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The [4 + 2] cycloaddition of styrenes with arynes was 
achieved via 1:1 cross-coupling by a nickel catalyst. This 
protocol applies to a variety of styrenes and arynes generated 
in situ from o-(trimethylsilyl)aryl triflates to afford 9,10-
dihydrophenanthrenes involving substituted aromatic rings. 
By using this method, a naturally occurring stilbenoid is 
easily synthesized. 

 
Arynes are attractive intermediates in synthetic organic 

chemistry.1 The strength of their application to organic synthesis 
is providing efficient routes for diverse and complex molecules, 
because their reactions enable forming two adjacent bonds in a 
one-pot operation, creating benzene-fused structures. Since 
Kobayashi and Sonoda developed a mild and convenient method 
for aryne generation using fluoride-induced 1,2-elimination of 2-
(trimethylsilyl)aryl triflates,2 aryne chemistry has drastically 
evolved. However, the high reactivities of arynes often cause 
introduction of multiple arynes.3,4 Recently, Biju and co-workers 
reported synthesis of 9-aryl-9,10-dihydrophenanthrenes via 
Diels–Alder [4 + 2] cycloaddition of styrenes with arynes, 
inevitably accompanied by the ene reaction with a second 
molecule of aryne (Scheme 1a).4b In this reaction, only styrenes 
bearing an electron-withdrawing group (e.g., cyano, 
trifluoromethyl, and ester) at the 4-position provide the 1:1 
cycloadducts, 9,10-dihydrophenanthrenes bearing no substituent 
at the 9 and 10-positions.5,6 

 

 
Scheme 1.  Cycloaddition of styrenes and arynes. 

To suppress multiple reactions, we assumed that transition 
metal catalysts can control the reactivity of arynes. When 
transition metal complexes are present, metal-mediated oxidative 
cyclization of styrenes with arynes proceeds as the initial step 
(Scheme 1b) instead of the Diels–Alder [4 + 2] cycloaddition.4–6 
Subsequent 1,3-hydrogen shift followed by reductive elimination 
may afford 1:1 cycloadducts selectively. Based on this working 
hypothesis, we achieved an efficient nickel-catalyzed formal [4 + 
2] cycloaddition of styrenes with arynes,7 enabling the synthesis 

of 9,10-dihydrophenanthrenes involving unsubstituted 9- and 10-
positions. The reactivity of arynes was adequately controlled 
using nickel, facilitating the one-to-one coupling of styrenes with 
arynes. 

First, we investigated suitable conditions for nickel-
catalyzed [4 + 2] cycloaddition using styrene (1a) and benzyne 
precursor 2a as model compounds in 1,4-dioxane (Table 1). 
When 1a was treated with 2a and CsF as a fluoride source for 
generating benzyne without any metal catalysts, the [4 + 2] 
cycloadduct, 9,10-dihydrophenanthrene 3aa was obtained in only 
3% yield (Entry 1). Under these conditions, the addition of a 
catalytic amount of NiCl2 afforded 3aa in 34% yield along with 
the [2 + 2] cycloadduct 4aa, whereas the 1:2 adduct, 9-phenyl-
9,10-dihydrophenanthrene was completely absent (Entry 2). To 
improve the yield of 3aa, ligands used for NiCl2 were screened 
(Entries 3–7). Among the ligands examined, PCy3 dramatically 
increased the yield of 3aa (Entry 6). Due to screening of Ni 
sources, NiCl2 was revealed as most efficient and selective 
(Entries 6, 8–12). Employing NiCl2(PCy3)2 instead of NiCl2 and 
PCy3 separately, improved the yield of 3aa up to 65% (Entry 13). 
Finally, increasing the amount of 2a (1.5 equiv) afforded 3aa in 
76% yield (Entries 14). 

Table 1.  Screening of conditions for cycloaddition of 1a with 
2a 

 
Entry [Ni] Ligand 3aa (%)a 4aa (%)a 

1 – – 3 N.D.b 
2 NiCl2 – 34 3 
3 NiCl2 PPh3 N.D.b N.D.b 
4 NiCl2 PMe3 46 7 
5 NiCl2 P(t-Bu)3 56 8 
6 NiCl2 PCy3 59 10 
7 c NiCl2 IPr·HCl 52 9 
8 NiF2 PCy3 47 8 
9 NiBr2 PCy3 55 9 
10 Ni(OAc)2 PCy3 47 7 
11 Ni(acac)2 PCy3 17 3 
12 Ni(cod)2 PCy3 56 15 
13 NiCl2(PCy3)2 – 65 5 
14d NiCl2(PCy3)2 – 76 10 

a Yield was determined by 1H NMR spectroscopy using 1,1,2,2-
tetrachloroethane as an internal standard. b N.D. = Not detected. c IPr·HCl 
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(20 mol%) and K2CO3 (20 mol%) were used. d 2a (1.5 equiv) and CsF 
(3.0 equiv) were used. 

The scope of the reaction related to substituted styrenes 1 
was explored under optimal conditions using 2a (Table 2). Non-
substituted and 4'-phenylated styrenes 1a and 1b underwent 
nickel-catalyzed [4 + 2] cycloaddition with 2a to afford the 
corresponding 9,10-dihydrophenanthrenes 3aa and 3ba in 
isolated 67% and 70% yields, respectively, after purification by 
gel permeation chromatography (GPC). Reactions of styrenes 1c 
and 1d bearing electron-donating methyl and methoxy groups at 
the para positions proceeded fairly, whereas utilizing electron-
withdrawing acetyl- and trifluoromethyl-bearing styrenes 1e and 
1f produced rather high yields. Since boryl and halogen 
substituents like pinacolboryl, fluorine, chlorine, and bromine 
were tolerated under the reaction conditions, 
dihydrophenanthrenes 3ga–3ka bearing boryl and halogen 
substituents on the benzene rings were synthesized in high yields. 
A sterically demanding bromine substituent at the ortho position 
caused no negative effect on the reaction. Cycloaddition of a-
substituted styrenes were also investigated under the same 
conditions. The a-alkylated and a-arylated styrenes 1l and 1m 
were applicable to the reaction to afford dihydrophenanthrenes 
3la and 3ma, respectively.  

Table 2. Nickel-catalyzed [4 + 2] cycloaddition of substituted 
styrenes 1 with aryne precursor 2aa 

 
a Isolated yield after purification by preparative GPC. Yield determined 
by 1H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal 
standard is given in parentheses. b 2a (2.0 equiv) and CsF (4.0 equiv) 
were used. c NiCl2(PCy3)2 (15 mol%) was used. 

Substituted aryne precursors 2 were also examined in 
reactions using styrene (1a) under the optimal conditions (Table 
3). Reactions of 1a with aryne precursors 2b–2d bearing two 
methyl, methoxy, and fluorine substituents proceeded to afford 
corresponding 2,3-disubstituted 9,10-dihydrophenanthrenes 3ab–
3ad in high yields. Aryne precursor 2e with a naphthalene ring 
formed tetracyclic dihydrotetraphene 3ae in 46% isolated yield.  

Table 3. Nickel-catalyzed [4 + 2] cycloaddition of styrene 
(1a) with substituted aryne precursors 2a 

 
a Isolated yield after purification by preparative GPC. Yield determined 
by 1H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal 
standard is given in parentheses. b 2 (2.0 equiv) and CsF (4.0 equiv) were 
used.  

This protocol was applied for the synthesis of a natural 
product. Callosumin (3nc),8,9 a naturally occurring stilbenoid10 
was synthesized in 37% isolated yield via the nickel-catalyzed [4 
+ 2] cycloaddition using 3,5-dimethoxystyrene (1n) and aryne 
precursor 2c (Scheme 2). 

 

 
Scheme 2.  Synthesis of callosumin (3nc). 

Due to the formation of the [2 + 2] cycloadducts 4 and 9,10-
dihydrophenanthrenes 3, we propose the reaction mechanism in 
Scheme 3. The reaction begins with coordination of styrenes 1 
and arynes generated from 2 to in-situ generated Ni(0) species.11 
Two ways exist for subsequent nickel-mediated oxidative 
cyclization between 1 and arynes to produce: (i) seven-membered 
nickelacycles A and (ii) five-membered nickelacycles B. Styrenes 
1 react as 1,3-dienes via dearomatization to form A, whereas the 
vinylic moieties of 1 only are involved in the formation of B. We 
speculate that by-products 4 are formed via reductive elimination 
from B. In addition, nickelacycles A are formed even from B via 
ring expansion. Rearomatizing 1,3-hydrogen shift in A followed 
by reductive elimination affords 9,10-dihydrophenanthrenes 3 
along with catalytically active Ni(0) species. 
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Scheme 3.  Plausible reaction mechanism. 

In summary, nickel-catalyzed [4 + 2] cycloaddition of 
styrenes with arynes in a 1:1 ratio was accomplished. 
Consequently, we controlled the reactivity of arynes using a 
nickel catalyst. Although 9,10-dihydrophenanthrenes with no 
substituent at the 9- or 10-positions are vital as naturally 
occurring stilbenoids in pharmaceutical and agrochemical 
sciences, conventional approaches for their production often 
exhibit poor efficiency/selectivity12 or narrow substrate scope.13 
These limitations were eliminated in this study by introducing an 
efficient method for the synthesis of 9,10-dihydrophenanthrenes.  
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