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Abstract

The emergence of heterogeneous systems has been very n cabl . 1. ~2ntly. The
nodes of the most powerful computers integrate several comp *e accelerators,
like GPUs. Profiting from such node configurations is not . trivial endeav-
our. OmpSs is a framework for task based paralle! app.’"- .ions, that allows
the execution of OpenCl kernels on different comg 1te .evi es. However, it does
not support the co-execution of a single kernei ~ sc.cral devices. This pa-
per presents an extension of OmpSs that ri. « to thi challenge, and presents
Auto-Tune, a load balancing algorithm that . -'tomatically adjusts its internal
parameters to suit the hardware capab.. “1es and application behaviour. The
extension allows programmers to tak 11 advantage of the computing devices
with negligible impact on the code. It 1. "es care of two main issues. First, the
automatic distribution of datasets «a "he management of device memory ad-
dress spaces. Second, the implc ~eno. n of a set of load balancing algorithms
to adapt to the particularities of applications and systems. Experimental results
reveal that the co-execut'on of . 'ngle kernels on all the devices in the node is
beneficial in terms performe. "ce .nd energy consumption, and that Auto-Tune

gives the best overal’ res ts.

Keywords: Heterogen. ~us systems, OmpSs programming model, OpenCL,

co-execution
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1. Introduction

The undeniable success of computing accelerators in .he ape.computing

L

scene nowadays, is due not only to their high perform-—ze, L * also to their
outstanding energy efficiency. Interestingly, this succ: ss come in spite of the
fact that efficiently programming machines with the .. devices 1s far from trivial.
Not long ago, the most powerful machines would 1 ~v a se . of identical proces-
sors. To further increase the computing power, n. - they are sure to integrate
some sort of accelerator device, like GPGPUs ~ Inte] Xeon Phi. In fact, archi-
tects are integrating several such devices in ti.. nodes of recent HPC systems.
The trend nowadays is towards highly he. rogeneous systems, with computing
devices of very different capabilities. ... -hallenge for the programmers is to
take full advantage of this vast computi. - power.

But it seems that the rapid develo, mc. % of heterogeneous systems has caught
the programming language stak.“olac., unaware. As a result, there is a lack
of a convenient language, or framework, to fully exploit modern multi-GPU
heterogeneous systems. J zaving e programmer to face these complex systems
alone.

It is true that se =ral mrar eworks exist, like CUDA[1] and OpenCL[2], that
can be used to prec sram G, Js. However, they all regard heterogeneous systems
as a collection of inde, ~ndent devices, and not as a whole. These enable pro-
grammers to icce s the computing power of the devices, but do not help them
to squeeze all 1. verformance out of the heterogeneous system, as each device
must be anc.ed idependently. Guided by the host-device model introduced by
these #~mew. ~".s, programmers usually offload tasks, or kernels, to accelerator
devi es one . t a time. Meaning that during the completion of a task the rest
of ie maonine is left idle. Hence, the excellent performance of these machines
s tarnis .ed by an energy efficiency lower than could be expected. With several
devices in one system, using only one at a time is a considerable waste. Some
- rogrammers have seen this flaw, and have tried to divide the computing tasks

arnong all the devices of the system [3, 4, 5]. But it is an expensive path in
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terms of coding effort, portability and scalability.

This paper proposes the development of a means to ass' st 11~ programmer
with this task. Because, code length and complexity consia. * cions aside, load
balancing data-parallel applications on heterogeneous s ystems is a complex and
multifaceted problem. It requires deciding what porti ns of ne data-set of a
given kernel are offloaded to the different devices so t'... they all complete it
at the same time [6, 7, 8].

To achieve this, it is necessary to consider the beha -iour of the kernels them-
selves. When the data-set of a kernel is ¢ ideu "~ equally sized portions, or
packages, it can be expected that each or~ =" == ire the same execution time.
This happens in well behaved, regular kern '~ but it is not always the case.
The execution time of the packages of . or ¢ kernels may have a wide variation,
or even be unpredictable. These ‘. cou idered irregular kernels. If how to
balance a regular kernel can b~ decide 1 prior to the execution, achieving near
optimal performance, the same ca.. not be said about irregular ones. Their
unpredictable nature forcr, v use of a dynamic approach that marshals the
different computing devic. - at exe cution time. This however, increases the num-
ber of synchronisatio’. po’ its between devices, which will have some overhead,
reducing the performa. = a’ d efficiency of the system. In conclusion, the di-
verse nature of k 1. ~1s prevents the success of a single data-division strategy in
maximising th- | arformance and efficiency of a heterogeneous system.

Aside frc. ~ ke nel behaviour, the other key factor for load distribution is the
configura’.on »f the heterogeneous system. For the load to be well balanced,
each devi > mus’ get the right amount of work, adapted to the capabilities of
the ¢ evice i selt. Therefore, a work distribution that has been hand-tuned for a
given ~vster is likely to underperform on a different one.

The OmpSs programming model is an ideal starting point in the path to
L ssle-f ee kernel co-execution. It provides support for task parallelism due to
1, . nefits in terms of performance, cross-platform flexibility and reduction of
Jata motion [9]. The programmer divides the code in interrelating tasks and

OmpSs essentially orchestrates their parallel execution maintaining their control
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and data dependences. To that end, OmpSs uses the inforwn. *ion . applied
by the programmer, via code annotations with pragmas, t- de ermine at run-
time which parts of the code can be run in parallel. It .- iances OpenMP
with support for irregular and asynchronous parallelis' 1, as w ~1l as support for
heterogeneous architectures. OmpSs is able to run ap, 'icatic is on symmetric
multiprocessor (SMP) systems with GPUs, throu n O ... ©L and CUDA APIs
[10].

However, OmpSs can only assign kernels to single « 2vices, therefore not sup-
porting co-execution of kernels. An experic “ced , = rammer could decompose
the kernel in smaller tasks so that OmpS~ ~~'" = ad them to the devices. But
there would be no guarantee that the resourc. - would be efficiently used or the
load properly balanced. The program. er would also be left alone in terms of
dividing the input data and combiwn ., nar. al results. This would lead to longer
code, which would be harder tr aint. in.

As a solution to the above prou. ms this article presents an OmpSs exten-
sion which enables the effi- .cu. ~0-execution of massively data-parallel OpenCL
kernels in heterogeneous 5, “tems. This has the advantage of providing a natural
way to program usins all “he available resources that was not previously avail-
able in OmpSs. Manuc ‘v a nieving an equivalent functionality would require
rethinking the ar p.. *ations themselves to account for the heterogeneous devices,
creating differr = tasks with adequate granularities and even implementations.
Moreover, t. ~se :xtra manual work would need to be repeated if the system
configura’.on ~hanged. By automatically using all the available resources, re-
gardless ¢ * 1eir “.umber and characteristics, the proposed extension presents an
easy way tc perform kernel co-execution and extracting the maximum perfor-
manc of th” se systems. It takes care of load balancing, input data partitioning
and ou »Hut data composition.

The experimental results presented here show that, for all the used bench-
U ... 3, being able to co-execute kernels on multiple devices has a positive impact
.n performance. In fact, the results indicate that it is possible to reach an ef-

ficiency of the heterogeneous system over 0.85. Furthermore, the results also
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show that, although the systems exhibit higher power demand, .. » sho. ‘er exe-
cution time grants a notable reduction in the energy consu’ (pti» Indeed, the
average energy efficiency improvement observed is 53%.

The main contributions of this article are the follov ing:

e The OmpSs programming model is extended with a uew scheduler, that
allows a single OpenCL kernel instance to be . ~ _xect .ed by all the devices

of a heterogeneous system.

1

e The scheduler implements two classi. loau - .ancing algorithms, Static

and Dynamic, for regular and irreg*'~~ ~=7 cations.

e Aiming to give the best perfor .. -~ on both kinds of applications, two
new algorithms are presented, HU dded and Auto-Tune, which is a pa-

rameterless version of the forn.-r.

e An exhaustive experimental . “udy is presented, that corroborates that
using the whole syst ... = beneficial in terms of energy consumption as

well as performanc.

The rest of this p -per is or ,anized as follows. Section 2 presents background
concepts key to t} e unde.. 'anding of the paper. Next, Section 3 describes the
details of the lo.d bai. ~cing algorithms. Followed by Section 4, that covers the
implementati m o the OmpSs extension. Section 5 presents the experimental
methodoloy a..  discusses its results. Finally, Section 7 offers some conclusions

and futv e w rk.

2. T ackgrc ind

Thi section explains the main concepts of the OmpSs programming model
1. at wi'. be used throughout the remainder of the article.

“mpSs is a programming model based on OpenMP and StarSs. Which has
een extended in order to allow the inclusion of CUDA and OpenCL kernels

6
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in Fortran and C/C++ applications, as a simple solution to exe. *te o.. hetero-
geneous systems [9, 10]. It supports the creation of data-.ow driven parallel
programs that, through the asynchronous parallel executio.. ~. tasks, can take
advantage of the computing resources of a heterogenr ous m chine. The pro-
grammer declares the tasks through compiler directives ‘brag» ia) in the source
code of the application. These are used at runtime to d .. 'mine when the tasks
may be executed in parallel.

OmpSs is built on top of two tools:

e Mercurium is a source-to-source compii * thatv processes the high-level di-
rectives, and transforms the input . ‘ae mto a parallel application [11]. In
this manner, the programmer is “~ared o1 low level details like the thread
creation, synchronization and con. ~ unication, as well as the offloading of

kernels in a heterogeneous sys. =1..

e Nanos++ is a run-time lin. >vv that provides the necessary services for
the execution of the r~rallel program [12]. Among others, these include
task creation and vnchron zation, but also data marshaling and device

management.

In the pragma ~nnc tio’ s, the programmer specifies the data dependences
between the tas's. Then, when the execution of the parallel program com-
mences, a thre ' pool is created. Of these, only the master thread is active,
and uses the <er ices of the run-time library to generate tasks, identified by
work desc ipters, aud adding them to a dependence graph. The master thread
then schel  es t! e execution of the tasks to the threads in the pool as soon as
their mput lependences are satisfied.

In. terms of heterogeneous systems, OmpSs provides a target directive that
ndicat. 3 a set of devices in which a given task can run. In addition to a task,
t. ~ tar- et directive can be applied to a function definition. OmpSs also offers
v o .drange clause that, together with the data-directionality clauses in and

ut, guides the data transfer between the devices and the host CPU, so the

programmer perceives a single unified address space.
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However, OmpSs does not support the execution of a single - ~rnei . 1stance
in several devices. The extension proposed in this article mc uific : the Nanos++
runtime system so that it can automatically divide a ker.. ' into sub-kernels
and manage the different memory address spaces. Ir order to make the co-
execution efficient, four load balancing algorithms hav beer implemented to

suit the behavior of different applications.

3. Load Balancing Algorithms

The behavior of the algorithms is illustrate. in Figure 1. It shows the ideal
case in which in the execution of a regui.. application all devices finish simul-

taneously, thus achieving perfect loac .. —ce

3.1. Static algorithm

This algorithm works befor. ~uc 1.~ ael starts its execution by dividing the
dataset in as many packages as devices are in the system. The division relies on
knowing the computing » ower ¢” the devices in advance. Then the execution
time of each device cen be ~qulized by proportionally dividing the dataset
among the devices. /s a onsequence, there is no idle time in any device, which
would signify a w ste o1 .~ ources. The idea of assigning a single package to
each device is d picte' in Figure 1.

A formal .esc iption of the algorithm can be made considering a heteroge-
neous system ." 0 n devices. Each device ¢ has computational power P;, which
is define . as ¢che amount of work that a device can complete per time unit,
including tn. ~c nmunication overhead. This value depends on the architecture
of tl = device but also on the application that is being run. These powers are
inmat L oo Laeters of the algorithm and can be extracted by a simple profiled
xecutic 1.

Tl.c application will execute a kernel over W work-items, grouped in G work-
¢ coups of fixed size L; = % Since the work-groups do not communicate among

t. emselves, it makes sense to distribute the workload taking the work-group as

8
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Time

Figure 1: Depiction of how the four algor..” ms perform the data division among three devices.
The work groups assigned to eack device, identified by numbers, are joined in packages shown
as larger rounded boxes. Nc ¢ that t. = execution time of work groups in the CPU is four

times larger than in the GPUs.

the atomic unit. Tach '~vi_e i will have an execution time of T;. Then the
execution time 1 v. > heterogeneous system will be that of the last device to
finish its work, o. Ty = maz]_,T;. Also, since the whole system is capable of
executing W o g-items in Ty, it follows that its total computational power of
the heter ,gen ous system is Py = % Note that it also can be computed as

the sum o, ne i-.dividual powers of the devices.

The ;oal of the Static algorithm is to determine the number of work-groups
ta assign each device, so that all the devices finish their work at the same time.
".'his means finding a tuple {a1, ...y, }, where «; is the number of work-groups

assigned to the device 7, such that:

9
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This set of equations can be generalised and solved as folic -s:

o Lsai N - THPL o TleG - PLG

T ; N
H="p %= W B

Since «; is the number of work-groups, its value _ast b : an integer. For this

reason, the expression used by the algorithm is:

B PG |
n {z .
If there is not an exact solution with inu vers then Y. o; < G. In this
case, the remaining work-groups are asx "ig'.ed to the most powerful device.
The advantage of the Static a. '« *thn. is that it minimises the number of
synchronisation points. This r-~%es iy verform well when facing regular loads

with known computing powers that .. = stable throughout the dataset. However,

it is not adaptable, so its p .10, "ance might not be as good with irregular loads.

3.2. Dynamic algorith n

Some applications 1., no' present a constant load during their executions.
To adapt to their . -regularities, the dynamic algorithm divides the dataset into
small packages ~f equal size. The number of packages is well above the number
of devices ir the heterogeneous system. During the execution of the kernel,
a master “aread 1. the host is in charge of assigning packages to the different

devices, .~ wine the next strategy:

1 The n. ster splits the G work-groups in packages, each with the package
s. ~ - ecified by the user. This number must be a multiple of the work-
g1 up size. If the number of work-items is not divisible by the package
_.ze, the last package will be smaller

2. The master launches one package on each device, including the host itself

if it is desired.

10
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3. The master waits for the completion of any package.
4. When device 7 completes the execution of a package:
(a) The device returns the partial results correspondii._ to the processed
package.
(b) The master stores the partial results.
(c) If there are outstanding packages, a ne' - on- 18 aunched on device i.
(d) If all the devices are idle and there ai. no w~~_ packages, the master
jumps to step 5.
(e) The master returns to step 3.
5. The master ends when all the packe .. wave veen processed and the results

have been received.

This behaviour is illustrated i- Figu.~» 1. The dataset is divided in small,
fixed size packages and the devices pr. ces. them achieving equal execution time.
As a consequence, this algorithi. adapts to the irregular behaviour of some
applications. However, each completed package represents a synchronisation
point between the devic: and ti = host, where data is exchanged and a new
package is launched. ".'his ov. “iead has a noticeable impact on performance.

The Dynamic algori. m .ake the size of the packages as a parameter.

3.8. HGuided a’ jori,. ~

The two .bov: algorithms are well known approaches to the problem of
load balar<ing =~ general. But none satisfy three key aspects. First, take
into acc unt che heterogeneity of the system. Second, control the overhead
of the ~ncn. ~.sation. And third, give reasonable performance with regular
and rregulai applications. Thus a new load balancing algorithm method called
F 7 sidew was proposed, which is based on the Guided method from OpenMP.

The nain difference between the HGuided and the Dynamic algorithms is
the size and quantity of the packets. In Dynamic, the size of the packets is
~onstant, while in HGuided they vary throughout the execution and between

tre devices. As execution progresses, the size of the packets decreases with

11
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the remaining workload. This size is weighted with the relative ~-mp. ational
capacity of each device. This way the less powerful devices CF Te in this case)
run smaller packets than they would in a homogeneous sys.~ a, and the more

powerful run larger packets. The package size for device . is cal 1lated as follows:

G'r"ir'l, |
EN E'j: 'jJ

Note that the first term gives diminishing size € the packages, as a function

package_sizeg =

of the number of pending work-groups G, .>e numl er of devices N and the
constant k. The latter is introduced due to .. » unpredictable behavior of the
irregular applications. It limits the max. wum package size and, in the exper-
imental evaluation of Section 5, was . ~iricaLy fixed to 2. The second term
adjusts the package size with the ratio ¢ “ the computing capacity of the device
P; to the total capacity of the syste. .

On the other hand, in the *via.. : algorithm, the programmer sets the
number of packages for each execution. However, in the HGuided, since the size
of the packets depends o. the a vice. Therefore, the number of packages will
vary according to the srder ' - hich the packets are assigned to the devices.
This can differ grea’ iy | :twe n runs and especially in irregular applications.
Therefore, this alg rithm . ~ 1uces the number of synchronization points and the
corresponding ¢ erhe. ' compared to the Dynamic.

Figure 1 ¢ 1ow how the size of the packages is large at the beginning of the

execution, ana >creases towards the end.

8.4. Aure Tune .gorithm

Tae HC nided algorithm strikes a balance between adaptiveness and over-
heads whic’ makes it a good all-around solution that adequately distributes
he wo.<load for both regular and irregular applications. However, it still re-
q ‘ires t vo parameters to be provided by the programmer: the computing power
a . _uae minimum package size. These have a key impact on performance and are
Jependent on both the application to be executed and the system itself. More-

over, the HGuided algorithm is quite sensitive to these parameters, so choosing

12
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Figure 2: Evolution of the computing p. wer er ¢ wvice.

an adequate value for them is sometimes a demanding sask that requires a thor-
ough experimental analysis. The sensitivity ~f tue HGuided algorithm to its
parameters is further analyzed in Sectic. ...

In addition, determining the mirimum pa.kage size parameter is compli-
cated, especially for GPUs, because it s essential to do a sweep to obtain a
value that gives good results. The ~c. nu.ing capability is easier to evaluate.
It only requires obtaining the . ~._~"e “imes in each device independently and
calculating the capacities.

The Auto-Tune algor’.nm 1. an evolution of the previous algorithm that
achieves near optimal peric. man e for both regular and irregular loads without
the hassle of paramet :rs. "¢ uses the same formula to calculate the package size,
but uses nominal ,aran. ‘e values that are adjusted at runtime and handles
the minimum pe kay. <ize differently depending on the device that each package
will be sent tr.

The comp. “i .g power for the first package launched at each device is calcu-
lated usiv g tb : theoretical GFLOPs of the hardware. These can be obtained at
the installa. ~n - £ OmpSs either by querying the available devices or by running
a sir ple coi. pute intensive benchmark. For the successive packages, the power
is upa. “ed aking into account the computing speed displayed by each device.
[his is « alculated as the average number of work-items processed per second for
tue '~ three packages launched to each device. By using the average speed of
t'.e 1ast packages, a gradual adaptiveness is attained that keeps the algorithm

1 sistant to bursts of irregularity that would not be representative of the actual

13
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speed for the next packages. Figure 2 depicts the evolution o1 “e co. iputing
power during the execution of one of the applications used f .r e. rerimentation.
The nominal computing powers are used at the beginning o. '* 2 execution until
all the devices have finished at least one package. The , the ¢ \mputing powers
are updated at runtime. In the figure, the nominal p ~wer f,r the GPU was
higher than the actual one for the application. No’e th- . e use of the nominal
powers for the initial packages does not distur! the loac balancing, as all the
devices are kept busy and do not delay the completio of the benchmark.
Package size also has an influence on ("2 co. = .ting speed of throughput
based architectures, such as GPUs. Co»~~~~~* | package size must be kept
relatively high to prevent an inefficient use ~f the hardware and overheads.
However, this is also a potential source ~r ‘mbalance. If the computing power of
the devices differs greatly, a high n."."mun package size that reduces overheads
is likely to be too big for slow d --rices, » amely, CPUs, which would cause delays.
To prevent this, the Auto-Tune h'wided algorithm uses different minimum
values for CPUs and GPU .. .. ~ value selected for the CPU is one work-group
per CPU core, so no haru rare is .eft unused and imbalance is avoided. This is
because the CPU is rt a hroughput device, so its computing speed is usually
much less sensitive to | cka’ e size than the GPUs. Moreover, CPUs are often
the least powerfi . < vice of the system, so using a small minimum package size
with them wil’ © ~prove the load balancing. Two values are considered for the
GPU minim. m - ackage size. First, the equations implemented in the CUDA
Occupanc ; Crlculasor are used to obtain the minimum number of work-groups
that will . - deve maximum occupancy for the current kernel and GPU. The
CUT A Occ pancy Calculator is part of the CUDA Toolkit since version 4.1.
This =lue ic a lower bound for the minimum package size, but might be too low
( the & “plication launches a large amount of work-items, producing too many
L -kagr s and high overheads. To prevent this, the number of work-items is also
a .., zed and the final minimum package size is set to the maximum between the
alue obtained by the Occupancy Calculator and 5% of the work-items. This

percentage has been experimentally set to keep the number of packages low and
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avoid performance degradation in the GPU.

These enhancements give forth an algorithm with imp ovel adaptiveness,
that delivers comparable performance to the HGuided app. - ch for a fraction
of the effort. It completely eliminates the need to prc/ide a: v parameter and
saves a great deal of pre-processing time per applicatio. and s /stem, as will be

seen in Section 5.3.

4. Implementation

As stated before, the OmpSs infrastructurc -elies on the combination of two
components: Mercurium, which is a sou. ~-to-source compiler, and Nanos++,
which is a runtime capable of mane ' - tasks, their data and the Task De-
pendence Graph (TDG) they generate. ’s a first approach, the new load bal-
ancing algorithms have been implew en. 1 focusing on making the changes as
self-contained as possible and 1. “uw.... g the impacts on the OmpSs specifica-
tion, Mercurium and the rest of Nanos++. As a result, neither directives nor
clauses have been added .0 Mer urium. Nanos++ implements a set of differ-
ent schedulers that de:l wi,. t'e management of the tasks submitted to the
runtime. To offer t' e work istribution strategies for a single OpenCL task
presented in the r evious ction, a new scheduler has been implemented as a
Nanos++ plugii., whic has been called maat. The parameters of the algorithms

are the follow ng:
e The levice « mputing powers for Static and HGuided.
e The . ~ka e size for Dynamic.
¢ The m rimum package size for HGuided.

(o avc. 1 altering the OmpSs specification, the selected algorithm and its pa-
1. mete s are set through environment variables, which is the normal way to
st «..7y the scheduler in Nanos++.

Figure 3 represents the outline of an OmpSs implementation of the Binomial

benchmark used later in the experimentation. It shows how a call to a function
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//Intitializations

binomial_options (NUM_STEPS, SAMPLES,
randArray, output);

#pragma omp taskwait

//Free resources

Figure 3: Basic outline of an OmpSs = .icatic a.

#pragma omp target device (opencl) copy_de,s \\
ndrange (1, samples*(numSters+1, .
numSteps+1)
#pragma omp task in([samples]rana.~ray) \\
out ([samples 'vu. °*)
__kernel void binomial_options(. nt numSteps,

int samples, const _p obal floatédx*

randArray, __gl.“a. ° oatéd* output);

T igure « Header file for the task.

defined as a task is f.llov :ad by a wait. The header of that function, which is
shown in Figure 4 indi “tec that the task must be run in an OpenCL device,
as well as its lav ac. ~arameters, input and output data. Figure 5 displays the
environment v ... bles that need to be set to run the task with each of the four
algorithms p. <e ted in Section 3. As shown, the selection of the auto-tune
algorithy elir .inates the need of specifying any other load balancing related
parameter.

I espite he efforts made to minimize the impact on Mercurium, a minor
chang. was anavoidable. The original implementation did not make OpenCL
cernel ¢ ‘nfiguration parameters available to Nanos++. This information is nec-
es. ~rv “Or the operation of the plugin, as it defines the amount of work that will
b performed. Nanos++ work descriptors do not hold this information either.

Uonsequently, a new Mercurium work descriptor creation function has been

16
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# Static load balancing
NX_SCHEDULE=maat
NX_ALGORITHM=static
NX_GPU_POWER=34.0

# Dynamic load balancing
NX_SCHEDULE=maat
NX_ALGORITHM=dynamic
NX_DYN_PACKAGE_SIZE=409600

# HGuided load balancing
NX_SCHEDULE=maat
NX_ALGORITHM=hguided
NX_GPU_POWER=34.0
NX_MIN_PACKAGE_SIZE=115200

# Auto-Tune load balamncing
NX_SCHEDULE=maat

NX_ALGORITHM=auto- tune

Figure 5: Environme it varia.’ =, to use standard OmpSs and the different load balancing

algorithms.

implemented., wk .ch behaves like the original but including these parameters.
When a werk descriptor is submitted, the new scheduler manages its division
in as man, w~ork descriptors as the selected algorithm and parameters require.
Thes : work descriptors are considered as children of the one submitted, and
repre. "t ar aggregate workload equivalent to that of their parent. For the
static « 1d Dynamic algorithms, in which the number and size of the packages
a.~ knc yn when the launch of the workload is made, all the work descriptors
a o ._eated at the submission of their parent. They are stored in the scheduler

.1d adequately returned when a thread is idle, receptive to another task. In
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the case of the HGuided and Auto-Tune algorithms, the packag. = have varying
sizes that depend on the prior execution and the device the w1l run them. As
a consequence, the children work descriptors will be createc - hen required by
an idle thread, considering the device it manages and ’ ne exe ution.

Each of the children work descriptors is identical to .‘s par at except in two
key aspects. First, they have different OpenCL p ram .. s, namely offset and
global_work_size, defining the workload of the p ~kage th- y represent. There is
no constraint on the number of dimensions of the Oper ZL data-set of the parent
task, as the work division is always performc ! alow._ *’.e first dimension. Second,
the output data is just a portion of that of i+~ =~~~ , which is conveniently offset
so the results are written adequately. This .  represented by an independent
CopyData object, holding the start ad.ves s and size that the package will have
to work on. As a result, coherence |~ “lem are avoided in the OmpSs directory.
Apart from the aforementioned “=tails, data transfer relies on the methods used
by standard OmpSs. To perform tun. ~orrespondence between work descriptors
and output data, an assur puc. is made: each OpenCL work-item will produce
the result for the positio.. ~f the >utput buffers indexed by its identifier. This
may seem a strong r« juir ment, but it is met by most kernels widely used in
the industry and r-sea. -h. "aput data is replicated in the memory of all the
devices, as there .s = 2 way to predict the parts that will be read by each of the
work-items. 77"~ might appear as an important source of overhead, but the
experimenta. ves .ts of Section 5 indicate otherwise, as good performances are
obtained.

The ¢. v ¢ion of the children work descriptors is performed by a modified
versi i of the duplicateWD function that does this extra work. This function
is als resp’ nsible for making the OpenCL parameters of the divided work
escrip ors available to the Mercurium code, which will trigger the actual kernel
le "nche .

Cace the submission of the original work descriptor is completed, the done
_wction is called. This is a Nanos++ function that is used to signal the com-

pletion of a work descriptor. It also waits for the completion of the children
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of the calling work descriptor. In this way, no task dependent ~ the divided
one will be run until all the children resulting from the wr rk \'ietribution are

completed, so the dependencies of the task graph are mainu. ™ ed.

5. Evaluation

This Section begins with a description of the v .em wnd the benchmarks
used in the experiments, as well as definitions of v. ~ metrics used in the evalu-

ation. Additionally experimental results are s. ~wed & 1d analyzed.

5.1. System Set-up

The test machine has two proces -~ chips and two GPUs and 16 GBs of
DDR3 memory. The chips are Intel .. -on E5-2620, with six cores that can
run two threads each at 2.0 GHz. “hc - are connected via QPI, which allows
OpenCL to detect them as a . nu.ic ' sice. Thus, any reference to the CPU
considers both processors. The GPUs are NVIDIA Kepler K20m with 13 SIMD
lanes and 2496 cores and , GBy. s of VRAM each. These are connected to the
system using independrnt r 7T 2 J slots. The experiments build upon a baseline
system which uses a - .ngl- GP"J but consider the static energy of all the devices,
regardless of if th y are . > cributing work or not. This accounts for the fact
that many curre.at h. ' systems have several accelerators which, if left unused,
are a potentis. so rce of inefficiency.

Six applica.” ms have been chosen for the experimentation. Three of them:
NBody, ".rist and Perlin are part of the OmpSs examples offered by BSC, and
the other ti.~e: Binomial, Sparse Matriz and Vector product (SpMV) and Rap
have been s, ecifically adapted to OmpSs from existing OpenCL applications.
Tha fi. ¢ r (NBody, Krist, Binomial and Perlin) are regular, meaning that all
the wor. -groups represent a similar amount of work. On the contrary, SpMV
anu _.up are irregular, which implies that each work-group represents a differ-
et amount of work. The parameters associated to each of the load balancing

a.zorithms have been set to maximize performance.The computing power for
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a device/application pair has been obtained as the relative per.. "manc : of the
device, with respect to that of the fastest device for the apr iica i~n.

Perlin implements an algorithm that generates noise pi.>', to improve the
realism of moving graphics. Krist is used on crystallo raphy “o tind the exact
shape of a molecule using Rontgen diffraction on sing'~ cry<.als or powders.
Rap is an implementation of the Resource Allocat on P .. lem. It has a certain
pattern in its irregularity, because each successiv ~ packace cepresents an amount
of work larger than the previous.

The evaluation of the performance of tl. bend’ - .arks is done through their

< ' the communication between

response time. This includes the time re~i-~
host and the devices, comprising input dav. and result transfer, as well as
the execution time of the kernel itseli 7 ne penchmarks are executed in two
scenarios, the heterogeneous syster. ' =kin; advantage of the GPUs and CPU,
and the baseline, that only us~~ one FPU. Note that in both instances, the
same version of the program is run, . = there is no need to modify the source or
recompile, only set enviror .ue..” variables.

Based on these respo.. e timr 5, two metrics are analyzed. The first is the
speedup for each benc’.ma  kx when comparing the baseline and the heterogeneous
system response times. Not . that, for the employed benchmarks, the CPU is
much less powerf u .~an the GPUs, then the maximum achievable speedup using
the three devic _ ‘s not 3, but a fraction over 2 which depends on the computing
power of the “'P7, for the application. The speedup for each application using
a perfect! ba'anced work distribution is shown in Table 1. These values give
an idea o, "' e ad ;antage of using the complete system. They were derived from

the 1 sspons  time T; of each device as shown in Equation 1.

Smaz = maxz 1{T} ZT (1)

1ue second metric is the load balancing efficiency, obtained by dividing the
2ached speedup by the maximum speedup, shown in Table 1. The obtained

velue ranges between 0 and 1 giving an idea of the usage of the heterogeneous
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Table 1: Maximum achievable speedup per application.

r I
Application NBody | Krist | Binomial | Perlin Sp’1V | RAP

Max. Speedup 2.61 2.2 2.03 2,04 I 2.7 2,16

system. Efficiencies close to 1 indicate the best 1sag- o. the system is being
made. The measured values do not reach this i’ ~al be~2- se of the communica-

tion and synchronization times between the host and he devices.

5.2. Energy measurement

To evaluate the energy efficiency of the . -stem it is necessary to take into
account the power drawn by each dev'ce odern computing devices include
Performance Management Units (. ."77) t. at allow applications to measure and
control the power consumptior Howe "er, the power measured is associated to
the device and not the kernel or proc ~s in execution. Together with the fact that
it is impractical to add me- ... ment code to all the test applications, this led to
the development of a po. ~r mon ,oring tool named Sauna. It takes a program
as its parameter, and is a>le to configure the PMUs of the different devices in
the system, run the p.. ram while performing periodic power measurements.

This tool rec . ~d an unexpected amount of thought for its development.
Since it had te —onitor several PMUs, it had to adapt to the particularities of
each one wk 'e g’ving consistent and homogeneous output data. For instance,
each devir 2 has a u.Terent way to access its PMUs. Recent versions of the Linux
kernel pi. i wes 7 ccess to the Running Average Power Limit (RAPL) registers
[13] < ¢ the Tatel processors, which provide accumulative energy readings. On
contr st, NV [DIA provides a library to access their PMUs. But this NVIDIA

danag ment Library (NVML) [14] gives instant power measurements.

Duwrag the development of Sauna, it was observed that these energy or power
i« gs have an impact on the kernel or process execution. Then, finding an

dequate sampling period is an important task. To strike a balance between

the overhead that was observed in the GPUs with high sampling rates and
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Figuic 6: Parameter sensitivity analysis

the accuracy toss that is inherent of lower ones, it was decided to use 45ms
as the samroling ~eriod. The performance and the energy consumption can be
combine . in a si’ gle metric representing the energy efficiency of the system.

This r-rer u. - the Energy Delay Product (EDP) [15] for this purpose.

5.3. 1 marm _ter sensitivity

As ¢ -plained in Section 3, the Static, Dynamic and HGuided algorithms
requ.. < different parameters for their operation. These have to be provided by
t 1e programmer and are one of the key factors for a successful load balancing.

Foowever, determining the most adequate values for a workload is not trivial, as
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they may differ greatly between applications and device configu. tions. Conse-
quently, the selection of parameters is often a work intens’ve ; racess, usually
based on experimentation.

The importance of adequately choosing the paramet :r valu s is illustrated in
Figure 6, which displays the execution time for the ap, 'icatic as when varying
the parameters for each of the algorithms. Note that .. - the HGuided algo-
rithm, when one of the parameters is modified, “he other "3 set to the identified
optimal value. As shown in the figure, for every of th« parameters, the applica-
tions show very different behaviors, ranging “om . ~~. insensitivity to delivering
greatly degraded performance, sometimes ~~~~ '~ ling a clear relation with the
parameter value, as is for example the case . € Rap for the minimum package
size. Moreover, the applications are no. af’ :cted equally by the parameters. For
example, Binomial is highly sensiti.= "~ th. computing power in the Static algo-
rithm and moderately sensitive “~ aln, st insensitive to the rest of parameters,
while Rap behaves just the opposiw. it is insensitive to the Static computing
power and tremendously s .usi. e to the other parameters.

Considering these res.’*s, it is obvious that, in order to achieve an accurate
load balancing, an e peri nental tuning of the algorithm parameters is often
a must. The Auto Tu.. alg rithm frees the programmer from this burden by
automatically ad u.“ing the parameters, matching and even surpassing the per-

formance of tF "TGuided.

5.4. Exper memi.’ results

The .o rimr ats presented in this section have been developed with the
optir al valnes for the parameters required by each algorithm, obtained in the
prev. us sec ion. This implies that the results for the Static, Dynamic and
"1Guidrd algorithms are the best that can be achieved, but require a great
« Fort t¢ tune the parameters.

Wigure 7 shows the speedup obtained for each application calculated with
‘espect to their execution time using the baseline system, as was explained in

Section 5.1. This section also showed that the maximum achievable speedup
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Figure 7: Speedup per ap, '~atior .

depends on the application. These values, nresented in Table 1, are shown in
the graph as horizontal lines above eax « .. “"mark. Additionally, the geometric
mean is shown, which includes bot™ four -egular benchmarks and two irregular
ones.

From the results of the geon. ‘ric wean it can be seen that the best result
is obtained by the Auto-Tune algorithm, closely followed by the Static, the
HGuided and finally the JDynami . Furthermore, it should be emphasized that
the Auto-Tune algorit im is .~ ch easier to use, because it does not require
finding optimal valu ~ fc any parameter.

A detailed ans .ysis of v..e speedups reveals that the Static algorithm is the
best option for regular . ~plications. This is because they require no adaptivity,
so they benef ¢ frc n the minimum overhead introduced by the Static algorithm.
However, rxcep. ‘n the case of Perlin, which is very sensitive to overheads as
can be ¢ -en “1 th results for all the algorithms but the Static, the Auto-Tune
algori*’ 1 acun. - /es very similar results with less configuration effort. The other
two lgorith 1s achieve good results, but suffer from a problem that reduces
r...ormauce. If one of the last packages is assigned to the slowest device it is
ikely tc delay the execution of the whole application. This problem could be
avolaed by increasing the number of packages, but in that case overheads come
“ato play, which also degrade performance. The HGuided algorithm due to its

very nature, partially solves this issue.
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Figure 8: Efficiency of the hetero, neous system.

For irregular applications, the best re. ‘'ts are obtained by Auto-Tune and
HGuided algorithms. Their adaptive ... ‘~r favours load balancing in these
applications, where the workload ~f eac ' work-group is completely unknown
and unpredictable. On the other hai 1, . 2 reduction in synchronization points
reduces the runtime overhead, w..’~h 15 .nherent to this type of algorithm. This
is the reason why the HGuided and Auto-Tune algorithms deliver equal or bet-
ter performance than tb . simple - Dynamic algorithm, as they introduce less
overhead. Finally, the Static .'corithm fails to balance the load because it can
not cope with the u: ~res icta’ ility of these applications.

The load balar cing efhic.ency gives an idea of how well a load is balanced. A
value of one represents "at all the devices have been working all the time, thus
achieving thr ma imum speedup. In Figure 8 the geometric mean efficiencies
show that “he 1t result is achieved by Auto-Tune with an efficiency around
0.85. In «ddi 1on. there is at least one load balancing algorithm for every appli-
catior 'iat a " eves an efficiency over 0.9 or even as high as 0.98, reached by
Binc nial anc Perlin with the Static. This is true even for the irregular appli-

¢ ...ons, 1 which obtaining a balanced work distribution is significantly harder.

INowadays, performance is not the only figure of merit used to evaluate com-
“uting systems. Their energy consumption and efficiency are also very im-

portant. Figure 9 gives an idea of the energy saving the whole heterogeneous
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Figure 9: Normalised energy consump.'~n pe  application.

system brings, compared to the baseline s, tem. The latter only uses one GPU
while the other devices are idle and ¢ w. « ~~ming. This would be the case of
a current HPC system, in which f~iling o use all the available resources may
represent an energy waste. Therefore thc Figure shows for each benchmark the
energy consumption of each algo. *hm unormalized to the baseline consumption,
meaning that less is better.

The values of the geo wetric m an indicate that the algorithms that consume
less energy are Static .nd A.'~ Tune, with a saving of almost 20% compared
to the baseline. Reg 'rdi'.g t} 2 individual benchmarks, it is always possible to
find an algorithm where t..: normalised energy is less than one. Moreover, all
the algorithms reduce « nsumption, despite using the whole system. The use of
more devices necs ssarily increases the instantaneous power at any time. But,
since the t>tal c. ~cution time is reduced, the total energy consumption is also
less. Fu the .nor, since idle devices still consume energy, making all devices
contri* te wo.' is beneficial.

" he anal sis of the algorithms shows a strong correlation between perfor-
r wuce auu energy saving. Consequently, the best algorithm for regular applica-

ions is lso the Static, with an average saving of 26.5%. However, for irregular
applications, it wastes 7.4% of energy. On the other hand, the Auto-Tune gives
.n average energy saving of 16%.

Regarding the results of concrete benchmarks, it is interesting to comment

26
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license




585

590

595

600

Static =>——=1 Dynamic C—Z—4 HGuided Autoic ~d

1.2
Regular | lIrregular |

5 o ™

0.8 | |
§ 0.6 \I
i, \
E 04 _ \ .
[e)
oeplll [ oM ‘

0 Binomial NBody Krist Perlin ‘ Rao SpMV  GeoMean

Benchmark

Figure 10: Normalised EDP pe. ~oplir .tion.

Krist. The highest energy saving in this 1. ~chmark is provided by Auto-Tune,
although it is not the best in performc w.. "here are only two particular bench-
marks where the use of the whole ~vster. employs more energy than the base-
line. These are Perlin with Dynamic, Hg. ‘ded and Auto-Tune, and SpMV with
Static. This is because, in these « "<es, viae gain in performance is too small and
cannot compensate for the increased power consumption involved in using the
complete system.

Another interestine metri. i the energy efficiency, which combines perfor-
mance with consum; “ior. W7 h the dual goal of low energy and fast execution
in mind, the Ene 1wy Delay Product (EDP) is the product of the consumed en-
ergy and the execution ‘me of the application. Figure 10 shows the EDP of the
algorithms n‘ rma ised to the EDP of the baseline.

Since the k.'P is a combination of the two above metrics, the previous
results 7 e f' cthe corroborated. Therefore Auto-Tune also achieves the best
energ+ f{licie.. -/ results on geometric mean, followed by Static, Hguided and
Dyn mic. A tending to the individual algorithms, their relative advantages is
2’ maivaimed. Although the Static algorithm on regular applications shows a
ignifica it reduction of the EDP of 65%, the same is not true on irregular ones,
reducing only 12.4%. In contrast, the Auto-Tune is more reliable, as it achieves
. similar reduction on both kinds of applications; 48% on regular and 57% on

irregular.
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6. Related Work

Heterogeneity has taken computing platforms by storr . rar ging from HPC

41

systems to hand-held devices. The reason for this is “"zir o. ‘standing per-
formance and energy efficiency. However, making th most « f heterogeneous
systems also poses new challenges. The extra cor . uting power also involves
new decisions on how to use all the available hai '+ .re, - ‘hich currently have
to be made by the programmer without much help, “om the programing frame-
works and runtimes. The keys to make prog ammir g easy again are system
abstraction, so the heterogeneous devices are . ~ndled transparently, and load
balancing, so the resources are adequate., nsed. Nevertheless, related as they
are, these problems are often address .. . ~~rately.

The strategies for co-executior vresc ‘ted in this paper are built upon the
system abstractions already offered v « mpSs [9, 10] and focus particularly on
the load balancing problem. How “ver, sume related system abstraction research
works are worth mentioning. Such is the case of DistCL [16], which is a frame-
work that enables the dis ributio of a kernel over a GPU cluster by using user
defined meta-functions The. r.e callbacks that represent the memory access
pattern of the of eac! dev ces. ;o0 the programmer can instruct the framework on
how to distribute he data .nd reduce data transfers. In [17], the GPUs of the
system are abstiactea . ~d the addresses accessed by each device are computed
using samplir g rv 1 on the host of some select work-items. The authors of [18]
attain absfracti. » via kernel transformations and a static kernel analysis that
determir s w aeth >r the data need to be replicated or can be split.

' valancing problem alone, there are two main approaches found

To **e lo.
in tl = literat we: static and dynamic, which in turn can be adaptive or not.

Reguas wing static methods, Lee et al.[19] propose the automatic modification
f Open "L code that executes on a single device, so the load is balanced among
several. De la Lama et al. [20] propose a library that implements static load

"alancing by encapsulating standard OpenCL calls. The work presented in

[21] uses machine learning techniques to come up with an offline model that
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predicts an ideal static load partitioning. However, this model ac ~ not . onsider
irregularity. Similarly, Zhong et al. [22] use performance 1 ,dei: *o identify an
ideal static work distribution. In [18] the focus is on the su. * ¢ distribution of
a single kernel execution to the available devices via ¢ ,de mc lifications. Qilin
[23] is a training-based work distribution method that ~ropor: to balance the
load using a database containing execution-time « ata “.. all the programs the
system has executed and a linear regression mod 1. 'I'his t chnique is only useful
in systems that run the same applications frequently.

In the dynamic approach [24, 25] propo:  difte. >, techniques and runtimes.
However, these focus on task distributior ~=- ~-* a the co-execution of a single
data parallel kernel. The work of [26] deals ~ith the dynamic distribution of
TBB parallel for loops, adapting block sir 2 at each step to improve balancing.
FluidicCL [5] does focus on co-ex... “ion but for systems with a CPU and a
GPU. SnuCL [4] also tackles '~+a pa.allelism, but is mostly centered on the
distribution of the load among difte. "t nodes using an OpenCL-like library.

Kaleem’s et al. propo at .. [7] and Boyer’s et al. in [6] propose adaptive
methods that use the ea ~ution time of the first packages to distribute the
remaining load. Hor ever, they focus on a CPU/GPU scenario and do not
scale well to conficura.” ms vith more devices. . Navarro et al. [26] propose
a dynamic, aday 1. algorithm for TBB that uses a fixed package size for the
GPU and a v» - ble one for the CPU to try to achieve good balancing. This
work was ex. md- d in [27], proposing an adaptive package size for the GPU too.
This is al- o besed c.a using small initial packages to identify a package size that
obtains nu. - opt'.nal performance.

I . the t-aditional research area of dynamic loop scheduling, [28] presents
Factc ing, 2 ( algorithm with variable chunk sizes that addresses the problem
of irreg -larity, referred to as iteration variance. However, it does not consider
L *eroe _neity. HDSS [29] is a more recent work that proposes a load balancing
a so_'thm that dynamically learns the computational power of each processor
Juring an adaptive phase and then schedules the remainder of the workload

using a weighted self-scheduling scheme during the completion phase. How-
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ever, this algorithm assumes that the packages launched in the .. **ial .. ase are
representative of the whole load, which might not be true f r i1 eoular kernels.
Besides, package size decreases linearly during the completio. - nase, which may
produce unnecessary overheads as substantiated in thi paper

Scogland et al. [30] propose several work distributio. scher es that fit differ-
ent accelerated OpenMP computing patterns. Ho vever, ey do not propose a
single solution to the load balancing problem. T"e librars presented in [31] also
implements several load balancing algorithms and pro, oses the HGuided, which
adapts to irregularity and considers heterc,men, " his library is also used in
Xeon Phi base systems in [32]. However * == res certain parameters from
the programmer that may not be easy to o. 2in and uses linearly decreasing
packages that might incur overheads.

Some papers propose algorithn s "~ du tribute the workload between CPU
and GPU taking performance 2~ now. r into account. For instance, GreenGPU
dynamically distributes work to Gr -7 and CPU, minimizing the energy wasted
on idling and waiting for .ue .'ower device [33]. To maximize energy savings
while allowing marginal . ~form: ace degradation, it dynamically throttles the
frequencies of CPU, 7.PU and memory, based on their utilizations. Wang and
Ren [34] propose a posv. r-ef cient load distribution method for single applica-
tions on CPU-G' ¢ ~vstems. The method coordinates inter-processor work dis-
tribution and ¥ _ ‘uency scaling to minimize energy consumption under a length
constraint. . PAT.T'A is a throughput-aware runtime task allocator for Hetero-
geneous ) .any Coic platforms [35]. It analyzes tasks at runtime and uses the
obtained . ‘) rms dion to schedule the next tasks maximizing energy-efficiency.

V 1th re vect to the problem of transparently managing a heterogeneous
syste. > the wuthors of [36] propose a framework for OpenCL that enables the
ranspe "ent use of distributed GPUs. In this same vein, Cabezas et al. [3]
L ~sent an interesting architecture-supported take on efficient, transparent data
u .. oution among several GPUs. Nevertheless, this works overlook load bal-
. ncing, which is essential when trying to make the most of several heterogeneous

devices. Maestro [37] implements concepts related to the abstraction of the sys-
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tem, but the load balancing algorithm it proposes requires trai.. ~o.

You [38], Zhong [8] and Ashwin [39] do address both lrad i»lancing while
abstracting the underlying system and data movement. Neve. ' eless, their focus
is on task-parallelism instead of on the co-execution f a si: gle data-parallel
kernel. Kim et al. [17] approach the problem by im, 'emer g an OpenCL
framework that provides the programmer with ¢ view . f a single device by
transparently managing the memory of the devi-es. [hei~ approach is based on
a Static load balancing strategy, so it can not adap. to irregularity. Besides,
they only consider systems with several ider. *cal ™" s, lacking the adaptability
that OmpSs offers.

There are also some contributions that foc "< on scheduling and load balanc-
ing for OmpSs tasks. For instance, th. scaeduler presented in [40] is closer to
the idea of co-execution. It holds sc ' 2l i1 plementations of a task, targeted for
different devices, that will be r~ itera.'vely. The scheduler stores the execution
time of each implementation, so it .~n take load balancing decisions on what
implementation is best to - uu .. >xt. However, the programmer is responsible for
mapping the computatio.. ~n sev ral iterative tasks, which may not be an easy

and natural approach for “he application at hand.

7. Conclusions a. 1 Future Work

This pape . pre sents a new scheduler of the OmpSs programming model that
allows to efficic. ‘v co-execute a single OpenCL kernel instance using all the
devices i 1 a ¥ eter” geneous system. The scheduler has been conceived so that it
is full *rans, >~ 2nt to the programmer, who only needs to select the algorithm
and et its p rameters through environment variables.

Simuey to OpenMP, the scheduler provides different load balancing algo-
ithms. These include the classic Static and Dynamic algorithms, as well as
a version of the Guided, called HGuided, that takes into account the hetero-
< eneity of the system. Achieving good results with these algorithms required

tLe tuning of several parameters. Therefore, this paper also presents a novel
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load balancing algorithm called Auto-Tune, which is capable o. ~utou. atically
determining suitable values for internal parameters througl the evecution.

Judging by the results of all the experiments presenteua '~ this paper, two
conclusions can be reached. First, the use of kernel co-¢ .ecutic " on modern het-
erogeneous systems is very important, as the executed e ber chmarks showed
a significant improvement in performance, energy con- .. vtion and efficiency.
Second, although there are some particular case~ in whic! the Static algorithm
outperforms the Auto-Tune algorithm, the latter achie -es excellent results with-
out a tedious and time-consuming phase of L ~ame - optimization, which would
necessary for each new benchmark or syt~

According to our experimental results, A.*o-Tune is capable of taking ad-
vantage of the whole heterogeneous sy. te’ 1, with an average efficiency of 0.85.
Since the all the compute devices ¢. .. » m. chine are used, the execution time is
reduced and consequently, an #-—rage nergy saving of 16% has been observed.
The combination of these two impro. ~ments gives an reduction of the EDP close
to 50%.

The future of this ex. msion will see compatibility with new devices, like
Intel Xeon Phi, FPG s ¢ integrated GPUs. From the OmpSs perspective, a
modification of the pra, ma < pecification would allow the programmer to select
different algorith u. ~r parameters for different kernels of the same application.
It would be in* _ ~sting to extend the evaluation to different systems and device

configuratio.. -
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