
Maintaining and Publishing Metadata
Application Profiles with Extensible Authoring
Format

著者（英） Nishad Thalhath REHUMATH
内容記述 Thesis (Master of Science in Library and

Information Studies)--University of Tsukuba,
no. 41490, 2019.9.25

year 2019
URL http://hdl.handle.net/2241/00161356

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/344891992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Master’s Thesis in Graduate School of

Library, Information and Media Studies

Maintaining and Publishing Metadata
Application Profiles with Extensible

Authoring Format

September 2019

201726107

Nishad Thalhath Rehumath

Maintaining and Publishing Metadata
Application Profiles with Extensible

Authoring Format

Nishad Thalhath Rehumath

Graduate School of Library,
Information and Media Studies

University of Tsukuba

September 2019

Maintaining and Publishing Metadata Application Profiles with
Extensible Authoring Format

Student No.: 201726107
Name: Nishad Thalhath Rehumath

Metadata Application Profiles are the elementary blueprints of any Metadata Instance.
They act as a key element in metadata interoperability. Singapore Framework for Dublin
Core Application Profiles defined the framework for designing metadata application profiles
to ensure interoperability and reusability.

There are various accepted formats to express application profiles. Most of these expression
formats such as RDF, OWL, JSON-LD, SHACL, and ShEx are machine actionable, and formats
like spreadsheets or web pages act as human-readable documentation. Due to limited options
in the mutual conversion of these expression formats, they are often created independent
of each other and thus makes the process expensive requiring sophisticated skills and time.
Proposals for convertible authoring formats to create application profiles have received less
acceptance, mainly due to their inability to address various use cases and requirements.

As a result, domain experts find it difficult to create application profiles, considering the
technical aspects, costs and disproportionate incentives and the lack of easy-to-use tools for
Metadata Application Profile creation.

This study proposes Yet Another Metadata Application Profile (YAMA) as a user-friendly au-
thoring format for creating, maintaining and publishing Metadata Application Profiles. YAMA
helps to produce various standard expressions of the Metadata Application Profiles, change
logs, and different versions, with an expectation of simplifying Metadata Application Profile
creation process for domain experts. YAMA includes an integrated syntax for recording ap-
plication profiles as well as changes between different versions. A proof of concept toolkit,
demonstrating the capabilities of YAMA is also being developed. YAMA boasts a human read-
able yet machine actionable syntax and format, which is seamlessly adaptable to modern
version control workflows and expandable for any specific requirements.

This study argues that the extensible authoring formats are suitable for creating applic-
ation profiles with custom requirements and different use cases. This would promote the
acceptance of application profiles by reducing the associated cost and skill requirements in
creation, maintenance, and publishing of application profiles.

Academic Advisors: Principal: SAKAGUCHI Tetsuo
Secondary: NAGAMORI Mitsuharu

Contents

1 Introduction 1
1.1 Metadata Application Profiles . 1
1.2 The Singapore Framework for Dublin Core Application Profiles . . 1
1.3 Management of Application Profiles 3

2 Status of Application Profile 4
2.1 Various Attempts in the Last Decade 4
2.2 Current Status and Availability of Application Profiles 4
2.3 Expression Formats for Application Profiles 5
2.4 Authoring Formats for Application Profiles 5

3 Problems and Challenges in MAP Authoring 7
3.1 Challenges in Metadata Application Profile Creation 7
3.2 MAP creation for various domains 7
3.3 Limitation of existing Authoring formats 8
3.4 Provenance and Change logs . 8

4 Proposed Solutions 9
4.1 Interoperable Formats . 9
4.2 Change logs and Roadmaps . 9
4.3 Tooling . 10
4.4 Extendable Authoring Formats . 10

5 YAMA: Yet Another Metadata Application Profile 11
5.1 YAMA as an Authoring Format . 12
5.2 YAML as a Promising Format . 12
5.3 Extensibility of YAMA . 13
5.4 Expected outputs for YAMA . 14
5.5 Possible use-cases for YAMA . 14
5.6 Advantages of YAMA as an authoring format 15

ii

6 YAMA Syntax and Specifications 17
6.1 Expressing Application Profiles in YAMA 17
6.2 Changesets in YAMA . 20
6.3 YAMA Use Cases and Aims . 20
6.4 Integrating, Extending and Maintaining YAMA 21
6.5 Recommendations and Best Practices 22

7 YAMA Toolkit 23
7.1 Python module & Command Line Interface 23
7.2 Templates and generators . 24

8 Related Works 26
8.1 DCMI Description Set Profiles . 26
8.2 Metabridge Simple DSP (SDSP) . 27
8.3 Me4DCAP . 27
8.4 IMI Data Model Description (DMD) 28
8.5 Bibframe Profile Editor . 28

9 Comparison & Evaluation 30
9.1 Results . 31
9.2 Versioning, Changelogs and Provenance 35

10 Discussion 36
10.1 Continuation and future plans . 37

11 Conclusion 38

Acknowledgement 39

References 40

Appendices 42

List of Figures

1.1 A general overview of a Metadata Application Profile 2
1.2 Singapore Framework for Dublin Core Application Profiles 3

2.1 Authoring formats and expression formats for application profiles . 6

5.1 Extensibility of a YAMA Application Profile 13
5.2 Components of YAMA and their expected outputs 16

6.1 Structure of YAMA Document . 18
6.2 An example of a YAMA document 19
6.3 Structure of YAMA ChangeSets . 20
6.4 Example of YAMA ChangeSet . 21

7.1 A basic Jinja template example . 25

8.1 Basic structure of DC Description Set Profiles, a constraint language
for Dublin Core Application Profiles 27

8.2 Package structure of DMD (Translated) 29
8.3 DCAT-AP in BIBFRAME Profile Editor 29

9.1 Classes from DCAT-AP shows extensibility of YAMA 32

iv

List of Tables

2.1 Attempts on application profile creation 4

9.1 Feature comparison of three authoring formats used for evaluation. 31
9.2 Comparison of general use cases for application profile authoring

formats. 33
9.3 Comparison of use cases for extensible MAP authoring formats. . . 34
9.4 Support for provenance description 35

v

Chapter 1

Introduction

1.1 Metadata Application Profiles

The concept of Metadata Application Profiles (MAP) or simply Application Profiles
(AP) is not new in the information science community. The initial definition of
application profiles is “schemas, which consist of data elements drawn from one
or more namespaces, combined together by implementers, and optimized for a
particular local application.” [7]

A MAP is the elementary blueprint of a metadata instance. It describes the set
of metadata elements, policies, guidelines, and vocabularies defined for a particular
domain, or implementation. It also declares the metadata terms, information re-
source, application, or uses. A well-defined application profile documents schemes,
vocabularies, policies, and required elements, etc. [1, 9]. Application profiles for
metadata instances play a crucial role to provide the authoritative specification
of term usage, support, and document the evolution of vocabularies, facilitate
interoperability by informing domain consensus, encourage alignment of practice,
enable interpretation of legacy metadata and explain the structure of data to data
consumers [1, 7, 9]. A general overview of a MAP is given in figure 1.1.

1.2 The Singapore Framework for Dublin Core Application Pro-
files

The Singapore Framework for Dublin Core Application Profiles 1 is a framework
proposed for designing metadata applications. Singapore Framework ensures max-
imum interoperability and reusability by documenting applications. This framework
specifies a set of descriptive components necessary for documenting an applica-
tion profile and describing the relationship between these documented standards
domain models and semantic web standards. This framework establishes a basic
guideline for evaluating application profiles for completeness of documentation

1http://dublincore.org/specifications/dublin-core/singapore-framework/

1

Vocabulary 1

Vocabulary 3

Vocabulary 2

Metadata Applicat ion Profile

Combined and opt imized for a part icular local

applicat ion

Elements drawn from different vocabularies

like DC, DCTERMS, FOAF etc.

Metadata Instance

An instance of metadata based on the

applicat ion Profile

Figure 1.1: A general overview of a Metadata Application Profile

and confirms with the principles of web-architecture [5]. Singapore Framework is
illustrated in figure 1.2.

Singapore Framework defines a Dublin Core Application Profile as a packet of
documentation which consists of different components. They are :

1. Functional requirements, which describe the functions that the application
profile is support. Also acts as a basis of evaluating the application profile
for internal consistency and gives guidance on the aptness of the application
profile for a specific use.

2. Domain model, which defines the basic entities described by the application
profile and their primary relationships. Domain model defines a necessary
scope for the application profile.

3. Description Set Profile (DSP), which is a set of metadata records that are valid
instances of an application profile. The Dublin Core Description Set Profile
(DSP) offers a simple constraint language based on the DCMI Abstract Model.

4. Usage guidelines, which describe the application of the application profile

5. Encoding syntax guidelines describe any application profile-specific syntaxes
and syntax guidelines.

Singapore Framework also includes the other two components, Domain Stand-
ards, and Foundation Standards.

2

Figure 1.2: Singapore Framework for Dublin Core Application Profiles

1.3 Management of Application Profiles

Metadata application profile management can be separated into three distinct
stages. The first and the critical stage is planning and designing of an application
profile. In which domain experts design a domain-specific metadata application
profile by selecting vocabularies from different namespaces and combining them
to make it suitable for a specific local application. The next stage is creating and
publishing of this application profile, which involves creating human-readable
documentation and machine-actionable expressions of the application profile. This
stage is more technical than planning and designing. The third and final stage is
updating and maintaining application profiles. This third stage is a continuous
process which includes updating the versions of the application profiles along with
its development and maintaining changelings as well as ensuring the availability of
current and previous versions of the application profiles and different expression
formats.

3

Chapter 2

Status of Application Profile

2.1 Various Attempts in the Last Decade

Even though the idea of mixing and matching metadata elements was proposed
in 2000, a complete recommendation was presented by DCMI in 2004 as DCMI
abstract model of MAP [20]. In 2007, DCMI presented the Singapore Framework for
Dublin Core Application Profiles as a framework for designing metadata applications
for interoperability and for documenting for reusability [17]. As a centerpiece
of Singapore Framework, DCMI proposed DSP, a constraint language for Dublin
Core application profiles [17]. In 2009, Guidelines for Dublin Core Application
Profiles published and as a translator for DC DSP, MoinMoin Wiki Syntax for DSP
to integrate application profiles in webpages and wikis was introduced [5]. Other
than DCMI, MetaBridge project introduced a spreadsheet-based application profile
format named Simple DSP (SDSP) in 2011 [15]. The recent development was
an ongoing initiative by Karen Coyle, known as RDF-AP, which at the moment
utilizes CSV-based notations to create application profiles which are supposed to be
machine-actionable as well. [4].

2.2 Current Status and Availability of Application Profiles

The availability, maintenance, and distribution of application profiles are not
standardized. Identifying MAPs requires human involvement [14]. Curating and

Table 2.1: Attempts on application profile creation

Year Initiative
2004 DCMI Abstract Model DCMI Recommendation [20]
2007 Singapore Framework for Dublin Core Application Profiles [17]
2008 DCMI DC-DSP [16]
2009 A MoinMoin Wiki Syntax for DSP [5]
2011 MetaBridge Simple DSP [15]
2017 RDF-AP [4]

4

archiving MAPs are challenging and expensive due to this manual effort involved.
Various registry projects still depend on manual contributions than automated
approaches. Publication of application profiles is only in human-friendly formats,
which requires human involvement in the identification processes to distinguish
them from other documents. Extracting structured application profile information
from spreadsheets or PDF documents is difficult. Lack of versioning, changelogs,
and previous versions strongly affect the longevity and provenance of metadata
information. Absence of standardized publication formats restricts automated
harvesting of application profiles, which eventually limits the number of available
application profiles in various registry attempts. Metadata registries were intended
to use application profiles to promote and support interoperability and reuse [15].
Also, there is a lack of a standardized way to associate data with the MAP on which
it is based [23] [24].

2.3 Expression Formats for Application Profiles

MAP publication consists of both human-friendly and machine-actionable format.
The human-friendly format includes documentation of MAP in HTML, Spreadsheet,
PDF, and DOCX. Standard machine-friendly expression formats are RDF 1, OWL
2, and JSON-LD 3. Validation formats like Shapes Constraint Language (SHACL) 4

and Shape Expressions (ShEx)5 will not only help to validate the data but they are
capable of expressing entire application profile actionable as well. Due to limited
options in the mutual conversion of these expression formats, they are often created
independent of each other and thus makes the process expensive by demanding
sophisticated skills and time.

Detailed class diagrams, as well as documentation in different formats, will
make the application profiles cover more use-cases. In general, a well-defined
metadata application profile requires different expression formats to make it cover
the maximum recommendations from the Singapore Framework for Dublin Core
Application Profiles [17].

2.4 Authoring Formats for Application Profiles

An authoring format of application profile can be defined as a source for application
profile publication, which helps to generate different application profile expression
formats using a processor or converter. Authoring formats cannot be treated as an

1https://www.w3.org/RDF/
2https://www.w3.org/OWL/
3https://json-ld.org/
4https://www.w3.org/TR/shacl/
5http://shex.io/

5

Figure 2.1: Authoring formats and expression formats for application profiles

expression of an application profile, as they may not be a standard representation
of an application profile, and their capability to do so always depends on its
processors or designated tools. This clear separation between authoring and
expression formats is illustrated in Figure 2.1.

There were different attempts to define and develop authoring formats or
tools in application profile creation. The first notable attempt is by DCMI, along
with DCMI’s proposal for DSP as a constraint language for Dublin Core application
profiles, introduced a translator which used MoinMoin Wiki Syntax as an authoring
format for DSP to integrate application profiles in webpages and wikis was intro-
duced [5]. MetaBridge project introduced a spreadsheet-based application profile
authoring format named Simple DSP (SDSP) [15]. One of the recent developments
is an ongoing initiative named RDF-AP, which at the moment utilizes CSV-based
notations to author application profiles [4]. The BIBFRAME project from the Library
of Congress has developed two web-based profile editors named BIBFRAME Profile
Editor, which allows to modify or create profiles [3]. BIBFRAME editor is in mainly
intended to create the profiles of the BIBFRAME vocabulary but can be usable for
other profiles as well. Linked Data for Production 2 (LD4P2) project published a
modified BIBFRAME editor as a general online application profile authoring tool
named Sinopia Profile Editor [21].

All these stated authoring formats are not extensible. Extensibility of a format
is critical for its acceptance, which helps various communities to adopt a simple
base format and bring in changes from the domain-specific requirements. Also, it
will help to generate various standard formats from the same source document
without just depending on the mutually inclusive elements.

6

Chapter 3

Problems and Challenges in MAP
Authoring

3.1 Challenges in Metadata Application Profile Creation

Dublin Core Metadata Initiative (DCMI) defines one of the earliest guidelines with
Description Set Profiles (DSP), a constraint language for Dublin Core Application
Profiles based on the Singapore framework for application profiles. [17] Even
though there are definite needs and guidelines to create application profiles, espe-
cially machine actionable, the number of publicly accessible application profiles are
fewer than it should be. Also, there is a lack of availability of machine-friendly DSP.
One of the main reasons is because of the lack of simplified workflows or tools,
due to which the task of application profile generation is tedious and with fewer
incentives. Other significant challenges with application profiles are versioning,
change management, and machine-friendly changelogs. Application profiles are
often created with human visual-oriented tools such as word processors or spread-
sheets and serve the purpose of documentation other than being actionable. A
preliminary investigation over available application profiles shows a clear need for
simplified options to encourage metadata developers to adopt the actionable MAP
development.

3.2 MAP creation for various domains

Evolution of linked data and adoption of metadata is encouraging different com-
munities to extend their outputs to incorporate various metadata standards; in
order to find new applications, approaches, and insights on their data. Different
domain experts are already developing profiles suitable for their metadata applic-
ations. Developing MAPs are challenging for most of the domain experts as they
may not be well aware of the concepts involved in application profile creation.
Different communities have different levels of experience in the technical aspects

7

of application profit creation. A severe lack of guidelines on application profile
creation and publishing exists. Also, the limited number of well-defined samples
and initiatives to archive and curate application profiles is another blockade. There
is not any popular interoperable format or preprocessor for creating application
profiles. All these facts make application profile creation and expensive process
with minimal incentives.

3.3 Limitation of existing Authoring formats

There are not many authoring formats for application profiles, and the available
options are either minimal or specific to particular purposes. A general-purpose
application profile authoring format is not yet wholly proposed by any other
initiatives. Most of these authoring formats are either of limited functionality or
highly optimized for a specific purpose. For example, in the case of simple DSP,
the CSV input format is heavily optimized and simplified for encoding only bare
minimal application profile information. Authoring environments such as Bibframe
profile editor is useful for making the process simplified. On the contrary, bibframe
profile editor or its variant Sinopia profile editor 1 are restricting the users to stick
within the derived framework of bibframe profiles. Even though they are useful
in creating application profiles in general-purpose, it requires a significant level of
expertise in creating application profiles.

3.4 Provenance and Change logs

Creating and maintaining changelogs of application profile versions help to assure
the longevity of the metadata. The longevity of the schema is a significant part of
metadata longevity. The provenance of metadata schema should be documented
and managed for metadata preservation. [12]. If the changelogs are created in an
actionable format, it can be used for different purposes such as creating human-
readable changelogs to automated schema migrations. A record of application
profile changes is also a record of the metadata changes. Maintaining change logs
for different versions is as crucial as maintaining accessible formats of the versions
itself. Changelogs help to migrate datasets to new profiles or create crosswalks to
upgrade the instances. For LOD, changelogs help to update linked datasets as well.
Changelog permits efficient migration of instances by only migrating the changed
parts.

1https://profile-editor.sinopia.io

8

Chapter 4

Proposed Solutions

Upon a close examination of previous attempts to promote MAP development,
some of the shortcomings were identified. Moreover, YAMA format is derived
from the limitations of its predecessors. The most crucial challenge is to promote
MAP acceptability in diverse communities to enhance interoperability and reuse of
possible vocabularies.

4.1 Interoperable Formats

Lack of interoperable preprocessing systems for MAP is one of the prominent chal-
lenges. A preprocessor takes an input written using some simple language syntax
and output another format following the syntax of another language specifications.
A preprocessor extends the syntax of existing language by adding new syntactic
constructions. The user writes the input format using the extended syntax, and
then the processor translates it into one or more different formats. Some of the
popular preprocessors are Markdown to process HTML [6], reStructuredText to
process Python documentation [11]. Sass to generate CSS and CoffeeScript to
generate JavaScript.

There are well-defined standards and specifications to create metadata specific
markups and formats. For example, a MAP DSP can be represented in DC DSP
XML, RDF or human-friendly spreadsheets and CSVs. However, the interoperability
of DSPs is not assured, and there is no such preprocessor to handle the creation
of these formats in a simplified way with fewer efforts. The limited number of
application profile DSPs is mainly due to this reason.

4.2 Change logs and Roadmaps

Changelogs and roadmaps of application profiles are manually created and are
often incomplete or not actionable. Changelogs of most of the publicly published
application profiles are either available only as human-readable format or are

9

not maintained [12]. Integrating change log maintenance to application profile
creation workflows will help the maintainers to keep them in a seamless way as
well as generation of the various changelog formats can be automated. It can help
to reduce errors and efforts in creating changelogs.

4.3 Tooling

For the creation and management of application profiles, there are recommenda-
tions such as Me4DCAP which provides a guideline to scope definition, construction,
development, and validation[13]. However, tools or systems dedicated to MAP
creations does not exist. Usually, application profile maintainers have to depend on
various tools to generate specific formats. Dependency on different tools makes
the whole process tedious for most of the domain experts; as a result, application
profiles were authored in documentation format rather than machine-actionable.

4.4 Extendable Authoring Formats

A better authoring format, which includes the above-said solution, can be con-
sidered as the best and single-shot solution. Moreover, such authoring format
should provide a dedicated preprocessor for application profiles as well as various
similar formats. The best recommendation for such authoring format is, it should
act as an authoring environment as well as a preprocessing format, with various op-
tions to import, export or render different formats and packages without depending
on multiple tools or skills.

10

Chapter 5

YAMA: Yet Another Metadata
Application Profile

This study proposes a YAML based authoring formats named Yet Another Metadata
Application Profile (YAMA), an applicaiton profile authoring format to record,
modify and version the MAP creation tasks. A custom YAML specification is used to
hold various stages, levels, and releases of MAP.

The initial proposal was to define the MAP in a tabular matrix, but a tabular
form of records comes with its own limitations. Primarily, it is difficult to build
up semantics and hierarchical structure of the DSP in a single spreadsheet. The
tabular form represents data in repetitive cells and rows. This matrix form is not
nested and some additional efforts like splitting into multiple files or introducing
some special notations required to encode hierarchical data in spreadsheets. Also,
simple operations like diff or text comparison are complicated due to CSV’s nature
of holding multiple values in a single line. Eventually, YAML is adopted to represent
the MAP. YAML is flexible, understandable text-based data serialization format,
which makes it simple to integrate with version control systems like Git, as well as
simple text editors to modify and record application profile related changes. The
data expression capability of YAML is superior to that of CSV in many ways. For
example, CSV expresses only simple tabular data in rows and columns, but YAML
can represent complex data in simple key-value pairs to nested trees. Also, YAML
natively supports comments and blank lines without impacting the data, and this
makes it a suitable candidate as an authoring format. Being a text document, YAML
can be used as it is for parsing, but various spreadsheets formats may need to be
converted into CSV. YAMA can be easily created and maintained with text editors.

YAMA is not defined as a new standard of MAP, but YAMA is defined as an
easy to use preprocessor to create standard MAP formats. YAMA is intended to
be simple enough that domain experts can use it without extensive knowledge
on MAP. YAMA attempts to solve the absence of an application profile authoring
workflow. Considering the rising popularity of GitHub-based workflows, various

11

output formats and extensibility to various proposals like ShEx, DCAT, PROV and
eliminate the need of repetitive tasks in application profile maintenance. YAMA
is an intermediary format for generating or converting various existing standard
formats of application profiles. YAMA is usable in other requirements like Data
Catalog Vocabulary (DCAT) and CSV on the Web (CSVW), but not limited to these.

5.1 YAMA as an Authoring Format

Yet Another Metadata Application Profile (YAMA) is proposed by the authors as
an extensible authoring format for application profile, which addresses some of
the shortcomings of the previous proposals [25]. YAMA is intended to be simple
enough that domain experts can use it without extensive knowledge on MAP. YAMA
uses YAML Ain’t Markup Language (YAML), which is a robust human-friendly
data serialization standard with various implementations in most of the popular
programming languages and considered as a superset of JSON [2].

YAMA is also an attempt to solve the absence of an application profile authoring
workflow. Considering the rising popularity of GitHub-based workflows, various
output formats and extensibility to various proposals like ShEx, DCAT, PROV
eliminate the need for repetitive tasks in application profile maintenance. YAMA
is an intermediary format for generating or converting various existing standard
formats of application profiles.

YAMA is extensible with custom elements and structure. For example, custom
elements can be added to the document tree, as per the demand of the use case.
The only restriction is that custom elements cannot be from reserved element
sets. This will help to extend the capabilities of YAMA without any large-scale
implementation changes. Any such extension is possible within the scope of YAML
specification. YAMA is based on DC-DSP, and a minimal DC-DSP is mandatory to
express a MAP in YAMA. Along with the extensible key-values and structure YAMA
also includes a structured syntax to record modifications of a YAMA document
named as change-sets. YAMA change-sets can be used to record changes of a MAP
over any other versions. Change-sets are adapted from RFC 6902 JavaScript Object
Notation (JSON) Patch [18], with the changes marked as an action to a path. Every
change use ‘status’ as a reserved value to indicate status changes like ‘deprecation.’
This extensible nature of YAMA documents is explained in Figure 5.1.

5.2 YAML as a Promising Format

YAML Ain’t Markup Language (YAML)1 is a robust human-friendly data serializa-
tion standard with various implementations in most of the popular programming

1https://yaml.org/

12

Figure 5.1: Extensibility of a YAMA Application Profile

languages. As per the latest specification - version 1.2 2, YAML is considered as a
superset of JSON [2]. The strict adherence to readability makes YAML a superior
choice of data serialization format for manual creation and modifications. The
popularity and acceptance of YAML over JSON are growing in recent years due to
its flexibility to express structured data in a textual way without complex syntaxes.
Unlike CSV, YAML is friendlier with version control systems like Git and text editors.
Being an open format, it prevents any vendor locking on the documents and permits
the development of methods and systems to interact with the YAML documents
programmatically.

YAML is adapted as a format for projects like OpenAPI Specification (OAS)
3 which defines a standard interface to RESTful APIs [10], YARRRML which is a
human-readable text-based representation for declarative Linked Data generation
rules [8]. and Dead simple OWL design patterns (DOS-DP) 4 which is a simple
system for specifying OWL class design patterns [19].

Application profiles are supposed to be structured documents with a descriptive
logic. An Application profile written in YAML is structured without any complicated
processing. Also, the potential of comments, syntax formatting and highlighting
with modern text editors will help to keep the visual and logical organization of an
application profile considerably more comfortable. YAML can make a YAMA docu-
ment self-explanatory and by itself acts as a documentation for the development of
MAP.

5.3 Extensibility of YAMA

Extensibility of a format is the critical element for its acceptance, similar to the
philosophy of Dublin Core. Extensibility of an application profile is helpful for

2https://yaml.org/spec/1.2/spec.html
3https://www.openapis.org/
4https://github.com/INCATools/dead_simple_owl_design_patterns

13

various communities to adopt a simple base format and bring in changes from the
domain specific requirements. Also, it will help to generate various standard formats
from the same YAMA document without just depending on the mutually inclusive
elements. As a use case, application profile creators can use YAMA as a single
source preprocessor to generate various file types, formats, or specifications such
as but not limited to DC-DSP, Bibframe JSON or Interactive web documentation.

YAMA is extensible with custom elements and structure. For example, to create
constraints, elements from ShEx can be used in the form of structured YAML and
custom elements can be added to the document tree, as per the demand of the use
case. The only restriction is that custom elements cannot be from reserved element
sets. This will help to extend the capabilities of YAMA without any large-scale
implementation changes. Any such extension is possible within the scope of YAML
specification. There is also a user variables section which is a straightforward
approach to add any user-defined variables without altering the structure of a
YAMA document.

5.4 Expected outputs for YAMA

YAMA document has different components which act as part of different output pur-
poses. YAMA document has mandatory metadata for application profiles, section to
record application profile, optional changesets to record changes between different
versions and optional changelog for recording actionable changelog information.
These sections can be used in various purposes, for example application profile
metadata can be used to ensure provenance of the metadata the application pro-
file. Same way ChangeSets and changelogs in congestion with the administrative
metadata of the application profile can be used to generate longevity information
such as human-readable and machine actionable changelogs as well as different
versions of the application profile. However the main functionality of YAMA docu-
ment is to act is an authoring format for application profiles. This can be achieved
by combining the administrative metadata part of the application profile and the
application profile section of the document. This clearly illustrates the capability
of YAMA to be an authoring format for metadata application profiles, as well as a
suitable way to ensure provenance and longevity.

A detailed illustration of this components to output mapping is given in figure
5.2.

5.5 Possible use-cases for YAMA

YAMA acts as a meaningful and actionable authoring tool for MAP. As a preprocessor
format, it serves as a source for MAP. A source format enhances the maintainability

14

of MAPs. Being YAMA, a structured textual format, YAMA fits well with collaborative
development environments and version control systems. That makes the change
tracking convenient with basic diff operations to advanced continuous integration
systems. As a structured authoring format, YAMA makes it easy to validate the
MAP and helps to eliminate errors and logical complexities.

YAMA’s capability of recording optional change records will act as a develop-
ment roadmap and will permit the generation of previous versions, actionable or
human-friendly change logs as well as formats for metadata crosswalks and migra-
tions. YAMA is also suitable to generate human-friendly documentation from the
serialized source, with the help of templating or other means. As a template-first
system, It is easy to customize the output formats. YAMA’s extensibility helps to
tailor it to suit for different community/use cases. Being TAML, a text-based format,
YAMA is highly interoperable with various text editors/tools.

5.6 Advantages of YAMA as an authoring format

As an authoring format, YAMA significantly reduces the efforts required in au-
thoring and maintaining application profile. YAMA helps to record an application
profile into a highly flexible and extensible data-serialization format. Also allows
generating the expressions of an application profile in various standard expressions,
such as RDF, XML, ShEx, SHACL, and JSON. This simplification helps users with
moderate skills in these formats to create application profiles with minimal efforts.
As a result, the barriers involved - such as the cost, expertize, and other challenges
- in application profile creation can be lowered.

Instead of proposing a new format for application profile, YAMA helps to
record the core elements required to produce various existing standard formats
and generate them. This expressions are created either using simple templates for
the normal user or programmatically for advanced users. The significant advantage
of YAMA is, it can be a single source for different expressions. A single source
makes the maintenance of application profiles more comfortable than maintaining
multiple independent formats.

15

YAMA Document
Administrat ive

Metadata

AP Metadata

Applicat ion Profile

(RDF, XML, JSON)

Change Log

Documentat ion

(HTML, PDF)

Applicat ion Profile

ChangeSets

Change Logs

Provenance

Administrat ive

Metadata

Longevity

AP Versions

AP Changelog

AP Metadata

AP Authoring

Applicat ion Profile

Expected outputs for YAMA

Figure 5.2: Components of YAMA and their expected outputs

16

Chapter 6

YAMA Syntax and Specifications

6.1 Expressing Application Profiles in YAMA

YAMA specification defines textual syntax and specifications for writing YAMA
documents in a natural text form. YAMA syntax is based on YAML 1.2 specification.
YAMA is parsable with any YAML 1.2 parser, but processing capabilities of YAMA
documents are limited to YAMA specific implementations. A complete specification
for YAMA format is accessible at https://purl.org/yama/spec/latest.

A YAMA document should strictly follow YAML specifications. The document
should start with a valid YAML declaration, and YAMA version should be mentioned
before starting the structure of the document. If a valid YAMA specification version
is not declared, then the last available version is assumed to be used.

YAMA document is structurally organized as Description Set metadata, namespaces,
descriptions, statements, constraints, change sets and user defined values.

Metadata section is intended to express necessary information of the specific
MAP. Generally, administrative metadata of the MAP is expressed as a key-value pair.
Important property from this section is the version and creator. This information
is used in generating publishable formats and creating provenance information as
well as the changelog of the MAP.

Single resources are described under descriptions with a unique ID for each
description. Every unique descriptions ID can have multiple key-value pairs to
describe that resource. A statement is a single data element used to describe a
resource that is defined as a description. The statement defines the possible values
and any other constraints. A description can have one or more statements, but
descriptions without any statements are not actionable. Constraints are reusable
components and can be callable through their unique id. Multiple constraints can
be mixed and matched to satisfy complex requirements, as well as constraints,
are permitted to include custom key values or structures. Structure of a YAMA
document is explained in figure 6.1 and example code for a YAMA document is
given in figure 6.2.

17

Figure 6.1: Structure of YAMA Document

18

%YAML 1.2

#%YAMA 0.8
meta:

id: dcat-ap
title: DCAT Application Profile for Data Portals in Europe
version: 1.2.1
date: '2019-05-28'
subject: Application profile for data portals in Europe (DCAT-AP)
license: ISA Open Metadata Licence v1.1
creator: DCAT-AP Working Group
website: https://github.com/SEMICeu/DCAT-AP

rest of the section is omitted in this example

namespaces:
adms: http://www.w3.org/ns/adms#
dcat: http://www.w3.org/ns/dcat#
dct: http://purl.org/dc/terms/

rest of the section is omitted in this example

constraints:
voc_dataset_theme_vocabulary: &voc_dataset_theme_vocabulary

type: vocabulary
vocabulary_name: Dataset Theme Vocabulary
URI: http://publications.europa.eu/resource/dataset/data-theme
notes: The value to be used for this property is the URI of the vocabulary

itself,↪→

i.e. the concept scheme, not the URIs of the concepts in the vocabulary.

rest of the section is omitted in this example

statements:
pr_dataset: &pr_dataset

label: dataset
property: dcat:dataset
range: dcat:Dataset
description: This property links the Catalogue with a Dataset that is part of

the Catalogue.
min: 1
max: n

rest of the section is omitted in this example

Figure 6.2: An example of a YAMA document

19

ChangeSets

ChangeSet_A

ChangeSet Metadata

Change_A

Action / Path / Value Status

Change_B

Action / Path / Value Status

ChangeSet_B

ChangeSet Metadata

Change_C

Action / Path / Value Status

Change_D

Action / Path / Value Status

Figure 6.3: Structure of YAMA ChangeSets

6.2 Changesets in YAMA

YAMA also proposes syntax and specifications of Change-Sets. The change-sets
concept can be explained as a structured syntax to record modifications of a YAMA
document. YAMA change-sets can be used in preprocessing existing documents to
create a modified version or use to record changes of a document over any other
versions. Change-Sets is inspired from RFC 6902 JavaScript Object Notation (JSON)
Patch [18] , with the changes marked with an action to a path with an additional
special reserved value as ‘status’ to indicate status changes like ‘deprecation.’ The
structure of YAMA changeset is expressed in figure 6.3, and an example code
snippet for changeset is shown in figure 6.4.

6.3 YAMA Use Cases and Aims

There are different use cases for a preprocessor in MAP creation; some of the
possible scenarios can be listed as:

1. Acts as a meaningful and actionable authoring tool for MAP.

2. A preprocessor format acts as a source for MAP, which enhances the maintain-
ability of MAPs.

20

changesets:
cs_20181108_01:

version: 1.2
previous_version: 1.1
date: 2018-11-08
changes:

ch_20181108_01:
op: replace # remove, add, replace, copy, test
path: /statements/pr_type/max
value: n
Old value; applicable for replace, remove and copy
previous_value: 0
extending a change
notes: |

UpdatesCardinality: 0..1 -> 0..n
This property can be repeated in the
case that multiple licence types
apply to a licence document.

URI: dct:type
label: Recommended property (Licence Document)
issue: [DCAT-AP-1, "https://github.com/SEMICeu/DCAT-AP/issues/1"]

Figure 6.4: Example of YAMA ChangeSet

3. A structured textual format, which fits well with collaborative development
environments and version control systems, and makes the change tracking
convenient with basic diff operations to advanced continuous integration
systems.

4. A structured preprocessor format makes it easy to validate the MAP and helps
to eliminate errors and logical complexities.

5. A preprocessor with optional change records will act as a development roadmap
and will permit generation of previous versions, actionable or human-friendly
change logs as well as formats for metadata crosswalks and migrations.

6.4 Integrating, Extending and Maintaining YAMA

YAMA is expressed in YAML, which is a simple text format. Application profile
developers can use any standard text editor to create the YAMA format. Syntax
highlighting, prettification, validation, and linting can be achieved with various
tools. YAML fits well with Git-based workflows and is capable of handling comments
as well as blank lines for readability. Using these featured, YAMA can be used as
a documentation and roadmap of application profile development. YAMA format
can be programmatically generated from spreadsheets or other data formats. Some
of these approaches were attempted to demonstrate through the proof of concept
tool-kit.

21

6.5 Recommendations and Best Practices

YAMA documents should be versioned to utilize its capabilities on versioning,
changesets, and changelogs. Semantic versioning (SemVer) 1 is highly recom-
mended. Also, calendar versioning (CalVer) 2 can be considered if it fits the
requirements. With the proper version number, YAMA processors can automate
various versioning related tasks as well as can generate publishable versioned
output formats. The version number should be used in output file(s) naming
convention as well. A version named file is self-explanatory in URLs as well as
Git-based authoring systems. Changesets specification strictly adheres to version
numbers and a semantic logic on versioning. In semantic versioning approach
MAJOR.MINOR.PATCH is considered in MAP as patch versions do not break any MAJOR,
MINOR definitions with forward and reverse compatibility. It can be used internally
as part of the development and for fixes and corrections related to typos and or less
significant changes. However, public releases can follow MAJOR.MINOR approach
with a MINOR being compatible within the same MAJOR releases. Changes which
breaks the compatibility should strictly follow a MAJOR version change.

Various standard formats of application profiles are recommended to publish
as a single package, accessible in a persistent web URL, which includes the profile
id, version, format, and extension in a self-explainable way.

example :

http://example.com/ap/my-book-case_1.4/my-book-case_1.4_dsp.rdf
http://example.com/ap/my-book-case_1.4/my-book-case_1.4_documentation.pdf
http://example.com/ap/my-book-case_1.4/my-book-case_1.4.shex

1https://semver.org/
2https://calver.org/

22

Chapter 7

YAMA Toolkit

A proof of concept toolkit is developed as a part of this research, in order to explain
the practicality of the proposed YAMA format. This proof of concept toolkit is not
intended to be a full-fledged solution of using YAMA, rather a demonstration of how
some of the features proposed in YAMA can be useful. As YAMA is compatible with
YAML 1.2, we anticipate that a YAMA document can be completely independent
of a specific implementation but a highly adaptable format for any languages
or toolkits. YAMA is intended to use or incorporate within existing workflows
or workflows which requires highly customised outputs. This toolkit is under
continuous development, and enhancements and fixes will be included as the
acceptance of the format increases.

7.1 Python module & Command Line Interface

The proof of concept toolkit is developed as a Python package to work with YAMA
specification. This Python package can be used as a module for Python application
development, or as a command line tool to work with YAMA format files. This
toolkit can parse a YAMA format and return structures applicant profile data or
render the structured application profile using custom or built-in Jinja2 templates.
Python package is available at https://purl.org/yama/tools/pyyama. With the
use of the python package, other template system or advanced libraries such as but
not limited to RDFLib 1 and PyShEx 2 can be used to process the parsed structure
to generate or manipulate the formats programmatically.

A command line interface is made available within the Python package. This
commandline interface is supposed to be used within congestion of other tools for
example linting or formatting the output or included with the git automation. Still
this CLI tool is a proof of concept of the actual capability of YAMA format. Some
bare minimal functions, such as generating basic formats or rendering using Jinja

1https://rdflib.readthedocs.io
2https://github.com/hsolbrig/PyShEx

23

templates. Functionality of this tool will be improved as long as the Python package
gets updated.

7.2 Templates and generators

YAMA helps to generate outputs programmatically or using temples. Templates are
the easiest option for domain experts, who are less experienced in various output
formats. Authors experimented with temples for various format and observed that
the output is as good as programmatically generated counterparts. This approach
makes customization of output easier for various communities by rather editing
the temples than going through any programming challenges.

Templating based approach is helpful for creating actionable formats like
RDF-OWL, XML and JSON-LD. Also, the templates make it easy to render human
friendly HTML pages as a web publication medium and can be converted into
printer friendly formats like PDF. For advances users, various tools can be used to
achieve desired output formats.

To maintain simplicity, but to ensure extensibility and customization capabilit-
ies YAMA Python toolkit can use templates to generate any formats from the parsed
structured application profile data. Templates permit to generate virtually any
formats without the complexities of dealing with complex libraries. YAMA toolkit
uses Jinja2 3 templates by default. Jinja2 a full featured and one of the most used
template engines for Python. It is fast, widely used, and secure with a configurable
syntax and logic [22]. Originally Jinja2 is designed for HTML templates, but it
is suitable for all kind of text-based formats. Using Jinja2 templates, not only
HTML but complex RDF or JSON data files can be generated. Some of the standard
formats are provided as ready to use templates. The tool-kit will be updated with
more templates depending on various use-cases. An example for a simple Jinja
template is given in 7.1.

Advanced users can use any Python templating systems to extend the package’s
templating, or custom python scripts to render the structured AP without templates.
The package can optionally use generator scripts other than templates, which are
python scripts to generate output formats or packages programmatically without
templating. A generator can use complex programming logic or depend on external
libraries or programs to generate the desired output.

3http://jinja.pocoo.org/

24

Figure 7.1: A basic Jinja template example

25

Chapter 8

Related Works

Proposal of YAMA as an extensible authoring format for metadata application
profiles, is based on the understanding and analysis of some of the previous and
related studies and projects. Some of the important attempts to define application
profiles and to help creating application profiles where reviewed as part of this
research. These proposals were influenced the idea of YAMA, also we attempted to
solve most of the shortcomings of these attempts. YAMA has its own differences
and advantageous compared to most of these attempts.

8.1 DCMI Description Set Profiles

The Dublincore Metadata Initiative Description Set Profile describes an information
model and XML expression of a Description Set Profile (DSP), based on the DCMI
Abstract model. A DSP is a means of describing constraints on a description set. It
constrains the resources that may be described by descriptions in the description
set, the properties that may be used, and the ways a value surrogate may be given.
A DSP can be used as a formal representation of the constraints of a Dublin Core
Application Profile, configuration for databases, and metadata editing tools [17].

Even though, DSP does not act as human-readable documentation or definition
of vocabularies as well as version control of the metadata instance. A DSP contains
only syntactic constraints and need to combine with human-readable information,
usage guidelines and version management for using as an application profile. Basic
structure of DSP is expressed in figure 8.1.

YAMA built on top of DCDSP, and strictly adhere to any future updates on
DCDSP. The basic structure of YAMA is DCDSP and it attempts to extend the DSP to
include changes logs, versioning and human readable documentation generation.
DCDSP doesn’t define any specific authoring environments or formats, but this
research is more on defining an extensible authoring format.

26

DSP

Description
Template

Statement
Template

Literal
Statement

Non-Literal
Statement

Resource

Property

Language
Syntax Encoding

Scheme
Value URI Vocabulary Endoding

Schme
Value String

Language Syntax Encoding

Figure 8.1: Basic structure of DC Description Set Profiles, a constraint language for Dublin Core
Application Profiles

8.2 Metabridge Simple DSP (SDSP)

Metabridge 1 is a metadata schema registry to support sharing of metadata schemas
and promote reuse of metadata schemas and support metadata interoperability.
Metabridge is based on the Singapore Framework of application profiles. Metabrige
project defined Simple DSP (SDSP) a simplified DSP authoring format in spread-
sheets 2. Metabridge SDSP can be processed with the metabrigde web service to
obtain RDF expression as well as the website can display the application profile in
a human friendly manner [15].

YAMA is highly influenced by the simplicity of SDSP and a continuation of
attempting more machine actionable and structure format to simplify the authoring
of application profiles. This also intended to solve the limitation of a tabular format
to express a structured document like application profile. Also YAMA can be parsed
without any custom implementation as it is YAML 1.2.

8.3 Me4DCAP

Me4DCAP aims the design of a method for the development of Dublin Core Ap-
plication Profiles. Me4DCAP can be considered as a starting point to Singapore

1https://metabridge.jp
2http://www.soumu.go.jp/main_content/000132512.pdf

27

framework for DCAP and integrates principles from the modes of the metadata
community concerning DCAP development and software development processes
and techniques. Me4DCAP establishes a way for the development of a DCAP such
as, the activities involved in application profile creation, when they should take
place, how they interconnect, and which deliverables they will bring about. It also
suggests which techniques should be used to build these deliverables [13].

Me4DCAP defines only the methodes involved and deliver a theoretical frame-
work for the application profile creation. The concepts of an extensible authoring
format is inspired from the methods from Me4DAP. However, Me4DCAP doesn’t
resolve the challenges involved in authoring formats or authoring workflows for
application profiles.

8.4 IMI Data Model Description (DMD)

Data Model Description (DMD) 3 is a package to explain the data model. DMD is
developed as part of IMI(Infrastructure for Multilayer Interoperability) Common
Vocabulary Framework to describe common terms and their relationship in order
to enhance the interoperability of open data and Digital Government in Japan.
DMD is created to share the data model and to unify the data model to ensure
data interoperability and utility value. DMD also plays the role of bridging the
gap between humans and computers by providing a machine and human readable
package of data model definition. A translated diagram 4 to explain the DMD
package structure is given in figure 8.2.

DMD is not adhering to Singapore framework; also, it is not a complete
application profile. DMD has a well-defined editor and related tools as an authoring
environment 5. The package concept of DMD influences the package concept of
YAMA best practices, in delivering Application Profiles as a package with different
expression formats.

8.5 Bibframe Profile Editor

Library of Congress Bibframe Profile Editor 6 is a graphical profile editor developed
for the specific needs of Bibframe community to modify existing profiles or to
create a new profile. Bibframe editor is mainly for the profiles of the BIBFRAME
vocabulary, butusable for other profiles as well. See figure 8.3.

3https://imi.go.jp/goi/datamodel-about/
4https://imi.go.jp/contents/2019/02/DMDSpecification_V301_20190228.pdf
5https://imi.go.jp/goi/dmd-editor/
6http://bibframe.org/profile-edit/#/profile/list

28

DMD Header (JSON-LD)
Metadata

List of files

Mapping File

Documentat ion

ExampleIMI Document definit ion
Data Model

Files describing data
model in XML format

(Opt ional)
(XML Schema)

Files describing data
model in RDF format

(Opt ional)
(Data Shape)

Data Model

DMD

Figure 8.2: Package structure of DMD (Translated)

Figure 8.3: DCAT-AP in BIBFRAME Profile Editor

29

Chapter 9

Comparison & Evaluation

To evaluate the advantage of YAMA as an extensible authoring format for applica-
tion profiles, three different formats were compared. They are Simple DSP [15],
Bibframe Editor [3] and YAMA [25]. These three proposals were intended to
improve and simplify the process of metadata application profile creation. The
three formats use spreadsheets, web interface, and text editor as an authoring
environment to express the source. Detailed comparison of these three authoring
formats is given in Table 9.1.

One of the major public application profiles, The DCAT Application Profile
(DCAT-AP) for data portals in Europe [26] was selected as sample application pro-
files for the evaluation. The selection is based on its popularity, active maintenance,
and the availability of previous versions. DCAT-AP is released as human-readable
documentation as well in different machine actionable expression formats such
as JSON-LD, RDF and SHACL. Since the source of this application profile is not
available, it was assumed that DCAT-AP is created not using any authoring tools
but rather manually using word processors and editors for individual formats. To
conduct this evaluation, the authors attempted to recreate DCAT-AP using all three
authoring formats and used the created source to generate standard application
profile expression formats with corresponding tools. This recreation process used
human-friendly documentation of the application profiles and tried to include
maximum information as the corresponding authoring format permits.

An analysis of the outputs was conducted by comparing the generated ex-
pression formats to its originally published versions and documentation. This
analysis aimed to identify if an extensible authoring format can express real-world
application profiles better than its non-extensible counterparts. The evaluation is
performed by comparing the authoring process with these formats, and the extent
of information these formats could reproduce from the documentation.

30

Table 9.1: Feature comparison of three authoring formats used for evaluation.

SDSP Bibframe YAMA
Based on DC-DSP Bibframe DC-DSP
Format CSV JSON YAML
Standard RFC-4180 RFC-8259, ECMA-404 YAML 1.2
Strict to standard No Yes Yes
Comments Yes No Yes
Blank lines Yes Yes Yes
Line Diff Partial Yes Yes
Standard library compatibility Partial Yes Yes
Native logic No Yes No
Text editor compatibility Partial Yes Yes
Native Syntax highlighting No Yes Yes
Custom Editor No Yes No
Proposed Editor Spreadsheet Bibframe Profile Editor Text Editor
Schema Validation No Possible Possible
Readability Low Low High
Extensible No No Yes

9.1 Results

Three authoring formats were used in creating a known application profile (DCAT-
AP) sources from the documentation and their capability to include the documented
application profile features and details were evaluated. The results shown from the
investigation can be categorized into a) the capability of including details from the
documentation, b) convenience as an authoring format, c) capabilities of producing
relevant expression formats.

Three of these formats could represent part of the documentation but mostly
the textual explanations and general sections form the documentation is ignored
for the convenience, with an assumption that it is manually maintained. All
three authoring formats are initially designed for the Dublin Core Application
Profile (DCAP), and the application profile evaluated was not entirely Dublin Core
Application Profiles. However, for the evaluation, the authors attempted to include
maximum information without altering the DCAP structure, wherever possible.

A general observation from the expression capability can be summarized as
all three formats could express the essential elements from the documentation
and simple DSP could express the minimal information of the AP, and could not
express most of the components from the documentation. BibFrame Profile editor
could express the full application profile, but semantics including the classes and
its statements had to be represented as resources and statements. Also, specific
hierarchical structures such as ‘mandatory’, ‘recommended’, and ‘optional’ status of
the classification of the statements was skipped and represented the application
profile structure more specific to BibFrame. YAMA is extensible due to its straight
adaption of YAML, so every section from the application profile documentation

31

Figure 9.1: Classes from DCAT-AP shows extensibility of YAMA

could be included, and custom names could be used for the keys from the profile’s
own naming conventions. For an example, part of the document is shown in Figure
9.1.

With respect to the editing process involved, SDSP is found to be relatively easy
due to its spreadsheet-based nature which is expressed in CSV, and a spreadsheet
editor was used in the process. However, BibFrame Profile Editor is a direct
application profile editor with an interactive web-based user interface and advanced
suggestion systems to help the profile creation process. Also, BibFrame profile
editor supports selecting vocabularies for pre-populating the fields as well as it
permits to edit the application profile in a well-structured way. Both in SDSP and
YAMA, the structure of the profile is logically built through the syntax specification,
but in BibFrame editor the structure is built through visual interaction. A screen
shot of the BIBFRAME profile editor is shown in Figure 8.3.

As part of the evaluation, two different sets of use-cases were identified. The
first set of use-cases, which are general for an application profile authoring format,
and the second set is about extensible authoring formats. All three authoring
formats in this study were compared against these use cases. Detailed results
for the comparison of the first set is given in Table 9.2, and the comparison for
extensible authoring format use cases are in Table 9.3.

32

Table 9.2: Comparison of general use cases for application profile authoring formats.

Use-cases BIBFRAME
Profile
Editor

Simple DSP
(SDSP)

YAMA

Acts as a meaningful and
actionable authoring tool for
MAP.

Yes (Web UI) Yes (CSV) Yes (YAML
is
actionable
and human
readable.)

A preprocessor format acts as a
source for MAP, which enhance
the maintainability of MAPs.

Yes (Import
and Edit
Bibframe
JSON)

Yes (CSV) Yes (YAML
is a main-
tainable
format)

A structured textual format,
which fits well with collaborative
development environments and
version control systems, and
make the change tracking
convenient with basic diff
operations to advanced
continuous integration systems.

Yes (JSON is
less human
friendly, but
structured
and maintain-
able)

Limited
(Limitations
of tabular
format is
applicable in
version
control
systems.)

Yes (YAML
is
structured
and suitable
with version
control
systems

A structured authoring format
makes it easy to validate the
MAP and helps to eliminate
errors and logical complexities.

Yes (Bibframe
Editor is
suitable to
limit errors.
And JSON
files can be
validated.)

No (CSV
formats has
limited
support with
schema
validation.)

Yes (Any
YAML
schema
validator
can be
used.)

An authoring format with
optional change records will act
like a development roadmap and
will permits generation of
previous versions, actionable or
human-friendly changelogs as
well as formats for metadata
crosswalks and migrations.

No No Yes
(ChangSet
format
permits
mainten-
ance of
actionable
changelogs.)

33

Table 9.3: Comparison of use cases for extensible MAP authoring formats.

Use-cases BIBFRAME
Profile Editor

Simple DSP
(SDSP)

YAMA

A authoring
format to
generate
human friendly
documenta-
tion.

No No Yes (Using templates
suitable for required
human friendly formats.)

A template
driven system,
to customize
the output
formats.

No(But the JSON
file can be
programmatically
parsed to use with
templating
systems.)

No (Separate
logical parser
and a
templating
system are
required.)

Yes (YAMA toolkit
natively supports Jinja2
template system. As well
as the structure of YAMA
is optimized for template
based output.)

Extensibility of
the format to
customize it to
suit for
different
community/use-
cases.

No(Limited to the
scope of BibFrame
community.)

Limited
(Communit-
ies can use it
but
extensibility
is not
supported.)

Yes (YAMA permits
extending or adding
custom key-values in the
YAML structure, as per
the template
requirements)

Inter-operable
with various
editors/tools

Limited (The
output JSON can
be edited in any
text editors, but
intended to work
with the web-ui.)

Limited
(Editable as a
spreadsheet,
but difficult
to use with
text editors.)

Yes (YAML is editable in
any text editor and all
popular text editors
support, highlighting
and proper indenting.)

Adherence to
Singapore
Framework

No (Only basic
application
profile.)

No
(MetaBridge
can generate
owl format.)

Partial (Templates and
generators can cover
most of the Singapore
Framework aspects.)

34

Table 9.4: Support for provenance description

Feature SDSP BIBFRAME YAMA
Administrative Information No Limited Yes
Version Details No No Yes
Release Date No Yes Yes
Change Records No No Yes
Change Logs No No Yes

9.2 Versioning, Changelogs and Provenance

Provenance information is vital for application profiles. Maintaining change logs
of application profile versions help to assure the longevity of the metadata. The
longevity of the schema is essential for metadata longevity. Metadata schema
provenance should be documented and maintained for the preservation of metadata
[12].Application Profile should provide sufficient administrative information, such
as creator, date of release, version, and usage rights. Versioning of the application
profile is crucial as it is a record of an application profile as well as metadata
changes. Keeping changelogs might help to migrate data-sets to new profiles
or create crosswalks to upgrade the instances. For Linked Open Data (LOD),
changelogs help to update linked datasets as well.

As an extensible format, YAMA can express version details with custom ad-
ministrative information of the application profile. Also, YAMA records changes in
a machine-actionable way, as well as readable changelogs. From the evaluation,
it is clear that YAMA has the advantage of expressing, versioning, administrative
details, release dates, change logs as well as actionable change records in the form
of changesets. A tabular representation of a comparison of provenance among the
tree authoring formats are provided in Table 9.4.

35

Chapter 10

Discussion

YAMA is developed to be a direct adaption of DC-DSP. It is heavily inspired by the
Simple DSP (SDSP) format developed for the MetaBridge project [15]. YAMA is
an attempt to promote the acceptance of application profile concepts to various
communities with less technical expertise. As a simplified format, it is not free from
the limitations of expressing complicated application profiles or use cases. However,
advanced users can still create them manually or use YAMA programmatically to
overcome such limitations. Improvements for the YAMA specification and toolkit is
being investigated. The modular structure is expected to expand to more object-
oriented design compatible with the simplified format. Also, the toolkit will include
some of the standard libraries to provide to deliver some of the advanced features.

Even though YAMA is efficient in authoring application profiles, YAML format
and the structure could pose a challenge to editors. In other words, the ideal user
of YAMA would need to be comfortable editing YAML directly, that requires the
users to have the expertise of using a real text editor.

The evaluation suggests that authoring formats can significantly reduce the
overall efforts in application profile creation as well as in compelling production
of different expression formats. Three different types of authoring formats where
evaluated and a considerably larger application profile is recreated using them.
Compared to the other two constrained formats, as an extensible authoring tool for
application profile, YAMA could express most of the documentation in an actionable
manner. Limitations from the other two formats lead in dropping out most of the
elements from the documentation and thus, permitting only a part of the human-
readable documentation to be recreated. In YAMA, custom key-value pairs were
used to include some aspects of the documentation, but in SDSP the structure
is constrained so that it cannot be treated as an extensible option to add any
custom information other than those specified in the SDSP structure. Similarly, the
BIBFRAME profile editor does not permit to interact with the underlying structure
and limits the user to follow a specific input process which the GUI is designed for.

The authors could programmatically obtain a structured application profile

36

definition from the YAMA document with native YAML processing libraries. How-
ever, SDSP required MetaBridge service to generate RDF expression of the applic-
ation profile. BIBFRAME editor’s output is JSON, and it could be parsed using
standard libraries; however, to create different formats, advanced processing of the
data is required, and it is possible but tedious.

10.1 Continuation and future plans

YAMA specification is a living standard, and it is getting updated as per the available
use-cases. Continues updates and maintenance of YAMA specification as well as
improving YAMA toolkit is planned. Activities to develop more examples, templates,
and toolkit extensions will be continued.

Sample files created as part of this study is published at:
http://purl.org/yama/examples.

37

Chapter 11

Conclusion

MAP is getting a lot of popularity and acceptance in different communities. YAMA
format is an attempt to express the idea of simplifying the tooling to support some
of the tedious processes involved in creating and maintaining application profiles.
Compared to its predecessors, YAMA provides an authoring environment, format,
and provision for a toolkit for application profiles. Evolution of proposals like ShEx
and DC-DSP2 1 give application profile more use cases and functions.

The developments in LOD promote data exchange and interoperability of
data among communities. Application profiles are the most suitable means for
ensuring interoperability and bringing in better use cases for data. Introducing
easy to create and maintainable authoring formats will help different communities
to adopt application profiles to express their data. There are evolving use cases for
application profiles other than just explaining the metadata instance. Extensible
authoring formats are expected to provide much more coverage for these emerging
use cases, and it will also help communities to generate different formats or type of
documentation from a single source which may serve much more purposes than
just creating application profiles. The scope of an extensible format is futuristic,
and also it can cater to various other demands related to metadata instances. Easy-
to-use tools will also promote domain experts to create and publish application
profiles in different machine-actionable expressions as well.

1https://github.com/dcmi/dcap

38

Acknowledgement

First and foremost I want to thank my wonderful advisors Tetsuo Sakaguchi and Mitsuharu Nagamori.
It has been a great experience to be their student. I appreciate all their contributions of time, ideas,
expertise, care, and patience to make my master’s program productive and enjoyable and also for
granting me unconditional academic and personal freedom. They perfectly shaped my random
thoughts into actionable concepts and nurtured them to meaningful research. I am very thankful to
the two of them for undertaking this venture of leading me through this thesis.

I am wholeheartedly thankful to Prof. Shigeo Sugimoto for his guidance, helpful comments,
informative pointers, and especially for his constructive criticisms.

I express my sincere gratitude to Tom Baker of DCMI for his support, feedbacks, and time,
which significantly helped me in improving this research project. I am also indebted to Karen Coyle
for her discussions, and ongoing continues efforts to improve DC-DSP, which gave a solid future
and direction for this study.

The members of the MDLab have contributed immensely to my personal and academic time at
Tsukuba. The group has been a source of friendships as well as sound advice and collaboration. I
would like to mention specially and thank both of my tutors, Ryota Kinjo and Yuki Yamanaka for
their understanding and helps in the last two years of my student life. I am also thankful to Shohei
Toyota for sharing his valuable expertise, which helped a lot in developing some of the fundamental
knowledge required for this research. My hearty regards for various helps from Mihara Tetsuya and
Chiranthi Wijesundara.

I sincerely thank Prof. Morishima Atsuyuki and other members of the combined lab seminars
for their comments and involvements during the presentation sessions.

This acknowledgment won’t be complete without mentioning Dr. Beena Cherukuth for being
my mentor over a decade and her influences in developing keen academic interests in Library and
Information Science. My awesome dear people - Vijoy, Jollyettan, Rahman, Rajenish, Vava and my
mother - for being at my side. In the absence of them, I would not be where I am today.

I dedicate this thesis and the time I spent for this Master’s program to my late father - the
coolest teacher I ever knew - for always encouraging me to pursue higher education and forced me
to believe in ’better late than never.’ I love you, you are the rock-star of my life ;).

At last but not least, my personal achievements entitled to this research are credited to my
partner Deepa for her love, support, encouragement, companionship, and debates, which helped
me to overcome all hardships and finally, made this thesis possible.

Nishad, T R
University of Tsukuba

July 2019

39

References

[1] Murtha Baca. Introduction to Metadata. en-US. InteractiveResource. July 2016. URL: http:
//www.getty.edu/publications/intrometadata (visited on 04/10/2019).

[2] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Ain’t Markup Language (YAML™)
Version 1.2. Oct. 2009. URL: https : / / yaml . org / spec / 1 . 2 / spec . html (visited on
04/10/2019).

[3] BIBFRAME Profile Editor. 2018. URL: http://bibframe.org/profile-edit/ (visited on
06/14/2019).

[4] Karen Coyle. RDF-AP. original-date: 2017-01-12T15:38:41Z. Jan. 2017. URL: https://
github.com/kcoyle/RDF-AP (visited on 05/15/2019).

[5] Fredrik Enoksson. DCMI: A MoinMoin Wiki Syntax for Description Set Profiles. Oct. 2008.
URL: http://www.dublincore.org/specifications/dublin-core/dsp-wiki-syntax/
(visited on 03/10/2019).

[6] John Gruber. Daring Fireball: Markdown. URL: https://daringfireball.net/projects/
markdown/ (visited on 05/14/2019).

[7] Rachel Heery and Manjula Patel. “Application Profiles: Mixing and Matching Metadata
Schemas”. In: Ariadne 25 (2000). ISSN: 1361-3200. URL: http://www.ariadne.ac.uk/
issue/25/app-profiles/ (visited on 04/03/2018).

[8] Pieter Heyvaert et al. “Declarative Rules for Linked Data Generation at Your Fingertips”. en.
In: The Semantic Web: ESWC 2018 Satellite Events. Ed. by Aldo Gangemi et al. Vol. 11155.
Cham: Springer International Publishing, 2018, pp. 213–217. DOI: 10.1007/978-3-319-
98192-5_40. URL: http://link.springer.com/10.1007/978-3-319-98192-5_40 (visited
on 05/17/2019).

[9] Diane Hillmann. Metadata standards and applications. publisher: Metadata Management
Associates LLC. 2006. URL: http://managemetadata.com/ (visited on 04/25/2019).

[10] OpenAPI Initiative. OpenAPI Specification. Aug. 2011. URL: https://swagger.io/specification/
(visited on 05/14/2019).

[11] Richard Jones. A ReStructuredText Primer Docutils 3.0 documentation. URL: https : / /
docutils . readthedocs . io / en / sphinx - docs / user / rst / quickstart . html (visited
on 05/14/2019).

[12] Chunqiu Li and Shigeo Sugimoto. “Provenance description of metadata application profiles
for long-term maintenance of metadata schemas”. en. In: Journal of Documentation 74.1
(Jan. 2018), pp. 36–61. ISSN: 0022-0418. DOI: 10.1108/JD-03-2017-0042. URL: http:
//www.emeraldinsight.com/doi/10.1108/JD-03-2017-0042 (visited on 05/17/2019).

[13] Mariana Curado Malta and Ana Alice Baptista. “A Method for the Development of Dublin
Core Application Profiles (Me4DCAP V0.2): Detailed Description”. en. In: (2013), p. 14.

[14] Mariana Curado Malta and Ana Alice Baptista. “A panoramic view on metadata application
profiles of the last decade”. en. In: International Journal of Metadata, Semantics and Ontologies
9.1 (2014), p. 58. ISSN: 1744-2621, 1744-263X. DOI: 10.1504/IJMSO.2014.059124. URL:
http://www.inderscience.com/link.php?id=59124 (visited on 05/17/2019).

[15] Mitsuharu Nagamori et al. “Meta-Bridge: A Development of Metadata Information Infrastruc-
ture in Japan”. en. In: (2011), p. 6.

40

[16] Mikael Nilsson. DCMI: Description Set Profiles: A constraint language for Dublin Core Applic-
ation Profiles. Mar. 2008. URL: http://www.dublincore.org/specifications/dublin-
core/dc-dsp/ (visited on 03/01/2019).

[17] Mikael Nilsson, Tom Baker, and Pete Johnston. DCMI: The Singapore Framework for Dublin
Core Application Profiles. Jan. 2008. URL: http://dublincore.org/specifications/
dublin-core/singapore-framework/ (visited on 05/17/2019).

[18] Mark Nottingham and Paul Bryan. JavaScript Object Notation (JSON) Patch. en. Apr. 2013.
URL: https://tools.ietf.org/html/rfc6902 (visited on 03/17/2019).

[19] David Osumi-Sutherland et al. “Dead simple OWL design patterns”. In: Journal of Biomedical
Semantics 8.1 (June 2017), p. 18. ISSN: 2041-1480. DOI: 10.1186/s13326-017-0126-0.
URL: https://doi.org/10.1186/s13326-017-0126-0 (visited on 05/17/2019).

[20] Andy Powell et al. DCMI: DCMI Abstract Model. 2007. URL: http://www.dublincore.org/
specifications/dublin-core/abstract-model/ (visited on 05/01/2019).

[21] Linked Data for Production 2 (LD4P2). Sinopia Profile Editor. 2019. URL: https://profile-
editor.sinopia.io/ (visited on 06/14/2019).

[22] Armin Ronacher. “Jinja2 Documentation”. In: Welcome to Jinja2—Jinja2 Documentation
(2.8-dev) (2008). URL: http://jinja.pocoo.org/.

[23] L. and R. Verborgh Svensson. Negotiating Profiles in HTTP. en. Mar. 2017. URL: https:
//profilenegotiation.github.io/I-D-Accept--Schema/I-D-accept-schema (visited
on 05/17/2019).

[24] Lars G Svensson, Rob Atkinson, and Nicholas J Car. Content Negotiation by Profile. Apr. 2019.
URL: https://www.w3.org/TR/dx-prof-conneg/ (visited on 05/15/2019).

[25] Nishad Thalhath, Mitsuharu Nagamori, and Tetsuo Sakaguchi. YAMA: Yet Another Metadata
Application Profile. 2019. URL: https : / / purl . org / yama / spec / latest (visited on
05/09/2019).

[26] The DCAT Application profile for data portals in Europe (DCAT-AP). original-date: 2017-
09-13T07:53:27Z. Apr. 2019. URL: https://github.com/SEMICeu/DCAT-AP (visited on
06/14/2019).

41

Appendices

42

Appendix A : YAMA Specification

YAMA: Yet Another Metadata Application Profile

Finding, 20 May

This version: http://purl.org/yama/spec/latest
Issue Tracking: https://github.com/nishad/yama/issues/
Version: 0.1.4

http://creativecommons.org/publicdomain/zero/1.0/ CC0 1.0 Universal (CC0 1.0) Pub-
lic Domain Dedication

1. YAMA Specification

This document defines textual syntax and specifications for writing YAMA documents in a natural
text form. YAMA syntax is based on [YAML 1.2 specification](https://yaml.org/spec/1.2/spec.html).
YAMA is parsable with any YAML 1.2 parser, but processing capabilities of YAMA documents are
limited to YAMA specific implementations.

2. Status of This Document

This document is a part of the YAMA documentation. This document defines textual syntax and
specifications. This is a working draft.

3. Introduction

3.1. Philosophy of YAMA

Yet Another Metadata Application Profile (YAMA) is not defined as a new standard of metadata
application profiles; but YAMA is defined as an easy to use preprocessor to create standard metadata
application profile formats. YAMA intended to be simple enough that it can be used by domain
experts without extensive knowledge on metadata application profiles.

3.2. Syntax Compatibility

Instead of introducing its own syntax, YAMA adapts popular YAML format to avoid reinventing
the wheel. Being a well proven data serialization format, YAML is widely accepted and various
implementations are available for different programming languages. YAMA intended to get benefited
from YAML’s readability and human friendliness. As a superset of JSON, YAML is a comfortable
choice to express complex structures in a human readable yet machine friendly way.

3.3. Extendability

YAMA is extendable with custom elements and structure. The only restriction is custom elements
cannot be from reserved element sets. This will help to extend the capabilities of YAMA without
any large-scale implementation changes. Any such extension is possible within the scope of YAML
specification.

There is also a user variables section which is a straightforward approach to add any user
defined variables without altering the structure of a YAMA document.

43

3.4. Specification Versioning

YAMA specifications adhere to [Semantic Versioning 2.0.0](https://semver.org/spec/v2.0.0.html),
where are the MAJOR.MINOR stands for specification versions and PATCH for corrections and
changes of the documentation, which doesn’t break any implementations.

MAJOR version changes will affect the core specification, and MINOR version changes will be
backward compatible and does not affect any previously implemented specifications.

4. Document Structure

A YAMA document should strictly follow YAML specifications. document should start with a valid
YAML declaration and YAMA version should be mentioned before starting the structure of the
document. if a valid YAMA specification version is not declared, then the last available version is
assumed to be used.

%YAML 1.2

YAMA : 1.0

4.1. Metadata of the Application Profile

Metadata section is intended to express basic information of the specific metadata application profile.
generally administrative metadata of the MAP is expressed as a key value pair. Important property
from this section is the version and creator. This information is used in generating publishable
formats and creating provenance information as well as change-log of the metadata application
profile.

YAMA documents MUST be versioned. [Semantic versioning (SemVer)](https://semver.org/)
is highly recommended optionally [calendar versioning (CalVer)](https://calver.org/) can be con-
sidered if it fits the requirements. With the proper version number, YAMA processors can automate
various versioning related tasks as well as can generate publishable versioned output formats. See
table 1 for list of elements in YAMA application profile metadata.

description_set :
ID : # (R) A unique ID for the Description Set. eg :

MyBookCaseDS.↪→

title : # Name of the AP. eg : My Book Case Application
Profile.↪→

version : # Version following semver.org Semantic
Versioning eg. X.Y.Z or X.Y or X.↪→

date : # Release date of AP. Any valid ISO-8601
string.↪→

subject : # Subject or topic.
creator : # Person, URL or more contact information. Can

also be {name: Person, email: Email, org: Org}↪→

open : true # Open or closed DSP, will be respected in
Application Profile curation services. Default true.↪→

license : # License of the DSP default CC ?
descriptions : [a,b] # If given as a list, only those descriptions

will be included, else all descriptions with this DSP-ID will be used↪→

4.2. Name Spaces

Name spaces are key value pair of prefix and URI. YAMA follows XML specification for prefixes and
URI. URI should be as recommended in RFC3986 (https://tools.ietf.org/html/rfc3986). during the
document processing, YAMA can generate Qnames from this namespace key values.

44

Table 1: YAMA Metadata for the Application Profile

Key Type De-
fault

Description Sample Required

id Text - A unique ID for the Description Set My-
Book-
CaseDS

R

title Text - Title of the MAP My
Book
Case

R

ver-
sion

Text - Version following semver.org Semantic
Versioning

X.Y.Z
or X.Y
or X

R

date Text - Release date of AP. Any valid ISO–8601 string. 2018–12–29
sub-
ject

Text - Subject or topic

cre-
ator

Text Person, URL or more contact information, Free
text

Creator can be
repeated if there are
multiple creators

homepage
pub-
lisher
keyword
open Booleantrue Open or closed MAP, will be respected in

Application Profile curation services.
li-
cense

Free
Text

CC License of the MAP

de-
scrip-
tions

Ar-
ray

[a,b] If given as a list, only those descriptions will be
included, else all descriptions with this MAP-ID
will be used

45

Table 2: YAMA Elements for Descriptions

KEY TYPE DEFAULT DESCRIPTION RE-
QUIRED

label Text - Label of the Element R
name Text Value from

label
Human Friendly Name

min Intiger 0
max Intiger n
standalone Boolean true
X class The class of a description
description Text Short Description
long_description Text Detailed Description
statements Array [a,b] Statements belongs to this

description
R

namespaces :
prefix_1 : uri_1
prefix_2 : uri_2

4.3. Descriptions

Single resources are described under descriptions with a unique ID for each descriptions. Every
unique descriptions ID can have multiple key value pairs to describe that resource. See table 2 for
list of elements in YAMA description scheme.

descriptions :
example_description_01:

label : # (R) Label of the Element
name : # Human Friendly Name
min : #
max : #
standalone : true # Default, true
X class : #
X subclass : #
description : # Short Description
long_description : # Detailed Description
statements : [a,b] #

4.4. Statements

A statement is a single data element used to describe a resource that is defined as a description.
The statement defines the possible values, and any other constraints. See table 3 for list of elements
in YAMA statements.

statements :
example_statement_01 :

label : # (R) Label of the Element
name : # Human Friendly Name
min : #
max : #
type : #
description : # Short Description
long_description : # Detailed Description
constraint : x or [x,y] # IDs of constraints

46

Table 3: YAMA elements for statements

KEY TYPE DEFAULT DESCRIPTION REQUIRED

label [R] Label of the Element
name Human Friendly Name
min
max
type
description Short Description
long_description Detailed Description
constraint x or [x,y] IDs of constraints

Appendix B : Example YAMA Document

1 %YAML 1.2
2 ---
3 #%YAMA 0.8
4 meta:
5 id: dcat-ap
6 title: DCAT Application Profile for Data Portals in Europe
7 version: 1.2.1
8 date: '2019-05-28'
9 subject: Application profile for data portals in Europe (DCAT-AP)

10 description: The DCAT Application profile for data portals in Europe (DCAT-AP)
is↪→

11 a specification based on the Data Catalogue vocabulary (DCAT) for describing
public↪→

12 sector datasets in Europe. Its basic use case is to enable a cross-data
portal↪→

13 search for data sets and make public sector data better searchable across
borders↪→

14 and sectors. This can be achieved by the exchange of descriptions of data
sets↪→

15 among data portals.
16 license: ISA Open Metadata Licence v1.1
17 license-url: https://joinup.ec.europa.eu/licence/isa-open-metadata-licence-v11
18 creator: DCAT-AP Working Group
19 website: https://github.com/SEMICeu/DCAT-AP
20 logo:

https://joinup.ec.europa.eu/sites/default/files/imagecache/community_logo/DCAT_application_profile_for_European_data_portals_logo_0.png↪→

21

22 namespaces:
23 adms: http://www.w3.org/ns/adms#
24 dcat: http://www.w3.org/ns/dcat#
25 dct: http://purl.org/dc/terms/
26 foaf: http://xmlns.com/foaf/0.1/
27 owl: http://www.w3.org/2002/07/owl#
28 rdfs: http://www.w3.org/2000/01/rdf-schema#
29 schema: http://schema.org/
30 skos: http://www.w3.org/2004/02/skos/core#
31 spdx: http://spdx.org/rdf/terms#
32 xsd: http://www.w3.org/2001/XMLSchema#
33 vcard: http://www.w3.org/2006/vcard/ns#
34

47

35 constraints:
36 voc_iana_media_types: &voc_iana_media_types
37 type: vocabulary
38 vocabulary_name: IANA Media Types
39 URI: http://www.iana.org/assignments/media-types/media-types.xhtml
40 notes: ''
41 voc_dataset_theme_vocabulary: &voc_dataset_theme_vocabulary
42 type: vocabulary
43 vocabulary_name: Dataset Theme Vocabulary
44 URI: http://publications.europa.eu/resource/dataset/data-theme
45 notes: The value to be used for this property is the URI of the vocabulary

itself,↪→

46 i.e. the concept scheme, not the URIs of the concepts in the vocabulary.
47 voc_eu_vocabularies_frequency_named_authority_list:

&voc_eu_vocabularies_frequency_named_authority_list↪→

48 type: vocabulary
49 vocabulary_name: EU Vocabularies Frequency Named Authority List
50 URI: http://publications.europa.eu/resource/authority/frequency
51 notes: ''
52 voc_eu_vocabularies_file_type_named_authority_list:

&voc_eu_vocabularies_file_type_named_authority_list↪→

53 type: vocabulary
54 vocabulary_name: EU Vocabularies File Type Named Authority List
55 URI: http://publications.europa.eu/resource/authority/file-type
56 notes: ''
57 voc_eu_vocabularies_languages_named_authority_list:

&voc_eu_vocabularies_languages_named_authority_list↪→

58 type: vocabulary
59 vocabulary_name: EU Vocabularies Languages Named Authority List
60 URI: http://publications.europa.eu/resource/authority/language
61 notes: ''
62 voc_eu_vocabularies_corporate_bodies_named_authority_list:

&voc_eu_vocabularies_corporate_bodies_named_authority_list↪→

63 type: vocabulary
64 vocabulary_name: EU Vocabularies Corporate bodies Named Authority List
65 URI: http://publications.europa.eu/resource/authority/corporate-body
66 notes: The Corporate bodies NAL must be used for European institutions and a

small↪→

67 set of international organisations. In case of other types of
organisations,↪→

68 national, regional or local vocabularies should be used.
69 voc_geonames: &voc_geonames
70 type: vocabulary
71 vocabulary_name: Geonames
72 URI: http://sws.geonames.org/
73 notes: The EU Vocabularies Name Authority Lists must be used for continents,

countries↪→

74 and places that are in those lists; if a particular location is not in one
of↪→

75 the mentioned Named Authority Lists, Geonames URIsmust be used.
76 voc_eu_vocabularies_places_named_authority_list:

&voc_eu_vocabularies_places_named_authority_list↪→

77 type: vocabulary
78 vocabulary_name: EU Vocabularies Places Named Authority List
79 URI: http://publications.europa.eu/resource/authority/place/

48

80 notes: The EU Vocabularies Name Authority Lists must be used for continents,
countries↪→

81 and places that are in those lists; if a particular location is not in one
of↪→

82 the mentioned Named Authority Lists, Geonames URIsmust be used.
83 voc_eu_vocabularies_countries_named_authority_list:

&voc_eu_vocabularies_countries_named_authority_list↪→

84 type: vocabulary
85 vocabulary_name: EU Vocabularies Countries Named Authority List
86 URI: http://publications.europa.eu/resource/authority/country
87 notes: The EU Vocabularies Name Authority Lists must be used for continents,

countries↪→

88 and places that are in those lists; if a particular location is not in one
of↪→

89 the mentioned Named Authority Lists, Geonames URIsmust be used.
90 voc_eu_vocabularies_continents_named_authority_list:

&voc_eu_vocabularies_continents_named_authority_list↪→

91 type: vocabulary
92 vocabulary_name: EU Vocabularies Continents Named Authority List
93 URI: http://publications.europa.eu/resource/authority/continent/
94 notes: The EU Vocabularies Name Authority Lists must be used for continents,

countries↪→

95 and places that are in those lists; if a particular location is not in one
of↪→

96 the mentioned Named Authority Lists, Geonames URIsmust be used.
97 voc_adms_change_type_vocabulary: &voc_adms_change_type_vocabulary
98 type: vocabulary
99 vocabulary_name: ADMS change type vocabulary

100 URI: http://purl.org/adms/changetype/
101 notes: :created, :updated, :deleted
102 voc_adms_status_vocabulary: &voc_adms_status_vocabulary
103 type: vocabulary
104 vocabulary_name: ADMS status vocabulary
105 URI: http://purl.org/adms/status/
106 notes: The list of terms in the ADMS status vocabulary is included in the

ADMS↪→

107 specification
108 voc_adms_publisher_type_vocabulary: &voc_adms_publisher_type_vocabulary
109 type: vocabulary
110 vocabulary_name: ADMS publisher type vocabulary
111 URI: http://purl.org/adms/publishertype/
112 notes: The list of terms in the ADMS publisher type vocabulary is included in
113 the ADMS specification
114 voc_adms_licence_type_vocabulary: &voc_adms_licence_type_vocabulary
115 type: vocabulary
116 vocabulary_name: ADMS licence type vocabulary
117 URI: http://purl.org/adms/licencetype/
118 notes: The list of terms in the ADMS licence type vocabulary is included in

the↪→

119 ADMS specification
120

121 statements:
122 pr_dataset: &pr_dataset
123 label: dataset
124 property: dcat:dataset
125 range: dcat:Dataset

49

126 description: This property links the Catalogue with a Dataset that is part of
127 the Catalogue.
128 min: 1
129 max: n
130 pr_description: &pr_description
131 label: description
132 property: dct:description
133 range: rdfs:Literal
134 description: This property contains a free-text account of the Distribution.

This↪→

135 property can be repeated for parallel language versions of the description.
136 min: 0
137 max: n
138 pr_publisher: &pr_publisher
139 label: publisher
140 property: dct:publisher
141 range: foaf:Agent
142 description: This property refers to an entity (organisation) responsible for
143 making the Dataset available.
144 min: 0
145 max: 1
146 constraints: *voc_eu_vocabularies_corporate_bodies_named_authority_list
147 pr_title: &pr_title
148 label: title
149 property: dct:title
150 range: rdfs:Literal
151 description: This property contains a name of the category scheme. May be

repeated↪→

152 for different versions of the name
153 min: 1
154 max: n
155 pr_homepage: &pr_homepage
156 label: homepage
157 property: foaf:homepage
158 range: foaf:Document
159 description: This property refers to a web page that acts as the main page

for↪→

160 the Catalogue.
161 min: 0
162 max: 1
163 pr_language: &pr_language
164 label: language
165 property: dct:language
166 range: dct:LinguisticSystem
167 description: This property refers to a language used in the Distribution.

This↪→

168 property can be repeated if the metadata is provided in multiple languages.
169 min: 0
170 max: n
171 constraints: *voc_eu_vocabularies_languages_named_authority_list
172 pr_licence: &pr_licence
173 label: licence
174 property: dct:license
175 range: dct:LicenseDocument
176 description: This property refers to the licence under which the Distribution
177 is made available.

50

178 min: 0
179 max: 1
180 pr_release_date: &pr_release_date
181 label: release date
182 property: dct:issued
183 range: rdfs:Literal
184 description: This property contains the date of formal issuance (e.g.,

publication)↪→

185 of the Distribution.
186 min: 0
187 max: 1
188 pr_themes: &pr_themes
189 label: themes
190 property: dcat:themeTaxonomy
191 range: skos:ConceptScheme
192 description: This property refers to a knowledge organization system used to

classify↪→

193 the Catalogue's Datasets.
194 min: 0
195 max: n
196 constraints: *voc_dataset_theme_vocabulary
197 pr_update_modification_date: &pr_update_modification_date
198 label: update/ modification date
199 property: dct:modified
200 range: rdfs:Literal
201 description: This property contains the most recent date on which the

Distribution↪→

202 was changed or modified.
203 min: 0
204 max: 1
205 pr_has_part: &pr_has_part
206 label: has part
207 property: dct:hasPart
208 range: dcat:Catalog
209 description: This property refers to a related Catalogue that is part of the

described↪→

210 Catalogue
211 min: 0
212 max: n
213 pr_is_part_of: &pr_is_part_of
214 label: is part of
215 property: dct:isPartOf
216 range: dcat:Catalog
217 description: This property refers to a related Catalogue in which the

described↪→

218 Catalogue is physically or logically included.
219 min: 0
220 max: 1
221 pr_record: &pr_record
222 label: record
223 property: dcat:record
224 range: dcat:CatalogRecord
225 description: This property refers to a Catalogue Record that is part of the

Catalogue↪→

226 min: 0
227 max: n

51

228 pr_rights: &pr_rights
229 label: rights
230 property: dct:rights
231 range: dct:RightsStatement
232 description: This property refers to a statement that specifies rights

associated↪→

233 with the Distribution.
234 min: 0
235 max: 1
236 pr_spatial_geographic: &pr_spatial_geographic
237 label: spatial / geographic
238 property: dct:spatial
239 range: dct:Location
240 description: This property refers to a geographical area covered by the

Catalogue.↪→

241 min: 0
242 max: n
243 pr_primary_topic: &pr_primary_topic
244 label: primary topic
245 property: foaf:primaryTopic
246 range: dcat:Dataset
247 description: This property links the Catalogue Record to the Dataset

described↪→

248 in the record.
249 min: 1
250 max: 1
251 pr_application_profile: &pr_application_profile
252 label: application profile
253 property: dct:conformsTo
254 range: rdfs:Resource
255 description: This property refers to an Application Profile that the

Dataset’s↪→

256 metadata conforms to
257 min: 0
258 max: 1
259 pr_change_type: &pr_change_type
260 label: change type
261 property: adms:status
262 range: skos:Concept
263 description: This property refers to the type of the latest revision of a

Dataset's↪→

264 entry in the Catalogue. It MUST take one of the values :created, :updated
or↪→

265 :deleted depending on whether this latest revision is a result of a
creation,↪→

266 update or deletion.
267 min: 0
268 max: 1
269 pr_listing_date: &pr_listing_date
270 label: listing date
271 property: dct:issued
272 range: rdfs:Literal
273 description: This property contains the date on which the description of the

Dataset↪→

274 was included in the Catalogue.
275 min: 0

52

276 max: 1
277 pr_source_metadata: &pr_source_metadata
278 label: source metadata
279 property: dct:source
280 range: dcat:CatalogRecord
281 description: This property refers to the original metadata that was used in

creating↪→

282 metadata for the Dataset
283 min: 0
284 max: 1
285 pr_contact_point: &pr_contact_point
286 label: contact point
287 property: dcat:contactPoint
288 range: vcard:Kind
289 description: This property contains contact information that can be used for

sending↪→

290 comments about the Dataset.
291 min: 0
292 max: n
293 pr_dataset_distribution: &pr_dataset_distribution
294 label: dataset distribution
295 property: dcat:distribution
296 range: dcat:Distribution
297 description: This property links the Dataset to an available Distribution.
298 min: 0
299 max: n
300 pr_keyword_tag: &pr_keyword_tag
301 label: keyword/ tag
302 property: dcat:keyword
303 range: rdfs:Literal
304 description: This property contains a keyword or tag describing the Dataset.
305 min: 0
306 max: n
307 pr_theme_category: &pr_theme_category
308 label: theme/ category
309 property: dcat:theme
310 range: skos:Concept
311 description: This property refers to a category of the Dataset. A Dataset may
312 be associated with multiple themes.
313 min: 0
314 max: n
315 constraints: *voc_dataset_theme_vocabulary
316 pr_access_rights: &pr_access_rights
317 label: access rights
318 property: dct:accessRights
319 range: dct:RightsStatement
320 description: This property refers to information that indicates whether the

Dataset↪→

321 is open data, has access restrictions or is not public. A controlled
vocabulary↪→

322 with three members (:public, :restricted, :non-public) will be created and
maintained↪→

323 by the Publications Office of the EU.
324 min: 0
325 max: 1
326 pr_conforms_to: &pr_conforms_to

53

327 label: conforms to
328 property: dct:conformsTo
329 range: dct:Standard
330 description: This property refers to an implementing rule or other

specification.↪→

331 min: 0
332 max: n
333 pr_documentation: &pr_documentation
334 label: documentation
335 property: foaf:page
336 range: foaf:Document
337 description: This property refers to a page or document about this

Distribution.↪→

338 min: 0
339 max: n
340 pr_frequency: &pr_frequency
341 label: frequency
342 property: dct:accrualPeriodicity
343 range: dct:Frequency
344 description: This property refers to the frequency at which the Dataset is

updated.↪→

345 min: 0
346 max: 1
347 constraints: *voc_eu_vocabularies_frequency_named_authority_list
348 pr_has_version: &pr_has_version
349 label: has version
350 property: dct:hasVersion
351 range: dcat:Dataset
352 description: This property refers to a related Dataset that is a version,

edition,↪→

353 or adaptation of the described Dataset.
354 min: 0
355 max: n
356 pr_identifier: &pr_identifier
357 label: identifier
358 property: dct:identifier
359 range: rdfs:Literal
360 description: This property contains the main identifier for the Dataset, e.g.
361 the URI or other unique identifier in the context of the Catalogue.
362 min: 0
363 max: n
364 pr_is_version_of: &pr_is_version_of
365 label: is version of
366 property: dct:isVersionOf
367 range: dcat:Dataset
368 description: This property refers to a related Dataset of which the described
369 Dataset is a version, edition, or adaptation.
370 min: 0
371 max: n
372 pr_landing_page: &pr_landing_page
373 label: landing page
374 property: dcat:landingPage
375 range: foaf:Document
376 description: This property refers to a web page that provides access to the

Dataset,↪→

377 its Distributions and/or additional information. It is intended to point to

54

378 a landing page at the original data provider, not to a page on a site of a
third↪→

379 party, such as an aggregator.
380 min: 0
381 max: n
382 pr_other_identifier: &pr_other_identifier
383 label: other identifier
384 property: adms:identifier
385 range: adms:Identifier
386 description: This property refers to a secondary identifier of the Dataset,

such↪→

387 as MAST/ADS[1], DataCite[2], DOI[3], EZID[4] or W3ID[5].
388 min: 0
389 max: n
390 pr_provenance: &pr_provenance
391 label: provenance
392 property: dct:provenance
393 range: dct:ProvenanceStatement
394 description: This property contains a statement about the lineage of a

Dataset.↪→

395 min: 0
396 max: n
397 pr_related_resource: &pr_related_resource
398 label: related resource
399 property: dct:relation
400 range: rdfs:Resource
401 description: This property refers to a related resource.
402 min: 0
403 max: n
404 pr_sample: &pr_sample
405 label: sample
406 property: adms:sample
407 range: dcat:Distribution
408 description: This property refers to a sample distribution of the dataset
409 min: 0
410 max: n
411 pr_source: &pr_source
412 label: source
413 property: dct:source
414 range: dcat:Dataset
415 description: This property refers to a related Dataset from which the

described↪→

416 Dataset is derived.
417 min: 0
418 max: n
419 pr_spatial_geographical_coverage: &pr_spatial_geographical_coverage
420 label: spatial/ geographical coverage
421 property: dct:spatial
422 range: dct:Location
423 description: This property refers to a geographic region that is covered by

the↪→

424 Dataset.
425 min: 0
426 max: n
427 constraints:
428 << : *voc_eu_vocabularies_continents_named_authority_list

55

429 URI: hdhakjsdkjhas
430 pr_temporal_coverage: &pr_temporal_coverage
431 label: temporal coverage
432 property: dct:temporal
433 range: dct:PeriodOfTime
434 description: This property refers to a temporal period that the Dataset

covers.↪→

435 min: 0
436 max: n
437 pr_type: &pr_type
438 label: type
439 property: dct:type
440 range: skos:Concept
441 description: This property refers to a type of the agent that makes the

Catalogue↪→

442 or Dataset available
443 min: 0
444 max: 1
445 pr_version: &pr_version
446 label: version
447 property: owl:versionInfo
448 range: rdfs:Literal
449 description: This property contains a version number or other version

designation↪→

450 of the Dataset.
451 min: 0
452 max: 1
453 pr_version_notes: &pr_version_notes
454 label: version notes
455 property: adms:versionNotes
456 range: rdfs:Literal
457 description: This property contains a description of the differences between

this↪→

458 version and a previous version of the Dataset. This property can be
repeated↪→

459 for parallel language versions of the version notes.
460 min: 0
461 max: n
462 pr_access_url: &pr_access_url
463 label: access URL
464 property: dcat:accessURL
465 range: rdfs:Resource
466 description: This property contains a URL that gives access to a Distribution
467 of the Dataset. The resource at the access URL may contain information

about↪→

468 how to get the Dataset.
469 min: 1
470 max: n
471 pr_format: &pr_format
472 label: format
473 property: dct:format
474 range: dct:MediaTypeOrExtent
475 description: This property refers to the file format of the Distribution.
476 min: 0
477 max: 1
478 constraints: *voc_eu_vocabularies_file_type_named_authority_list

56

479 pr_byte_size: &pr_byte_size
480 label: byte size
481 property: dcat:byteSize
482 range: rdfs:Literal
483 description: This property contains the size of a Distribution in bytes.
484 min: 0
485 max: 1
486 pr_checksum: &pr_checksum
487 label: checksum
488 property: spdx:checksum
489 range: spdx:Checksum
490 description: This property provides a mechanism that can be used to verify

that↪→

491 the contents of a distribution have not changed
492 min: 0
493 max: 1
494 pr_download_url: &pr_download_url
495 label: download URL
496 property: dcat:downloadURL
497 range: rdfs:Resource
498 description: This property contains a URL that is a direct link to a

downloadable↪→

499 file in a given format.
500 min: 0
501 max: n
502 pr_linked_schemas: &pr_linked_schemas
503 label: linked schemas
504 property: dct:conformsTo
505 range: dct:Standard
506 description: This property refers to an established schema to which the

described↪→

507 Distribution conforms.
508 min: 0
509 max: n
510 pr_media_type: &pr_media_type
511 label: media type
512 property: dcat:mediaType
513 range: dct:MediaTypeOrExtent
514 description: This property refers to the media type of the Distribution as

defined↪→

515 in the official register of media types managed by IANA.
516 min: 0
517 max: 1
518 constraints: *voc_iana_media_types
519 pr_status: &pr_status
520 label: status
521 property: adms:status
522 range: skos:Concept
523 description: This property refers to the maturity of the Distribution
524 min: 0
525 max: 1
526 constraints: *voc_adms_status_vocabulary
527 pr_name: &pr_name
528 label: name
529 property: foaf:name
530 range: rdfs:Literal

57

531 description: This property contains a name of the agent. This property can be
532 repeated for different versions of the name (e.g. the name in different

languages)↪→

533 min: 1
534 max: n
535 pr_preferred_label: &pr_preferred_label
536 label: preferred label
537 property: skos:prefLabel
538 range: rdfs:Literal
539 description: This property contains a preferred label of the category. This

property↪→

540 can be repeated for parallel language versions of the label.
541 min: 1
542 max: n
543 pr_algorithm: &pr_algorithm
544 label: algorithm
545 property: spdx:algorithm
546 range: spdx:checksumAlgorithm_sha1
547 description: This property identifies the algorithm used to produce the

subject↪→

548 Checksum. Currently, SHA-1 is the only supported algorithm. It is
anticipated↪→

549 that other algorithms will be supported at a later time.
550 min: 1
551 max: 1
552 pr_checksum_value: &pr_checksum_value
553 label: checksum value
554 property: spdx:checksumValue
555 range: rdfs:Literal
556 description: This property provides a lower case hexadecimal encoded digest

value↪→

557 produced using a specific algorithm.
558 min: 1
559 max: 1
560 pr_notation: &pr_notation
561 label: notation
562 property: skos:notation
563 range: rdfs:Literal
564 description: This property contains a string that is an identifier in the

context↪→

565 of the identifier scheme referenced by its datatype.
566 min: 0
567 max: 1
568 pr_licence_type: &pr_licence_type
569 label: licence type
570 property: dct:type
571 range: skos:Concept
572 description: This property refers to a type of licence, e.g. indicating

‘public↪→

573 domain’ or ‘royalties required’.
574 min: 0
575 max: n
576 constraints: *voc_adms_licence_type_vocabulary
577 pr_start_date_time: &pr_start_date_time
578 label: start date/time
579 property: schema:startDate

58

580 range: rdfs:Literal
581 description: This property contains the start of the period
582 min: 0
583 max: 1
584 pr_end_date_time: &pr_end_date_time
585 label: end date/time
586 property: schema:endDate
587 range: rdfs:Literal
588 description: This property contains the end of the period
589 min: 0
590 max: 1
591

592 classes:
593 cl_agent: &cl_agent
594 label: Agent
595 property: foaf:Agent
596 requirement: mandatory
597 reference: http://xmlns.com/foaf/spec/#term_Agent

http://www.w3.org/TR/vocab-org/↪→

598 notes: An entity that is associated with Catalogues and/or Datasets. If the
Agent↪→

599 is an organisation, the use of the Organization Ontology is recommended.
See↪→

600 section 7 for a discussion on Agent roles.
601 mandatory_properties:
602 - *pr_name
603 recommended_properties:
604 - *pr_licence_type
605 cl_catalogue: &cl_catalogue
606 label: Catalogue
607 property: dcat:Catalog
608 requirement: mandatory
609 reference: http://www.w3.org/TR/2013/WD-vocab-dcat-20130312/#class-catalog
610 notes: A catalogue or repository that hosts the Datasets being described.
611 mandatory_properties:
612 - *pr_dataset
613 - *pr_description
614 - *pr_publisher
615 - *pr_title
616 recommended_properties:
617 - *pr_homepage
618 - *pr_language
619 - *pr_licence
620 - *pr_listing_date
621 - *pr_themes
622 - *pr_update_modification_date
623 optional_properties:
624 - *pr_has_part
625 - *pr_is_part_of
626 - *pr_record
627 - *pr_rights
628 - *pr_spatial_geographical_coverage
629 cl_dataset: &cl_dataset
630 label: Dataset
631 property: dcat:Dataset
632 requirement: mandatory

59

633 reference: http://www.w3.org/TR/2013/WD-vocab-dcat-20130312/#class-dataset
634 notes: A conceptual entity that represents the information published.
635 mandatory_properties:
636 - *pr_description
637 - *pr_title
638 recommended_properties:
639 - *pr_contact_point
640 - *pr_dataset_distribution
641 - *pr_keyword_tag
642 - *pr_publisher
643 - *pr_theme_category
644 optional_properties:
645 - *pr_other_identifier
646 - *pr_sample
647 - *pr_version_notes
648 - *pr_landing_page
649 - *pr_access_rights
650 - *pr_frequency
651 - *pr_linked_schemas
652 - *pr_has_version
653 - *pr_is_version_of
654 - *pr_identifier
655 - *pr_listing_date
656 - *pr_language
657 - *pr_update_modification_date
658 - *pr_provenance
659 - *pr_related_resource
660 - *pr_source
661 - *pr_spatial_geographical_coverage
662 - *pr_temporal_coverage
663 - *pr_licence_type
664 - *pr_documentation
665 - *pr_version
666 cl_literal: &cl_literal
667 label: Literal
668 property: rdfs:Literal
669 requirement: mandatory
670 reference: http://www.w3.org/TR/rdf-concepts/#section-Literals
671 notes: A literal value such as a string or integer; Literals may be typed,

e.g.↪→

672 as a date according to xsd:date. Literals that contain human-readable text
have↪→

673 an optional language tag as defined by BCP 47 .
674 cl_resource: &cl_resource
675 label: Resource
676 property: rdfs:Resource
677 requirement: mandatory
678 reference: http://www.w3.org/TR/rdf-schema/#ch_resource
679 notes: Anything described by RDF.
680 cl_category: &cl_category
681 label: Category
682 property: skos:Concept
683 requirement: recommended
684 reference:

http://www.w3.org/TR/2013/WD-vocab-dcat-20130312/#class-category-and-category-scheme↪→

685 notes: A subject of a Dataset.

60

686 mandatory_properties:
687 - *pr_preferred_label
688 cl_category_scheme: &cl_category_scheme
689 label: Category scheme
690 property: skos:ConceptScheme
691 requirement: recommended
692 reference:

http://www.w3.org/TR/2013/WD-vocab-dcat-20130312/#class-category-and-category-scheme↪→

693 notes: A concept collection (e.g. controlled vocabulary) in which the
Category↪→

694 is defined.
695 mandatory_properties:
696 - *pr_title
697 cl_distribution: &cl_distribution
698 label: Distribution
699 property: dcat:Distribution
700 requirement: recommended
701 reference:

http://www.w3.org/TR/2013/WD-vocab-dcat-20130312/#class-distribution↪→

702 notes: A physical embodiment of the Dataset in a particular format.
703 mandatory_properties:
704 - *pr_access_url
705 recommended_properties:
706 - *pr_description
707 - *pr_format
708 - *pr_licence
709 optional_properties:
710 - *pr_status
711 - *pr_byte_size
712 - *pr_download_url
713 - *pr_media_type
714 - *pr_linked_schemas
715 - *pr_listing_date
716 - *pr_language
717 - *pr_update_modification_date
718 - *pr_rights
719 - *pr_title
720 - *pr_documentation
721 - *pr_checksum
722 cl_licence_document: &cl_licence_document
723 label: Licence document
724 property: dct:LicenseDocument
725 requirement: recommended
726 reference:

http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#LicenseDocument↪→

727 notes: A legal document giving official permission to do something with a
resource.↪→

728 recommended_properties:
729 - *pr_licence_type
730 cl_catalogue_record: &cl_catalogue_record
731 label: Catalogue Record
732 property: dcat:CatalogRecord
733 requirement: optional
734 reference:

http://www.w3.org/TR/2013/WD-vocab-dcat-20130312/#class-catalog-record↪→

735 notes: A description of a Dataset’s entry in the Catalogue.

61

736 mandatory_properties:
737 - *pr_update_modification_date
738 - *pr_primary_topic
739 recommended_properties:
740 - *pr_linked_schemas
741 - *pr_status
742 - *pr_listing_date
743 optional_properties:
744 - *pr_description
745 - *pr_language
746 - *pr_source
747 - *pr_title
748 cl_checksum: &cl_checksum
749 label: Checksum
750 property: spdx:Checksum
751 requirement: optional
752 reference: http://spdx.org/rdf/terms#Checksum
753 notes: A value that allows the contents of a file to be authenticated. This

class↪→

754 allows the results of a variety of checksum and cryptographic message
digest↪→

755 algorithms to be represented.
756 mandatory_properties:
757 - *pr_algorithm
758 - *pr_checksum_value
759 cl_document: &cl_document
760 label: Document
761 property: foaf:Document
762 requirement: optional
763 reference: http://xmlns.com/foaf/spec/#term_Document
764 notes: A textual resource intended for human consumption that contains

information,↪→

765 e.g. a web page about a Dataset.
766 cl_frequency: &cl_frequency
767 label: Frequency
768 property: dct:Frequency
769 requirement: optional
770 reference: http://dublincore.org/documents/dcmi-terms/#terms-Frequency
771 notes: A rate at which something recurs, e.g. the publication of a Dataset.
772 cl_identifier: &cl_identifier
773 label: Identifier
774 property: adms:Identifier
775 requirement: optional
776 reference: http://www.w3.org/TR/vocab-adms/#identifier
777 notes: An identifier in a particular context, consisting of the string that

is↪→

778 the identifier; an optional identifier for the identifier scheme; an
optional↪→

779 identifier for the version of the identifier scheme; an optional identifier
780 for the agency that manages the identifier scheme
781 mandatory_properties:
782 - *pr_notation
783 cl_kind: &cl_kind
784 label: Kind
785 property: vcard:Kind
786 requirement: optional

62

787 reference: http://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/#d4e181
788 notes: A description following the vCard specification, e.g. to provide

telephone↪→

789 number and e-mail address for a contact point. Note that the class Kind is
the↪→

790 parent class for the four explicit types of vCards (Individual,
Organization,↪→

791 Location, Group).
792 cl_linguistic_system: &cl_linguistic_system
793 label: Linguistic system
794 property: dct:LinguisticSystem
795 requirement: optional
796 reference: http://dublincore.org/documents/dcmi-terms/#terms-LinguisticSystem
797 notes: A system of signs, symbols, sounds, gestures, or rules used in

communication,↪→

798 e.g. a language
799 cl_location: &cl_location
800 label: Location
801 property: dct:Location
802 requirement: optional
803 reference: http://dublincore.org/documents/dcmi-terms/#terms-Location
804 notes: A spatial region or named place. It can be represented using a

controlled↪→

805 vocabulary or with geographic coordinates. In the latter case, the use of
the↪→

806 Core Location Vocabulary is recommended, following the approach described
in↪→

807 the GeoDCAT-AP specification.
808 cl_media_type_or_extent: &cl_media_type_or_extent
809 label: Media type or extent
810 property: dct:MediaTypeOrExtent
811 requirement: optional
812 reference:

http://dublincore.org/documents/dcmi-terms/#terms-MediaTypeOrExtent↪→

813 notes: A media type or extent, e.g. the format of a computer file
814 cl_period_of_time: &cl_period_of_time
815 label: Period of time
816 property: dct:PeriodOfTime
817 requirement: optional
818 reference: http://dublincore.org/documents/dcmi-terms/#terms-PeriodOfTime
819 notes: An interval of time that is named or defined by its start and end

dates.↪→

820 optional_properties:
821 - *pr_start_date_time
822 - *pr_end_date_time
823 cl_publisher_type: &cl_publisher_type
824 label: Publisher type
825 property: skos:Concept
826 requirement: optional
827 reference: http://www.w3.org/TR/vocab-adms/#dcterms-type
828 notes: A type of organisation that acts as a publisher
829 cl_rights_statement: &cl_rights_statement
830 label: Rights statement
831 property: dct:RightsStatement
832 requirement: optional
833 reference: http://dublincore.org/documents/dcmi-terms/#terms-RightsStatement

63

834 notes: A statement about the intellectual property rights (IPR) held in or
over↪→

835 a resource, a legal document giving official permission to do something
with↪→

836 a resource, or a statement about access rights.
837 cl_standard: &cl_standard
838 label: Standard
839 property: dct:Standard
840 requirement: optional
841 reference: http://dublincore.org/documents/dcmi-terms/#terms-Standard
842 notes: A standard or other specification to which a Dataset or Distribution

conforms↪→

843 cl_status: &cl_status
844 label: Status
845 property: skos:Concept
846 requirement: optional
847 reference: http://www.w3.org/TR/vocab-adms/#status
848 notes: An indication of the maturity of a Distribution or the type of change

of↪→

849 a Catalogue Record.
850 cl_provenance_statement: &cl_provenance_statement
851 label: Provenance Statement
852 property: dct:ProvenanceStatement
853 requirement: optional
854 reference:

http://dublincore.org/documents/dcmi-terms/#terms-ProvenanceStatement↪→

855 notes: A statement of any changes in ownership and custody of a resource
since↪→

856 its creation that are significant for its authenticity, integrity, and
interpretation↪→

64

