto-Tune algorithms, the packages have varying370

sizes that depend on the prior execution and the device that will run them. As

a consequence, the children work descriptors will be created when required by

an idle thread, considering the device it manages and the execution.

Each of the children work descriptors is identical to its parent except in two

key aspects. First, they have different OpenCL parameters, namely offset and375

global work size, defining the workload of the package they represent. There is

no constraint on the number of dimensions of the OpenCL data-set of the parent

task, as the work division is always performed along the first dimension. Second,

the output data is just a portion of that of its parent, which is conveniently offset

so the results are written adequately. This is represented by an independent380

CopyData object, holding the start address and size that the package will have

to work on. As a result, coherence problems are avoided in the OmpSs directory.

Apart from the aforementioned details, data transfer relies on the methods used

by standard OmpSs. To perform the correspondence between work descriptors

and output data, an assumption is made: each OpenCL work-item will produce385

the result for the position of the output buffers indexed by its identifier. This

may seem a strong requirement, but it is met by most kernels widely used in

the industry and research. Input data is replicated in the memory of all the

devices, as there is no way to predict the parts that will be read by each of the

work-items. This might appear as an important source of overhead, but the390

experimental results of Section 5 indicate otherwise, as good performances are

obtained.

The creation of the children work descriptors is performed by a modified

version of the duplicateWD function that does this extra work. This function

is also responsible for making the OpenCL parameters of the divided work395

descriptors available to the Mercurium code, which will trigger the actual kernel

launches.

Once the submission of the original work descriptor is completed, the done

function is called. This is a Nanos++ function that is used to signal the com-

pletion of a work descriptor. It also waits for the completion of the children400
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of the calling work descriptor. In this way, no task dependent on the divided

one will be run until all the children resulting from the work distribution are

completed, so the dependencies of the task graph are maintained.

5. Evaluation

This Section begins with a description of the system and the benchmarks405

used in the experiments, as well as definitions of the metrics used in the evalu-

ation. Additionally experimental results are showed and analyzed.

5.1. System Set-up

The test machine has two processor chips and two GPUs and 16 GBs of

DDR3 memory. The chips are Intel Xeon E5-2620, with six cores that can410

run two threads each at 2.0 GHz. They are connected via QPI, which allows

OpenCL to detect them as a single device. Thus, any reference to the CPU

considers both processors. The GPUs are NVIDIA Kepler K20m with 13 SIMD

lanes and 2496 cores and 5 GBytes of VRAM each. These are connected to the

system using independent PCI 2.0 slots. The experiments build upon a baseline415

system which uses a single GPU but consider the static energy of all the devices,

regardless of if they are contributing work or not. This accounts for the fact

that many current HPC systems have several accelerators which, if left unused,

are a potential source of inefficiency.

Six applications have been chosen for the experimentation. Three of them:420

NBody, Krist and Perlin are part of the OmpSs examples offered by BSC, and

the other three: Binomial, Sparse Matrix and Vector product (SpMV) and Rap

have been specifically adapted to OmpSs from existing OpenCL applications.

The first four (NBody, Krist, Binomial and Perlin) are regular, meaning that all

the work-groups represent a similar amount of work. On the contrary, SpMV425

and Rap are irregular, which implies that each work-group represents a differ-

ent amount of work. The parameters associated to each of the load balancing

algorithms have been set to maximize performance.The computing power for
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a device/application pair has been obtained as the relative performance of the

device, with respect to that of the fastest device for the application.430

Perlin implements an algorithm that generates noise pixels to improve the

realism of moving graphics. Krist is used on crystallography to find the exact

shape of a molecule using Röntgen diffraction on single crystals or powders.

Rap is an implementation of the Resource Allocation Problem. It has a certain

pattern in its irregularity, because each successive package represents an amount435

of work larger than the previous.

The evaluation of the performance of the benchmarks is done through their

response time. This includes the time required by the communication between

host and the devices, comprising input data and result transfer, as well as

the execution time of the kernel itself. The benchmarks are executed in two440

scenarios, the heterogeneous system, taking advantage of the GPUs and CPU,

and the baseline, that only uses one GPU. Note that in both instances, the

same version of the program is run, as there is no need to modify the source or

recompile, only set environment variables.

Based on these response times, two metrics are analyzed. The first is the445

speedup for each benchmark when comparing the baseline and the heterogeneous

system response times. Note that, for the employed benchmarks, the CPU is

much less powerful than the GPUs, then the maximum achievable speedup using

the three devices is not 3, but a fraction over 2 which depends on the computing

power of the CPU for the application. The speedup for each application using450

a perfectly balanced work distribution is shown in Table 1. These values give

an idea of the advantage of using the complete system. They were derived from

the response time Ti of each device as shown in Equation 1.

Smax =
1

maxni=1{Ti}
n∑

i=1

Ti (1)

The second metric is the load balancing efficiency, obtained by dividing the

reached speedup by the maximum speedup, shown in Table 1. The obtained455

value ranges between 0 and 1 giving an idea of the usage of the heterogeneous
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Table 1: Maximum achievable speedup per application.

Application NBody Krist Binomial Perlin SpMV RAP

Max. Speedup 2.61 2.2 2.03 2,04 2.05 2,16

system. Efficiencies close to 1 indicate the best usage of the system is being

made. The measured values do not reach this ideal because of the communica-

tion and synchronization times between the host and the devices.

5.2. Energy measurement460

To evaluate the energy efficiency of the system it is necessary to take into

account the power drawn by each device. Modern computing devices include

Performance Management Units (PMU) that allow applications to measure and

control the power consumption. However, the power measured is associated to

the device and not the kernel or process in execution. Together with the fact that465

it is impractical to add measurement code to all the test applications, this led to

the development of a power monitoring tool named Sauna. It takes a program

as its parameter, and is able to configure the PMUs of the different devices in

the system, run the program while performing periodic power measurements.

This tool required an unexpected amount of thought for its development.470

Since it had to monitor several PMUs, it had to adapt to the particularities of

each one while giving consistent and homogeneous output data. For instance,

each device has a different way to access its PMUs. Recent versions of the Linux

kernel provides access to the Running Average Power Limit (RAPL) registers

[13] of the Intel processors, which provide accumulative energy readings. On475

contrast, NVIDIA provides a library to access their PMUs. But this NVIDIA

Management Library (NVML) [14] gives instant power measurements.

During the development of Sauna, it was observed that these energy or power

readings have an impact on the kernel or process execution. Then, finding an

adequate sampling period is an important task. To strike a balance between480

the overhead that was observed in the GPUs with high sampling rates and
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Figure 6: Parameter sensitivity analysis

the accuracy loss that is inherent of lower ones, it was decided to use 45ms

as the sampling period. The performance and the energy consumption can be

combined in a single metric representing the energy efficiency of the system.

This paper uses the Energy Delay Product (EDP) [15] for this purpose.485

5.3. Parameter sensitivity

As explained in Section 3, the Static, Dynamic and HGuided algorithms

require different parameters for their operation. These have to be provided by

the programmer and are one of the key factors for a successful load balancing.

However, determining the most adequate values for a workload is not trivial, as490

22
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license



they may differ greatly between applications and device configurations. Conse-

quently, the selection of parameters is often a work intensive process, usually

based on experimentation.

The importance of adequately choosing the parameter values is illustrated in

Figure 6, which displays the execution time for the applications when varying495

the parameters for each of the algorithms. Note that for the HGuided algo-

rithm, when one of the parameters is modified, the other is set to the identified

optimal value. As shown in the figure, for every of the parameters, the applica-

tions show very different behaviors, ranging from near insensitivity to delivering

greatly degraded performance, sometimes even lacking a clear relation with the500

parameter value, as is for example the case of Rap for the minimum package

size. Moreover, the applications are not affected equally by the parameters. For

example, Binomial is highly sensitive to the computing power in the Static algo-

rithm and moderately sensitive to almost insensitive to the rest of parameters,

while Rap behaves just the opposite: it is insensitive to the Static computing505

power and tremendously sensitive to the other parameters.

Considering these results, it is obvious that, in order to achieve an accurate

load balancing, an experimental tuning of the algorithm parameters is often

a must. The Auto-Tune algorithm frees the programmer from this burden by

automatically adjusting the parameters, matching and even surpassing the per-510

formance of the HGuided.

5.4. Experimental results

The experiments presented in this section have been developed with the

optimal values for the parameters required by each algorithm, obtained in the

previous section. This implies that the results for the Static, Dynamic and515

HGuided algorithms are the best that can be achieved, but require a great

effort to tune the parameters.

Figure 7 shows the speedup obtained for each application calculated with

respect to their execution time using the baseline system, as was explained in

Section 5.1. This section also showed that the maximum achievable speedup520
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Figure 7: Speedup per application.

depends on the application. These values, presented in Table 1, are shown in

the graph as horizontal lines above each benchmark. Additionally, the geometric

mean is shown, which includes both four regular benchmarks and two irregular

ones.

From the results of the geometric mean it can be seen that the best result525

is obtained by the Auto-Tune algorithm, closely followed by the Static, the

HGuided and finally the Dynamic. Furthermore, it should be emphasized that

the Auto-Tune algorithm is much easier to use, because it does not require

finding optimal values for any parameter.

A detailed analysis of the speedups reveals that the Static algorithm is the530

best option for regular applications. This is because they require no adaptivity,

so they benefit from the minimum overhead introduced by the Static algorithm.

However, except in the case of Perlin, which is very sensitive to overheads as

can be seen in the results for all the algorithms but the Static, the Auto-Tune

algorithm achieves very similar results with less configuration effort. The other535

two algorithms achieve good results, but suffer from a problem that reduces

performance. If one of the last packages is assigned to the slowest device it is

likely to delay the execution of the whole application. This problem could be

avoided by increasing the number of packages, but in that case overheads come

into play, which also degrade performance. The HGuided algorithm due to its540

very nature, partially solves this issue.
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Figure 8: Efficiency of the heterogeneous system.

For irregular applications, the best results are obtained by Auto-Tune and

HGuided algorithms. Their adaptive behaviour favours load balancing in these

applications, where the workload of each work-group is completely unknown

and unpredictable. On the other hand, the reduction in synchronization points545

reduces the runtime overhead, which is inherent to this type of algorithm. This

is the reason why the HGuided and Auto-Tune algorithms deliver equal or bet-

ter performance than the simpler Dynamic algorithm, as they introduce less

overhead. Finally, the Static algorithm fails to balance the load because it can

not cope with the unpredictability of these applications.550

The load balancing efficiency gives an idea of how well a load is balanced. A

value of one represents that all the devices have been working all the time, thus

achieving the maximum speedup. In Figure 8 the geometric mean efficiencies

show that the best result is achieved by Auto-Tune with an efficiency around

0.85. In addition, there is at least one load balancing algorithm for every appli-555

cation that achieves an efficiency over 0.9 or even as high as 0.98, reached by

Binomial and Perlin with the Static. This is true even for the irregular appli-

cations, in which obtaining a balanced work distribution is significantly harder.

Nowadays, performance is not the only figure of merit used to evaluate com-560

puting systems. Their energy consumption and efficiency are also very im-

portant. Figure 9 gives an idea of the energy saving the whole heterogeneous
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Figure 9: Normalised energy consumption per application.

system brings, compared to the baseline system. The latter only uses one GPU

while the other devices are idle and still consuming. This would be the case of

a current HPC system, in which failing to use all the available resources may565

represent an energy waste. Therefore, the Figure shows for each benchmark the

energy consumption of each algorithm normalized to the baseline consumption,

meaning that less is better.

The values of the geometric mean indicate that the algorithms that consume

less energy are Static and Auto-Tune, with a saving of almost 20% compared570

to the baseline. Regarding the individual benchmarks, it is always possible to

find an algorithm where the normalised energy is less than one. Moreover, all

the algorithms reduce consumption, despite using the whole system. The use of

more devices necessarily increases the instantaneous power at any time. But,

since the total execution time is reduced, the total energy consumption is also575

less. Furthermore, since idle devices still consume energy, making all devices

contribute work is beneficial.

The analysis of the algorithms shows a strong correlation between perfor-

mance and energy saving. Consequently, the best algorithm for regular applica-

tions is also the Static, with an average saving of 26.5%. However, for irregular580

applications, it wastes 7.4% of energy. On the other hand, the Auto-Tune gives

an average energy saving of 16%.

Regarding the results of concrete benchmarks, it is interesting to comment
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Figure 10: Normalised EDP per application.

Krist. The highest energy saving in this benchmark is provided by Auto-Tune,

although it is not the best in performance. There are only two particular bench-585

marks where the use of the whole system employs more energy than the base-

line. These are Perlin with Dynamic, Hguided and Auto-Tune, and SpMV with

Static. This is because, in these cases, the gain in performance is too small and

cannot compensate for the increased power consumption involved in using the

complete system.590

Another interesting metric is the energy efficiency, which combines perfor-

mance with consumption. With the dual goal of low energy and fast execution

in mind, the Energy Delay Product (EDP) is the product of the consumed en-

ergy and the execution time of the application. Figure 10 shows the EDP of the

algorithms normalised to the EDP of the baseline.595

Since the EDP is a combination of the two above metrics, the previous

results are further corroborated. Therefore Auto-Tune also achieves the best

energy efficiency results on geometric mean, followed by Static, Hguided and

Dynamic. Attending to the individual algorithms, their relative advantages is

also maintained. Although the Static algorithm on regular applications shows a600

significant reduction of the EDP of 65%, the same is not true on irregular ones,

reducing only 12.4%. In contrast, the Auto-Tune is more reliable, as it achieves

a similar reduction on both kinds of applications; 48% on regular and 57% on

irregular.
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6. Related Work605

Heterogeneity has taken computing platforms by storm, ranging from HPC

systems to hand-held devices. The reason for this is their outstanding per-

formance and energy efficiency. However, making the most of heterogeneous

systems also poses new challenges. The extra computing power also involves

new decisions on how to use all the available hardware, which currently have610

to be made by the programmer without much help from the programing frame-

works and runtimes. The keys to make programming easy again are system

abstraction, so the heterogeneous devices are handled transparently, and load

balancing, so the resources are adequately used. Nevertheless, related as they

are, these problems are often addressed separately.615

The strategies for co-execution presented in this paper are built upon the

system abstractions already offered by OmpSs [9, 10] and focus particularly on

the load balancing problem. However, some related system abstraction research

works are worth mentioning. Such is the case of DistCL [16], which is a frame-

work that enables the distribution of a kernel over a GPU cluster by using user620

defined meta-functions. These are callbacks that represent the memory access

pattern of the of each devices, so the programmer can instruct the framework on

how to distribute the data and reduce data transfers. In [17], the GPUs of the

system are abstracted and the addresses accessed by each device are computed

using sampling run on the host of some select work-items. The authors of [18]625

attain abstraction via kernel transformations and a static kernel analysis that

determines whether the data need to be replicated or can be split.

To the load balancing problem alone, there are two main approaches found

in the literature: static and dynamic, which in turn can be adaptive or not.

Regarding static methods, Lee et al.[19] propose the automatic modification630

of OpenCL code that executes on a single device, so the load is balanced among

several. De la Lama et al. [20] propose a library that implements static load

balancing by encapsulating standard OpenCL calls. The work presented in

[21] uses machine learning techniques to come up with an offline model that
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predicts an ideal static load partitioning. However, this model does not consider635

irregularity. Similarly, Zhong et al. [22] use performance models to identify an

ideal static work distribution. In [18] the focus is on the static distribution of

a single kernel execution to the available devices via code modifications. Qilin

[23] is a training-based work distribution method that propose to balance the

load using a database containing execution-time data for all the programs the640

system has executed and a linear regression model. This technique is only useful

in systems that run the same applications frequently.

In the dynamic approach [24, 25] propose different techniques and runtimes.

However, these focus on task distribution and not on the co-execution of a single

data parallel kernel. The work of [26] deals with the dynamic distribution of645

TBB parallel for loops, adapting block size at each step to improve balancing.

FluidicCL [5] does focus on co-execution but for systems with a CPU and a

GPU. SnuCL [4] also tackles data parallelism, but is mostly centered on the

distribution of the load among different nodes using an OpenCL-like library.

Kaleem’s et al. proposal in [7] and Boyer’s et al. in [6] propose adaptive650

methods that use the execution time of the first packages to distribute the

remaining load. However, they focus on a CPU/GPU scenario and do not

scale well to configurations with more devices. . Navarro et al. [26] propose

a dynamic, adaptive algorithm for TBB that uses a fixed package size for the

GPU and a variable one for the CPU to try to achieve good balancing. This655

work was extended in [27], proposing an adaptive package size for the GPU too.

This is also based on using small initial packages to identify a package size that

obtains near optimal performance.

In the traditional research area of dynamic loop scheduling, [28] presents

Factoring, an algorithm with variable chunk sizes that addresses the problem660

of irregularity, referred to as iteration variance. However, it does not consider

heterogeneity. HDSS [29] is a more recent work that proposes a load balancing

algorithm that dynamically learns the computational power of each processor

during an adaptive phase and then schedules the remainder of the workload

using a weighted self-scheduling scheme during the completion phase. How-665
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ever, this algorithm assumes that the packages launched in the initial phase are

representative of the whole load, which might not be true for irregular kernels.

Besides, package size decreases linearly during the completion phase, which may

produce unnecessary overheads as substantiated in this paper

Scogland et al. [30] propose several work distribution schemes that fit differ-670

ent accelerated OpenMP computing patterns. However, they do not propose a

single solution to the load balancing problem. The library presented in [31] also

implements several load balancing algorithms and proposes the HGuided, which

adapts to irregularity and considers heterogeneity. This library is also used in

Xeon Phi base systems in [32]. However, it requires certain parameters from675

the programmer that may not be easy to obtain and uses linearly decreasing

packages that might incur overheads.

Some papers propose algorithms to distribute the workload between CPU

and GPU taking performance and power into account. For instance, GreenGPU

dynamically distributes work to GPU and CPU, minimizing the energy wasted680

on idling and waiting for the slower device [33]. To maximize energy savings

while allowing marginal performance degradation, it dynamically throttles the

frequencies of CPU, GPU and memory, based on their utilizations. Wang and

Ren [34] propose a power-efficient load distribution method for single applica-

tions on CPU-GPU systems. The method coordinates inter-processor work dis-685

tribution and frequency scaling to minimize energy consumption under a length

constraint. SPARTA is a throughput-aware runtime task allocator for Hetero-

geneous Many Core platforms [35]. It analyzes tasks at runtime and uses the

obtained information to schedule the next tasks maximizing energy-efficiency.

With respect to the problem of transparently managing a heterogeneous690

system, the authors of [36] propose a framework for OpenCL that enables the

transparent use of distributed GPUs. In this same vein, Cabezas et al. [3]

present an interesting architecture-supported take on efficient, transparent data

distribution among several GPUs. Nevertheless, this works overlook load bal-

ancing, which is essential when trying to make the most of several heterogeneous695

devices. Maestro [37] implements concepts related to the abstraction of the sys-
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tem, but the load balancing algorithm it proposes requires training.

You [38], Zhong [8] and Ashwin [39] do address both load balancing while

abstracting the underlying system and data movement. Nevertheless, their focus

is on task-parallelism instead of on the co-execution of a single data-parallel700

kernel. Kim et al. [17] approach the problem by implementing an OpenCL

framework that provides the programmer with a view of a single device by

transparently managing the memory of the devices. Their approach is based on

a Static load balancing strategy, so it can not adapt to irregularity. Besides,

they only consider systems with several identical GPUs, lacking the adaptability705

that OmpSs offers.

There are also some contributions that focus on scheduling and load balanc-

ing for OmpSs tasks. For instance, the scheduler presented in [40] is closer to

the idea of co-execution. It holds several implementations of a task, targeted for

different devices, that will be run iteratively. The scheduler stores the execution710

time of each implementation, so it can take load balancing decisions on what

implementation is best to run next. However, the programmer is responsible for

mapping the computation on several iterative tasks, which may not be an easy

and natural approach for the application at hand.

7. Conclusions and Future Work715

This paper presents a new scheduler of the OmpSs programming model that

allows to efficiently co-execute a single OpenCL kernel instance using all the

devices in a heterogeneous system. The scheduler has been conceived so that it

is fully transparent to the programmer, who only needs to select the algorithm

and set its parameters through environment variables.720

Similarly to OpenMP, the scheduler provides different load balancing algo-

rithms. These include the classic Static and Dynamic algorithms, as well as

a version of the Guided, called HGuided, that takes into account the hetero-

geneity of the system. Achieving good results with these algorithms required

the tuning of several parameters. Therefore, this paper also presents a novel725
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load balancing algorithm called Auto-Tune, which is capable of automatically

determining suitable values for internal parameters through the execution.

Judging by the results of all the experiments presented in this paper, two

conclusions can be reached. First, the use of kernel co-execution on modern het-

erogeneous systems is very important, as the executed the benchmarks showed730

a significant improvement in performance, energy consumption and efficiency.

Second, although there are some particular cases in which the Static algorithm

outperforms the Auto-Tune algorithm, the latter achieves excellent results with-

out a tedious and time-consuming phase of parameter optimization, which would

necessary for each new benchmark or system.735

According to our experimental results, Auto-Tune is capable of taking ad-

vantage of the whole heterogeneous system, with an average efficiency of 0.85.

Since the all the compute devices of the machine are used, the execution time is

reduced and consequently, an average energy saving of 16% has been observed.

The combination of these two improvements gives an reduction of the EDP close740

to 50%.

The future of this extension will see compatibility with new devices, like

Intel Xeon Phi, FPGAs or integrated GPUs. From the OmpSs perspective, a

modification of the pragma specification would allow the programmer to select

different algorithms or parameters for different kernels of the same application.745

It would be interesting to extend the evaluation to different systems and device

configurations.
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