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Abstract 26 

 27 

Background 28 

Dementia is caused by a variety of neurodegenerative disease(s) and is associated with a 29 

decline in memory and other cognitive abilities, while inflicting enormous socioeconomic 30 

burden. The complexity of dementia and its associated comorbidities, present immense 31 

challenges for dementia research and care, particularly in clinical decision-making.  32 

Main Body 33 

Despite lack of disease modifying therapies, there is an increasing and urgent need to make 34 

timely and accurate clinical decisions in dementia diagnosis and prognosis to allow 35 

appropriate care and treatment. However, the dementia care pathway is currently suboptimal. 36 

We propose that through computational approaches, understanding of dementia aetiology 37 

could be improved, and dementia assessments could be more standardised, objective and 38 

efficient. In particular, we suggest that these will involve appropriate data infrastructure, the 39 

use of data-driven Computational Neurology approaches, and the development of practical 40 

clinical decision support systems. We also discuss the technical, structural, economic, political 41 

and policy-making challenges that accompany such implementations.  42 

Conclusion 43 

The data-driven era for dementia research has arrived with the potential to transform the 44 

healthcare system, creating a more efficient, transparent and personalised service for 45 

dementia.  46 

 47 
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Background  53 

 54 

Dementia refers to a clinical syndrome distinct from physiological ageing, caused by one or 55 

more pathological processes, and characterised by progressive impairment in cognition and 56 

everyday functioning [1]. Alzheimer’s disease (AD), typically characterised by impairment in 57 

memory, is the most common subtype of dementia, constituting 60-70% of the cases [1]. AD 58 

can be categorised as familial AD (with family history of the disease and early AD onset) and 59 

sporadic AD, with the latter overwhelmingly being the most common type [2]. AD may co-exist 60 

with pathological processes characteristic of other common dementia subtype such as 61 

vascular dementia, frontotemporal dementia, and Lewy body dementia [1]. Further, there may 62 

also be co-morbidities with other illnesses such as epilepsy [3]. To add to the complexity, the 63 

prodromal stages, or mild cognitive impairment (MCI), associated with some dementia 64 

subtypes, can be loosely defined and heterogenous, particularly when assessments are 65 

subject to factors like delirium, psychiatric illness and the effects of medication [4, 1].  66 

 67 

Globally, it is estimated that there were 47 million people with dementia in 2015, and with a 68 

rapidly growing ageing population, this is expected to reach 75 million by 2030, and 132 million 69 

by 2050 [5]. Dementia has a considerable impact on the wellbeing and functioning of those 70 

living with the disease, but also on their families and caregivers. Dementia care can place 71 

health and social care services under operational and financial strain, costing an estimated 72 

US$ 818 billion in 2015 and estimated US$2 trillion in 2030 [5]. In the UK, dementia costs £26 73 

billion per year. In 2014, 850,000 people in the UK were estimated to be living with dementia, 74 

and this may rise to 1.6 million by 2040 [6]. In neighbouring Ireland, there were about 48,000 75 

people with dementia in 2011 and this is projected to increase to 132,000 by 2041, while 76 

costing €1.7 billion annually, [7, 8].  77 

 78 

Despite the demand for dementia care and treatment, to date, there are no disease modifying 79 

therapies for the most common dementia subtypes. Medications that target particular 80 



neurotransmitter systems (e.g. cholinesterase inhibitors) and nutritional supplements have 81 

been proposed to slow the early cognitive decline associated with mild to moderate AD and 82 

Lewy body dementia [9, 10]. Trials investigating disease modifying therapies have mostly 83 

targeted the formation of beta-amyloid plaques, suggested to be one of the neuropathological 84 

hallmarks of AD, but the results have so far been underwhelming [11, 12]. This may be 85 

attributed to testing people with dementia too late; by the time that the clinical symptoms have 86 

manifested themselves, amyloid may have been accumulating in brain structures for several 87 

years [13, 14]. Therapies targeting hyperphosphorylated tau (twisted fibres of tau proteins), 88 

the other main neuropathological substrate of AD, have also failed to demonstrate significant 89 

improvements in clinical outcomes [13, 14]. In all likelihood, AD and other dementia subtypes 90 

are likely to be the product of interactions between multiple factors, including, but not limited 91 

to cholinergic neuronal damage, neuroinflammation, oxidative stress, glucose 92 

hypometabolism, and more recently, gut microbiome perturbations via the immune system, 93 

endocrine system, vagus nerve, and bacteria-derived metabolites [14]. It is also possible that 94 

some of these hypotheses could be related [15] but further confirmatory work is required.  95 

 96 

Regardless of our incomplete understanding of dementia, the rising global population and 97 

longer average lifespan [16, 1] make an increasing and urgent case for timely and accurate 98 

recognition of dementia and its subtypes, particularly in guiding clinical decision regarding 99 

appropriate clinical care. Indeed, it is projected that the direct healthcare costs of early 100 

diagnosis may be offset by the cost savings arising from the earlier targeting of patients to the 101 

appropriate clinical care pathways [17]. Such savings may be linked to the benefits of earlier 102 

delivery of dementia medication and caregiver interventions, and delaying institutionalisation, 103 

thereby reducing the overall direct and indirect health and social care cost burden [17]. In 104 

addition, early diagnosis and intervention increases the quality of life and care planning for 105 

people with dementia and their caregivers, which promote independence [17]. In this context, 106 

it is clear that the potential economic and humane benefits of improving the clinical care 107 

pathway for dementia are immense. Indeed, as we shall discuss below, the application of 108 



data-driven computational approaches can have an immediate impact on improving dementia 109 

care pathway.  110 

 111 

Dementia care pathway  112 

 113 

To evaluate the effectiveness of dementia care, we must first assess the current dementia 114 

care pathway. As an example, the pre-eminent body in the UK working on clinical guidelines 115 

and standardised practices for medical professionals is the National Institute for Health and 116 

Care Excellence (NICE), with dementia care guidelines updated in 2018 to reflect current best 117 

practices [18]. The guidelines put forth several strong recommendations for how dementia 118 

care should be implemented at the primary care level, at specialist memory assessment 119 

services, and in the wider community. A schematic of the NICE 2018 recommendations for 120 

the dementia care pathway is illustrated in Fig. 1 [19]. Symptoms of dementia are usually first 121 

identified by either the individual themselves, a family member of caregiver, before being 122 

assessed by general practitioners (GPs). At the primary care level, a major focus is to exclude 123 

common and treatable causes of delirium or other disorders. If dementia remains a concern, 124 

further investigation and onward referral to secondary care is required, where more detailed 125 

assessment by a specialist (e.g. memory clinic) will diagnose dementia, and its subtype, and 126 

initiate treatment [20, 19].  127 

 128 



 129 
Fig. 1. Flowchart of the UK dementia care pathway under NICE guidelines, and potential 130 

disruption. Includes primary and secondary (specialist) care. Blue and purple text: potential 131 

time delays and under/misdiagnoses; and also opportunities for technologies and novel 132 

dementia markers. Flowchart based on [19].  133 

 134 

Two major issues that often impede the effectiveness of dementia care pathway are diagnoses 135 

and time delays (Fig. 1, blue and purple text). Regarding the former, the rates of dementia 136 

detection (underdiagnosis) can vary considerably [21] and the diagnosis of dementia, and its 137 

subtype, can be inaccurate [22, 23]. In one US study, depending on the permissiveness of 138 

clinical and neuropathological criteria, AD diagnosis sensitivity (true positive rate) can range 139 

between 71% to 97%, while it is between 44% to 71% for specificity (true negative rate) [24]. 140 

Suggested reasons for dementia misdiagnosis include physicians/GPs in primary care not 141 

being appropriately trained or confident in detecting the disease (within their brief consultation 142 

time), and lack of standardised validated screening protocols and/or routine implementation 143 

of screening [25, 22, 26].  144 

 145 



There is also a link between early diagnosis and dementia prevalence. It has been estimated 146 

that if early identification of risks and diagnosis, leading to proper treatments or interventions, 147 

can delay dementia onset by 2 years, the prevalence would reduce by 20%; with a further 148 

prevalence reduction of 50% if a delay of 5 years was achieved [27]. Interestingly, to decrease 149 

the national dementia underdiagnosis rate, the UK government has introduced the 150 

incentivisation for GPs dementia diagnosis (paid per case); unintended consequences of the 151 

approach include poor patient experience, false-positive diagnosis, and negative impacts on 152 

waiting lists in memory clinics due to increased numbers of referrals [28, 29, 30].  153 

 154 

Early and accurate diagnosis, on top of providing timely and appropriate care and treatment 155 

and reducing undue psychological stress associated with false positive diagnosis, also has 156 

economic benefits. In particular, past studies have shown that patients with prior AD 157 

misdiagnosis (false positive) used substantially more medical services until their (non-158 

comorbidity) vascular dementia diagnosis, leading to increased annual medical costs per 159 

patient; following corrected diagnosis, the medical costs converged to patients never 160 

diagnosed with AD [31, 32].  161 

 162 

Regarding the issue of delays in dementia diagnosis, this can be due to various factors. These 163 

include false negative diagnosis, caregivers’ lack of knowledge or reluctance to seek help, 164 

uncertainty from patients and families about when and where to seek help, poor 165 

communication and uncertainty from medical doctors [33, 22, 34]. For instance, in one review 166 

of services in England, waiting times for assessment can range from 3 to 184 days, while 167 

dementia diagnosis from referral could take up to 199 days [34]. Such delays could permit 168 

substantial cognitive decline. Further, patients identified with MCI have to wait for a follow-up 169 

re-evaluation in either a recommended 6-month time interval or when there is significant 170 

change in status [19].  171 

 172 

Assessments in dementia diagnosis  173 



 174 

To receive appropriate treatment and support, careful assessment for diagnosing dementia is 175 

necessary. Current assessments and their associated ‘markers’ for dementia can comprise 176 

several types, from clinical history, biological (e.g. blood- or brain-based) assessment, to 177 

neuropsychological and functional assessments (Table 1) [18]. Often, the choice of 178 

assessments is based on factors such as accuracy, sensitivity, specificity, cost effectiveness, 179 

and speed and convenience of use.  180 

 181 

Certain assessment types are more costly and less readily available than others. These 182 

include cerebrospinal fluid analysis and various neuroimaging modalities in secondary 183 

(specialist) care. Moreover, structural neuroimaging is recommended in all cases unless 184 

dementia is well advanced and dementia subtype is identified [18]. However, functional 185 

neuroimaging is conducted to diagnose dementia subtype even though some biomarkers such 186 

as beta-amyloid based PET, may have the ability to predict the risk of dementia several years 187 

prior to onset of dementia symptoms (albeit with low specificity) [35]. Thus, there is a need to 188 

strike a balance among reliable risk prediction, healthcare costs, and the inconvenience for 189 

the patient. In contrast, blood-based biomarkers have the potential to offer high-190 

throughput data and are easily subjected to repeated measurement even in frail, elderly 191 

people. Newer, e.g. neuroinflammatory based, markers may offer dementia risk prediction at 192 

even earlier pre-symptomatic period [14, 36], although the specificity to dementia, and hence 193 

practical use, remains unclear.  194 

 195 

Table 1. Summary of the UK’s primary and secondary (specialist) care diagnosis for people 196 

aged 40 years old and over with suspected diagnosis of dementia [18].  197 

Primary care diagnosis 



Diagnostic 
variables 

Potential diagnostic variables include: 
• Clinical history 
• Clinical cognitive assessment 
• Neuropsychological testing 
• Physical examination 
• Medication review 

 
Secondary (specialist) care diagnosis 

Diagnostic 
variables 

Potential diagnostic variables include: 
• Specified diagnostic criteria 
• Structural imaging (Magnetic Resonance Imaging (MRI) and Computed 

Tomography (CT)) 
• Single-photon emission computed tomography (SPECT) (e.g. blood flow, 

dopamine) 
• Positron emission tomography (PET) (e.g. fluorodeoxyglucose (FDG), amyloid) 
• Cerebrospinal fluid (CSF) examination 
• Electroencephalography (EEG) 
• Brain biopsy 
• Neuropsychological assessment 
• Functional assessment 
• Genetic testing 
• Neurological examination 

 198 

For cognitive, neuropsychological and functional assessments, some may require the 199 

presence of a clinician and nurse, and perhaps caregiver, while others may take a relatively 200 

long time to administer; a comprehensive investigation can even go beyond the timeframe of 201 

a medical appointment [19]. Thus, a balance between convenience and performance of such 202 

assessments are required. Interestingly, composite scales, which combine several 203 

neurocognitive subscales or with functional activity scales into a single summary score, have 204 

recently gathered high interest for preclinical, prodromal and mild AD, especially for early AD 205 

therapeutic research [37]. A composite test assesses different domains of cognition and 206 

function through the use of discrete subtests, and then averages the standard score means 207 

from these subsets to yield an overall score [38]. However, it remains unclear whether 208 

composites can actually perform better than the current battery of assessments.  209 

 210 



In terms of the health economics evidence for these assessments, a number of cost-utility 211 

analysis, which report on incremental costs and quality-adjusted life years (QALYs) analyses 212 

have been conducted [18]. For instance, [39] compared three cognitive and 213 

neuropsychological assessments often used by GPs (Mini-Mental State Examination (MMSE), 214 

general practitioner assessment of cognition (GPCOG), and 6-item cognitive impairment test 215 

(6CIT) and identified the most cost-effective option (GPCOG), while providing caution 216 

regarding the results’ sensitivity to dementia medicines. Similarly, a cost-utility analysis of 217 

(beta-amyloid based PET) neuroimaging markers by [40] supported its use in comparison to 218 

standard assessment alone or with cerebrospinal fluid (CSF) testing. However, these studies 219 

were often limited to a small number of assessments.  220 

 221 

Taken together, we have presented several current issues facing dementia assessments and 222 

care. In particular, we have emphasised that providing timely and accurate diagnosis is crucial 223 

within the dementia care pathway. To improve the effectiveness of dementia diagnosis and 224 

care, we shall discuss in the remainder of this review, the needs and challenges associated 225 

with clinical data transformation and computational approaches in both dementia research 226 

and in clinical practice. In particular, we shall emphasise the advantages of improving clinical 227 

data curation and integration, identifying new dementia markers and assessments through 228 

new fundamental sciences and algorithms, and the development of practical decision support 229 

systems. These will be discussed along with their challenges.  230 

 231 

Data digitisation, curation and integration  232 

 233 

To enable reliable data analyses for evidence-based solutions to improve dementia diagnosis 234 

and care, well curated and “clean” data are necessary. Compliance with some or all of the so-235 

called 5 C’s (clean, consistent, conformed, current, and comprehensive) of data quality [41] 236 

and appropriate data governance [42] is necessary. Although this is the case in most openly 237 



available dementia data acquired within the context of a research study, actual clinical or 238 

medical data paints a rather different picture.  239 

 240 

A major reason for “dirty” clinical data is due to the lack of standardisation in the dementia 241 

care pathway. For instance, in Northern Ireland, although data related to dementia could be 242 

formally retrieved and analysed (e.g. through the Health and Social Care Business Services 243 

Organisation’s Honest Broker Service), the set of dementia assessments adopted across 244 

different practice sites can differ. GPs in England also have similar non-standardisation in 245 

dementia assessments [43]. This could be due to the ambiguity within the national (NICE) 246 

guidelines, allowing diversity in approaches and locally based “best” practices. When these 247 

data are integrated, they can lead to heterogeneity in data variables and systematic missing 248 

(“dirty”) data [44, 45, 46]. Missing data could also likely arise from other conditions, such as 249 

certain individuals being more likely to complete surveys or respond well to questions, 250 

individuals late for medical appointments, and individuals with severe dementia unable to 251 

attend medical appointments altogether. Therefore, practical strategic approaches e.g. 252 

appropriate data cleaning, imputation and harmonisation techniques, are needed before 253 

conducting any analysis [47, 48, 49, 50, 51, 52]. Indeed, there are some recent and promising 254 

large-scale data extraction and integration initiatives such as the UK-CRIS (Clinical Record 255 

Interactive Search) system [53] (see below for more examples).  256 

 257 

An alternative solution to reduce heterogeneous data is to employ a “small data” approach. 258 

As discussed by [54] in this journal’s Collection, there are various advantages to this approach, 259 

which can uniquely manage complex, dynamic, multi-causal and complex diseases to facilitate 260 

individual-level description, prediction and control. Moreover, given the political, institutional 261 

and human-nature inertia to change, such localisation and decentralisation could actually be 262 

a more viable and economical approach, provided the localised data is of sufficient quality. 263 

Further, this approach may be suitable to handle known regional variation in the prevalence 264 

and detection of dementia associated with the age profile of the population and accessibility 265 



to services (e.g. see [7, 55] for examples in rural Ireland). Analytical results or models based 266 

on such data would also be localised, which may perhaps be more conducive for the practice 267 

of personalised or stratified medicine. If data linkages across regional data silos are 268 

implemented for analytical insights into wider patterns or trends, similar issues on data 269 

integration could arise, as discussed previously.  270 

 271 

Clinical or medical data may include unstructured or semi-structured data. For instance, 272 

transcription from handwritten notes from clinicians and nurses to consistent digital formats is 273 

needed before storing in operational data storage or data mart, and for use in analysis. With 274 

the advent of robust handwriting recognition algorithms, especially deep learning [56], this can 275 

be solved to some extent, but medical (e.g. International Classification of Diseases, ICD) 276 

codes may still need to be further decoded in an efficient way. Also, with increasing use of 277 

medical devices such as pervasive (wearable) sensors or detectors that generate continuous 278 

data stream and point-of-care technology, real-time signal processing and edge analytics, and 279 

other big data approaches would be needed [57, 58]. More fundamentally, the way clinical 280 

data is captured early on should be changed and formalised to allow better and systematic 281 

digitisation of electronic health or medical records. To enable this would require widespread 282 

adoption through policy change. Overall, setting a robust and practical data infrastructure is 283 

vital for any reliable data analytics or modelling.  284 

 285 

Computational Neurology, an integrative computational framework  286 

 287 

In [59], we introduced the umbrella term Computational Neurology to embrace not only 288 

Computational and Theoretical Neuroscience, which has largely focused on neural 289 

mechanistic or probabilistic modelling [60], but also data-driven artificial intelligence (AI) 290 

approaches to handle heterogeneous, complex and large data. Computational or Theoretical 291 

Neuroscience usually requires focused and relatively detailed data (e.g. across neighbouring 292 

spatial scales) to model, explain and predict specific biophysics of neural tissues, their 293 



activities and functions in either healthy or disordered brains, including in AD and dementia 294 

(see e.g. [59, 61-68] and references therein). Such causal based modelling approaches can 295 

help to test hypotheses and elucidate the mechanisms of brain disorders and potential 296 

therapeutics.  297 

 298 

For such approaches, the required detailed (biological) data may not always be readily 299 

available. Further, it may take a long time to realistically model or simulate large-scale brain 300 

activities for practical clinical purposes, although there are attempts using simpler reduced 301 

computational models [69-71]. Moreover, when data is heterogeneous or when biological 302 

information is lacking, biologically realistic mechanistic modelling to bridge across scales may 303 

not be feasible, and probabilistic or statistical modelling can be applied. Thus, with the 304 

unavailability of mechanistic systems models, causality may be inferred e.g. based on 305 

probabilistic models [60, 72, 73].  306 

 307 

When the data gets sufficiently large and complex, the applications of data mining, AI or 308 

machine learning become essential. This is especially the case for big data generated by new 309 

technologies, as discussed previously. Some of the wider perspectives on this topic have 310 

already been discussed in this journal’s Collection [74, 75]. Notable open big data initiatives 311 

include those for fundamental brain sciences such as the Allen Brain Map [76], Collation of 312 

Connectivity Data for the Macaque (CoCoMac) database [77], Human Connectome Project 313 

(HCP) [78], and for clinical and translational sciences, include the Cambridge Centre for 314 

Ageing Neuroscience (Cam-CAN) dataset inventory [79], Alzheimer’s Disease Neuroimaging 315 

Initiative (ADNI) [80], the National Alzheimer’s Coordinating Center (NACC) [81], UK Biobank 316 

[82], and the Dementias Platform UK (DPUK) [83]. Other large-scale projects include those 317 

coordinated by Innovative Medicines Initiative (IMI), e.g. the European Medical Information 318 

Framework (EMIF) [84], the European Prevention of Alzheimer’s Dementia Consortium 319 

(EPAD) [85], AETIONOMY (Organising mechanistic knowledge about neurodegenerative 320 



diseases for the improvement of drug development and therapy) [86], and Neuronet 321 

(Efficiently Networking European Neurodegeneration Research) [87].  322 

 323 

Importantly, these databases and platforms now enable researchers, particularly those with 324 

computational or theoretical inclination, to perform large-scale quantitative analyses to enable 325 

wider and more direct research impact (e.g. see [88]). There are also opportunities for 326 

researchers to link across mechanistic and data-driven computational approaches (e.g. see 327 

[89, 90]). Fig. 2 summarises the possible interactions of these various modelling approaches 328 

with different data types. Together, these computational approaches can be applied for deeper 329 

understanding of dementia, test potential therapeutics, and for detecting and predicting 330 

dementia.  331 

 332 

 333 
 334 
Fig. 2. Schematic of computational and theoretical approaches in Computational Neurology: 335 

from fundamental research towards clinical applications. Blue boxes: Small or focused data; 336 

brown: larger or more heterogeneous data. Arrows: Relationships. Sometimes artificial 337 

intelligence (AI), data mining and machine learning methods are also used in relatively smaller 338 

or less heterogeneous data to guide mechanistic modelling (not shown).  339 

 340 

Computationally derived and other novel markers of dementia  341 

 342 



Computational neurology applied to dementia can potentially solve some of the issues facing 343 

dementia diagnosis and prognosis. Particularly, data-driven models can provide more 344 

objective methods for detection and risk prediction of dementia. For some applications, the 345 

detection accuracy can be higher than that of humans. For instance, in the sub-area of 346 

computational neuroimaging, advanced techniques such as deep learning have led to very 347 

high accuracy for identifying dementia severity, outperforming human experts [91]. Some 348 

neuroimaging work, e.g. [92], has also combined multiple neuroimaging modalities to further 349 

enhance dementia predictive accuracy. However, to convince relevant stakeholders of their 350 

use in clinical practice, cost-utility analysis of these computational approaches and their 351 

identified markers may be needed.  352 

 353 

As compared to the current battery of dementia assessments, including recently suggested 354 

use of composite scales, computational researchers can now use algorithms to perform 355 

unbiased and automated selection of the most relevant assessments or variables, and their 356 

(optimal) combinations, for predicting dementia severity and risk (e.g. [73, 88]). Such data-357 

driven approaches may reveal markers that can lie beyond human intuition. Moreover, these 358 

computationally derived markers often consist of a smaller number of variables than standard 359 

assessments, while still able to provide reasonable (or higher) accurate prediction of 360 

dementia. Thus, there is potential that their use can lead to more effective dementia diagnosis.  361 

 362 

Novel biomarkers using newer technologies, not currently deployed in the dementia care 363 

pathway, may also have the potential to transform dementia diagnosis and prognosis. These 364 

include readily accessible novel blood-based markers (using high-throughput next-generation 365 

DNA sequencing, proteomic and metabolomic technologies) permitting identification of protein 366 

concentrations/activity/isoforms and post-translational modifications, metabolic products, 367 

such as amino acids, carbohydrates, lipids, organic acids, and nucleic acids (single nucleotide 368 

polymorphisms, SNPs) [93]. Similar data analytical, e.g. feature selection and dimensional 369 

reduction, methods can be used to home in and identify key markers [94, 95].  370 



 371 

Although not currently part of the dementia care pathway, magnetoencephalography (MEG), 372 

with its high temporal resolution, can more directly identify novel biomarkers for dementia and 373 

its prodromal stage. They can come in the form of abstract machine-learning or functional 374 

brain connectivity-based markers [96-99]. Given that electroencephalography (EEG), with 375 

poorer spatial localisation than MEG, has already been incorporated in dementia diagnosis 376 

(Table 1) [18], it may perhaps be not too inconceivable to also include MEG. Further, MEG, 377 

with its ease of use, may be more favourable for frail, elderly or demented participants owing 378 

to the avoidance of cumbersome procedures e.g. preparation of the electrodes and conducting 379 

gel as required for EEG. However, the current high costs associated with acquisition and 380 

maintenance of MEG instrumentation impede its widespread use.  381 

 382 

Post-clinical validation of computationally derived and other novel markers should be followed 383 

by discussion among policy makers, researchers and other stakeholders to allow their 384 

assimilation into the current dementia care pathway. For instance, in conjunction with the 385 

traditional set of assessments, assessment for novel blood-based markers could be performed 386 

using point-of-care technologies within primary care, while MEG assessment conducted at 387 

secondary care.  388 

 389 

Practical clinical decision support systems  390 

 391 

As of now, and in the foreseeable future, clinicians make an informed clinical diagnosis after 392 

weighing over all available diagnostic evidence. Given the complexity of the data forming such 393 

evidence and the decision-making processes required, computerised decision support 394 

systems (CDSSs) can act as tools to assist human experts with interpretation, diagnosis and 395 

treatment [100]. A CDSS may consist of a highly specialised computational model, e.g. for 396 

discriminating specific neuroimaging data [101]. It may also consist of systems based 397 

computational model that embraces a wide variety of data types or markers [102, 88]. 398 



Crucially, CDSS can act as a bridge from fundamental, data-driven research towards clinical 399 

application (Fig. 2).  400 

 401 

CDSSs can be useful to solve the underdiagnosis or misdiagnosis of dementia within primary 402 

care settings, thereby reducing the load at secondary care level. In fact, a criticism of the UK’s 403 

National Dementia Strategy has suggested that more diagnosis should take place in primary 404 

care [34]. Moreover, CDSSs can also provide more effective (e.g. neuroimaging) assessments 405 

within secondary care. Further, adoption of a common CDSS platform may promote more 406 

standardisation of dementia assessments. When incorporated into the telemedicine scene, 407 

the adoption of CDSS could be accelerated through awareness of its resolving of issues in 408 

financial costs, delays and accessibility (e.g. in an infectious disease pandemic) related to 409 

dementia diagnosis and care. In fact, with widespread use of smart phones, some dementia 410 

assessments may perhaps be digitised and conducted within the CDSS in mobile devices 411 

(e.g. the IMI RADAR-AD (Remote Assessment of Disease and Relapse – Alzheimer’s 412 

Disease) project [103], and the EDoN (Early Detection of Neurodegenerative diseases) project 413 

[104]), increasing accessibility to assessments, and expediting early diagnoses in cognitive 414 

decline and dementia and other supporting services [105-109]. However, this may also lead 415 

to potential data security and privacy issues [58].  416 

 417 

While developing computational models for CDSSs, care has to be taken as the models 418 

trained in e.g. open dementia datasets may consist of variables (e.g. specific cognitive 419 

assessments) that may not be the same as that in clinical practice. Also, individual cases are 420 

often not considered in analysis and model validation (but see e.g. [88]). In longitudinal studies 421 

for risk prediction, models need to take into account appropriate time trajectories [110] and 422 

trajectory heterogeneity [111]). Thus, many current models’ decisions may have inappropriate 423 

estimation of their predictive precisions for actual clinical practice. Moreover, in open dementia 424 

datasets the proportion of MCI or dementia individuals may not necessarily reflect the actual 425 

proportion in society. Thus, appropriate adjustment may be necessary before translational 426 



deployment. In addition, many computational modelling studies often struggle with obtaining 427 

high detection accuracy when dealing with MCI cases, regardless of the intrinsic strength of 428 

the models (e.g. [91]). This may be due to the studies failing to differentiate the subtypes of 429 

MCIs (e.g. amnestic MCI) or the ill-defined general term of MCI [112]. Fundamentally related 430 

to this is that the clinical classification of the disease is often mixed. We suggest that a next 431 

stage for dementia classification would arise from data-driven computational modelling rather 432 

than the standard labels in the Diagnostic and Statistical Manual of Mental Disorders (DSM-433 

5). Particularly, Computational Neurology could follow the path of Computational Psychiatry 434 

for mental health in the identification of disease categorisation and stages e.g. through data-435 

driven dimensional or network-based approaches [113, 114].  436 

 437 

Conclusion  438 

 439 

Currently, our understanding of dementia is lacking, and the dementia care pathway is 440 

suboptimal. We propose that Computational Neurology approaches can offer specific 441 

solutions. With mechanistic biologically based modelling, it can provide insights into underlying 442 

neural mechanisms and assist in dementia therapeutics research. Supported by appropriate 443 

data infrastructure, data-driven modelling and CDSS can provide immediate improvements 444 

through better dementia diagnosis and prognosis, and improve related care pathways, while 445 

potentially reducing delays and health and social care costs. New markers may be elucidated 446 

based on algorithms and new technologies, which may complement current diagnostic and 447 

prognostic processes.  448 

 449 

However, such benefits may only be realised if computational models and CDSSs are 450 

appropriately evaluated and adopted by users. Obstacles to implementation in clinical practice 451 

may be explained by general lack of engagement from clinicians, physicians and health 452 

specialists [115]. Indeed, many computational models of dementia may perhaps be too 453 

‘academic’ and lack translational characteristics. To move the field forward, it is imperative 454 



that computational researchers, informaticians, clinicians, patients, health institutions, policy 455 

makers, and other stakeholders should work synergistically together.  456 

 457 

 458 
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