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Abstract

Obesity is increasing worldwide and can cause ncangnic conditions such as type-2 diabetes,
heart disease, sleep apnea, and some cancersoltaniietary intake through food logging is a
key method to maintain a healthy lifestyle to prevend manage obesity. Computer vision
methods have been applied to food logging to aut®imna@age classification for monitoring
dietary intake. In this work we applied pretrairResNet-152 and GoogleNet convolutional
neural networks (CNNSs) to extract features frondfonage datasets; Food 5K, Food-11,
RawFooT-DB, and Food-101. Deep features were detildoom CNNs and used to train
machine learning classifiers including artificiaural network(ANN), support vector
machine(SVM), Random Forest, fully connected NeNetivorks, and Naive Bayes. Results
show that using ResNet-152 deep features with S\l RBF kernel can accurately detect food
items with 99.4% accuracy using Food-5K food imdgtaset. Trained with ResNet-152
features, ANN can achieve 91.34%, 99.28% when egppti Food-11 and RawFooT-DB food
image datasets respectively and SVM with RBF kecaalachieve 64.98% with Food-101
image dataset. From this research it is clearubialy deep CNN features can be used efficiently
for diverse food item image classification. The kvpresented in this research shows that
pretrained ResNet-152 features provide sufficiemegalisation power when applied to a range
of food image classification tasks.

Keywords: obesity, food logging, deep learning,\auational neural networks, feature
extraction

1. Introduction

Obesity is a global concern and is a serious heailtidition that can cause diseases such as heart
disease, type-2 diabetes, and some cancers [1jnTheease of obesity has also been reported
as a major burden on health care institutions ginadirect and indirect costs [56]. One of the
major ways that obesity can be managed is throigghrg management methods such as food
logging and other methods [3]. Food logging is etiviy in which the user document their

energy intake to monitor their diet. Other methodsy include the use of an exercise log book to
document physical activities and the duration. Prgsly, users documented their intake using a
food diary however many users now use smartphopkcagions to document their energy

intake. The increase in smartphone usage hasealdo the increase of well-being ap- plications
that are able to facilitate food logging. Many leé$e applications incorporate a simple diary



entry, and/or connect to an online database/ABe#&wch for nutritional content for each of the
users entries. Other novel methods include allowheguser to photograph the food items to
determine calorie values. Using images has thenpiatéo remove much of the complexity from
traditional food logging to make it convenient the user to document food intake to promote
dietary management. Many studies have been cordpletesearching the use of computer
vision methods to classify photographs of foodranmote food logging [4-6]. This interactive
approach to food logging using the camera withémart-device may promote the use of food
logging which is an important method to maintairigheloss. The remainder of this paper is
structured as follows: Section 2 presents relatedkw how this problem has been tackled in
previous research. Section 3 discusses the aim¢td@s, and contributions of this work.
Section 4 describes the methods used in this waitkfze use of Convolutional Neural Networks
(CNNs) for feature extraction. Experiment resutts gresented in Section 5 followed by a
discussion in Section 6. Section 7 highlights stligiytations and areas for future work.

2. Related Work

Food logging is a beneficial method to aid dietawxanagement and recent novel methods have
utilised meal photographs for food logging. A revigll] was completed to highlight a variety
of computer vision methods that have been appliddad image recognition to promote dietary
management. Key messages from this review ardhbed is a need for real food intake
monitoring and one of the main challenges for giehitoring using wearable sensors is
practicability when used in a different environngeand how automatic dietary monitoring is
important to document nutritional intake habitptevent conditions.

Food image recognition is a difficult task duehie amount of variation within food types. Food
items in images are usually accompanied with dibed items as well as other unrelated non-
food items. The high variation of colour, shapeesand texture in food items means that one
method of image feature extraction and classificathay not adapt to other foods and therefore
a feature combination approach may be needed. @taomal ways to classify images utilise the
use of hand-crafted feature extraction, e.g. glob&bcal feature extraction using Speed-Up-
Robust Features (SURF) [38] or local binary pat€tBP) [39]. Feature engineering is used to
determine what type of features and parameterbesteused to successfully classify certain food
types and categories and much work has been cadplethis area. In [5] a bag-of-features
model was proposed that used a combination of svedeiant feature transform (SIFT) features
along with hue-saturation-value (HSV) colour featuand a linear SVM to classify images into
11 categories with 78% accuracy. Other works algis@ia combination approach using SIFT
and SPIN features and achieve high accuracy isityasy high level food groups (89%
accuracy in classifying sandwiches and 91.7% issilging chicken) using Pittsburgh Fast-Food
Image Dataset (PFID). However, PFID dataset isreage dataset that was developed in a
controlled laboratory environment, further worksilcbbe completed in applying this feature
combination approach to similar image categoriegqdraphed in real-world environments.
Other works use feature selection methods to dé@teroptimal features [8] for food image
classification. As well as using traditional feauwxtraction methods, CNN methods have
become increasingly popular for image classificaiad this can be attributed to ImageNet
Image Large-Scale Visual Recognition Challenge ¢eNet ILSVRC) as it allows users to
compete against each other in achieving a claasiic accuracy and the winners in recent years



have used convolutional neural networks (CNNs)eaBemphasis has been placed on using
CNNs for image classification and this is evidenaisurge of recent research in this area
relating to the fine-tuning CNN [11], deep featesdraction [12], and also training CNNs from
scratch [11].

2.1Detecting Food in Images Using CNN

CNN has been utilised for food image detectionsTroblem can be condensed down to a
simple binary classification problem (food/non-fgpotihe purpose of food image detection
process is to first determine if food is preserthimi an image or video. In regards to a food
image recognition pipeline, this would be the fettge in food image recognition framework i.e.
determining if the image contains food or not.18][GoogleNet pretrained model was fine-
tuned using Food-5K dataset. The training proae$$3] utilised a subset of Food-5K data
using 1000 iterations. The learning rate was chang®f 0.01 and the learning rate policy was
polynomial. Results from [13] achieved 99.2% accwyria determining food/non-food classes.
Other research also utilised CNNs for food detectiet] and used 6-fold cross validation with
different hyper-parameters to determine optimairsgs and experiments achieved 93.8% in
food/non-food detection.

2.2 Predicting Food Type in Images Using CNN

Extensive research has been carried out in uti€iNN for food item recognition. The food

item recognition process would take place afterftioel detection phase in which the actual food
item is then predicted within the determined fomdge. In [15] CNNs were utilised to extract
features from convolutional layers in order to detiee if an image contains a food item and
experiments achieved 70.13% for 61 class datask®4u01% for 7 class datasets, these
experiments used AlexNet deep features with a S\agsdier applied to PFID dataset [15]. In
[16] the aim of the work was to compare conventideature extraction methods with CNN
extraction methods utilising UEC Food 100 dataRetults from [16] achieved 72.6% accuracy
for top-1 accuracy and 92% for top-5 accuracy. Afsfi4], as well as performing food/non-
food experiments, food group classification wadqgrered. A CNN was developed and was
trained using extracted segmented patches of teasi[14]. The food items used in this work
were based around 7 food major types. The patckes thven fed into a CNN using 4
convolutional layers with different variations dtér sizes and using 5 x 5 kernels to process the
patches. Results in [14] achieved 73.70% accuramgb-fold cross validation. These studies
confirm that CNN provide an efficient method footbimage recognition to provide for accurate
food logging to promote dietary management.

2.3CNN Deep Feature Extraction Methods for Food Datatffood Item Classification

Recent research has focused have used deep feattnasted from pretrained CNN
architectures to train machine learning classifier§ood image classification. Some research
have opted for deep feature extraction opposirigpngtuning pretrained CNN or training from
scratch because less computational power and §medded or small image datasets are used.
Well-known CNN architectures (e.g. AlexNet, VGG-TxogleNet) for deep feature extraction
have been developed in classifying images to autfoad logging. This section discusses



research that use deep feature extraction to deiedtin images and classify food items in
images for automated food logging. A comparatiwéen® was carried out on analysing the
performance of a number of pretrained CNN architest [43]. This review used VGG-S,
Network in Network (NIN), and AlexNet for deep faed extraction to train food detection
models. A food/non-food image dataset was collatetideep features were extracted from the
models to train machine learning classifiers (olessSVM classifier and binary classifier).
Results showed that binary SVM classifiers traingti deep features achieved 84.95% for
AlexNet, 92.47% for VGG-S, and Network In Networlkdel achieving 90.82%. It is worth
noting that UNICT-FD889 dataset used for deep feagutraction in [43] contains minimal
noise as the images are focused on the food iteargfore this may contribute to high accuracy
results. Further work could be completed in utilisa larger food image dataset consisting of
images from different environments and also usiffgrént machine learning classifiers for
further comparison.

Other research also explored the effect of traimaghine learning classifiers from different
layers in pretrained AlexNet architecture [15]. Aoits used AlexNet model to extract deep
features from various layers deep in the architeofiC6, FC7, and FC8 layers). The food
image dataset used in [15] was PFID. Two experimemtre presented in [15]; classifying high-
level food catergories by organising PFID datasit ¥ category dataset and also classifying
individual categories in PFID (61 classes). Resshlitswed that the highest accuracy for the 61
class dataset was 70.13% using deep features edrfaom layer FC6 in AlexNet. For the 7
class dataset, the highest accuracy achieved & @atures was 94.01% using layer from FC6.
The contribution in [15] echoes the same findingpiB] suggesting that deep feature extraction
provides high accuracies in classifying small gedifpod image datasets (related food items) as
well as datasets with specific different food tyResults also suggest that AlexNet deep
features are able to efficiently generalise betwegh level food groups and also classify
specific food groups with reasonable accuracy. Hamnemore research needs to be completed
in using deep features to classify food imagegai world environments as PFID used in [15]
was a laboratory prepared dataset. As AlexNet saaly CNN architecture with a small amount
of layers in comparison to more recent models ai$ @ble to achieve reasonable accuracy in
food item classification. AlexNet deep featuresrirC7 layer were able to achieve 57.87%
using a standard linear SVM classifier classiygC-FOOD100 and 43.98% in classifying
UEC-FOODZ256 [45]. Fine-tuning AlexNet on a food geadataset and then performing deep
feature extraction improved the accuracy to 67.57%assifying UEC-FOOD256.

GoogleNet Inception CNN has also been used for tesgpre extraction for food image
classification [44]. Authors fine-tune a pretrain@dogleNet model using a food image dataset,
and then deep feature extraction was used on arfoitetimage dataset. Experiments were
completed in training a SVM using GoogLeNet degidees, in which the GoogLeNet model
was fine-tuned using a food image dataset. Reshtized that using deep features with SVM
with PCA trained using fine-tuned GoogleNet feasumehieved 95.78% in classifying
RagusaDB test set and 98.81% in classifying FCNd&sset which was an increase in accuracy
comparison to other works using same datasetsgWagusaDB and FCD combined together
for experiments achieved 91.41%. The datasetsindéd] were small and more comparative
research is needed in using a larger dataset @fasnghotographed in different environments
and real-world settings to fully evaluate the pregbapproach [44].



In summary, previous research has showed that@Bi&pfeatures achieve high accuracies in
determining food/non-food classification and cl§ssg high level food groups[15,43,44,45]. It
is also clear from the literature that deep CNNuess from various CNN architectures at
varying depths can easily distinguish between foofood and high level food groups. It has
been suggested that deep features extracted froshsbNuld be an initial option in any visual
recognition tasks [51], however in regards to fouege classification, more work needs
completed in exploring the use of next generatibiNGrchitectures to extract deep features to
train food classifiers, primarily for specific foogm image classification photographed in real-
world environments. This work compared the perfarogeof using ResNet-152 and GoogleNet
CNN deep features to classify a variety of foodgmdatasets for food logging applications.

Figure 1. Example images of sandwiches from UEC BQ56 dataset highlighting noise in images.

3. Aim & Objectives

The aim of this work was to investigate the effestiess of using deep feature extraction
methods to classify variety of food image datasetse used for dietary assessment. The work
described in this paper seeks to answer the faligwésearch questions:

1. How efficient are deep residual network featdoesletecting foods in images and classifying
food datasets using conventional machine learrgnyighms?

2. How efficient are extracted GoogleNet deep festin predicting Food/Non-Food images and
classifying images into high level food groups amparison to fine-tuned GoogleNet model?

A series of experiments were completed that usedetures extracted from CNNs and used
them as input into conventional machine learniggpadhms. To answer the research questions a
number of objectives needed to be completed teeaetthe aim of this work: (a) a number of
public food image datasets needed to be seledipdeyeral pre-trained CNNs needed to be
identified from the literature for deep featureraxtion, (c) supervised machine learning
algorithms needed to be identified to classifyithages using the extracted deep activations;
and (d) statistical analysis is then applied tor#selts to evaluate the methods used. The next
section will discuss in detail the methods usethis work.



4. Methodology
4.1Food Image Datasets

In this work we identified publicly available foachage datasets to use for the experiments to
determine efficiency of using pretrained CNNs ttr&ost deep features for image classification.
The following image datasets were used in this Wddble 1):

1. Food-5K

2. Food-11

3. RawFooT-DB
4. Food-101

5. UNICT-FD889
6. Caltech-101

Table 1: Table showing name, number of categoinesges per category, as well as how the
image datasets were developed of each food imageeda

. Image
Dataset Categories Images per Category Prepar ation

2500 (training set)
Food-5K 2 500 (val & eval sets) Real world
Food-11 11 Unbalanced Real world

368 each in Controlled/
RawFooT-DB 68 training/testing set | Laboratory
Food-101 101 1000 Real world
UNICT-FD889 889 Unbalanced Real world
Caltech-101 101 Unbalanced (non-food) Real

world/Controlled




4.2 Food-5K

Food-5K dataset consisted of 2 categories; foodnamdfood, training is balanced and contains
2500 images of each category [13]. The datasetcaistains a validation and evaluation set and
each category contains 500 images each per datésetuthors developed this dataset to
measure the performance of using a fine-tuned @dbaglpretained CNN for classification.
Food-5K was developed by selecting images fromadirgublic available datasets e.g. Food-
101 [17], UEC-FOOD100 [18] and UEC-FOODZ256 [19]eTduthors described this dataset as
being varied as they selected foods that coveda wariety of different food dishes. The images
also contain some noise and multiple food items beagontained in an image. The non-food
images consisted of images that do not contain fiemals (objects or humans). Food-5K was
used to find out how ResNet-152 deep features pariio detecting food items in images, which
can be argued is an important first step in foodgenclassification for food logging. The authors
developed the non-food image dataset from usingrgthblicly available datasets e.g.
Caltech101, Caltech256, Emotion6, and Images otigz@f People.

4.3Food-11

Food-11 is a dataset that comprises of 11 majat fpoups [13]. The 11 categories are diary,
bread, egg, dessert, meat, fried food, pasta, séafwe, vegetables/fruit, and soup. Food-11
dataset was also created using images from Foodulx@-FOOD-100, and UEC-FOOD-256.
The authors of Food-11 stated that the imagestseleover a wide range of food types in order
to train a strong classifier that had the abildyclassify different varieties of foods. Many oéth
images contained in Food-11 were taken in realdvenvironments, therefore the images
contain high colour variation and some noise (lateel food items) may be present. The
developers of this dataset have divided the dabagetraining, validation, and evaluation
similar to Food-5K. Food-11 was used to explorepgéormance of ResNet-152 deep features
in categorising food images using Food-11.

4.4RawFooT-DB

RawFooT-DB [20,42] food image dataset was develdpedsearch the use of computer vision
methods to classify food image textures under @hffelighting conditions. Each image in
RawFooT-DB is unique in regards to the light dii@tt light intensity, and colour illumination
and food image textures are isolated with no noisgther food items present. The dataset
contains 68 classes with wide variety of food typssying from fish, meat, fruit, and cereals.
RawFooT-DB dataset contains tiles from the imagebké RawFooT-DB. Each image is divided
into 16 tiles, 8 tiles are for training and the eening 8 for testing. Each class contains 368
images (tiles) which represent 8 tile texture sampinder 46 different lighting conditions. In
this research, we explored the use of ResNet-18@ fimture features to train machine learning
classifiers. RawFooT-DB was used to explore howNged 52 deep features perform in
generalising food texture between class varian@vidus research divided RawFooT-DB into
different lighting condition subsets [20, 42], mg work we explored the performance of using



ResNet-152 deep features across multiple lightorglitions and each food class in RawFooT-
DB contains multiple food texture patches acroffemint lighting conditions.

4.5Food-101

Food-101 consists of 101 food categories and eatggory contains 1000 images [17]. The
Food-101 dataset have been described as challeagimyich of the images in the dataset
contain noise and the images were collated frond§patting, which is a social media website
that allows users to upload food images. This m#@tsmages used are from a real-world
setting i.e. restaurant or at home and not in &talronment. Food-101 allows us to research
how ResNet-152 deep features perform in classiffjogd items with similar food dishes in
varying real world environments. Authors of Foodt Hpecify dedicated training and testing
splits with testing splits containing images tha ‘aleaned' of noise, in this work we also use
75:25 training/testing partitions, however data wtagffled before partition for preliminary
analysis to determine how ResNet-152 features pariio classifying images with noise and
intense colour and food variation. Figure 2 illags an example of the images in the datasets.

Food-5K Food-11

Figure 2. Image examples from 4 food image datassd in this work.

4.6 Datasets for Further Evaluation of Food/Non-FooteBP@gon Models



Due to the small size of Food-5K, two other datbetve been used to evaluate our trained
food/non-food models; UNICT-FD889, which is a faathge dataset, and Caltech-101, which is
a non-food image dataset. Deep features were ¢atkrrom UNICT-FD889 and Caltech and
classified by models that achieved the best pedoia in classifying Food-5K datasets.
UNICT-FD889

UNICT-FD889 (Figure 3) was used to evaluate food/famd models trained using Food-5K
[53]. UNICT-FD889 contains 889 distinct food dishesstudy food representation and the
images are photographed in real world environmehish means that much of the images may
contain high food variance, however the imagesNQ@I-FD889 contain images that are
focused on the food item with little noise

Figure 3: Example of images contained in UNICT-FD8&taset.

Caltech-101

Caltech-101 dataset (Figure 4) was also used fauating food/non-food classification models.
Caltech-101 contains 101 image categories and@athins between 50-800 images. The
categories are non-food based and contain imaggsigeto animals and objects and each image
is around 300x200 pixels in size [52].

Figure 4: Example of images contained in Caltech-déXaset.

4.7 Overview of Convolutional Neural Networks

The use of pretrained CNNs gives great potentiahfplying them to a variety of problem
areas. Convolution is used to describe the typeeafal network as the input image is broken
down into smaller overlapping shapes in order termaine certain patterns in the image. These
overlapping segments are called filters. The pasteietected, by each overlapping shape in the



filter, may consist of a colour contrast or certiaiterest points such as edges. The overlapping
shapes look for the same pattern on the imageoVéegapping tiles are effectively used as input
for a small neural network. This is done for ealehith the image. Each network in the filter hold
the same weights to determine interest pointsch &e. The output of this process is an array
which each section corresponds to the networkdéstribes patterns in each tile. A down-
sampling process is then triggered after the cariayl stage, this is typically completed using
max pooling where the representation divided irdo-overlapping rectangles. Within each
region the maximum is retained. This process carepeated a number of times to create deeper
and more detailed representations. Fully conndetgts are also present with a CNN
architecture and is connected to activations frioenlayer previous. The fully connected layer
takes the input from previous layers and usesfohislassification using a soft-max function.
Backpropagation is typically used to train the CiNvhich the forward propagation is used to
determine the error and gradient descent is thed tessupdate the weights and parameters based
on this error. This is repeated in order to trm €NN using a training dataset [21,22].

4.8 Image Preprocessing for Feature Extraction

The pretrained CNNs used in this work were traisigecifically with requirements placed on the
input images. Therefore, in order to extract desgiure representations of these images using
these CNNs, it was important to ensure that thg@raneet the same requirements. The first
requirement was to ensure that the images wereeetd a specific height and width configured
in the image input layer of the pretrained CNN. Thages are also normalised and this is
achieved by subtracting the mean of the image.rméan is removed from the input image and
also the image intensities are normalised witHi®,255] region, as defined in [23].

4.9 Deep Feature Extraction

In this work we used 2 pretrained CNNs as deeufeaxtractors. The ad- vantage of using a
pretrained CNN to extract deep image featuresppssed to training a new CNN, are: (1) less
computational power is needed as we are allowiadNN to process each image only once to
extract deep feature representations; (2) lessislatzeded in order to achieve high accuracy
results as layers deep in the CNN architectureaiomictivations that can be used d@ep
feature representations.

CNNs have been trained to specifically determirg f@ghlight key features in an image and
pretrained CNNs allow images to be inserted andriagroduce a response or activation to the
image. These ’activations’ or deep features as ke called in this work, can be extracted in
the form of a feature vector [23,24]. The authbet treated datasets Food-5K and Food-11
fine- tuned a GoogLeNet model, therefore for perfance comparison, we adopted a different
approach of using GoogLeNet, not for fine-tuning fou deep feature extraction and to use these
deep features to train machine learning classifiéssstated, the 2 CNNs we have chosen
achieved high accuracy results when applied to NGRmageNet dataset.

Comparing this feature extraction process to tngjr CNN from scratch, in which mini-batches
of image data are iteratively passed through diffefayers (i.e. convolutional and sub-sampling
layers) using back-propagation to implement stoohigsadient descent to train the network, the



method of deep feature extraction requires lespotational power. Deep feature extraction can
also be implemented on a CPU as only one passripleted through the training data to extract
the deep features. It is also worth noting thargd amount of time needs to be dedicated to
train a CNN from scratch. For many researchersishi®t possible, therefore pretrained CNNs
offer a convenient way to experiment with deepregg algorithms by allowing for deep feature
extraction, classification, and also transfer leagn

The datasets used in this work are small in corapario the datasets needed to train a CNN
from scratch such as ILSRVC dataset which contawes 14 million images [59]. Figure 5
describes the pipeline used in this work wherentgges are processed to extract deep features
to be used for classification.

4.9.1 Layer Selection

To extract features from pretrained CNN, a layexdseto be selected for each model. During the
training of CNN models, the output from convolutbitayers and the pooling layers depict high
level representations of images. In this study wteaeted deep feature maps immediately after
the last pooling layer of each CNN to determininése feature representations are able to
accurately generalise between different food ckasséod image dataset. The layer names used
to extract deep features from CNN architectureusesl to distinguish between different layers in
the pretrained CNN models. Table 2 lists the sfzeach pretrained CNN model and the chosen
layer for deep feature extraction.

Table 2: Table showing pretrained CNN used as @egpre extractors in this work. The table lists ttame
of the CNN, the amount of layers present, the @éatased to train the CNN, and layer used in thiskwo

CNN Layers Trained Using L ayer
ResNet-152 152 ImageNet ILSVRC | pool5
GoogLeNet 22 ImageNet ILSVRC cls3_pool

4.10 Pretrained Models using MatConvNet Package

MatConvNet is a popular Matlab library that allofes the training of state- of-the-art CNNs or
to apply pretrained CNNs for deep feature extractmbe used for image classification [23,24].
In this work, MatConvNet was used to utilise 2 pagted CNNs for deep feature extraction both
trained on ILSVRC ImageNet dataset. MatConvNet pgek allow for the fine-tuning of
pretrained CNN [24]. In this work ResNet-152 anb@loeNet were chosen to extract deep
features to train classification models, the red@esNet-152 was used was that it has achieved
the lowest top-1 error of 23% using ILSVRC 2012daiion dataset in the MatConvNet
package. GoogLeNet is another popular model availat MatConvNet package and was used



for deep feature extraction this work for performance comparison with the fineed
GoogleNet model trained in [13].

(1) Food image

Image | qataset

Dataset

(2) Pretrained
DCNN
Pretrained
DCNN
Iaier
(3) Features
extracted from layers
< > deep .in DCNN for
Deep each image
Feature [
Dataset
(4) Features are
stored in a dataset
along with their
labels.
v v v v v
Naive SVM SVM ANN Random
Bayes Polynomial RBF Forest

(5) Features are used as input to train supervised
machine learning algorithms.

Figure 5: Diagram describing the pipeline of deggitdire ex- traction. (1) Food image datasets
are used as input into (2) (pretrained CNN). (e deep in the architecture is specified and
the image is processed by the CNN and the outpulhécspecified layer) is a generic image
feature vector. (4) These generic image featuréovecan be collated to form a feature dataset
and each feature vector generated by the CNN layabelled in accordance to the category
from where the image taken from. (5) The generiggenfeature dataset can then be used as
input to a range of conventional machine learniiggrahm.

4.11 ResNet-152 CNN



ResNet-152 is a deep residual pretrained CNN R5ihe time of develop- ment, the authors of
this CNN have described it as the deepest netwark@esented on ImageNet (2015) and is
based on utilising extremely deep nets with a deptlp to 152 layers. A residual learning
framework which allows training of networks eadieconverge and promote increased
accuracy. The main advantages that residual nesaamitribute is the acceleration of speed in
training networks, the effect of the vanishing geat problem is reduced, and increasing the
depth of the network which results in less paramseResNet- 152 is made up of residual
connections that allow important information totkensferred between layers. Residual
connections allow a gradient to pass backwardsttirghrough layers without losing vital
information, in a regular CNN, the gradient musta}s pass through an activation layer. This
can cause the gradient to diminish, to circumveist problem, connections within a CNN are
appended with a shortcut that allows gradientsags pghrough thus decreasing the effects of
vanishing gradient (information loss). Experimemgs ing residual connects (ResNet-152) have
reported increased accuracy and lower traininggjnmecomparison to other state of the arts
[25]. The authors of ResNet-152 compare their watk other established CNNs and state that
this residual deep net is 8x deeper than VGG 2éis WWe used ResNet-152 pretrained CNN
with the image datasets mentioned in this workdature extraction. We selected pool5 layer
deep in the ResNet-152 architecture and for eaelgenan extracted a feature vector of 2048 was
computed.

4.12. GoogleNet - Inception

GooglLeNet was used for deep feature extraction aoedbwith the same supervised machine
learning models. In [22] a deep convolutional netwwas proposed that is able to achieve state
of the art classification and object detec- tioaumacy by training the network using ImageNet
dataset for Large Scale Visual Recognition Chake?@l4. The motivation for GoogLeNet was
that larger CNNs may encounter the problem of attierd as there is a large number of
parameters used in the network. GooglLeNets maitribation is the intro- duction of Inception
modules that utilises the concept of using appratiom of sparse structure with repeated dense
components. Dimensionality reduction is used ireotd ensure computational complexity is
kept to a minimum. Mul- tiple convolutional filteese used with different sizes to ensure that
there is sufficient coverage of information clustdsefore more computational expen- sive
convolutions (3x3, 5x5) a convolutional after thre\pous layer for data reduction. The results of
GoogLeNet incorporating these inception modulesesgltl 6.67% top-5 error percentage in
classification performance in ILSVRC ClassificatiGhallenge 2014. In this work, we extracted
the deep activations using the fully connectedraig8 pool which has a 1024 vector dimension
and is located after the last pooling layer in Qaeddet [22].

4 .13 Metrics for Performance Measurement

Several metrics were used to assess the perfornotive trained models. The metrics that were
selected to assess each model were percentagé, Fécscore, Kappa, and Area Under the
Receiver Operating Characteristic curve (AUC). dhgput of each model can be presented
using a confusion matrix. A confusion matrix isa@le that is able to summarise the prediction
outcome of a model by classifying instances astipediP) instances or negative (N) instances.
Confusion matrix can further provide greater insigho prediction outcomes by classifying



predicted instances as true positives (TP), trgatnaes (TN), false positives (FP), and false
negatives (FN). Visually, the performance of a asidn matrix can be quickly assessed by
inspecting the diagonal line of the confusion nxattthe stronger instances that are present in this
diagonal line signifies better performance. Theriogused to assess the experiments can be
derived from the confusion matrix such as recahéitivity), Ac, and F1 score. Recall can be
described as metric that describes how many instaaie classified correctly. The F1 score is a
weighted average using precision and recall antegsured between 0 (worst) and 1 (best). For
Food-5K the AUC values were also computed for eaqgieriment due to being a binary
classifier and Cohen’s kappa was calculated fodFdh RawFooT-DB, and Food-101. Cohen’s
kappa is a metric that is used to measure the-iater agreement between two label sets in a
classification problem, we use Cohen’s Kappa alwitly other metrics to describe experiment
results [27].

4.14 Training, Validation, and Evaluation Data Riarts

To evaluate the performance of our trained modelsglation and evaluation datasets were
extracted and used from Food-5K, and Food-11. lBavfF®0oT- DB, an evaluation dataset was
used supplied by the authors [20]. For Food-5K,d=bd, and RawFooT-DB, the authors already
partitioned the datasets into evaluation and vabdasets (Table 3) and in this work we used the
same data splits to train and test our modelsFbBod-101, we split the data into 75:25 for
training and testing. Authors of Food-101 providerting and testing splits with testing images
cleaned of noise, however in this work we randoshlyffled images for training and testing
partitions to test how ResNet-152 performs in d¢fgisg) food images with noise and high food
variance. This would give an indication of how déegtures would perform in classifying
difficult datasets such as Food-101. Table 3 israrsary of the data partitions used in this work
for each food image dataset and the names forgatition follows the author’'s naming
convention. Several metrics were computed duriegettperiment stage e.g. kappa statistic, F1
score, recall, average ROC, and accuracy to me#seipgerformance of each trained model.
Food-5K and Food-11 datasets each contained topimalidation, and evaluation images.
Training images were used for feature extractiomaim machine learning classifiers. Validation
images were used to determine if hyper-parametag vield adequate results and evaluation
dataset was to fully evaluate overall trained moBHet RawFooT- DB, authors developed
training and testing datasets by taking each inaagilividing it into 16 tiles, 8 tiles are for
training and the remaining 8 for testing. Each<lesntains 368 images (tiles) which
represent 8 tile texture samples under 46 diffdighting conditions. The testing dataset
was used to verify if the trained model able toegahise between food texture classes.
Food-101 dataset was randomly partitioned; 75%réoning and 25% for testing. Test-
ing partition was used to verify trained Food-10dssifiers. UNICT-FD889 and Caltech-
101 testing datasets were used to further evafoaténon-food classification models.



Table 3: Table showing testing methods used fdn ézad image dataset. * denotes dataset splitsiedppy
dataset authors.

Dataset | Dataset Partition

Food-5K| Training, validation, & evaluation*

Food-11| Training, validation, & evaluation*

RawFooT-DB| Training & testing*

Food-101| 75:25 training & testing

UNICT-FD889| Testing

Caltech-101 Testing

4.15 UNICT-FD889 & Caltech-101 Food/ Non-Food Datas

As well as using the validation and evaluation sets supplied with Food- 5K, further
evaluation was completed with UNICT-FD889 dataset @altech- 101 dataset in detecting food
images. UNICT-FD889 is a food dataset containingges from a range of food types and
Caltech-101 is a non-food image dataset, UNICT&calt These 2 datasets were combined to
create a new food/non-food dataset called UNICT-3D® evaluate our food detection models.
Deep features were extracted from the new foodfonod-dataset. Further evaluation was
completed because Food-5K evaluation and validatadasets are small with only 500
images in each category for each dataset. Usinthaniarger dataset for evaluation can
give a stronger performance indication of our medelclassifying a large variety of

food and non-food images.

4.16 Weka Platform

In order to train the machine learning algorithigka 3.8.1 [28] platform was used. Weka is a
software application that contains various mackeaening algorithms written in Java and the
application was developed at University of Waikéew Zealand. The application can be used
for different tasks such as clustering, classiiogtvisualisation, feature selection, and
preprocessing and is very popular within univeesifior its ease of use. It is also popular
because of the amount of algorithms available. k@ reason that Weka 3.8.1 was used in this



work was the detailed evaluation results outputmated, which are collated into a window after
evaluation has finished. Another major advantagasofg Weka is the evaluation process in that
a range of detailed metrics are computed for ebds ¢o describe the performance of the model.
A confusion matrix can be computed to determinegoréormance of individual classes for the
trained model using K-fold class validation or @idated validation dataset. The amount of
machine learning algorithms that are availablefecéor in using Weka as well the easy to use
graphical user interface (GUI). In this work, Wek8.1 was used with the extracted features
from image datasets for classification, analygis, @valuation [28].

4.16.1 WekaPython Plugin & Scikit-Learn

WekaPython plugin was used with Weka 3.8.1 thatalthe training of scikit-learn [29,55]
machine learning classifiers. The wekaPython paekalies on Python version 2.7 or higher
being installed on the user’'s system and usesgerahPython packages to function correctly
such as pandas, numpy, scikit- learn, and matpldtiithis work, the wekaPython was used to
train and evaluate the deep features extracted tinerpretrained CNNs. Weka was used to train
an ANN for experiments with Food-101. Due to iexfbility for working with larger datasets,
Python v2.7.10 with scikit-learn library was alsged to train the other machine learning
classifiers for the Food-101 dataset [30]. Theoflelhg machine learning algorithms were used
in this work [29,54]:

1. Gaussian Naive Bayes (wekaPython scikit-learn)

2. Support Vector Machines (SVM) (wekaPython sei&érn)
3. Artificial Neural Network (ANN)

4. Random Forest Classifier (wekaPython scikitrdgar

For Food-101 food image dataset, datasets wereatiasplit 75:25 and the follow parameters
were used to split and shuffle the dataset to &athtest each machine learning classifier;

1. Gaussian Naive Bayes - random state 1

2. Support Vector Machines - random state 1
3. Artificial Neural Network - random seed 1
4. Random Forest Classifier - random state 1

4.16.2 Naive Bayes

Naive Bayes is a popular machine learning algomstimown for their efficiency and minimal
processing. They can be described as a set ofeipnpbabilistic classifiers derived from Bayes
Theorem. The term naive is used to describe thaitlign because it assumes that attributes are
independent of the associated class. Bayes rel&ftsced to compute the probability of a class
based upon the values in the vector. Bayes rutemditional probability states that if you have a
hypothesis H and the evidence (feature attribusesdnnected to that hypothesis [31]. Naive
Bayes assumes independence and the algorithm wifitiently and can outperform the most
sophisticated machine learning algorithms on cedatasets. Naive Bayes can be described as a
simplistic approach to using learning probabilistiowledge for classification. However, the
present of redundant data can affect the perforenand the introduction dependent attributes



also diminish the performance of classifier this work, a Gaussian naive bayes classifier
was trained using the extracted CNN deep featédr€xaussian naive bayes classifier is
used when continuous values are present by asswamngmal distribution in the dataset
as the mean and standard deviation is computeshfdr class.

4.16.3. Support Vector Machines (SVM)

SVMs are able to implement the use of non-lineamidaries by using ker- nels (e.g. RBF,
Polynomial) to transform feature representation enhigher dimensional space to predict
multiple classes. In classification problems, tee af SVM have performed well in generalising
on a variety of classification problems such asifolassification, face detection, and object
detection [32,33]. In some problems the trainintada a problem may become inseparable
meaning that there is not a clear boundary definjts\VMs are able to enforce nonlinear
boundaries in transformed feature spaces [35kd@ands to a linear SVM, a linear hyperplane is
computed and considered optimal if a line is atréhest distance from class data points (largest
minimum distance) [35]. However, in some instartbestraining data may not be linearly
separable, therefore SVM employ the use of kerioetletermine optimal hyperplanes. Kernels
can be used in order to fit linear models in a hoear setting, mapping is used to transform
how the features are represented into a higherrdiioeal space. In this work, we train 2 C-
SVM models using Polynomial kernel and Radial B&sisction (RBF). C-SVM uses a C
regularisation parameter that implements a weighifty for misclassifications to improve the
accuracy of the model.

4.16.4. Artificial Neural Network (ANN)

An ANN or feed-forward neural network was also usethis work and ANN can comprise of a
number of layers. Each layer contains a numbepdés that are called neurons. The basic ANN
architecture is made of three layers; input lalgetden layer, and output layer and because of the
amount of rich information/features that can berled using a ANN, it can be applied to
problems that are of an non-linear nature. Theclfasiction of a ANN is the ability to map
features data into a set of outputs. Each neurmpates its input by using a weight that
represents the strength between nodes. An activatitction is then applied, there are a number
of activation functions that are available i.ensagd function, linear, or Gaussian. Once the
activation function is applied, a single valueaturned. Back propagation is used to train the
ANN, the predicted output is compared to the exgrautput which is reflected in the cost
function and the weights are altered. ANN traintag be customised to suit the nature of the
input dataset and problem, parameters such asgdime (epochs), learning rate, and
momentum can be configured. In this work, ANNs weaimed for each dataset using a Weka
plug-in [30] with the following parameters listed Table 4. The learning rate was set to adaptive
unless otherwise stated in the experiments. Thpta@dearning rate function uses a number of
base learning rates on the training data to deteriie most suitable by comparing the cost
function of each. The Weka plugin uses dropoutlee@ation to prevent overfitting and

Rectified Linear Units as the activation functig@e, 36].

Table 4: Hyper-parameters used for each ANN.



ANN | Parameters

Number of iterations 1000 (max)

Number of layers 1

Neurons per layer 100

Learning rate Adaptive*

Learning momentum 0.2

Weight Penalty 0.00000001 (default)

Hidden Layers drop out rated.5

Input layer drop out rate0.2

Activation function| RelLu

Convergence threshold).2

Batch| 100

4.16.5 Random Forest

Random Forests (RF) was developed by Leo BriemdrAdele Culter [37] and is a

classification algorithm that utilises a numbedetision trees using feature subsamples and
bootstrapped examples. The purpose of RF was ¢éadeto use by offering little preprocessing
requirements and using a voting system for finassification using a collection of decision
trees. This method is directly related to the bagdechnique as the goal of the bagging
technigue is to develop a model with low variancéd 8 average noise in the dataset. RF is able



to take subsets of the input data comprised ofaandalues with each instance labelled with its
class. For each subset created a decision treedted Each decision tree is trained using the
subset training data and a classification for eastance is calculated. A majority voting
rule is then used to decide on the final clasdificeof the instance. RF algorithm is
efficient in that it is able to analyse large daitsds and is able to estimate missing data to
help maintain accuracy [37]. In this work a scik&rn RF classifier was used with
wekaPython and Table 5 lists the parameters ugddifomodel.

Table 5: Table showing hyper-parameters used fdtafgthon Random Forest classifier. Hyper-parameters
used for this classifier are default.

Random Forest | Parameters

Criterion | Entropy

Number of estimators50

Random state None

Depth of tree None

Minimum number of samples spli2

Minimum number of samples for leaf nodé

Number of features for best spliauto

Bootstrap| True

Max leaf nodes None

Random state instancéNone

None




Max depth

Minimum num of leaf samplesl

5. Experimental Results
5.1. Food /Non-Food Classification Results

5.1.1. Food-5K

This section lists the results of our experimesiag the food image datasets. Tables 6 and 8 list
the detailed results of Food-5K. Accuracy, redall,score, and ROC values were used to
measure the performance of each the classificatimels for both validation and evaluation
datasets. Initial results show that deep featuvesbned with machine learning classifiers
achieved high accuracy results when distinguisbetgveen food and non-food images. The use
of SVM with RBF kernel achieved the highest accynath 99.4% using ResNet-152 for deep
feature extraction with validation dataset and 98\8ith evaluation dataset. Table 7 and 9 also
lists the confusion matrices of using SVM-RBF wRbasNet-152 to detect food images in
validation dataset and ANN with ResNet-152 feattwedetect food images in evaluation
dataset. GoogLeNet deep features achieved mangioaler accuracy results, however for the
evalu- ation dataset, GoogLeNet deep features AN achieved the same accuracy result as
SVM-RBF and Random Forests classifier with ResNezfeatures with 98.8%. In regards to
using SVM classifiers in Food-5K, the use of theFR&rnel achieved marginally higher
accuracies compared to the polynomial kernel angs&an Naive Bayes achieving the lowest
accuracy results in both testing datasets with Het#p feature types.



Table 6: Classification results using ResNet-152 @nogleNet to extract deep activations (extrafriem
Food-5K) with supervised learning algorithms. Fagum bold represent highest accuracy result.

Food-5K - Validation

ResNet-152 - pool5 GoogL eNet - cls3 poal

Mode

Acc (%) Recall F1 ROC Acc (%) Recall F1 ROC
NB 98.7 0.99 0.99 0.99 97.5 0.98 0.98 0.99
SVM (RBF) 99.4 0.99 0.99 0.99 98.5 0.99 0.99 0.99
SVM (Paly) 99 0.99 0.99 0.99 98.5 0.99 0.99 0.99
ANN 99.2 0.99 0.99 1 99 0.99 0.99 0.99
RF 98.9 0.99 0.99 1 98.6 0.99 0.99 0.99

Table 7: Confusion matrix showing results of higheuracy results achieved using ResNet- 152 festu
classifyingvalidation dataset of Food-5K using a SVM with RBF kernel.

Predicted Labels

Non-
Food Food
Food 498 2
True Labels
Non-
Food 4 496

Table 8: Classification results using ResNet-152 @nogLeNet to extract deep activations (extrafrma
Food-5K) with supervised learning classifiers usivgluation dataset.




Food-5K - Evaluation

ResNet-152 - pool5 GoogL eNet - cls3 poal

M ode

Acc (%) Recall F1 ROC Acc (%) Recall F1 ROC
NB 97.3 0.97 0.97 | 0.98 96 0.96 0.96 | 0.98
SVM (RBF) 98.8 0.99 0.99 | 0.99 98.3 0.98 0.98 | 0.98
SVM (Poly) 98.3 0.98 0.98 | 0.98 98.2 0.98 0.98 | 0.99
ANN 98.8 0.99 0.99 | 0.99 98.8 0.99 0.99 | 0.99
RF 98.8 0.99 0.99 | 0.99 98.5 0.99 0.99 | 0.99

Table 9: Confusion matrix showing results of higreeuracy results achieved using ResNet- 152 restu
classifyingevaluation dataset of Food-5K using ANN.

True

Predicted Labels

Non-
Food Food
Food 493 7 Labels
Non-
Food 5 495

To further test our models, experiments were cotetlthat tested food/non- food trained
models on the Food-11 dataset as what was comptef&d] for more detailed comparison.

Food-11 dataset contains 16,643 images and thegllarlassed as food images, GoogleNet and
ResNet-152 deep features were used to extractfdatpes from Food-11 and used with SVM-
RBF and ANN models to classify them to detect foothe images. Table 10 is a breakdown of

the results using our methods to classify Food-dtaset.




Table 10: Results comparison of classifying Foodid UNICT-Caltech with our Food/Non-Food
classification models.

Method Number of food images detected Accur acy
0
ResNet-152 + ANN (Food-11) 16,208 97.3%
ResNet-152 + SVM-RBF (Food 16,176 97.19%
11)
0
GoogleNet + ANN (Food-11) 16,171 97.16%
GoogleNet + SVM-RBF (Food- 15,646 94.01%
11)
ResNet-152 + SVM-RBF 12,409 97.50%
(UNICT-Caltech)
ResNet-152 + ANN (UNICT- 12,283 96.51%
Caltech)

5.1.2. UNICT-FD889 & Caltech

Table 10 list the results of using SVM-RBF and Alained with Food- 5K training ResNet-
152 deep features for classifying UNICT-Caltechjctcombines images in UNICT-FD889 and
Caltech-101 to make a food/non-food dataset. UNCZltech dataset is a larger dataset and
using this dataset with our trained models allow$ouget a better indication how ResNet-152
features perform in detecting food in images.

5.2. Food Item Classification Results
5.2.1. Food-11

Results show that using ResNet-152 and GoogleNgt fiatures are able to achieve high
accuracies when classifying across major food ggoRpsults are presented in Tables 11 and 12.
The maximum accuracy achieved was using ANN foh B#sNet-152 and GoogleNet features
achieving 91.34% and 86.44% respectively with eatadin dataset. For ResNet-152 features an
F-measure of 0.91 was achieved and 0.86 with Gbdlagleeatures using ANN. For the ANN
trained using ResNet-152 features, the base learate was set to auto-detect which allows the



ANN Weka plugin to initially test various learnimgtes to determine the lowest cost function.
Initial tests revealed that 1.0 learning rate agikthe lowest cost function and the ANN used
that to learning rate to initially begin the traigi The learning rate decreased over the course of
the training if the network cost function didn’tpmove after 10 mini-batch iterations. The
network converged after 204 iterations ending witharning rate of 0.01. Further analysis
revealed the SVM models trained with RBF and Paiyiab kernel using ResNet-152 features
achieved 89.99% and 88.86% accuracy respectively8ar86% and 86.05% using GoogleNet
features using evaluation dataset. Figure 6 shbevsanfusion matrix of using an ANN trained
with ResNet-152 features to classify the evaluatdiataset. Figure 7 is an example of different
types of food categories that were misclassifieshasvn in the confusion matrix in Figure 6.

Table 11: Classification results using ResNet-1%® @ooglLeNet to extract deep features (extractad fr
Food-11) with supervised learning classifiers.

Food-11 - Validation Dataset

ResNet-152 - pool5 GoogL eNet - cls3 pool
Mode

Acc (%) Recall F1 Kappa Acc (%) Recall F1 Kappa
GNB 73.03 0.73 0.73 | 0.70 67.49 0.68 0.68 | 0.64
SVM (RBF) 88.11 0.88 0.88 | 0.87 82.36 0.82 0.82 | 0.80
SVM (Poly) 86.65 0.87 0.87 | 0.85 83.70 0.84 0.84 | 0.82
ANN 89.18 0.89 0.89 | 0.88 84.11 0.84 0.84 | 0.82
RF 78.43 0.78 0.78 | 0.76 75.48 0.76 0.75 | 0.72

Table 12: Classification results using ResNet-1i@® @ooglLeNet to extract deep features (extractad fr



Food-11) with supervised learning algorithms.

seafood

Food-11 - Evaluation Dataset
ResNet-152 - pool5 GoogLeNet - cls3 pool
Model
Acc (%) Recall F1 Kappa Acc (%) Recall F1 Kappa
GNB 75.38 0.75 0.76 | 0.72 69.73 0.70 0.70 | 0.66
SVM (RBF) 89.99 0.90 0.90 | 0.89 85.36 0.85 0.85 | 0.84
SVM (Poaly) 88.86 0.89 0.89 | 0.87 86.05 0.86 0.86 | 0.84
ANN 91.34 0.91 0.91 | 0.90 86.44 0.86 0.86 | 0.85
RF 80.40 0.80 0.80 | 0.78 78.24 0.78 0.78 | 0.75
Classified as
bread dairy dessert egg fried fruit/veg  meats pasta rice seafood soup
7 11 9 2 8 0 1 2 2 bread
3 1 0 1 0 1 3 1 dairy
9 9 17 3 2 13 0 1 5 dessert
21 2 9 1 5 0 0 3 egg
5 1 5 6 0 0 2 2 fried
0 1 3 1 0 0 0 1 fruit/veg
4 1 8 5 7 1 1 3 meats
0 0 0 0 0 0 0 pasta
0 0 1 0 0 0 rice
4 2 5 4 1
1 0 5 1 0

o [k |O |O |O

o |w |+ |O

soup

Figure 6: Confusion matrix of Food-11 classes ugiNiN model trained using ResNet-152 features.



Dessert Meats Eggs Soups

Figure 7: Example of Food-11 classes which arelasstfied based on confusion matrix generated i
model trained using ResNet-152 features. Imagddigig shared characteristics that could lead to
misclassifications.

5.2.2. RawFooT-DB Classification Results

Results listed in Table 13 reveal ResNet-152 feattnained with SVM and RBF kernel
achieved an accuracy of 99.10% and our ANN alsh ResNet- 152 99.28% in classifying
RawFooT-DB. The results show that deep featuresierftly classify isolated texture images
across various lighting conditions and further stigation analysing the confusion matrix
generated from SVM-RBF model shows that there weweral classes that experienced
misclassifications. For example, several instame&® wrongly classified as chickpeas instead
of white peas. Investigating the images from battegories, it was clear that there are
similarities between shape, colour, and texturghasvn in Figure 8 and 9. When also
investigating the ANN confusion matrix, several telpea instances were also classed as
chickpeas and there were also several mango iretah@ssed as apple slice. Figure 9 is an
example of image classes that were misclassifiedya ANN, chicken breast and milk
chocolate. These images showed similar charadtsristcolour and texture, similarly
hamburger images were classified as salami ankddiunivestigation showed very similar
texture, colour, and patterns however ResNet-1&Rifes still achieved 0.98 F-measure for
hamburgers and 0.99 for salami.

Table 13: Classification results using ResNet-1i@® @ooglLeNet to extract deep features (extractad fr
RawFoot dataset) with supervised learning classifiedenotes highest accuracy achieved.

RawFoot Dataset - Training/Testing Split

ResNet-152 - pool5 GoogleNet - cls3 pool

M odéel

Acc (%) Recall F1 Kappa Acc (%) Recall F1 Kappa

GNB 82.02 0.82 0.83 | 0.82 78.42 0.78 0.79 | 0.78

SVM-RBF 99.10 0.99 0.99 | 0.99 96.63 0.97 0.97 | 0.97




SVM-Poly | 98.21 0.98 0.98 | 0.98 96.74 0.97 0.97 | 0.97
ANN 99.28* 0.99 0.99 | 0.99 97.04 0.97 0.97 | 0.97
RF 98.13 0.98 0.98 | 0.98 94.03 0.94 0.94 | 0.94

White peas

Chickpeas

Mango Apple slice

Figure 8: Example of RawFooT-DB classes which alassified based on confusion matrix generatewh fr
SVM-RBF model trained using ResNet-152 featuresges highlight shared characteristics that cowd te

misclassifications.

Chicken breast Milk chocolate

Figure 9: Example of RawFooT-DB classes which alassified based on confusion matrix generatewh fr
ANN model trained using ResNet-152 features.




For further analysis using RawFooT-DB with ResNe?-and GoogleNet features, we reordered
the food types into 7 groups, vegetables, ricefgfaineat/seeds, fruits, sweets, breads,
meat/fish, and miscellaneous (e.g. coffee, powdsigar). Figure 10 and 11 show the F-
measure of the food texture types rearranged fiotal groups for ANN and SVM-RBF models.

It is clear the from Figure 10 and11 that thera decrease in accuracy in ‘meat/ fish’ group.
This is evident inFigure 9 as chicken breast can share similar cterstics with other
texturessuch as 'milk chocolate’. Figure 10 and 11 alsonsdecrease in accuracy with
chickpeas and white peas due to sharing texturelaaple characteristics artllis is also evident

in Figure 12 using GoogleNet deep features with ANN

RawFooT DB F-Measure using ResNet-152 Deep Features with ANN
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Food Texture Classes

Figure 10: RawFooT-DB F-Measure of reordered ckfyemajor food groups using ResNet-152 features
with ANN.

RawFooT DB F-Measure using ResNet-152 Deep Features with SVM and RBF Kernel
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Food Texture Classes

Figure 11: RawFooT-DB F-Measure of reordered ckfyemajor food groups using ResNet- 152 features
with SVM with RBF kernel.



RawFooT DB F-Measure using GoogleNet Deep Features with ANN
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Figure 12: RawFooT-DB F-Measure of reordered ckabyemajor food groups using GoogleNet featureb wit
ANN.

5.2.3. Food-101 Classification Results

From previous experiments using Food-5K and Foqaxtd RawFooT-DB, ResNet-152 deep
features achieved the highest accuracies. We ussNd®-152 deep features for classifying
Food-101, which can be described as fine-grained fimage dataset that contains similar food
items (i.e. different kind of soups, meats imagd®h in a free-living environment). Results
listed in Table 14 show that ANN and SVM-RBF alanith ResNet-152 features achieved the
highest accuracy across the experiments for Foddathieving 64.98%. To train the ANN,
Food-101 was partitioned into 75:25, training agsting, with random seed of "1’ using Weka
3.8.1 (same ANN plug-in used with other experiméatd-ood-5K, Food-11, and RawFooT-
DB). To train the ANN, the learning rate was inlgisset to 1 with mini-batch gradient descent.
For the other classification models we used usédday2.7.10 with Scikit v0.19. We used
Python v2.7.10 and scikit-learn instead of Wekal3die to the flexibility of using other
libraries and its ease of use when working witigéardatasets and also for data analysis. The
parameters for the classifiers remained the samhas experiments with Weka as wekaPython
contains the same models as scikit-learn. To tharother classifiers using scikit-learn, Food-
101 was also split in 75:25 training and testinthvai random state parameter of '1’. Table 14
shows the accuracy, recall, F-Measure, and kapiatat of using ResNet-152 deep features.
The results are much lower than previous experiswerth the highest accuracy with 64.18% for
ANN and 64.97% for SVM-RBF. The kappa statistic \ats® generated for ANN and SVM-
RBF at 0.64 and 0.65 respectively, which indicatgdsstantial agreement.

Table 14: Classification results using ResNet-Ib@xtract deep activations (extracted from Food-d#thset)



with supervised learning algorithms. Highest accyidenoted by *.

Food-101 Dataset - 75:25 training/evaluation

ResNet-152 - pool5
Model

Acc (%) | Recall F1 Kappa

GNB 45.64% | 0.46 0.46 | 0.45

SVM-RBF 64.98%* | 0.65 0.65 | 0.65

SVM-Poly 63.04% | 0.63 0.63 | 0.63

ANN 64.18% | 0.64 0.64 | 0.64

RF 39.33% | 0.39 0.38 | 0.39

There were a number of misclassifications that meduacross different classes in Food-101
experiments. Figure 13 and 14 is an example ot&ygood classes that were misclassified.
Misclassifications occured with the steak food slagth both the ANN and SVM-RBF. Steak
instances were wrongly classified as pork chopnerniib, and filet mignon using SVM-RBF and
ANN, similarly several pork chop instances weressified as steak, prime rib, and foie gras.
This may be due to the shared characteristics stifipe, texture, and colour. In regards to the
desserts, several items were wrongly classifiezlpinna cotta class was wrongly classified as a
cheese cake, and chocolate mousse and the ch&esdass was wrongly classified as a panna
cotta, choco- late mousse, chocolate cake, andtstray shortbread. Further investigation
showed that these classes share similar charaiessich as shape and colour which may
contribute to them being wrongly classified. Beigneere also wrongly classified as donuts,
investigation showed that beignets are very sinbdatonuts in terms of appearance, texture,
colour, and shape, however SVM- RBF trained witsNRet-152 features were still able to
achieve an F-measure of 0.77 for beignets.

Figure 15 shows the F-measure for each food ateBead-101 for SVM. For further analysis,
we organised the food classes into groups. Images allo- cated into groups; (1) breads, pasta,
(2) desserts, (3) eggs, (4) fried foods, (5) maatsfish, (6) mixed foods (foods that contained a
mixture of foods) and (7) vegetables. Foods wegamised into different foods to determine if
ResNet-152 features had any inherent advantageassifying certain food groups. The av-
erage F-measure was computed for each group anvegie¢able group achieved the highest with
an average F-measure of 0.71 using SVM-RBF modeleher it should be noted that the
vegetable category contained a small number of @m@&ycomparison to other groups. In regard
to using SVM-RBF model to classify specific foodrts, the class the achieved the highest F-
measure was 'edamame’ with 0.98, and further ingasbon showed that edamame images are
very similar as the food item is distinct and thisréttle variation withthe edamame food type



and also they are the same shape and colour. ddatém that achieved the lowest F-
measure was 'steak’ with an F-measure of 0.36 kSteml class experienced
misclassifications with other food types with othesat classes e.g. pork chop, prime rib,
and foie gras due to the similar shape, colour,tartire. In regards to using ANN
model, 'edamame’ also achieved the highest witfd G8neasure and 'steak’ was also
the lowest with 0.30.

Apple Pie Bread pudding

Club sandwich

B

Pori( chop Steak

Figure 13: Example of Food-101 classes which weselassified based on confusion matrix generateeh fr
ANN and SVM-RBF models trained using ResNet-152uiess. Food classes are on the left experience
misclassification with the food classes on thetrigh

\ = L}

chocolate cake chocolate mousse panna cotta strawberry shortbread

Figure 14: Example of Food-101 dessert classeshwirre misclassified based on confusion matrix gead



using both SVM-RBF and ANN models trained with Reslil52 features.

F-Measure of Classifying Food-101 Classes using ResNet-152 Features with SYM-RBF

Figure 15: Food-101 F-Measure of reordered cldsg@sajor food groups using ResNet-152 features with
SVM with RBF kernel

6. Discussion

In this work we used deep features extracted frogtrgined CNNs for food image

classification. We compared 2 popular pretrainedN€NResNet-152 and GooglLeNet and
extracted deep features from layers deep in eadl &mhitec- ture to classify Food-5K, Food-
11, and RawFooT-DB. For Food-101 we choose to @esNBt-152 deep features as it
consistently achieved higher accuracies across ottege datasets. We extracted a deep feature
vector immediately after the last pooling layeeach architecture for each pretrained CNN for
each from various food image datasets. From thgserienents, we found that ResNet- 152
achieved consistently higher results in Food-5Kad-=&1, and RawFoot-DB and because of this
ResNet-152 features were used with Food-101. F@ddsla much more difficult dataset due to
the number of classes and variation in images. M#asses contain low in between class
variance as many dishes are similar as shown wé&ig3, 14, and 16. From the experiments it
was clear that using ResNet-152 is able to actheyleaccuracies for Food-5K, Food-11 dataset,
RawFoot DB, and moderate accuracy for Food-101.

In regards to Food-5K, the deep features weretaldetect food in images with high accuracy
across all machine learning classifiers, achieawer 90% accuracy in each experiment. We
benchmarked our experiments using the results asthiey the authors of Food-5K and Food-11
datasets who used a fine-tuned GoogleNet [13] la@sktresults in our work suggest that there is
potential to achieve high accuracies and performavithout the need of fine- tuning pretrained
CNN s for certain datasets and problems. Furthernare to the nature of Food-5K being a
binary decision between food and non-food claggeseric deep features may be sufficient
enough to provide adequate generalisation to ¢jalsstween two classes (i.e. food and non-
food).

ANN and SVM-RBF trained with ResNet-152 featureSieced the highest accuracies in the
majority of Food-5K experiments and the Food-5K AbiNl SVM-RBF model was further
evaluated by classifying the entire Food-11 datesdbod detection. Results show that our



ANN model trained using ResNet-152 features achidngher food detection accuracy
compared to the fine-tuned GoogleNet model in [ABgn tested against Food-11 image dataset
as stated in Table 15. We also evaluated both ood/MNon-Food SVM-RBF model trained with
ResNet-152 and GoogleNet deep features using FbddrIood detection and results showed
that these models achieve marginally higher resoitspared to other results achieved in also
listed in Table 15 [13].

Authors in [13] achieved 83.6% with Food-11 evaluadataset and in our work ResNet-152
features with ANN achieved 91.34% and 89.99% wWMMSRBF, this is an improvement of
7.74% and 6.39% respectively. For Food-5K, ResMetféatures achieved 98.8% in classifying
Food-5K evaluation dataset and authors in [13]ecdd 99.2%. Authors in [13] evaluated their
food detection model using all images in Food-1thsket, we did this also and Table 16
compares our results. ANN and SVM trained with RetshNo2 deep features achieved
marginally higher results than achieved in [13]87.39% and 97.19% respectively.
GoogleNet deep features with ANN also achieved malg higher results with 97.16%
compared to proposed Fine-tuned GoogleNet methfiBin

Figure 16: Food image classes from Food-101 thaestimilar characteristics. Categories from leftight;
french onion soup, hot and sour soup, clam chowdisq soup.

Table 15: Method and results comparison using Fe¢dnd Food-11. * denotes accuracy improvement.

Author Method Accur acy Food Dataset
Singla, et al. [13] GoogleNet (fine-tuned) 99.2% ofbK
Singla, et al. [13] GoogleNet (fine-tuned) 83.6% offd 1
Thiswork ResNet-152 + ANN 98.8% Food-5K
- ResNet-152 + ANN 91.34%* Food-11
- ResNet-152 + SVM-RBF 89.99%* Food-11




- ResNet-152 + SVM-Poly | 88.86%* Food-11

Table 16 also shows GoogleNet features used &xtetod images in Food- 11. Results show
that using GoogleNet features used to train conweakt machine learning algorithms is able to
achieve higher results than a fine-tuned Googlehstel in detecting food images in Food-11.
These results illustrate the convenience of usggpdearning with machine learning classifiers
through deep feature extraction as the user daeseaal to use a powerful GPU to quickly train
an effective image classification model. Many disgpning pack- ages such as Tensorflow and
MatConvNet give users the ability to fine-tune CNI$ng CPU, however it has been stated that
using a GPU can be around 8 times faster than as@BU in training a CNN [40].

Table 16: Results comparison of classifying Foodvith our Food/Non-Food classification models. hd&es
accuracy improvement.

Method Number of Food Accur acy
Images Detected

GoogleNet (fine-tuned) 16,127 96.9%
[13]
ResNet-152 + ANN 16,208 97.39%*
ResNet-152 + ANN 16,176 97.19%*
ResNet-152 + SVM-RBF | 16,171 97.16%*
ResNet-152 + SVM-Poly | 15,646 94.00%

Food-5K AUC results achieved in this work were elts 1 in validation and evaluation image
sets using ANN and RF with both ResNet-152 feataresGoogleNet features. However, the
validation and evaluation test sets are small mgarison to other popular food image datasets
with only 500 in each class for each dataset aecktbre more research is needed in classifying
a wider range of food images types and image qu&ldod-5K training dataset, which was used
to train food/non-food models, is also comparagivehall with 2500 images in each class and
contains limited food image types, therefore furttee search would need to be completed in
training machine learning classifiers with a diwefisod image training dataset. Further
evaluation was completed using the food/non-foash&d models that achieved highest
accuracies with Food- 5K to classify a new imagaskt that combines food images in UNICT-
FD889 and non-food images Caltech-101, called UNGZiItech, which is larger than the
validation and evaluation sets provided in Foodf5K 53] containing 3583 food images and
9144 non-food images . Results from classifying thataset are listed in Table 10 and show that
with using Food-5K training dataset to train maehi@arning classifiers is able to achieve a high
food accuracy using SVM-RBF achieving 97.50%.



Further experiments focused on using deep featarelassify food texture image items under
different illuminations, previous authors of RawHdDB re- searched the use of using other
popular pretrained CNNs for feature extraction. €kperiments presented in this work utilised
deep residual network features and GoogleNet featiar classify food images in different
lighting settings. Other research that used RawHdBT20] divided the food image classes into
illuminant categories. In this work, we evaluatbed performance of ResNet-152 features in
classifying food texture images across a rangeffardnt lighting conditions. Results from
using ResNet-152 to train an ANN achieved 99.28&tiicy and and a ROC value of 0.99 and
the same features with SVM-RBF achieved 99.10% eMimiportantly, the use of deep features
with supervised machine learning algorithms, frasthiResNet-152 and GooglLeNet, are able to
generalise between food texture types with grdatieficy under different illuminations. Results
from RawFooT-DB echos results in early experimamthat ResNet-152 features marginally
outperform GoogleNet features even in de- termifoagl classes across a number of
illuminations. Figure 12 highlights the performamdeclassifying each texture class in
RawFooT-DB using GoogleNet features with ANN, aimdilgar decreases in F-measures are
present when com- pared to ResNet-152 ANN and S\B#-R Figure 10 and 11. GoogleNet
features also experienced misclassifications whiteypeas and chick peas, and with several
meat textures (salami and hamburger).

Results show that most experiments with RawFooTuBiBg both feature types achieved over
90% accuracy (apart from GoogleNet features withgsan Naive Bayes, which achieved
78.42%), however ResNet-152 pretrained CNN featacbgeves higher accuracy across all
machine learning algorithms. This may be due taribeeased depth of ResNet-152 CNN in
comparison to GoogLeNet CNN and therefore richitbetdeatures may be extracted from
layers deep in ResNet architecture. Pretrained @MNels used in this work were supplied by
MatConvNet and experiments in [58] show that ImagelNSVRC trained ResNet-152 model
outperformed ImageNet ILSVRC trained GoogLeNet ptmen model when validating both
using ImageNet ILSVRC 2012 validation data using@®tmvNet package [58].

There were also several misclassifications betvggeiar food groups with RawFooT-DB. It is
worth noting that these food textures that wereclassified are very alike in texture and shape
(chickpeas and white peas) and the images useddiing and training are focused on the food
texture without the overall food item shape aneé sig shown in Figure 8 and 9. The use of a
texture based classification model trained usirepdeatures may also be very efficient
combined with a semi-automation approach to foagileg. Future work could enable the user
to utilise a polygonal tool to draw around the fatman and then a food texture based classifier
can you used to predict the food item thus remowagh of the complexity and noise of other
food and non-food items in the food image. It saclfrom the experiments that using pretrained
ResNet CNN for deep feature extraction is ablertalpce feature descriptors that generalise
accurately between food texture classes with loatween variance.

It was revealed that ResNet-152 features contipaahieved higher classification accuracy
results when compared to GoogleNet therefore Re$bl2deep features were used to classify
Food-101 dataset. The images in Food-101 wereewaloped in a controlled environment but
collated using a social media website (Foodspattwwhich were uploaded by users and taken in



real world environments (restaurants, at home s¢&ie.). The images are also taken under
illuminations and the dataset contains image quafithe images vary greatly and no bounding
box information is provided to help determine whigre food items are located in the image.
Food-101 contains 101,000 images and 1,000 for achclass, and because of the size of this
dataset, we partitioned dataset in training anaiggbn using 75:25 ratio, 75% used for training
and 25% used for testing and used a random statéwith scikit-learn library. The highest
accuracy achieved using ResNet-152 deep featutexcted from Food-101 was 64.98% using
an SVM with RBF kernel using ResNet-152 featurd® full breakdown of results using
ResNet-152 to classify Food-101 are located inda#l The features extracted from layers
deep in CNN architecture pro- vide efficient regrgsations that can be used to classify even the
most difficult food image datasets such as Food-TI@#& quality of food images present in
Food-101, in regards to food variation and noiseather non-food items, and unrelated food
items, may be a factor in the decrease in accuf@ayparing the results of Food-101 (101
classes) with RawFooT-DB texture dataset (67 cissgggest that the class size may not a
major determining factor in the decrease in acgubat the quality of the images used in regards
to being truly representative of the class. Resadtgeved in this work in classifying RawFooT-
DB is comparable with results achieved in [20] d@lbee authors created small subsets for each
lighting condition, while work presented in thisgea extracted features from each food class
that contains a variety of lighting conditions.

For further comparison, Table 17 lists results eedd in this work with other research that used
related deep feature extraction in classifying fondge datasets. It is clear from Table 17 and
the literature that ResNet-152 deep features eshudts achieved with other datasets and other
deep feature types [45]. ResNet-152 deep featueeslde to achieve high classification
accuracy in both fine grained datasets such as BaWwbB and binary decision datasets e.g.
Food/NonFood, however there is a decrease in aogwihen food image datasets with high
food variance and noise is present in images asiadeod- 101. A semi-automated approach
or segmentation approach could be applied to CNdy deature classification that allows the
user to draw around a food image before classificab remove noise, further analysis is
needed to evaluate this approach and to measureverpent in accuracy.

Table 17: Summary of research using deep featuraation and fine-tuning methods to classify vasiéood
image dataset8old denotes results achieved in this work. * denotgkédst accuracy achieved for Food-5K,
Food-11, and RawFooT-DB.

Extraction Accuracy Food Classes Food Dataset
Mode
VGG-S [41] 92.47% 2 (Food/Non-Food) | RagusaDB
NIN 90.82% 2 (Food/Non-Food)
AlexNet 84.95% 2 (Food/Non-Food)
GoogleNet [42] 94.67% 2 (Food/Non-Food) | Based on RagusaDB
99.01% 2 (Food/Non-Food) | FCD




NIN [47] 95.1% 2 (Food/Non-Food) IFD

GoogleNet [13] 99.2%* 2 (Food/Non-Food) | Food-5K (Evaluation
dataset)

83.6% 11 Food-11 (Evaluation

dataset)

AlexNet [15] 94.01% 7 (Food groups) PFID

70.13% 61 PFID

AlexNet [45] 57.87% 100 UEC-FOOD100

AlexNet [45] 70.41% 101 Food-101

AlexNet [45] 78.77% 100 UEC-FOOD100

AlexNet [45] 67.57% 256 UEC-FOOD256

VGG-19 [46] 40.21% 101 ETHZ-Food-101

Overfeat-Fast [46] 33.91% 101

VGG-16 [57] 98.21% 68 RawFooT-DB

VGG-19 [57] 97.69% 68 RawFooT-DB

ResNet-152 + ANN 98.8% 2 (Food/Non-Food) Food-5K (Evaluation
dataset)

ResNet-152+ ANN 99.4% 2 (Food/Non-Food) Food-5K (Validation
dataset)

ResNet-152 + ANN 91.34%* 11 Food-11 (Evaluation
dataset)

ResNet-152 + ANN 99.28%* 68 RawFooT-DB (testing
dataset)

ResNet-152 + SVM- 64.98% 101 Food-101

RBF

Using CNN deep features to classify food imageasks exceed the performance compared to
other conventional feature selection methods asdbkan well documented [45,49,51]. Hand
crafted feature selection methods such as SUREglour can encounter difficulties when
classifying fine-grained classification of food egbries as some public food image datasets
contain small in-between class differences amolaggé number of classes (e.g. Food-101). It
has been stated in [51] that deep CNN featuresldt@uthe first initial method for visual
classification tasks due to their high performaincgeneralising to other datasets as CNNs are
trained to be able to learn rich representatioms fa large number of images. CNNs able to
determine complex filters to combine them with otbatterns for greater detail. CNNs are able
to produce internal image feature representatidmctwis advantageous when compared to hand
crafted feature types such as SIFT, SURF or HO@i#work, ResNet-152 features are able
discriminate effectively between food and non-aasand in classifying high level food groups
(Food-11), when compared to other works in [13fs ltlear that using ResNet-152 pretrained
model is able to capture relevant image featuremb@ance the generalisation between fine-
grained objects as demonstrated in classifying R@WB in table . ResNet-152 contains 152



layers that combine multiple convolutional and paglayers to filter important image features
and the use of residual connections to train tiveord produce accurate features which can be
highlighted for effective generalisation acrosseottlatasets.

It is clear that using CNN features can enhanceadticaracy of food image classification when
compared to traditional feature extraction methanis this has been observed in other works, for
example in [17] SURF and LAB colour features, arath@m Forests were used to classify
Food-101 dataset and achieved 50.76% accurac¢5]rah AlexNet model was fine-tuned using
food image categories and deep feature extractamperformed after to classify Food-101, and
authors achieved 70.41%, which is a significantease when compared to results achieved in
[17]. As well as deep feature extraction, fine-hghivas also used to classify Food-101 and
authors in [48] achieved top-1 accuracy of 77.4%ér&t50,000 iterations in training a CNN
architecture called 'DeepFood’, which is a sigrafit accuracy increase in comparison to [17].
In [49] fine-tuning was also used to classify Fddit dataset was also used to fine-tune
Inception V3 architecture and achieved a top-1 eauof 88.28%. Research in [45] also
achieved a top-1 accuracy of 65.32% using HOG feafwcolour values with fisher vectors in
classifying UEC-FOOD100, however CNN based featestsacted from a modified AlexNet
model with a linear SVM achieved an in- creasedieaxy of 78.77%. For UEC-FOOD256
dataset, work presented in [50] achieved a topcliracy of 50.1% using HOG features and
colour features with Fisher Vector representatamd the same authors in later research [45]
utilise deep CNN features extracted from a modifMekNet and achieved a top 1 accuracy of
67.57% in also classifying UEC-FOOD256 dataset.FrmwFooT-DB food texture dataset
experiments were completed in classifying foodused under various lighting conditions,
authors compared traditional feature extractiohneyues with CNN based features, and results
show that OCLBP and Gabor features achieved 95r8986.2% accuracy respectively with
deep CNN features achieving 98.2% accuracy [2@|mFihe literature it is clear that using CNN
deep feature extraction and fine-tuning can achsenerior results in regards to food image
classification.

7. Limitations & Future Work

There are a number of limitations associated wvhith $tudy which could be addressed in future
works, for example, an expansive dataset coulcelveldped under a controlled environment
that is representative of a broad range of foausteThis dataset could be used with the methods
outlined in this work and compared with similar w&rThis would give a clear indication of the
true performance of using deep feature extractiibin mvachine learning algorithms. Also, a
comprehensive study could be completed by finentyiai range of CNNs on food datasets and
comparing performance using the same pre- traidl @odels for deep feature extraction.
Further experiments can also be completed by cangpdeep features extracted from different
layers within a CNN architecture to find what lay@more suitable for generalising between
different food classes. In regards to overfittipgrticularly for Food-101, future works could
include using 10-fold class validation instead sihg a 75:25 train/testing split. This would give
a clearer indication of the performance of usingpdfeatures from ResNet-152 and GoogLeNet.
Some of the experiments in this work achieved ligturacies, especially for Food/Non-Food
classification experiments, however it is importenhote that the amount of images contained
in Food-5K are relatively small in comparison tbetdatasets e.g. Food-11 or Food-101.



Further experiments need to be completed in degébiod/non-food in larger food image
datasets in using off the shelf deep features.

For RawFoot-DB we used the training and test gptivided by authors in [20, 42], however the
authors of RawFooT DB in [20] created subsets oheategory, which were based on lighting
condition type. In this work, our aim was to cl&g$ood textures across different lighting
conditions, however in future work we would folldiae same procedures described in [20] and
use ResNet-152 features for further comparisoro Alghors of [17] allocated a testing split that
contained images that contained little noise apdaisentative of each class, however in our
work Food-101 extracted features were shuffledgisamdom seed "1’ and random state "1’ to
determine the classification performance of ResN&features when used with images with
high level of noise. In future works, we will fughevaluate ResNet-152 features following the
partition procedure described in [17].

Future work could incorporate hierarchical classifion using pretrained CNN features in which
a classifier will be used to determine food and-famd images, another classifier will be
appended that determines major food groups, amadiyfia further classifier will used after to
determine low level food item. Further experimenith the parameters of machine learning
models could also be changed in order to deterthmeptimal parameter settings to achieve a
high classification accuracy. The presence of niniske food image datasets may also affect the
accuracy, in order to mitigate these issues, a-semomated approach could be adopted by using
a polygonal tool to draw around the food portiod &multimately segment the food item.
Classification models could then classify the segpe food portion in order to promote
accuracy. Other computer vision segmentation agpesacould be researched and combined
with methods described in this work. For futureleadon, we would also in- put random noise
as feature vectors for trained classifiers to daeiree food classes and analyse the output and
performance. The use of machine learning modeigyysietrained CNN deep features also have
the potential of being using in mobile health solus. Much research has been dedicated to
under- standing a person’s diet by determining wahabr food groups they consume daily [2,5].
This research has showed that this process cantbmated using deep features extracted from
residual CNNs for high food classification accuraésom this research, it is clear that ResNet-
152 deep features is able to distinguish betwegin-level food categories such as Food/Non-
food and echoes other related research in this Breamparison with other works, ResNet- 152
deep features outperforms other CNN deep featuigdsas GoogleNet in distinguishing between
fine-grained food texture classes in RawFooT DB iarmbmparable with other related works
[20]. ResNet-152 features encountered some diffiéalclassifying Food-101 classes, however
this may be due to the images containing noiskerfarm of high colour intensities and multiple
foods in the same image, however a reasonableacaf 64.98% was achieved. In Food-11
food group classification, deep GoogleNet featuere able to achieve high accuracy result
when compared to research presented in [13] whseld a fine-tuned GoogleNet, which shows
that a combination of conventional ma- chine laagrdlassifiers combined with CNN deep
features have the ability to outperform fine-tumealdels.
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Abstract

Obesity is increasing worldwide and can cause many chronic conditions such
as type-2 diabetes, heart disease, sleep apnea, and some cancers. Monitoring di-
etary intake through food logging is a key method to maintain a healthy lifestyle
to prevent and manage obesity. Computer vision methods have been applied
to food logging to automate image classification for monitoring dietary intake.
In this work we applied pretrained ResNet-152 and GoogleNet convolutional
neural networks (CNNs) to extract features from food image datasets; Food
5K, Food-11, RawFooT-DB, and Food-101. Deep features were extracted from
CNNs and used to train machine learning classifiers including artificial neural
network(ANN), support vector machine(SVM), Random Forest, fully connected
Neural Networks, and Naive Bayes. Results show that using ResNet-152 deep
features with SVM with RBF kernel can accurately detect food items with 99.4%
accuracy using Food-5K food image dataset. Trained with ResNet-152 features,
ANN can achieve 91.34%, 99.28% when applied to Food-11 and RawFooT-DB
food image datasets respectively and SVM with RBF kernel can achieve 64.98%
with Food-101 image dataset. From this research it is clear that using deep
CNN features can be used efficiently for diverse food item image classification.
The work presented in this research shows that pretrained ResNet-152 features
provide sufficient generalisation power when applied to a range of food image
classification tasks.

Keywords: obesity, food logging, deep learning, convolutional neural
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networks, feature extraction

1. Introduction

Obesity is a global concern and is a serious health condition that can cause
diseases such as heart disease, type-2 diabetes, and some cancers [1]. The in-
crease of obesity has also been reported as a major burden on health care in-
stitutions through direct and indirect costs [56]. One of the major ways that
obesity can be managed is through dietary management methods such as food
logging and other methods [3]. Food logging is an activity in which the user
document their energy intake to monitor their diet. Other methods may in-
clude the use of an exercise log book to document physical activities and the
duration. Previously, users documented their intake using a food diary however
many users now use smartphone applications to document their energy intake.
The increase in smartphone usage has also led to the increase of well-being ap-
plications that are able to facilitate food logging. Many of these applications
incorporate a simple diary entry, and/or connect to an online database/API to
search for nutritional content for each of the users entries. Other novel meth-
ods include allowing the user to photograph the food items to determine calorie
values. Using images has the potential to remove much of the complexity from
traditional food logging to make it convenient for the user to document food
intake to promote dietary management. Many studies have been completed in
researching the use of computer vision methods to classify photographs of food
to promote food logging [4-6]. This interactive approach to food logging using
the camera within a smart-device may promote the use of food logging which is
an important method to maintain weight loss. The remainder of this paper is
structured as follows: Section 2 presents related work in how this problem has
been tackled in previous research. Section 3 discusses the aim, objectives, and
contributions of this work. Section 4 describes the methods used in this work
and the use of Convolutional Neural Networks (CNNs) for feature extraction.

Experiment results are presented in Section 5 followed by a discussion in Section



6. Section 7 highlights study limitations and areas for future work.

2. Related Work

Food logging is a beneficial method to aid dietary management and recent
novel methods have utilised meal photographs for food logging. A review [41]
was completed to highlight a variety of computer vision methods that have been
applied in food image recognition to promote dietary management. Key mes-
sages from this review are that there is a need for real food intake monitoring
and one of the main challenges for diet monitoring using wearable sensors is
practicability when used in a different environments and how automatic dietary
monitoring is important to document nutritional intake habits to prevent con-

ditions.

Food image recognition is a difficult task due to the amount of variation
within food types. Food items in images are usually accompanied with other
food items as well as other unrelated non-food items. The high variation of
colour, shape, size, and texture in food items means that one method of image
feature extraction and classification may not adapt to other foods and therefore
a feature combination approach may be needed. Conventional ways to classify
images utilise the use of hand-crafted feature extraction, e.g. global or local
feature extraction using Speed-Up-Robust Features (SURF) [38] or local binary
patterns (LBP) [39]. Feature engineering is used to determine what type of
features and parameters are best used to successfully classify certain food types
and categories and much work has been completed in this area. In [5] a bag-of-
features model was proposed that used a combination of scale invariant feature
transform (SIFT) features along with hue-saturation-value (HSV) colour fea-
tures and a linear SVM to classify images into 11 categories with 78% accuracy.
Other works also utilise a combination approach using SIFT and SPIN features
and achieve high accuracy in classifying high level food groups (89% accuracy

in classifying sandwiches and 91.7% in classifying chicken) using Pittsburgh



Fast-Food Image Dataset (PFID). However, PFID dataset is an image dataset
that was developed in a controlled laboratory environment, further works could
be completed in applying this feature combination approach to similar image
categories photographed in real-world environments. Other works use feature
selection methods to determine optimal features [8] for food image classification.
As well as using traditional feature extraction methods, CNN methods have be-
come increasingly popular for image classification and this can be attributed to
ImageNet Image Large-Scale Visual Recognition Challenge (ImageNet ILSVRC)
as it allows users to compete against each other in achieving a classification ac-
curacy and the winners in recent years have used convolutional neural networks
(CNNs). Great emphasis has been placed on using CNNs for image classifica-
tion and this is evident in a surge of recent research in this area relating to the
fine-tuning CNN [11], deep feature extraction [12], and also training CNNs from
scratch [11].

2.1. Detecting Food in Images Using CNN

CNN has been utilised for food image detection. This problem can be con-
densed down to a simple binary classification problem (food/non-food). The
purpose of food image detection process is to first determine if food is present
within an image or video. In regards to a food image recognition pipeline,
this would be the first stage in food image recognition framework i.e. de-
termining if the image contains food or not. In [13] GoogLeNet pretrained
model was fine-tuned using Food-5K dataset. The training process in [13]
utilised a subset of Food-5K data using 1000 iterations. The learning rate was
changed to of 0.01 and the learning rate policy was polynomial. Results from
[13] achieved 99.2% accuracy in determining food/non-food classes. Other re-
search also utilised CNNs for food detection [14] and used 6-fold cross validation
with different hyper-parameters to determine optimal settings and experiments

achieved 93.8% in food /non-food detection.



2.2. Predicting Food Type in Images Using CNN

Extensive research has been carried out in utilising CNN for food item recog-
nition. The food item recognition process would take place after the food detec-
tion phase in which the actual food item is then predicted within the determined
food image. In [15] CNNs were utilised to extract features from convolutional
layers in order to determine if an image contains a food item and experiments
achieved 70.13% for 61 class dataset and 94.01% for 7 class datasets, these ex-
periments used AlexNet deep features with a SVM classifier applied to PFID
dataset [15]. In [16] the aim of the work was to compare conventional fea-
ture extraction methods with CNN extraction methods utilising UEC Food 100
dataset. Results from [16] achieved 72.6% accuracy for top-1 accuracy and 92%
for top-5 accuracy. Also in [14], as well as performing food/non-food exper-
iments, food group classification was performed. A CNN was developed and
was trained using extracted segmented patches of food items [14]. The food
items used in this work were based around 7 food major types. The patches
were then fed into a CNN using 4 convolutional layers with different variations
of filter sizes and using 5 x 5 kernels to process the patches. Results in [14]
achieved 73.70% accuracy using 6-fold cross validation. These studies confirm
that CNN provide an efficient method for food image recognition to provide for

accurate food logging to promote dietary management.

2.8. CNN Deep Feature Extraction Methods for Food Detection/Food Item Clas-
sification

Recent research has focused have used deep features extracted from pre-
trained CNN architectures to train machine learning classifiers for food image
classification. Some research have opted for deep feature extraction opposing to
fine-tuning pretrained CNN or training from scratch because less computational
power and time is needed or small image datasets are used. Well-known CNN
architectures (e.g. AlexNet, VGG-16, GoogleNet) for deep feature extraction
have been developed in classifying images to automate food logging. This sec-

tion discusses research that use deep feature extraction to detect food in images



and classify food items in images for automated food logging. A comparative
review was carried out on analysing the performance of a number of pretrained
CNN architectures [43]. This review used VGG-S, Network in Network (NIN),
and AlexNet for deep feature extraction to train food detection models. A
food/non-food image dataset was collated and deep features were extracted
from the models to train machine learning classifiers (one-class SVM classifier
and binary classifier). Results showed that binary SVM classifiers trained with
deep features achieved 84.95% for AlexNet, 92.47% for VGG-S, and Network
In Network model achieving 90.82%. It is worth noting that UNICT-FD889
dataset used for deep feature extraction in [43] contains minimal noise as the
images are focused on the food item, therefore this may contribute to high ac-
curacy results. Further work could be completed in utilising a larger food image
dataset consisting of images from different environments and also using different
machine learning classifiers for further comparison.

Other research also explored the effect of training machine learning classi-
fiers from different layers in pretrained AlexNet architecture [15]. Authors used
AlexNet model to extract deep features from various layers deep in the archi-
tecture (FC6, FC7, and FC8 layers). The food image dataset used in [15] was
PFID. Two experiments were presented in [15]; classifying high-level food cater-
gories by organising PFID dataset into 7 category dataset and also classifying
individual categories in PFID (61 classes). Results showed that the highest ac-
curacy for the 61 class dataset was 70.13% using deep features extracted from
layer FC6 in AlexNet. For the 7 class dataset, the highest accuracy achieved
for deep features was 94.01% using layer from FC6. The contribution in [15]
echoes the same findings in [43] suggesting that deep feature extraction provides
high accuracies in classifying small grouped food image datasets (related food
items) as well as datasets with specific different food types. Results also sug-
gest that AlexNet deep features are able to efficiently generalise between high
level food groups and also classify specific food groups with reasonable accuracy.
However, more research needs to be completed in using deep features to classify

food images in real world environments as PFID used in [15] was a laboratory



prepared dataset. As AlexNet is an early CNN architecture with a small amount
of layers in comparison to more recent models, it was able to achieve reasonable
accuracy in food item classification. AlexNet deep features from FCT7 layer were
able to achieve 57.87% using a standard linear SVM classifier classifying UEC-
FOOD100 and 43.98% in classifying UEC-FOOD256 [45]. Fine-tuning AlexNet
on a food image dataset and then performing deep feature extraction improved
the accuracy to 67.57% in classifying UEC-FOOD256.

GoogleNet Inception CNN has also been used for deep feature extraction
for food image classification [44]. Authors fine-tune a pretrained GoogleNet
model using a food image dataset, and then deep feature extraction was used
on another food image dataset. Experiments were completed in training a SVM
using GoogLeNet deep features, in which the GoogLeNet model was fine-tuned
using a food image dataset. Results showed that using deep features with SVM
with PCA trained using fine-tuned GoogleNet features achieved 95.78% in clas-
sifying RagusaDB test set and 98.81% in classifying FCN test dataset which
was an increase in accuracy comparison to other works using same datasets.
The datasets used in [44] was small and more comparative research is needed
in using a larger dataset of images photographed in different environments and
real-world settings to fully evaluate the proposed approach [44].

In summary, previous research has showed that deep CNN features achieve
high accuracies in determining food /non-food classification and classifying high
level food groups[15,43,44,45]. Tt is also clear from the literature that deep CNN
features from various CNN architectures at varying depths can easily distinguish
between food/non-food and high level food groups. It has been suggested that
deep features extracted from CNN should be an initial option in any visual
recognition tasks [51], however in regards to food image classification, more
work needs completed in exploring the use of next generation CNN architec-
tures to extract deep features to train food classifiers, primarily for specific
food item image classification photographed in real-world environments. This
work compared the performance of using ResNet-152 and GoogleNet CNN deep

features to classify a variety of food image datasets for food logging applications.



Figure 1: Example images of sandwiches from UEC FOOD 256 dataset highlighting noise in

images.

3. Aim & Objectives

The aim of this work was to investigate the effectiveness of using deep fea-
ture extraction methods to classify variety of food image datasets to be used
for dietary assessment. The work described in this paper seeks to answer the

following research questions:

1. How efficient are deep residual network features for detecting foods in
images and classifying food datasets using conventional machine learning

algorithms?

2. How efficient are extracted GoogleNet deep features in predicting Food /Non-
Food images and classifying images into high level food groups in compar-

ison to fine-tuned GoogleNet model?

A series of experiments were completed that used the features extracted from
CNNs and used them as input into conventional machine learning algorithms.
To answer the research questions a number of objectives needed to be completed
to achieve the aim of this work: (a) a number of oublic food image datasets
needed to be selected, (b) several pre-trained CNNs needed to be identified
from the literature for deep feature extraction, (c) supervised machine learning
algorithms needed to be identified to classify the images using the extracted

deep activations; and (d) statistical analysis is then applied to the results to



evaluate the methods used. The next section will discuss in detail the methods

used in this work.

4. Methodology

4.1. Food Image Datasets

In this work we identified publicly available food image datasets to use for

the experiments to determine efficiency of using pretrained CNNs to extract

deep features for image classification. The following image datasets were used

in this work (Table 1):

1. Food-5K
2. Food-11

3. RawFooT-DB
4. Food-101
5

. UNICT-FD889

Table 1: Table showing name, number of categories, images per category, as well as how the

image datasets were developed of each food image dataset.

Dataset Catergories Images Per Image
Catergory Preparation
Food-5K [13] 2 2500 (training set) Real world
500 (val & eval sets)
Food-11 [13] 11 Unbalanced Real world
RawFooT-DB [20] 68 368 each in training/test set Controlled
Food-101 [17] 101 1000 Real world




4.2. Food-5K

Food-5K dataset consisted of 2 categories; food and non-food, training is
balanced and contains 2500 images of each category [13]. The dataset also con-
tains a validation and evaluation set and each category contains 500 images each
per dataset. The authors developed this dataset to measure the performance of
using GooglLeNet pretained CNN for classification. Food-5K was developed by
selecting images from already public available datasets e.g. Food-101 [17], UEC-
FOOD100 [18] and UEC-FOOD256 [19]. The authors described this dataset as
being varied as they selected foods that cover a wide variety of different food
dishes. The images also contain some noise and multiple food items may be
contained in an image. The non-food images consisted of images that do not
contain food items (objects or humans). Food-5K was used to find out how
ResNet-152 deep features perform in detecting food items in images, which can
be argued is an important first step in food image classifcation for food logging.
The authors developed the non-food image dataset from using other publicly
available datasets e.g. Caltech101, Caltech256, Emotion6, and Images of Groups
of People.

4.8. Food-11

Food-11 is a dataset that comprises of 11 major food groups [13]. The
11 categories are diary, bread, egg, dessert, meat, fried food, pasta, seafood,
rice, vegetables/fruit, and soup. Food-11 dataset was also created using images
from Food-101, UEC-FOOD-100, and UEC-FOOD-256. The authors of Food-
11 stated that the images selected cover a wide range of food types in order to
train a strong classifier that had the ability to classify different varieties of foods.
Many of the images contained in Food-11 were taken in real world environments,
therefore the images contain high colour variation and some noise (unrelated
food items) may be present. The developers of this dataset have divided the
dataset into training, validation, and evaluation similar to Food-5K. Food-11
was used to explore the performance of ResNet-152 deep features in categorising

food images using Food-11.
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4-4. RawFooT-DB

RawFooT-DB [20,42] food image dataset was developed to research the use of
computer vision methods to classify food image textures under different lighting
conditions. Each image in RawFooT-DB is unique in regards to the light direc-
tion, light intensity, and colour illumination and food image textures are isolated
with no noise or other food items present. The dataset contains 68 classes with
wide variety of food types ranging from fish, meat, fruit, and cereals. RawFooT-
DB dataset contains tiles from the images in the RawFooT-DB. Each image is
divided into 16 tiles, 8 tiles are for training and the remaining 8 for testing.
Each class contains 368 images (tiles) which represent 8 tile texture samples
under 46 different lighting conditions. In this research, we explored the use of
ResNet deep feature features to train machine learning classifiers. RawFooT-DB
was used to explore how ResNet-152 deep features perform in generalising food
texture between class variance. Previous research divided RawFooT-DB into
different lighting condition subsets [20, 42], in this work we explored the perfor-
mance of using ResNet-152 deep features across multiple lighting conditions and
each food class in RawFooT-DB contains multiple food texture patches across

different lighting conditions.

4.5. Food-101

Food-101 consists of 101 food categories and each category contains 1000
images [17]. The Food-101 dataset have been described as challenging as much
of the images in the dataset contain noise and the images were collated from
Foodspotting, which is a social media website that allows users to upload food
images. This means that images used are from a real-world setting i.e. restau-
rant or at home and not in a lab environment. Food-101 allows us to research
how ResNet-152 deep features performs in classifying food items with similar
food dishes in varying real world environments. Authors of Food-101 specify
dedicated training and testing splits with testing splits containing images that
are 'cleaned’ of noise, in this work we also use 75:25 training/testing partitions,

however data was shuffled before partition for preliminary analysis to determine
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how ResNet-152 features perform in classifying images with noise and intense
colour and food variation. Figure 2 illustrates an example of the images in the

datasets.
Food-5K Food-11

RawFooT-DB

Figure 2: Example of images from 4 food image datasets used in this work.

4.6. Datasets for Further Evaluation of Food/Non-Food Detection Models

Due to the small size of Food-5K, two other datasets have been used to
evaluate our trained food/non-food models; UNICT-FD889, which is a food
image dataset, and Caltech, which is a non-food image dataset. Deep features
were extracted from UNICT-FD889 and Caltech and classified by models that

achieved the best performance in classifying Food-5K datasets.

UNICT-FDS889

UNICT-FD889 (Figure 3) was used to evaluate food /non-food models trained
using Food-5K [53]. UNICT-FD889 contains 889 distinct food dishes to study
food representation and the images are photographed in real world environments
which means that much of the images may contain high food variance, however
the images in UNICT-FD889 contain images that are focused on the food item

with little noise.
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Figure 3: Example of images contained in UNICT-FD889 dataset.

Caltech-101

Caltech-101 dataset (Figure 4) was also used for evaluating food/non-food
classification models. Caltech-101 contains 101 image categories and each con-
tains between 50-800 images. The categories are non-food based and contain
images relating to animals and objects and each image is around 300x200 pixels

in size [52].

Figure 4: Example of images contained in Caltech-101 dataset.

4.7. Overview of Convolutional Neural Networks

The use of pretrained CNNs gives great potential for applying them to a
variety of problem areas. Convolution is used to describe the type of neural
network as the input image is broken down into smaller overlapping shapes in
order to determine certain patterns in the image. These overlapping segments
are called filters. The patterns detected, by each overlapping shape in the filter,
may consist of a colour contrast or certain interest points such as edges. The
overlapping shapes look for the same pattern on the image. The overlapping
tiles are effectively used as input for a small neural network. This is done for
each tile in the image. Each network in the filter hold the same weights to

determine interest points in each tile. The output of this process is an array
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which each section corresponds to the network that describes patterns in each
tile. A down-sampling process is then triggered after the convolution stage, this
is typically completed using max pooling where the representation divided into
non-overlapping rectangles. Within each region the maximum is retained. This
process can be repeated a number of times to create deeper and more detailed
representations. Fully connected layers are also present with a CNN architecture
and is connected to activations from the layer previous. The fully connected
layer takes the input from previous layers and uses this for classification using a
soft-max function. Backpropagation is typically used to train the CNN in which
the forward propagation is used to determine the error and gradient descent is
then used to update the weights and parameters based on this error. This is

repeated in order to train the CNN using a training dataset [21,22].

4.8. Image Preprocessing for Feature Extraction

The pretrained CNNs used in this work were trained specifically with require-
ments placed on the input images. Therefore, in order to extract deep feature
representations of these images using these CNNs, it was important to ensure
that the images meet the same requirements. The first requirement was to en-
sure that the images were resized to a specific height and width configured in the
image input layer of the pretrained CNN. The images are also normalised and
this is achieved by subtracting the mean of the image. The mean is removed
from the input image and also the image intensities are normalised within a

[0,255] region, as defined in [23].

4.9. Deep Feature Eztraction

In this work we used 2 pretrained CNNs as deep feature extractors. The ad-
vantage of using a pretrained CNN to extract deep image features, as opposed
to training a new CNN;, are: (1) less computational power is needed as we are
allowing the CNN to process each image only once to extract deep feature rep-
resentations; (2) less data is needed in order to achieve high accuracy results

as layers deep in the CNN architecture contain activations that can be used for
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deep feature representations.

CNNs have been trained to specifically determine and highlight key features
in an image and pretrained CNNs allow images to be inserted and layers pro-
duce a response or activation to the image. These ’activations’ or deep features
as they will be called in this work, can be extracted in the form of a feature
vector [23,24]. The authors that created datasets Food-5K and Food-11 fine-
tuned a GoogLeNet model, therefore for performance comparison, we adopted a
different approach of using GooglLeNet, not for fine-tuning but for deep feature
extraction and to use these deep features to train machine learning classifiers.
As stated, the 2 CNNs we have chosen achieved high accuracy results when

applied to ILSRVC ImageNet dataset.

Comparing this feature extraction process to training a CNN from scratch,
in which mini-batches of image data are iteratively passed through different
layers (i.e. convolutional and sub-sampling layers) using back-propagation to
implement stochastic gradient descent to train the network, the method of deep
feature extraction requires less computational power. Deep feature extraction
can also be implemented on a CPU as only one pass is completed through the
training data to extract the deep features. It is also worth noting that a large
amount of time needs to be dedicated to train a CNN from scratch. For many
researchers this is not possible, therefore pretrained CNNs offer a convenient
way to experiment with deep learning algorithms by allowing for deep feature

extraction, classification, and also transfer learning.

The datasets used in this work are small in comparison to the datasets needed
to train a CNN from scratch such as ILSRVC dataset which contains over 14
million images [59]. Figure 5 describes the pipeline used in this work where by

images are processed to extract deep features to be used for classification.
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4.9.1. Layer Selection

To extract features from pretrained CNN, a layer needs to be selected for
each model. During the training of CNN models, the output from convolutional
layers and the pooling layers depict high level representations of images. In
this study we extracted deep feature maps immediately after the last pooling
layer of each CNN to determine if these feature representations are able to
accurately generalise between different food classes in food image dataset. The
layer names used to extract deep features from CNN architecture are used to
distinguish between different layers in the pretrained CNN models. Table 2 lists
the size of each pretrained CNN model and the chosen layer for deep feature
extraction.
Table 2: Table showing pretrained CNN used as deep feature extractors in this work. The

table lists the name of the CNN, the amount of layers present, the dataset used to train the
CNN, and layer used in this work.

CNN Layers Trained Layer

ResNet-152 152 ImageNet ILSVRC poolb
GoogLeNet 22 ImageNet ILSVRC  cls3_pool

4.10. Pretrained Models using MatConvNet Package

MatConvNet is a popular Matlab library that allows for the training of state-
of-the-art CNNs or to apply pretrained CNNs for deep feature extraction to be
used for image classification [23,24]. In this work, MatConvNet was used to
utilise 2 pretrained CNNs for deep feature extraction both trained on ILSVRC
ImageNet dataset. MatConvINet packages allow for the fine-tuning of pretrained
CNN [24]. In this work ResNet-152 and GoogLeNet were chosen to extract deep
features to train classification models, the reason ResNet-152 was used was that
it has achieved the lowest top-1 error of 23% using ILSVRC 2012 validation
dataset in the MatConvNet package. GoogLeNet is another popular model

available on MatConvNet package and was used for deep feature extraction in

16



(4) Features are

stored in a dataset

along with their

labels.

<D
~— A

Image
Dataset

-

Pretrained
DCNN

(1) Food image
dataset

(2) Pretrained
DCNN

layer

O
e— o
Deep

(3) Features
extracted from layers
deep in DCNN for
each image

Feature

Dataset

A

v

v

v v

Naive
Bayes

SVM
Polynomial

SVM
RBF

Random

ANN Forest

(5) Features are used as input to train supervised
machine learning algorithms.

Figure 5: Diagram describing the pipeline of deep feature ex- traction. (1) Food image datasets
are used as input into (2) (pretrained CNN). (3)A layer deep in the architecture is specified
and the image is processed by the CNN and the output (of the specified layer) is a generic
image feature vector. (4) These generic image feature vectors can be collated to form a feature
dataset and each feature vector generated by the CNN layer is labelled in accordance to the

category from where the image taken from. (5) The generic image feature dataset can then

be used as input to a range of conventional machine learning algorithm.
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this work for performance comparison with the fine-tuned GoogleNet model

trained in [13].

4.11. ResNet-152 CNN

ResNet-152 is a deep residual pretrained CNN [25]. At the time of develop-
ment, the authors of this CNN have described it as the deepest network ever
presented on ImageNet (2015) and is based on utilising extremely deep nets
with a depth of up to 152 layers. A residual learning framework which allows
training of networks easier to converge and promote increased accuracy. The
main advantages that residual networks contribute is the acceleration of speed
in training networks, the effect of the vanishing gradient problem is reduced, and
increasing the depth of the network which results in less parameters. ResNet-
152 is made up of residual connections that allow important information to
be transferred between layers. Residual connections allow a gradient to pass
backwards directly through layers without losing vital information, in a regu-
lar CNN, the gradient must always pass through an activation layer. This can
cause the gradient to diminish, to circumvent this problem, connections within
a CNN are appended with a shortcut that allows gradients to pass through thus
decreasing the effects of vanishing gradient (information loss). Experiments us-
ing residual connects (ResNet-152) have reported increased accuracy and lower
training times, in comparison to other state of the arts [25]. The authors of
ResNet-152 compare their work with other established CNNs and state that
this residual deep net is 8x deeper than VGG nets [26]. We used ResNet-152
pretrained CNN with the image datasets mentioned in this work for feature
extraction. We selected pool5 layer deep in the ResNet-152 architecture and for

each image an extracted a feature vector of 2048 was computed.

4.12. GoogleNet - Inception

GooglLeNet was used for deep feature extraction combined with the same

supervised machine learning models. In [22] a deep convolutional network was
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proposed that is able to achieve state of the art classification and object detec-
tion accuracy by training the network using ImageNet dataset for Large Scale
Visual Recognition Challenge 2014. The motivation for GoogLeNet was that
larger CNNs may encounter the problem of overfitting as there is a large number
of parameters used in the network. GoogLeNets main contribution is the intro-
duction of Inception modules that utilises the concept of using approximation of
sparse structure with repeated dense components. Dimensionality reduction is
used in order to ensure computational complexity is kept to a minimum. Mul-
tiple convolutional filters are used with different sizes to ensure that there is
sufficient coverage of information clusters. Before more computational expen-
sive convolutions (3x3, 5x5) a convolutional after the previous layer for data
reduction. The results of GoogLeNet incorporating these inception modules
achieved 6.67% top-5 error percentage in classification performance in ILSVRC
Classification Challenge 2014. In this work, we extracted the deep activations
using the fully connected layer cls3_pool which has a 1024 vector dimension and

is located after the last pooling layer in GoogLeNet [22].

4.13. Metrics for Performance Measurement

Several metrics were used to assess the performance of the trained models.
The metrics that were selected to assess each model were percentage, recall,
F1 score, Kappa, and Area Under the Receiver Operating Characteristic curve
(AUC). The output of each model can be presented using a confusion matrix.
A confusion matrix is a table that is able to summarise the prediction outcome
of a model by classifying instances as positive (P) instances or negative (N)
instances. Confusion matrix can further provide greater insight into prediction
outcomes by classifying predicted instances as true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). Visually, the performance
of a confusion matrix can be quickly assessed by inspecting the diagonal line of
the confusion matrix, the stronger instances that are present in this diagonal
line signifies better performance. The metrics used to assess the experiments

can be derived from the confusion matrix such as recall (sensitivity), Ac, and
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F1 score. Recall can be described as metric that describes how many instances
are classified correctly. The F1 score is a weighted average using precision and
recall and is measured between 0 (worst) and 1 (best). For Food-5K the AUC
values were also computed for each experiment due to being a binary classifier
and Cohen’s kappa was calculated for Food-11, RawFooT-DB, and Food-101.
Cohen’s kappa is a metric that is used to measure the inter-rater agreement
between two label sets in a classification problem, we use Cohen’s Kappa along

with other metrics to describe experiment results [27].

4.14. Training, Validation, and Evaluation Data Partitions

To evaluate the performance of our trained models, validation and evaluation
datasets were extracted and used from Food-5K, and Food-11. For RawFooT-
DB, an evaluation dataset was used supplied by the authors [20]. For Food-5K,
Food-11, and RawFooT-DB, the authors already partitioned the datasets into
evaluation and validation sets (Table 3) and in this work we used the same data
splits to train and test our models. For Food-101, we split the data into 75:25
for training and testing. Authors of Food-101 provide training and testing splits
with testing images cleaned of noise, however in this work we randomly shuffled
images for training and testing partitions to test how ResNet-152 performs in
classifying food images with noise and high food variance. This would give an
indication of how deep features would perform in classifying difficult datasets
such as Food-101. Table 3 is a summary of the data partitions used in this work
for each food image dataset and the names for each partition follows the author’s
naming convention. Several metrics were computed during the experiment stage
e.g. kappa statistic, F1 score, recall, average ROC, and accuracy to measure
the performance of each trained model. Food-5K and Food-11 datasets each
contained training, validation, and evaluation images. Training images were
used for feature extraction to train machine learning classifiers. Validation im-
ages were used to determine if hyper-parameters used yield adequate results and
evaluation dataset was to fully evaluate overall trained model. For RawFooT-

DB, authors developed training and testing datasets by taking each image and
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dividing it into 16 tiles, 8 tiles are for training and the remaining 8 for testing.
Each class contains 368 images (tiles) which represent 8 tile texture samples
under 46 different lighting conditions. The testing dataset was used to verify
if the trained model able to generalise between food texture classes. Food-101
dataset was randomly partitioned; 75% for training and 25% for testing. Test-
ing partition was used to verify trained Food-101 classifiers. UNICT-FD889
and Caltech-101 testing datasets were used to further evaluate food/non-food

classification models.

Table 3: Table showing testing methods used for each food image dataset. * denotes dataset

splits supplied by dataset authors.

Dataset Dataset Partition

Food-5K  Training, validation & evaluation™

Food-11 Training, validation & evaluation*

RawFooT-DB  Training & testing*

Food-101  75:25 training & testing

UNICT-FD889  Testing

Caltech-101  Testing

4.15. UNICT-FD889 & Caltech-101 Food/ Non-Food Dataset

As well as using the validation and evaluation datasets supplied with Food-
5K, further evaluation was completed with UNICT-FD889 dataset and Caltech-
101 dataset in detecting food images. UNICT-FD889 is a food dataset contain-
ing images from a range of food types and Caltech-101 is a non-food image
dataset, UNICT-Caltech. These 2 datasets were combined to create a new
food/non-food dataset called UNICT-FD889 to evaluate our food detection
models. Deep features were extracted from the new food/non-food dataset.

Further evaluation was completed because Food-5K evaluation and validation
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datasets are small with only 500 images in each category for each dataset. Using
another larger dataset for evaluation can give a stronger performance indication

of our models in classifying a large variety of food and non-food images.

4.16.  Platform

In order to train the machine learning algorithms, Weka 3.8.1 [28] platform
was used. Weka is a software application that contains various machine learning
algorithms written in Java and the application was developed at University of
Waikato, New Zealand. The application can be used for different tasks such as
clustering, classification, visualisation, feature selection, and preprocessing and
is very popular within universities for its ease of use. It is also popular because
of the amount of algorithms available. The main reason that Weka 3.8.1 was
used in this work was the detailed evaluation results output computed, which are
collated into a window after evaluation has finished. Another major advantage
of using Weka is the evaluation process in that a range of detailed metrics are
computed for each class to describe the performance of the model. A confusion
matrix can be computed to determine the performance of individual classes for
the trained model using K-fold class validation or a dedicated validation dataset.
The amount of machine learning algorithms that are available is a factor in using
Weka as well the easy to use graphical user interface (GUI). In this work, Weka
3.8.1 was used with the extracted features from image datasets for classification,

analysis, and evaluation [28].

4.16.1. WekaPython Plugin € Scikit-Learn

WekaPython plugin was used with Weka 3.8.1 that allows the training of
scikit-learn [29,55] machine learning classifiers. The wekaPython package relies
on Python version 2.7 or higher being installed on the user’s system and uses a
range of Python packages to function correctly such as pandas, numpy, scikit-
learn, and matplotlib. In this work, the wekaPython was used to train and
evaluate the deep features extracted from the pretrained CNNs. Weka was

used to train an ANN for experiments with Food-101. Due to its flexibility for
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working with larger datasets, Python v2.7.10 with scikit-learn library was also
used to train the other machine learning classifiers for the Food-101 dataset [30].

The following machine learning algorithms were used in this work [29,54]:

1. Gaussian Naive Bayes (wekaPython scikit-learn)
2. Support Vector Machines (SVM) (wekaPython scikit-learn)
3. Artificial Neural Network (ANN)

4. Random Forest Classifier (wekaPython scikit-learn)

For Food-101 food image dataset, datasets were manually split 75:25 and the
follow parameters were used to split and shuffle the dataset to train and test

each machine learning classifier;

1. Gaussian Naive Bayes - random _state 1
2. Support Vector Machines - random _state 1
3. Artificial Neural Network - random_seed 1

4. Random Forest Classifier - random_state 1

4.16.2. Naive Bayes

Naive Bayes is a popular machine learning algorithms known for their ef-
ficiency and minimal processing. They can be described as a set of simple
probabilistic classifiers derived from Bayes Theorem. The term naive is used
to describe the algorithm because it assumes that attributes are independent
of the associated class. Bayes rule is enforced to compute the probability of a
class based upon the values in the vector. Bayes rule of conditional probability
states that if you have a hypothesis H and the evidence (feature attributes) is
connected to that hypothesis [31]. Naive Bayes assumes independence and the
algorithm works efficiently and can outperform the most sophisticated machine
learning algorithms on certain datasets. Naive Bayes can be described as a
simplistic approach to using learning probabilistic knowledge for classification.
However, the present of redundant data can affect the performance and the

introduction dependent attributes also diminish the performance of classifier.
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In this work, a Gaussian naive bayes classifier was trained using the extracted
CNN deep features. A Gaussian naive bayes classifier is used when continuous
values are present by assuming a normal distribution in the dataset as the mean

and standard deviation is computed for each class.

4.16.3. Support Vector Machines (SVM)

SVMs are able to implement the use of non-linear boundaries by using ker-
nels (e.g. RBF, Polynomial) to transform feature representation into a higher
dimensional space to predict multiple classes. In classification problems, the use
of SVM have performed well in generalising on a variety of classification prob-
lems such as food classification, face detection, and object detection [32,33]. In
some problems the training data in a problem may become inseparable meaning
that there is not a clear boundary definition, SVMs are able to enforce nonlinear
boundaries in transformed feature spaces [35]. In regards to a linear SVM, a
linear hyperplane is computed and considered optimal if a line is at a furthest
distance from class data points (largest minimum distance) [35]. However, in
some instances the training data may not be linearly separable, therefore SVM
employ the use of kernels to determine optimal hyperplanes. Kernels can be
used in order to fit linear models in a non-linear setting, mapping is used to
transform how the features are represented into a higher dimensional space. In
this work, we train 2 C-SVM models using Polynomial kernel and Radial Basis
Function (RBF). C-SVM uses a C regularisation parameter that implements a

weight penalty for misclassifications to improve the accuracy of the model.

4.16.4. Artificial Neural Network (ANN)

An ANN or feed-forward neural network was also used in this work and
ANN can comprise of a number of layers. Each layer contains a number of
nodes that are called neurons. The basic ANN architecture is made of three
layers; input layer, hidden layer, and output layer and because of the amount
of rich information/features that can be learned using a ANN, it can be applied

to problems that are of an non-linear nature. The basic function of a ANN is
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the ability to map features data into a set of outputs. Each neuron computes
its input by using a weight that represents the strength between nodes. An
activation function is then applied, there are a number of activation functions
that are available i.e. sigmoid function, linear, or gaussian. Once the activation
function is applied, a single value is returned. Back propagation is used to train
the ANN, the predicted output is compared to the expected output which is
reflected in the cost function and the weights are altered. ANN training can
be customised to suit the nature of the input dataset and problem, parameters
such as training time (epochs), learning rate, and momentum can be configured.
In this work, ANNs were trained for each dataset using a Weka plug-in [30] with
the following parameters listed in Table 4. The learning rate was set to adaptive
unless otherwise stated in the experiments. The adaptive learning rate function
uses a number of base learning rates on the training data to determine the most
suitable by comparing the cost function of each. The Weka plugin uses dropout
regularisation to prevent overfitting and Rectified Linear Units as the activation

functions [30,36].

Table 4: Hyper-parameters used for each ANN.

ANN Parameters

Number of iterations 1000 (max)
Num of layers 1
Neurons per layer 100
Learning rate  Adaptive*
Learning momentum 0.2
Weight penalty  0.00000001 (default)
Hidden Layers drop out rate 0.5
Input layer drop out rate 0.2
Activation function ReLu
Convergence threshold 0.2
Batch 100
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4.16.5. Random Forest

Random Forests (RF) was developed by Leo Brieman and Adele Culter [37]
and is a classification algorithm that utilises a number of decision trees using
feature subsamples and bootstrapped examples. The purpose of RF was to
be easy to use by offering little preprocessing requirements and using a voting
system for final classification using a collection of decision trees. This method
is directly related to the bagging technique as the goal of the bagging technique
is to develop a model with low variance and to average noise in the dataset.
RF is able to take subsets of the input data comprised of random values with
each instance labelled with its class. For each subset created a decision tree is

created, as depicted in (1).

Tal b1 el C1
D=1 ia b2 i 2 (1)

a3  1b3  fe3 €3

Dy = [ia1 ip1 de1 1]
Dy = [iaz b2 iea 2] (2)

D3 = [ia3 b3 ic3 c3]

In (2), each decision tree D is trained using the subset training data and a
classification for each instance is calculated. A majority voting rule is then used
to decide on the final classification of the instance. Random Forest algorithm
is efficient in that it is able to analyse large databases and is able to estimate
missing data to help maintain accuracy [37]. In this work a scikit-learn Random
Forest classifier was used with wekaPython and Table 5 lists the parameters used

for this model.
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Table 5: Table showing hyper-parameters used for Weka Random Forest classifier.

parameters used for this classifier are default.

Random Forest Parameters
Criterion entropy
Number of estimators 50
Random State none
Depth of tree  None
Minimum number of samples split 2
Minimum number of samples for leaf node 1
Number of features for best split auto
Bootstrap  True
Max leaf nodes None
Random State Instance None
Max depth  None
Minimum num of leaf samples 1

5. Experimental Results

5.1. Food /Non-Food Classification Results
5.1.1. Food-5K

Hyper-

This section lists the results of our experiments using the food image datasets.

Tables 6 and 8 list the detailed results of Food-5K. Accuracy, recall, F'1 score,

and ROC values were used to measure the performance of each the classifica-

tion models for both validation and evaluation datasets. Initial results show that

deep features combined with machine learning classifiers achieved high accuracy

results when distinguishing between food and non-food images. The use of SVM

with RBF kernel achieved the highest accuracy with 99.4% using ResNet-152

for deep feature extraction with validation dataset and 98.8% with evaluation

dataset. Table 7 and 9 also lists the confusion matrices of using SVM-RBF

with ResNet-152 to detect food images in validation dataset and ANN with
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ResNet-152 features to detect food images in evaluation dataset. GoogLeNet
deep features achieved marginally lower accuracy results, however for the evalu-
ation dataset, GoogLeNet deep features with ANN achieved the same accuracy
result as SVM-RBF and Random Forests classifier with ResNet-152 features
with 98.8%. In regards to using SVM classifiers in Food-5K, the use of the RBF
kernel achieved marginally higher accuracies compared to the polynomial kernel
and Gaussian naive bayes achieving the lowest accuracy results in both testing

datasets with both deep feature types.

Table 6: Classification results using ResNet-152 and GoogLeNet to extract deep activations
(extracted from Food-5K) with supervised learning algorithms. Figures in bold represent

highest accuracy result.

Food-5K - Validation
ResNet-152 - pool5 GoogLeNet - cls3_pool

Model
Acc (%) | Recall | F1 | ROC | Acc (%) | Recall | F1 | ROC
NB 98.7 0.99 0.99 | 0.99 97.5 0.98 0.98 | 0.99
SVM (RBF) 99.4 0.99 0.99 | 0.99 98.5 0.99 0.99 | 0.99
SVM (Poly) 99 0.99 0.99 | 0.99 98.5 0.99 0.99 | 0.99
ANN 99.2 0.99 0.99 1 99 0.99 0.99 | 0.99
RF 98.9 0.99 0.99 1 98.6 0.99 0.99 | 0.99
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Table 7: Confusion matrix showing results of highest accuracy results achieved using ResNet-

152 features classifying validation dataset of Food-5K using a SVM with RBF kernel.

Confusion Matrix using SVM-RBF with ResNet-152 Validation
Dataset Features
Predicted Labels
Food | Non-Food
Food 498 2
Non-Food 4 496

True
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Table 8: Classification results using ResNet-152 and GooglLeNet to extract deep activations

(extracted from Food-5K) with supervised learning classifiers using evaluation dataset.

Food-5K - Evaluation
ResNet-152 - pool5 GoogLeNet - cls3_pool

Model
Acc (%) | Recall | F1 | ROC | Acc (%) | Recall | F1 | ROC
NB 97.3 0.97 0.97 | 0.98 96 0.96 0.96 | 0.98
SVM (RBF) 98.8 0.99 0.99 | 0.99 98.3 0.98 0.98 | 0.98
SVM (Poly) 98.3 0.98 0.98 | 0.98 98.2 0.98 0.98 | 0.99
ANN 98.8 0.99 0.99 | 0.99 98.8 0.99 0.99 | 0.99
RF 98.8 0.99 0.99 | 0.99 98.5 0.99 0.99 | 0.99

Table 9: Confusion matrix showing results of highest accuracy results achieved using ResNet-

152 features classifying evaluation dataset of Food-5K using ANN.

Confusion Matrix using ANN with ResNet-152 Evaluation Dataset
Features

Predicted Labels

Food | Non-Food

Food 493 7

Non-Food 5 495

True

To further test our models, experiments were conducted that tested food /non-
food trained models on the Food-11 dataset as what was completed in [13] for
more detailed comparison. Food-11 dataset contains 16,643 images and they
are all classed as food images, GoogleNet and ResNet-152 deep features were
used to extract deep features from Food-11 and used with SVM-RBF and ANN

models to classify them to detect food in the images. Table 10 is a breakdown
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of the results using our methods to classify Food-11 dataset.

Table 10: Results comparison of classifying Food-11 with our Food/Non-Food classification

models..
Method Num of Food Accuracy
Images Detected
ResNet-152 + ANN (Food-11) 16, 208 97.39%
ResNet-152 + SVM-RBF (Food-11) 16,176 97.19%
GoogleNet + ANN (Food-11) 16,171 97.16%
GoogleNet + SVM-RBF (Food-11) 15,646 94.01%
ResNet-152+ SVM-RBF (UNICT-Caltech) 12,409 97.50%
ResNet-152+ ANN (UNICT-Caltech) 12,283 96.51%

5.1.2. UNICT-FD889 & Caltech

Table 10 list the results of using SVM-RBF and ANN trained with Food-
5K training ResNet-152 deep features for classifying UNICT-Caltech, which
combines images in UNICT-FD889 and Caltech-101 to make a food/non-food
dataset. UNICT-Caltech dataset is a larger dataset and using this dataset with
our trained models allows us to get a better indication how ResNet-152 features

perform in detecting food in images.

5.2. Food Item Classification Results

5.2.1. Food-11

Results show that using ResNet-152 and GoogleNet deep features are able
to achieve high accuracies when classifying across major food groups. Results
are presented in Tables 11 and 12. The maximum accuracy achieved was using
ANN for both ResNet-152 and GoogleNet features achieving 91.34% and 86.44%
respectively with evaluation dataset. For ResNet-152 features an F-measure of

0.91 was achieved and 0.86 with GoogleNet features using ANN. For the ANN
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trained using ResNet-152 features, the base learning rate was set to auto-detect
which allows the ANN Weka plugin to initially test various learning rates to
determine the lowest cost function. Initial tests revealed that 1.0 learning rate
achieved the lowest cost function and the ANN used that to learning rate to
initially begin the training. The learning rate decreased over the course of the
training if the network cost function didn’t improve after 10 mini-batch itera-
tions. The network converged after 204 iterations ending with a learning rate
of 0.01. Further analysis revealed the SVM models trained with RBF and Poly-
nomial kernel using ResNet-152 features achieved 89.99% and 88.86% accuracy
respectively and 85.36% and 86.05% using GoogleNet features using evaluation
dataset. Figure 6 shows the confusion matrix of using an ANN trained with
ResNet-152 features to classify the evaluation dataset. Figure 7 is an example
of different types of food categories that were misclassified as shown in the con-

fusion matrix in Figure 6.

Table 11: Classification results using ResNet-152 and GoogLeNet to extract deep features

(extracted from Food-11) with supervised learning classifiers.

Food-11 - Validation Dataset
ResNet-152 - pool5 GoogLeNet - cls3_pool
Model
Acc (%) | Recall | F1 | Kappa | Acc (%) | Recall | F1 | Kappa

GNB 73.03 0.73 0.73 0.70 67.49 0.68 0.68 0.64
SVM (RBF) 88.11 0.88 0.88 0.87 82.36 0.82 0.82 0.80
SVM (Poly) 86.65 0.87 0.87 0.85 83.70 0.84 0.84 0.82
ANN 89.18 0.89 0.89 0.88 84.11 0.84 0.84 0.82
RF 78.43 0.78 0.78 0.76 75.48 0.76 0.75 0.72
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Table 12: Classification results using ResNet-152 and GoogLeNet to extract deep features

(extracted from Food-11) with supervised learning algorithms.

Food-11 - Evaluation Dataset
ResNet-152 - pool5 GoogLeNet - cls3_pool
Model
Acc (%) | Recall | F1 | Kappa | Acc (%) | Recall | F1 | Kappa
GNB 75.38 0.75 0.76 0.72 69.73 0.70 | 0.70 0.66
SVM (RBF) 89.99 0.90 | 0.90 0.89 85.36 0.85 0.85 0.84
SVM (Poly) 88.86 0.89 0.89 0.87 86.05 0.86 0.86 0.84
ANN 91.34 0.91 0.91 0.90 86.44 0.86 0.86 0.85
RF 80.40 0.80 | 0.80 0.78 78.24 0.78 0.78 0.75

Results Comparison of classifying Food-11 using ANN trained with
ResNet-152 features.

Classified as:
bread dairy dessert egg fried fruit/veg  meats pasta rice seafood soup
7 ‘ 1 9 2 8 0 1 2 2 bread
3 1 0 1 1 dairy

11 dessert
egg
fried
fruit/veg
meats
pasta
rice

2
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seafood
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Figure 6: Confusion matrix of Food-11 classes using ANN model trained using ResNet-152

features.
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Dessert Meats Eggs Soups

Figure 7: Example of Food-11 classes which are misclassified based on confusion matrix gen-

erated from ANN model trained using ResNet-152 features. Images highlight shared charac-

terisitics that could lead to misclassifications.

5.2.2. RawFooT-DB Classification Results

Results listed in Table 13 reveal ResNet-152 features trained with SVM and
RBF kernel achieved an accuracy of 99.10% and our ANN also with ResNet-
152 99.28% in classifying RawFooT-DB. The results show that deep features
efficiently classify isolated texture images across various lighting conditions and
further investigation analysing the confusion matrix generated from SVM-RBF
model shows that there were a number of classes that experienced misclassi-
fications. For example, several instances were wrongly classified as chickpeas
instead of white peas. Investigating the images from both categories, it was
clear that there are similarities between shape, colour, and texture as shown
in figure 8 and 9. When also investigating the ANN confusion matrix, several
white pea instances were also classed as chickpeas and there were also several
mango instances classed as apple slice. Figure 9 is an example of image classes
that were misclassified using an ANN, chicken breast and milk chocolate. These
images showed similar characteristics in colour and texture, similarly hamburger
images were classified as salami and further investigation showed very similar
texture, colour, and patterns however ResNet-152 features still achieved 0.98

F-measure for hamburgers and 0.99 for salami.
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Table 13: Classification results using ResNet-152 and GoogLeNet to extract deep features

(extracted from RawFoot dataset) with supervised learning classifiers.

accuracy achieved.

* denotes highest

RawFoot Dataset - Training/Testing Split
ResNet-152 - pool5 GoogLeNet - cls3_pool
Model
Acc (%) | Recall | F1 | Kappa | Acc (%) | Recall | F1 | Kappa
GNB 82.02 0.82 0.83 0.82 78.42 0.78 0.79 0.78
SVM-RBF 99.10 0.99 0.99 0.99 96.63 0.97 | 0.97 0.97
SVM-Poly 98.21 0.98 0.98 0.98 96.74 0.97 | 0.97 0.97
ANN 99.28* 0.99 0.99 0.99 97.04 0.97 | 0.97 0.97
RF 98.13 0.98 0.98 0.98 94.03 094 | 0.94 0.94

White peas

Mango

Chickpeas

Apple slice

Figure 8: Example of RawFooT-DB classes which are misclassified based on confusion matrix

generated from SVM-RBF model trained using ResNet-152 features. Images highlight shared

characterisitics that could lead to misclassifications.
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Figure 9: Example of RawFooT-DB classes which are misclassified based on confusion matrix

generated from ANN model trained using ResNet-152 features.

For further analysis using RawFooT-DB with ResNet-152 and GoogleNet

features, we reordered the food types into 7 groups, vegetables, rice/grains/wheat /seeds,

fruits, sweets, breads, meat/fish, and miscellaneous (e.g. coffee, powders, sugar).

Figure 10 and 11 show the F-measure of the food texture types rearranged into

food groups for ANN and SVM-RBF models. It is clear the from Figure 10 and

11 that there is a decrease in accuracy in ‘meat/ fish’ group. This is evident in

Figure 9 as chicken breast can share similar characteristics with other textures

such as 'milk chocolate’. Figure 10 and 11 also show decrease in accuracy with

chickpeas and white peas due to sharing texture and shape characteristics and

this is also evident in Figure 12 using GoogleNet deep features with ANN.

RawFooT DB F-Measure using ResNet-152 Deep Features with ANN
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Figure 10: RawFooT-DB F-Measure of reordered classes by major

152 features with ANN.
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RawFooT DB F-Measure using ResNet-152 Deep Features with SVM and RBF Kernel
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Figure 11: RawFooT-DB F-Measure of reordered classes by major food groups using ResNet-

152 features with SVM with RBF kernel.
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Figure 12:

GoogleNet features with ANN.

5.2.3. Food-101 Classification Results

From previous experiments using Food-5K and Food-11, and RawFooT-DB,

ResNet-152 deep features achieved the highest accuracies. We used ResNet-152

deep features for classifying Food-101, which can be described as fine-grained

food image dataset that contains similar food items (i.e. different kind of soups,

meats images taken in a free living environment). Results listed in Table 14 show
that ANN and SVM-RBF along with ResNet-152 features achieved the highest

37



accuracy across the experiments for Food-101 achieving 64.98%. To train the
ANN, Food-101 was partitioned into 75:25, training and testing, with random
seed of "1’ using Weka 3.8.1 (same ANN plug-in used with other experiments for
Food-5K, Food-11, and RawFooT-DB). To train the ANN; the learning rate was
initially set to 1 with mini-batch gradient descent. For the other classification
models we used used Python 2.7.10 with Scikit v0.19. We used Python v2.7.10
and scikit-learn instead of Weka 3.8.1 due to the flexibility of using other libraries
and its ease of use when working with larger datasets and also for data analysis.
The parameters for the classifiers remained the same as other experiments with
Weka as wekaPython contains the same models as scikit-learn. To train the
other classifiers using scikit-learn, Food-101 was also split in 75:25 training and
testing with a random state parameter of ’1’. Table 14 shows the accuracy,
recall, F-Measure, and kappa statistic of using ResNet-152 deep features. The
results are much lower than previous experiments with the highest accuracy
with 64.18% for ANN and 64.97% for SVM-RBF. The kappa statistic was also
generated for ANN and SVM-RBF at 0.64 and 0.65 respectively, which indicates

substantial agreement.

Table 14: Classification results using ResNet-152 to extract deep activations (extracted from

Food-101 dataset) with supervised learning algorithms. Highest accuracy denoted by *.

Food-101 Dataset - 75:25 training/evaluation

ResNet-152 - pools
Model

Acc Recall | F1 Kappa

GNB 45.64% 0.46 0.46 0.45

SVM-RBF | 64.98%* 0.65 0.65 0.65

SVM-Poly | 63.04% 0.63 0.63 0.63

ANN 64.18% 0.64 0.64 0.64

RF 39.33% 0.39 0.38 0.39

38



There were a number of misclassifications that occurred across different
classes in Food-101 experiments. Figure 13 and 14 is an example of typical
food classes that were misclassified. Misclassifications occured with the steak
food class with both the ANN and SVM-RBF. Steak instances were wrongly
classified as pork chop, prime rib, and filet mignon using SVM-RBF and ANN,
similarly several pork chop instances were classified as steak, prime rib, and
foie gras. This may be due to the shared characteristics with shape, texture,
and colour. In regards to the desserts, several items were wrongly classified,
the panna cotta class was wrongly classified as a cheese cake, and chocolate
mousse and the cheese cake class was wrongly classified as a panna cotta, choco-
late mousse, chocolate cake, and strawberry shortbread. Further investigation
showed that these classes share similar characteristics such as shape and colour
which may contribute to them being wrongly classified. Beignets were also
wrongly classified as donuts, investigation showed that beignets are very similar
to donuts in terms of appearance, texture, colour, and shape, however SVM-
RBF trained with ResNet-152 features were still able to achieve an F-measure

of 0.77 for beignets.

Figure 15 shows the F-measure for each food class in Food-101 for SVM. For
further analysis, we organised the food classes into groups. Images were allo-
cated into groups; (1) breads, pasta, (2) desserts, (3) eggs, (4) fried foods, (5)
meats and fish, (6) mixed foods (foods that contained a mixture of foods) and (7)
vegetables. Foods were organised into different foods to determine if ResNet-152
features had any inherent advantage for classifying certain food groups. The av-
erage F-measure was computed for each group and the vegetable group achieved
the highest with an average F-measure of 0.71 using SVM-RBF model, however
it should be noted that the vegetable category contained a small number of
images in comparison to other groups. In regard to using SVM-RBF model to
classify specific food items, the class the achieved the highest F-measure was
‘edamame’ with 0.98, and further investigation showed that edamame images

are very similar as the food item is distinct and there is little variation with
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the edamame food type and also they are the same shape and colour. The food
item that achieved the lowest F-measure was ’steak’ with an F-measure of 0.36.
Steak food class experienced misclassifications with other food types with other
meat classes e.g. pork chop, prime rib, and foie gras due to the similar shape,
colour, and texture. In regards to using ANN model, ’edamame’ also achieved

the highest with 0.97 F-measure and ’steak’ was also the lowest with 0.30.

Apple Pie

= |

Pork chop Steak
Figure 13: Example of Food-101 classes which were misclassified based on confusion matrix

generated from ANN and SVM-RBF models trained using ResNet-152 features. Food classes

are on the left experience misclassification with the food classes on the right.
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chocolate cake chocolate mousse panna cotta  strawberry shortbread

Figure 14: Example of Food-101 dessert classes which were misclassified based on confusion

matrix generated using both SVM-RBF and ANN models trained with ResNet-152 features.

F-Measure of Classifying Food-101 Classes using ResNet-152 Features with SYM-RBF

Food-101 Classes

Figure 15: Food-101 F-Measure of reordered classes by major food groups using ResNet-152
features with SVM with RBF kernel.

6. Discussion

In this work we used deep features extracted from pretrained CNNs for food
image classification. We compared 2 popular pretrained CNNs, ResNet-152 and
GoogleNet and extracted deep features from layers deep in each CNN architec-
ture to classify Food-5K, Food-11, and RawFooT-DB. For Food-101 we choose to
use ResNet-152 deep features as it consistently achieved higher accuracies across
other image datasets. We extracted a deep feature vector immediately after the
last pooling layer in each architecture for each pretrained CNN for each from
various food image datasets. From these experiments, we found that ResNet-

152 achieved consistently higher results in Food-5K, Food-11, and RawFoot-DB

41



and because of this ResNet-152 features were used with Food-101. Food-101
is a much more difficult dataset due to the number of classes and variation in
images. Many classes contain low in between class variance as many dishes are
similar as shown in Figure 13, 14, and 16. From the experiments it was clear
that using ResNet-152 is able to achieve high accuracies for Food-5K, Food-11

dataset, RawFoot DB, and moderate accuracy for Food-101.

In regards to Food-5K, the deep features were able to detect food in im-
ages with high accuracy across all machine learning classifiers, achieving over
90% accuracy in each experiment. We benchmarked our experiments using the
results achieved by the authors of Food-5K and Food-11 datasets who used a
fine-tuned GoogleNet [13] and these results in our work suggest that there is
potential to achieve high accuracies and performance without the need of fine-
tuning pretrained CNNs for certain datasets and problems. Furthermore, due
to the nature of Food-5K being a binary decision between food and non-food
classes, generic deep features may be sufficient enough to provide adequate gen-

eralisation to classify between two classes (i.e. food and non-food).

ANN and SVM-RBF trained with ResNet-152 features achieved the high-
est accuracies in the majority of Food-5K experiments and the Food-5K ANN
and SVM-RBF model was further evaluated by classifying the entire Food-11
dataset for food detection. Results show that our ANN model trained using
ResNet-152 features achieved higher food detection accuracy compared to the
fine-tuned GoogleNet model in [13] when tested against Food-11 image dataset
as stated in Table 15. We also evaluated both our Food/Non-Food SVM-RBF
model trained with ResNet-152 and GoogleNet deep features using Food-11 for
food detection and results showed that these models achieve marginally higher

results compared to other results achieved in also listed in Table 15 [13].

Authors in [13] achieved 83.6% with Food-11 evaluation dataset and in our
work ResNet-152 features with ANN achieved 91.34% and 89.99% with SVM-
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RBF, this is an improvement of 7.74% and 6.39% respectively. For Food-5K,
ResNet-152 features achieved 98.8% in classifying Food-5K evaluation dataset
and authors in [13] achieved 99.2%. Authors in [13] evaluated their food detec-
tion model using all images in Food-11 dataset, we did this also and Table 16
compares our results. ANN and SVM trained with ResNet-152 deep features
achieved marginally higher results than achieved in [13] with 97.39% and 97.19%
respectively. GoogleNet deep features with ANN also achieved marginally higher
results with 97.16% compared to proposed Fine-tuned GoogleNet method in
[13].

Figure 16: Food image classes from Food-101 that share similar characteristics. Categories

from left to right; french onion soup, hot and sour soup, clam chowder, miso soup

Table 15: Method and results comparison using Food-5K and Food-11. * denotes accuracy

improvement.

Author Method Accuracy Food Dataset
Singla, et al. [13]  GoogleNet (fine-tuned) 99.2% Food-5K
Singla, et al. [13]  GoogleNet (fine-tuned) 83.6% Food-11

This work ResNet-152 + ANN 98.8% Food-5K

- ResNet-152 + ANN 91.34%* Food-11
- ResNet-152 + SVM-RBF 89.99%* Food-11
- ResNet-152 + SVM-Poly  88.86%* Food-11

Table 16 also shows GoogleNet features used to detect food images in Food-
11. Results show that using GoogleNet features used to train conventional
machine learning algorithms is able to achieve higher results than a fine-tuned

GoogleNet model in detecting food images in Food-11. These results illustrate
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Table 16: Results comparison of classifying Food-11 with our Food/Non-Food classification

models. * denotes accuracy improvement.

Method Num of Food Accuracy
Images Detected

Fine-Tuned GoogleNet [13] 16,127 96.9%
ResNet-152 + ANN 16, 208 97.39%*
ResNet-152 + SVM-RBF 16,176 97.19%*
GoogleNet + ANN 16,171 97.16%*
GoogleNet + SVM-RBF 15,646 94.00%

the convenience of using deep learning with machine learning classifiers through
deep feature extraction as the user does not need to use a powerful GPU to
quickly train an effective image classification model. Many deep learning pack-
ages such as Tensorflow and MatConvNet give users the ability to fine-tune
CNNs using CPU, however it has been stated that using a GPU can be around
8 times faster than using a CPU in training a CNN [40].

Food-5K AUC results achieved in this work were close to 1 in validation and
evaluation image sets using ANN and RF with both ResNet-152 features and
GoogleNet features. However, the validation and evaluation test sets are small
in comparison to other popular food image datasets with only 500 in each class
for each dataset and therefore more research is needed in classifying a wider
range of food images types and image quality. Food-5K training dataset, which
was used to train food/non-food models, is also comparatively small with 2500
images in each class and contains limited food image types, therefore further re-
search would need to be completed in training machine learning classifiers with
a diverse food image training dataset. Further evaluation was completed using
the food/non-food trained models that achieved highest accuracies with Food-

5K to classify a new image dataset that combines food images in UNICT-FD889
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and non-food images Caltech-101, called UNICT-Caltech, which is larger than
the validation and evaluation sets provided in Food-5K [52, 53] containing 3583
food images and 9144 non-food images . Results from classifying this dataset
are listed in Table 10 and show that with using Food-5K training dataset to
train machine learning classifiers is able to achieve a high food accuracy using

SVM-RBF achieving 97.50%,.

Further experiments focused on using deep features to classify food texture
image items under different illuminations, previous authors of RawFooT DB re-
searched the use of using other popular pretrained CNNs for feature extraction.
The experiments presented in this work utilised deep residual network features
and GoogLeNet features to classify food images in different lighting settings.
Other research that used RawFooT-DB [20] divided the food image classes into
illuminant categories. In this work, we evaluated the performance of ResNet-152
features in classifying food texture images across a range of different lighting
conditions. Results from using ResNet-152 to train an ANN achieved 99.28%
accuracy and and a ROC value of 0.99 and the same features with SVM-RBF
achieved 99.10%. More importantly, the use of deep features with supervised
machine learning algorithms, from both ResNet-152 and GoogLeNet, are able
to generalise between food texture types with great efficiency under different
illuminations. Results from RawFooT-DB echos results in early experiments in
that ResNet-152 features marginally outperform GoogleNet features even in de-
termining food classes across a number of illuminations. Figure 12 highlights the
performance of classifying each texture class in RawFooT-DB using GoogleNet
features with ANN, and similar decreases in F-measures are present when com-
pared to ResNet-152 ANN and SVM-RBF in Figure 10 and 11. GoogleNet
features also experienced misclassifications with white peas and chick peas, and
with several meat textures (salami and hamburger).

Results show that most experiments with RawFooT-DB using both feature
types achieved over 90% accuracy (apart from GoogleNet features with Gaussian

Naive Bayes, which achieved 78.42%), however ResNet-152 pretrained CNN fea-
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tures achieves higher accuracy across all machine learning algorithms. This may
be due to the increased depth of ResNet-152 CNN in comparison to GoogLeNet
CNN and therefore rich detailed features may be extracted from layers deep in
ResNet architecture. Pretrained CNN models used in this work were supplied
by MatConvNet and experiments in [58] show that ImageNet ILSVRC trained
ResNet-152 model outperformed ImageNet ILSVRC trained GooglLeNet Incep-
tion model when validating both using ImageNet ILSVRC 2012 validation data

using MatConvNet package [58].

There were also several misclassifications between similar food groups with
RawFooT-DB. It is worth noting that these food textures that were misclassified
are very alike in texture and shape (chickpeas and white peas) and the images
used for testing and training are focused on the food texture without the overall
food item shape and size as shown in Figure 8 and 9. The use of a texture
based classification model trained using deep features may also be very efficient
combined with a semi-automation approach to food logging. Future work could
enable the user to utilise a polygonal tool to draw around the food item and
then a food texture based classifier can you used to predict the food item thus
removing much of the complexity and noise of other food and non-food items in
the food image. It is clear from the experiments that using pretrained ResNet
CNN for deep feature extraction is able to produce feature descriptors that gen-

eralise accurately between food texture classes with low in-between variance.

It was revealed that ResNet-152 features continually achieved higher clas-
sification accuracy results when compared to GoogleNet therefore ResNet-152
deep features were used to classify Food-101 dataset. The images in Food-101
were not developed in a controlled environment but collated using a social media
website (Foodspotting), which were uploaded by users and taken in real world
environments (restaurants, at home, cafes, etc.).The images are also taken under
illuminations and the dataset contains image quality of the images vary greatly

and no bounding box information is provided to help determine where the food
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items are located in the image. Food-101 contains 101,000 images and 1,000 for
each food class, and because of the size of this dataset, we partitioned dataset
in training and validation using 75:25 ratio, 75% used for training and 25% used
for testing and used a random state of ’1’ with scikit-learn library. The high-
est accuracy achieved using ResNet-152 deep features extracted from Food-101
was 64.98% using an SVM with RBF kernel using ResNet-152 features. The
full breakdown of results using ResNet-152 to classify Food-101 are located in
Table 14. The features extracted from layers deep in CNN architecture pro-
vide efficient representations that can be used to classify even the most difficult
food image datasets such as Food-101. The quality of food images present in
Food-101, in regards to food variation and noise i.e. other non-food items, and
unrelated food items, may be a factor in the decrease in accuracy. Comparing
the results of Food-101 (101 classes) with RawFooT-DB texture dataset (67
classes) suggest that the class size may not a major determining factor in the
decrease in accuracy but the quality of the images used in regards to being
truly representative of the class. Results achieved in this work in classifying
RawFooT-DB is comparable with results achieved in [20] albeit the authors
created small subsets for each lighting condition, while work presented in this
paper extracted features from each food class that contains a variety of lighting

conditions.

For further comparison, Table 17 lists results achieved in this work with
other research that used related deep feature extraction in classifying food im-
age datasets. It is clear from Table 17 and the literature that ResNet-152 deep
features echo results achieved with other datasets and other deep feature types
[45]. ResNet-152 deep features are able to achieve high classification accuracy
in both fine grained datasets such as RawFooT-DB and binary decision datasets
e.g. Food/NonFood, however there is a decrease in accuracy when food image
datasets with high food variance and noise is present in images as seen in Food-
101. A semi-automated approach or segmentation approach could be applied to

CNN deep feature classification that allows the user to draw around a food im-
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age before classification to remove noise, further analysis is needed to evaluate

this approach and to measure improvement in accuracy.
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Table 17: Summary of research using deep feature extraction to classify various food image
datasets. Bold denotes results achieved in this work. * denotes highest accuracy achieved for

Food-5K, Food-11, and RawFooT-DB.

Extraction Accuracy Food Dataset
Model Classes
VGG-S [41] 92.47% 2 (Food/NonFood) RagusaDB
NIN 90.82% 2 (Food/NonFood)
AlexNet 84.95% 2 (Food/NonFood)
GoogleNet [42] 94.67% 2 (Food/NonFood) Based on RagusaDS
99.01% 2 (Food/NonFood) FCD
NIN [47] 95.1% 2 (Food/NonFood) IFD

Singla, et al. [13] 99.2%* 2 (Food/Non-Food) Food-5K (Evaluation set)

83.6% 11 Food-11
AlexNet [15] 94.01% 7 (food groups) PFID

70.13% 61 PFID
AlexNet [45] 57.87% 100 UEC-FOOD100
AlexNet [45] 70.41% 101 Food-101
AlexNet [45] 78.77% 100 UEC-FOOD100
AlexNet [45] 67.57% 256 UEC-FOOD256
VGG-19 [46] 40.21% 101 UMPC-Food-101
VGG-16 [57] 98.21% 68 RawFooT-DB
VGG-19 [57] 97.69% 68 RawFooT-DB
ResNet-152 98.8% 2 (Food/NonFood) Food-5K (Evaluation set)
ResNet-152 99.4% 2 (Food/NonFood) Food-5K (Validation set)
ResNet-152 91.34%* 11 Food-11 (Evaluation set)
ResNet-152 99.28%* 68 RawFooT DB
ResNet-152 64.98% 101 Food-101

Using CNN deep features to classify food images datasets exceed the per-
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formance compared to other conventional feature selection methods and has
been well documented [45,49,51]. Hand crafted feature selection methods such
as SURF, or colour can encounter difficulties when classifying fine-grained clas-
sification of food categories as some public food image datasets contain small
in-between class differences amongst large number of classes (e.g. Food-101). Tt
has been stated in [51] that deep CNN features should be the first initial method
for visual classification tasks due to their high performance in generalising to
other datasets as CNNs are trained to be able to learn rich representations from
a large number of images. CNNs able to determine complex filters to combine
them with other patterns for greater detail. CNNs are able to produce internal
image feature representation, which is advantageous when compared to hand
crafted feature types such as SIFT, SURF or HOG. In this work, ResNet-152
features are able discriminate effectively between food and non-classes and in
classifying high level food groups (Food-11), when compared to other works in
[13]. Tt is clear that using ResNet-152 pretrained model is able to capture rele-
vant image features to enhance the generalisation between fine-grained objects
as demonstrated in classifying RawFooT DB in table . ResNet-152 contains 152
layers that combine multiple convolutional and pooling layers to filter impor-
tant image features and the use of residual connections to train the network
produce accurate features which can be highlighted for effective generalisation

across other datasets.

It is clear that using CNN features can enhance the accuracy of food image
classification when compared to traditional feature extraction methods and this
has been observed in other works, for example in [17] SURF and LAB colour fea-
tures, and Random Forests were used to classify Food-101 dataset and achieved
50.76% accuracy. In [45] an AlexNet model was fine-tuned using food image
categories and deep feature extraction was performed after to classify Food-101,
and authors achieved 70.41%, which is a significant increase when compared
to results achieved in [17]. As well as deep feature extraction, fine-tuning was

also used to classify Food-101 and authors in [48] achieved top-1 accuracy of
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77.4% after 250,000 iterations in training a CNN architecture called "DeepFood’,
which is a significant accuracy increase in comparison to [17]. In [49] fine-tuning
was also used to classify Food-101 dataset was also used to fine-tune Inception
V3 architecture and achieved a top-1 accuracy of 88.28%. Research in [45]
also achieved a top-1 accuracy of 65.32% using HOG features, colour values
with fisher vectors in classifying UEC-FOOD100, however CNN based features
extracted from a modified AlexNet model with a linear SVM achieved an in-
creased accuracy of 78.77%. For UEC-FOOD256 dataset, work presented in
[50] achieved a top 1 accuracy of 50.1% using HOG features and colour features
with Fisher Vector representations and the same authors in later research [45]
utilise deep CNN features extracted from a modified AlexNet and achieved a
top 1 accuracy of 67.57% in also classifying UEC-FOOD256 dataset. For Raw-
FooT DB food texture dataset experiments were completed in classifying food
textures under various lighting conditions, authors compared traditional feature
extraction techniques with CNN based features, and results show that OCLBP
and Gabor features achieved 95.9% and 96.2% accuracy respectively with deep
CNN features achieving 98.2% accuracy [20]. From the literature it is clear that
using CNN deep feature extraction and fine-tuning can achieve superior results

in regards to food image classification.

7. Limitations & Future Work

There are a number of limitations associated with this study which could
be addressed in future works, for example, an expansive dataset could be de-
veloped under a controlled environment that is representative of a broad range
of food items. This dataset could be used with the methods outlined in this
work and compared with similar works. This would give a clear indication of
the true performance of using deep feature extraction with machine learning
algorithms. Also, a comprehensive study could be completed by fine-tuning a
range of CNNs on food datasets and comparing performance using the same pre-

trained CNN models for deep feature extraction. Further experiments can also
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be completed by comparing deep features extracted from different layers within
a CNN architecture to find what layer is more suitable for generalising between
different food classes. In regards to overfitting, particularly for Food-101, fu-
ture works could include using 10-fold class validation instead of using a 75:25
train/testing split. This would give a clearer indication of the performance of
using deep features from ResNet-152 and Googl.eNet. Some of the experiments
in this work achieved high accuracies, especially for Food/Non-Food classifica-
tion experiments, however it is important to note that the amount of images
contained in Food-5K are relatively small in comparison to other datasets e.g.
Food-11 or Food-101. Further experiments need to be completed in detecting

food/non-food in larger food image datasets in using off the shelf deep features.

For RawFoot-DB we used the training and test split provided by authors in
[20, 42], however the authors of RawFooT DB in [20] created subsets of each
category, which were based on lighting condition type. In this work, our aim was
to classify food textures across different lighting conditions, however in future
work we would follow the same procedures described in [20] and use ResNet-152
features for further comparison. Also authors of [17] allocated a testing split
that contained images that contained little noise and representative of each
class, however in our work Food-101 extracted features were shuffled using ran-
dom seed '1’ and random state ’1’ to determine the classification performance
of ResNet-152 features when used with images with high level of noise. In fu-
ture works, we will further evaluate ResNet-152 features following the partition

procedure described in [17].

Future work could incorporate hierarchical classification using pretrained
CNN features in which a classifier will be used to determine food and non-food
images, another classifier will be appended that determines major food groups,
and finally a further classifier will used after to determine low level food item.
Further experiments with the parameters of machine learning models could also

be changed in order to determine the optimal parameter settings to achieve a
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high classification accuracy. The presence of noise in the food image datasets
may also affect the accuracy, in order to mitigate these issues, a semi-automated
approach could be adopted by using a polygonal tool to draw around the food
portion and to ultimately segment the food item. Classification models could
then classify the segmented food portion in order to promote accuracy. Other
computer vision segmentation approaches could be researched and combined
with methods described in this work. For future evaluation, we would also in-
put random noise as feature vectors for trained classifiers to determine food
classes and analyse the output and performance. The use of machine learning
models using pretrained CNN deep features also have the potential of being
using in mobile health solutions. Much research has been dedicated to under-
standing a person’s diet by determining what major food groups they consume
daily [2,5]. This research has showed that this process can be automated using
deep features extracted from residual CNNs for high food classification accuracy.
From this research, it is clear that ResNet-152 deep features is able to distin-
guish between high-level food categories such as Food/Non-food and echoes
other related research in this area. In comparison with other works, ResNet-
152 deep features outperforms other CNN deep features such as GoogleNet in
distinguishing between fine-grained food texture classes in RawFooT DB and
is comparable with other related works [20]. ResNet-152 features encountered
some difficulty in classifying Food-101 classes, however this may be due to the
images containing noise in the form of high colour intensities and multiple foods
in the same image, however a reasonable accuracy of 64.98% was achieved. In
Food-11 food group classification, deep GoogleNet features were able to achieve
high accuracy result when compared to research presented in [13] which used
a fine-tuned GoogleNet, which shows that a combination of conventional ma-
chine learning classifiers combined with CNN deep features have the ability to

outperform fine-tuned models.
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