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Abstract

The hyperkinetic symptoms of Parkinson’s Disease (PD) are associated with the ensembles

of interacting oscillators that cause excess or abnormal synchronous behavior within the

Basal Ganglia (BG) circuitry. Delayed feedback stimulation is a closed loop technique

shown to suppress this synchronous oscillatory activity. Deep Brain Stimulation (DBS) via

delayed feedback is known to destabilize the complex intermittent synchronous states.

Computational models of the BG network are often introduced to investigate the effect of

delayed feedback high frequency stimulation on partially synchronized dynamics. In this

study, we develop a reduced order model of four interacting nuclei of the BG as well as con-

sidering the Thalamo-Cortical local effects on the oscillatory dynamics. This model is able to

capture the emergence of 34 Hz beta band oscillations seen in the Local Field Potential

(LFP) recordings of the PD state. Train of high frequency pulses in a delayed feedback stim-

ulation has shown deficiencies such as strengthening the synchronization in case of highly

fluctuating neuronal activities, increasing the energy consumed as well as the incapability of

activating all neurons in a large-scale network. To overcome these drawbacks, we propose

a new feedback control variable based on the filtered and linearly delayed LFP recordings.

The proposed control variable is then used to modulate the frequency of the stimulation sig-

nal rather than its amplitude. In strongly coupled networks, oscillations reoccur as soon as

the amplitude of the stimulus signal declines. Therefore, we show that maintaining a fixed

amplitude and modulating the frequency might ameliorate the desynchronization process,

increase the battery lifespan and activate substantial regions of the administered DBS elec-

trode. The charge balanced stimulus pulse itself is embedded with a delay period between

its charges to grant robust desynchronization with lower amplitudes needed. The efficiency

of the proposed Frequency Adjustment Stimulation (FAS) protocol in a delayed feedback

method might contribute to further investigation of DBS modulations aspired to address a

wide range of abnormal oscillatory behavior observed in neurological disorders.
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Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder associated with altered firing activity

of the Basal Ganglia (BG) nuclei causing symptoms such as rigidity, tremor and akinesia. The

intervention of the nervous system through electrical pulses of Deep Brain Stimulation (DBS)

regulates the neuronal activities in PD [1, 2]. The effectiveness of DBS is argued to be related

to the elimination of the rhythmic activity seen in PD by reducing the synchronization in the

beta band (13–35 Hz) and by increasing it in the gamma band (35–70 Hz) [3–5]. Subthalamic

Nucleus (STN) or Globus Pallidus interna (GPi) nuclei are the common targets for DBS [6], in

which both targets have shown to yield great outcomes in the treatment of dyskinesia, motor

fluctuation and rigidity [7]. To achieve the optimum outcome of DBS, we must consider the

symptoms of the patient, the neural pathways targeted, and the stimulation parameters [8–11].

Clinical DBS waveforms are consisted of a rectangular high amplitude cathodic phase followed

by a low amplitude anodic phase, however, other studies have suggested sinusoid and Gaussian

pulses where Gaussian DBS are shown to reduce the energy usage of the device by 50% [8, 10].

Reducing the consumed energy of the DBS signal can increase the battery life and eliminate

the costly replacement surgeries [12, 13]. In addition, introducing a delay between the cathodic

and anodic phases of the DBS pulse contributes to better desynchronization and energy effi-

ciency and harvesting of the process [8, 14–18].

Neuronal activities of mammalian forebrain tend to show oscillatory behaviors in a certain

range of frequencies [19]. Moreover, different symptoms of PD are associated with various fre-

quency ranges such as bradykinesia which is related to beta oscillation while gamma band

oscillations are often associated with prokinetic symptoms [3]. Axial symptoms of PD such as

gait, postural stability [20] and speech are better treated with Low Frequency Stimulation

(LFS) in the range of (60–80 Hz), while High Frequency Stimulation (HFS) is suitable for

tremor, rigidity and bradykinesia [21–23]. Oscillatory properties of the neuronal activity are

mostly ameliorated by HFS [24, 25], which based on some theories, is due to the locking of the

neuronal firing discharge time to the frequency of stimulation [26]. Many studies have shown

that the inhibition induced by HFS alters the mean firing rate of the STN neurons and alters

the neurotransmitter release and antidromic activation of the BG cells [25, 27, 28]. Consider-

ing the high energy cost of HFS and various therapeutic results of the stimulation frequency,

new DBS parameterization could combine HFS and LFS. The mixed mode of DBS frequencies

can exceedingly target various symptoms of PD [29]. For instance, LFS has shown to improve

the axial symptoms of PD such as postural instability, gait dysfunction, swallowing and speech

problems, while HFS can address motor symptoms, bradykinesia and rigidity [29, 30].

Improving the symptoms while reducing the side effects cannot cope with the shorter tem-

poral dynamics of PD in an open loop stimulation paradigm [31]. Therefore, there is a need

for dynamic stimulation systems such as closed loop or delayed feedback DBS, that are capable

of continually adopting the stimulus based on the aggregated neuronal firing patterns. It has

been shown that closed loop DBS ameliorates akinesia and abnormal Cortico-BG discharges

[32], improves therapeutic efficiency, increases battery lifespan, decreases tissue damage, and

adjusts the oscillatory patterns [11, 33, 34]. Closed loop models usually use the Local Field

Potential (LFP) of the targeted region as the control variable since it is highly correlated with

changes in the motor system [23, 35, 36]. LFP is then filtered and analyzed to be fed in a feed-

back algorithm. The decision of the feedback algorithm will set the next parameters for the

DBS signal. For higher performance, the stimulation amplitude is reduced according to the

amplitude of the filtered LFP signal [17] [37].

We propose a new frequency adaptation stimulus according to the variation of LFP in a

closed loop model. Our protocol adjusts the frequency of stimulation according to the level of
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synchrony observed by the LFP signal. For instance, HFS is only applied at the peaks of LFP

signal where the synchronization is relatively high and the stimulation frequency declines as

the synchronization level reduces. Closed loop adjustment of the frequency of stimulation

shows better desynchronization while being energy efficient [32]. In addition, frequency adap-

tation has more therapeutic effects since various symptoms of PD correlate with different

ranges of stimulation frequencies [29, 38].

Biologically inspired models capture the characteristics of various nuclei, however, these

models are computationally complex. Low dimensional models, on the other hand, reduce the

computational costs while the lack of physiological implications make the LFP estimation and

feedback control more challenging. To reduce the computational cost while considering neural

interconnections and properties of each nuclei within the BG network, we propose a 3 dimen-

sional model based on the Izhikevich formulation [39]. Low cost computation of this model

guarantees the simulation of large neuronal population. We also consider the synaptic connec-

tions within all neurons based on more realistic models to examine the synchrony in the Cor-

tico-BG network along with LFP assessments. Our model is able to generate the membrane

voltages of the BG neurons, temporal firing patterns, and synchrony dynamics seen in experi-

mental recordings [40].

Methods

BG model

Thalamic (Th), Subthalamic Nucleus (STN), Globus Pallidus externa, and interna (GPe and

GPi) are the main neuronal types of our BG model. Each nucleus has a population of 125 neu-

rons with their interconnections. These neuronal subpopulations are aligned in a 5×5 symmet-

ric cubic space, as shown in Fig 1. Each STN neuron has excitatory connections to 2 GPe and 2

GPi neurons. GPe neurons have inhibitory connections to 2 STN neurons and finally, there is

one inhibitory synopsis from each GPi to a Th neuron [41]. We considered a local field of con-

nections between all pairs of neurons within each nucleus (Fig 1), to match the local connectiv-

ity developed by hippo-campus studies [42]. It has been shown that glutamatergic synapses

exist in the STN neurons [43]. The connections of Globus Pallidus neurons are mediated by

GABAA receptors [44, 45] and local interneuron synapses control the Thalamic circuitry [46].

Therefore, we considered the excitatory coupling between neurons in each subpopulation

which is missing in many computational models of the BG [11, 17, 33]. These synaptic connec-

tions within each nucleus were obtained by the following equation as a function of the mem-

brane and resting state voltages Vj and Ej
S, respectively.

IjS ¼ gSðV
j � Ej

SÞ
PN

i¼1
WijSS ð1Þ

where IjS is the total synaptic currents from all neurons of a specific nucleus to neuron j. The

membrane conductance gS was set to 1.5, 3.5, and 10 for the Th, STN, and GP populations,

respectively, to assure the desired connections. In order to reflect the strength of the connec-

tions within each nucleus, we account the synaptic weights W based on the distance between

each pair of neurons. Therefore,
PN

i¼1
Wij in Eq 1 denotes the sum of all weights from N neu-

rons in the population to neuron j. These weights were measured as follows.

Wij ¼ e
� kni � njk

2

2s2 ð2Þ

In Eq 2, kni−njk2 is the Euclidean distance between neuron i and neuron j. The parameter σ
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was set to a small value to ensure that relatively far neurons receive weak and negligible con-

nections from each other as opposed to primary projecting neurons and interneurons, where

stronger connections are needed. The synaptic dynamic SS in Eq 1 was defined by a first order

process to reduce the computational cost of a large network.

dSS
dt
¼ � aSSS þ d t � Tð Þ ð3Þ

where αS and T represent the reverse potential and the time of presynaptic spikes, respectively

[47]. The excitatory and inhibitory synapses between different BG cells were defined by Eq 4.

Sj in this Equation stands for the summation of all presynaptic dynamics. In case of inhibitory

connections from GPe to STN, Sj consists of 2 presynaptic currents, while Sj would have only

one presynaptic current for the GPi-Th connections.

Ii!j
syn ¼ gijSiðV

j � Ej
synÞ ð4Þ

We also considered a random pulse train ISMC, modeling the aggregated inputs from sen-

sory motor cortex to Th (Fig 1). The amplitude of this current was set to 12 μA with pulse

width of 2.8 mS. After general initialization of our BG model, the governing membrane voltage

equation for each neuron type was achieved by an extension over the Izhikevich spike formula-

tions [39].

Th neurons. The output of the BG network is the projection of the GPi to Th neurons and

the firing of Th is shown to be spontaneous, however, the increase in the input currents to Th

Fig 1. Proposed BG network. The BG network consists of 4 types of nuclei placed in cubic space with internal connections between each type. These nuclei are

connected through excitatory (black lines) and inhibitory (red dashed lines) synopsis. The charge balanced DBS signal is applied at the centric neuron of the STN

population and is added with an interphase delay to provide better desynchronization results while activating silent neurons. Th neurons received a pulse train

representing the sensory motor cortex input to the BG network. For clarity, only 27 neurons in each subpopulation are shown here, however, the network is able to

model large populations as well (1000 neurons in each nucleus).

https://doi.org/10.1371/journal.pone.0207761.g001
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(inhibitory connections from GPi), alleviates the firing rate. In order to model the large popu-

lation of 125 Th neurons, we used the reduced order Izhikevich tonic model [39]. The dynam-

ics of a single Th neuron is then formulized by a set of 2 equations.

dVTh

dt
¼ 0:04VTh

2 þ 5VTh þ 140 � uTh þ IThS þ ISMC � IGPi!Th
syn ð5Þ

duTh
dt
¼ a bVTh

2 � uThð Þ ð6Þ

The membrane voltage of each Th neuron consists of synaptic currents from other Th neu-

rons (IThS ), inhibitory synapse from a GPi neuron (IGPi!Th
syn ) and the sensory motor cortex cur-

rent (ISMC). The auxiliary variable uTh is set to a reset value (c) after every peak of VTh.

Parameters a and b reflect the recovery rate and sensitivity of uTh, respectively.

STN neurons. Depolarizing currents elicit Action Potentials (APs) in the STN neurons

with a rebound burst after the hyperpolarizing current is off [48]. STN also shows synchro-

nized bursting which leads to rhythmic patterns. To capture these characteristics of the STN

neurons, the Equation below is defined.

dVSTN

dt
¼ 0:04VSTN

2 þ 5VSTN þ 140 � uSTN þ ISTNS þ ISTNN � IGPe!STN
syn þ IappSTN þ e� DIDBS ð7Þ

where ISTNS is the total synaptic current from other STN neurons denoted by Eq 1 and IGPe!STN
syn

is the inhibitory synapse from 2 GPe neurons to one STN. These inhibitory connections are

weakened by deprivation of the dopaminergic cells in PD. Other regions of the brain send syn-

aptic inputs to the STN neurons which is defined by ISTNN and is used to keep the firing rate of

the STN neurons in the experimentally observed frequency range [49]. Moreover, we added a

constant current Iapp to switch from healthy conditions to PD. Synchronous behavior in STN

firing appears with the smaller synaptic currents from the GPe to STN neurons. The first order

synaptic dynamic (Eq 3) was used to model the GPe-STN connection which is believed to act

as a pacemaker generating oscillations in PD [50]. This allows the model to generate the

healthy firings while being able to maintain the GPe-STN connection which could be a source

for maintaining the synchronous dynamics.

The DBS signal is consisted of a Cathodic phase with amplitude of 100 μA and duration of

0.2 mS followed by a 2 mS Anodic phase with amplitude of -10 μA. This biphasic stimulation

results in net charge of zero, injected to the tissue and prohibits the tissue damage [33, 34]. We

also added a delay of 0.5 mS between the Cathodic and Anodic phases [8, 16] as shown in Fig

1. The longer interphase delay significantly improves the desynchronization process and it has

been shown that the delay length is related to the activation of silent neurons and entrainment

of bursting neurons [12]. Since the DBS was targeted at the centric neuron in the STN cubic

population (Fig 1), its efficiency decreases according to the distance of other neurons to the

stimulation electrode. Commonly, the effects of stimulation on neuronal firing patterns decay

as a function of distance between the electrode and the desired neuron [6]. The term e−D in Eq

7 provides an exponentially debilitating effect on how each neuron is influenced by the DBS

current, where D is the Euclidean distance between the neuron and the electrode. uSTN incor-

porates an Ordinary Differential Equation ODE such as Eq 6 with different adjusting parame-

ters stated in Table 1.

GPe and GPi neurons. GPe and GPi neurons have similar properties with continuous

repetitive firing patterns. There are slight differences in afferent connections of GPe and GPi

neurons causing disparities in their synaptic currents and membrane voltages [51]. To address
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these slight variations of GPe and GPi neurons, we adjusted the parameters of Izhikevich firing

patterns along with modification of IGPeN and IGPiN . Although this parametrization affects the fir-

ing rates, the spiking patterns of GPe and GPi neurons were continuously repetitive and bis-

table [39]. The equations below define the membrane voltage of the GPe and GPi neurons in

our BG network.

dVGPe

dt
¼ 0:04VGPe

2 þ 5VGPe þ 140 � uGPe þ IGPeS þ IGPeN þ IappGPe � ISTN!GPe
syn ð8Þ

dVGPi

dt
¼ 0:04VGPi

2 þ 5VGPi þ 140 � uGPi þ IGPiS þ IGPiN þ IappGPi � ISTN!GPi
syn ð9Þ

The inhibitory connections between the GPe neurons (IGPe!GPe
syn ) are considered in IGPeN

according to Eq 1. IGPiN was set higher than IGPeN (see Table 1) to ensure higher firing rates of the

GPi neurons shown in experimental recordings [26]. Again, uGPe and uGPi were adjusted via

Eq 6 to obtain the burst firings seen in PD.

Feedback loop

Rhythmic oscillation of the STN neurons interacting with the GPe cells has been observed in

PD [52]. This rhythmic nature can be captured by the LFPs of the STN neurons. We used the

same location as the DBS electrode was targeted to measure the LFP of the STN neurons,

according to the following Equation [17, 53].

LFPSTN tð Þ ¼
R
4p

PN
i¼1

ISTNiðtÞ
Dic

ð10Þ

where R is the extracellular resistance set to 1, assuming to be homogenous throughout the

population. Dic is the Euclidean distance between neuron i and the center of population where

the LFP recording electrode is placed (Fig 1). and ISTNi(t) is composed of all currents on the

left-hand side of Eq 7 for the ith STN neuron. The LFP signal is then filtered using a damped

oscillator as follows.

€x þ o _x þ o2x ¼ KSLFPSTNðtÞ ð11Þ

where ω denotes the frequency of oscillation and is approximated at 62 rad
sec since the period of

each oscillation is around 100 mS o ¼ 2p

T

� �
. KS is a scaling coefficient set to 0.01 in this filter.

The output of the damped oscillator is often delayed due to the filtering process. Thus, the

feedback stimulator signal FS(t) is defined by shifting _x by half of the period of oscillation.

This is essentially a linear delayed feedback used in closed loop stimulations [16].

FSðtÞ ¼ IDBSðKLFPmðtÞtÞ ð12Þ

Table 1. Nominal values of the BG model parameters.

αS a b c d Iapp(μA)

Th 0.5 0.02 0.2 -65 5 0

STN 0.5 0.01 0.27 -65 8 1

GPe 0.3 0.2 0.26 -65 0 0.2

GPi 0.3 0.2 0.26 -65 0 0.3

Synaptic Currents gGPe!STN = 1.5 gSTN!GPe = 2.5 gGPe!GPe = 1.5 gSTN!GPi = 2.5 gGPi!GPi = 1.5 gGPi!Th = 2.3

EGPe!STN = -85 ESTN!GPe = 0 EGPe!GPe = -65 ESTN!GPi = 0 EGPi!GPi = -65 EGPi!Th = -65

https://doi.org/10.1371/journal.pone.0207761.t001
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LFPm tð Þ ¼ _x t �
T
2

� �

� _x tð Þ ð13Þ

where LFPm(t) is the filtered and delayed LFP signal. T ¼ o

2p
is the period of oscillation and K is

the feedback gain set to 2. The FS(t) acts as a linear delayed feedback control to adjust the fre-

quency of the stimulation signal IDBS. We introduce a Frequency Adjustment Stimulation

(FAS) method in our work to be able to alter the frequency of stimulation based on the ampli-

tude severity of the filtered LFP signal. Generally, high peaks of _xðtÞ denote higher synchroni-

zation and HFS has been proven to have better efficiency in desynchronization [54]. However,

continuous HFS increases the risk of tissue damage while decreasing the battery lifetime [55,

56]. The FAS in our proposed method tends to send HFS during the peak of _xðtÞ and slightly

decreases the frequency of stimulation as the peak of _xðtÞ descends. This allows for enhancing

the synchronization process while addressing tissue safety concerns. The amount of energy

consumed by the DBS device is reduced since HFS is only used for short periods of _xðtÞ peaks.

Lower energy consumption reduces the need for costly battery replacement surgeries [57]. In

addition, variant stimulation frequencies have been shown to have different therapeutic effects

based on the symptoms of the patients [25, 28]. The schematic of the delayed feedback loop

with the proposed FAS protocol is shown in Fig 2. In order to compare the effectiveness of the

FAS method, we investigated some well-studied protocols such as Pulsatile delayed feedback

[16, 17], High Frequency Stimulation (HFS) [22, 58, 59] and Variant Frequency stimulations

(VFS) [29]. Similar to FAS, the Pulsatile method uses the non-linearly delayed LFP signal as

the control variable, however, this control signal is used to modulate the amplitude of the DBS

signal rather than its frequency [16, 17]. HFS and VFS protocols, on the other hand, work in

an open loop manner where the stimulation signal is pre-defined. The traditional HFS delivers

high frequency pulses (> 130 Hz) for the duration of the stimulation therapy [22, 27, 60],

whereas in the VFS protocol, fixed period blocks of high and low frequency stimulations are

delivered according to predefined combinations such as HFS-LFS-LFS-LFS-HFS [29].

Results

Firing responses

To validate the performance of the BG model in generating neuronal firing patterns, we ran

the network with 125 neurons in each nucleus with all interconnections as shown in Fig 1. The

Fig 2. Feedback loop. The LFP is recorded from the center of the STN population and then filtered with a damped oscillator. The result is shifted

through a linear delayed feedback block and is used to adjust the DBS current. The frequency of the biphasic DBS signal is adjusted linearly based on the

amplitude of _x_ðtÞ. The larger the amplitude of _x_ðtÞ is, the higher the frequency of the DBS biphasic pulses will be.

https://doi.org/10.1371/journal.pone.0207761.g002
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firing patterns and rates were similar to the experimental recordings [40, 49] (Fig 3). In pres-

ence of sensory motor cortex input to the Th cells, unique firings are seen due to the T-type

calcium currents. As shown in Fig 3, under healthy condition, the depolarizing ISMC charges

and discharges the Th membrane, causing a tonic pulse with each pulse of ISMC. Changing the

model parameters to represent the PD state, contributes to the abnormal firing of the Th neu-

rons. In Fig 3B, the Th cells show short trains of Action Potentials (APs) while missing to elicit

APs at some pulses of ISMC. The abnormalities in Th firing patterns occur due to failure of elic-

iting APs when there is an input pulse, generating bursts of firings in response to a single input

pulse and false spiking in the absence of any input stimulus. STN neurons had spontaneous fir-

ings at frequencies of 6 Hz and 8 Hz under healthy and PD conditions, respectively (Fig 3A

and 3B). Although the healthy firing patterns match the low firing rate characteristic of the

STN cells observed in [61], the STN firings frequency under PD state was lower than actual

recordings (30 Hz) [62] since certain connections in our model were strengthened. Under

healthy condition, both GPe and GPi neurons fire repetitive spikes, however in the PD state,

the firing patterns change to tonic bursts [53, 60]. According to [62] and Fig 3C, the firing rate

of the STN neurons slightly increases from healthy to PD states. Moreover, the firing rates of

the GPi neurons in PD is higher than its equivalent in the healthy state. In contrast, GPe neu-

rons fire less in PD state compared to the healthy condition. These relative alterations of firing

rates from healthy to PD states in our model are more compatible with experimental recording

[62], than previously proposed BG network models [60, 63].

In order to validate the dynamics of our BG model, we compared the average firing rates of

STN, GPe and GPi neurons with the experimental recordings of normal (healthy) and MPTP-

treated monkeys [64]. The results are shown in Table 2 and the firing rates (Spikes/s) are mea-

sured for both healthy and PD conditions. As shown in Table 2, STN neurons fired more

under PD conditions which is consistent with the experimental data and previous BG models

[60, 64]. Similar to the recordings of MPTP-treated monkeys, the firing rates of GPe neurons

decrease under PD condition while GPi firings increase. All neuron types showed increased

oscillatory behavior from healthy to PD conditions in the dominant frequency range of 8–15

Hz consistent with the experimental recordings [64]. Although the number of STN and GPe

Fig 3. BG model validation. A) The firing patterns of 4 nuclei were generated by our proposed model under the healthy condition. Th and STN cells showed tonic

spikes in presence of sensory motor cortex input, while GPe and GPi cells had continuous and repetitive firings. B) In PD state, Th cells showed abnormal firings such as

burst patterns, repetitive spikes for a single stimulus and failure to fire in presence of stimulus pulses. GPe and GPi neurons showed more burst patterns while STN

firings remained similar to the healthy condition. C) The average firing rate within 125 neurons of each nuclei were examined for healthy and PD states. From healthy to

PD, the STN and GPi firing rates were increased, while the Th and GPe firing rates were decreased. These changes were much compatible with actual recordings [62]

compared to previously proposed BG models [60, 63].

https://doi.org/10.1371/journal.pone.0207761.g003
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neurons oscillating at frequencies higher than 15 Hz increases from healthy to PD (or MPTP-

treated), this small increase indicates a lower oscillation frequency occurring at higher beta

band [65]. Additionally, the number of STN neurons showing bursting index between 8–15

Hz under PD was smaller than experimental recordings due to faster deactivation of incoming

currents tuned by the model parameters, as similarly seen in biologically inspired models [60,

66]. STN, GPe and GPi cells do not show any bursting pattern at higher frequencies (> 15 Hz)

in our model and the recordings [64]. For 8–15 Hz more than half of the GPi neuron popula-

tion showed burst firing in PD condition similar to the MPTP recordings. Under PD state,

GPe bursting patterns in 8–15 Hz were not completely consistent with recordings (Table 2),

however this higher number of neurons showing burst firing was observed in many biologi-

cally inspired models [60, 66] due to the de-inactivation of the T-type calcium channels during

hyperpolarization [60].

Table 2. Characteristics of neuronal firings.

Proposed Method Experimental Recordings [64]

Healthy PD Healthy MPTP
Spikes/S STN 12.5 16.7 23.2 37.3

GPe 69.2 58.4 66.1 48.5

GPi 76.8 85.6 73.5 78.1

Percentage of neurons oscillating between 8–15 Hz STN 0.16% 63.20% 0% 50%

GPe 12% 28% 9.10% 27.50%

GPi 29.60% 55.20% 9.10% 50%

Percentage of neurons oscillating higher than 15 Hz STN 0.80% 11.2 0% 7.10%

GPe 3.20% 4.80% 0% 2.50%

GPi 5.60% 4% 3% 2.90%

Percentage of bursting neurons with 8–15 Hz oscillations STN 0% 9.6% 0% 21.4%

GPe 44% 26.4% 50% 0%

GPi 8% 53.6% 0% 52.9%

https://doi.org/10.1371/journal.pone.0207761.t002

Fig 4. LFP measurements. The measured LFP and its filtered signal show a rhythmic oscillation due to PD.

https://doi.org/10.1371/journal.pone.0207761.g004
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LFP and FAS evaluation

The LFP is measured from a population of 125 STN neurons placed in a cubic area with 5 mm

edges, according to Eq 10. The LFP signal is then filtered by the damped harmonic oscillator

mentioned in Eq 11, to obtain _x. Fig 4 shows the original LFP with its filtered signal where the

rhythmic behavior of the STN population is observable. The beta activity detected in the LFP

correlates with the motor symptoms seen in PD [67] and measuring it can be done by the

same DBS electrode or directly from the cortex [35], which makes it suitable as a feedback con-

trol variable.

The FAS protocol incorporates the frequency modulation of IDBS according to the ampli-

tude of the feedback signal, as illustrated in Fig 5. The adjustment of the stimulation signal

IDBS according to the amplitude of the feedback signal is done via Eq 12. For high amplitudes

of the feedback signal, an HFS stimulation signal (130Hz) is applied and as the amplitude

descends, the frequency of stimulation shifts proportionally to lower frequencies until it even-

tually reaches a LFS (40Hz) stimulation signal. In order to avoid an irreversible charge deposit

and tissue damage [54, 55], each period of the stimulation signal concludes cathodic and

anodic phases with a delay in between [8, 16, 17], as illustrated in Fig 1. This adjustment of

IDBS provides a charge balanced stimulus, impeding nervous tissue damages. The length of the

cathodic, delay and anodic phases for the stimulus signal were set to 0.2, 0.5 and 2 mS, respec-

tively, to guarantee a total charge close to zero for the biphasic stimulus pulse.

Desynchronization of STN neurons

The FAS protocol shows a reduction in synchrony within the population of the STN neurons.

We ran the network with DBS applied from the beginning, however it took 200 mS for the

desynchronization effects to appear (Fig 6A). This delay in desynchronization is due to the

STN neurons forming sub populations synchronizing in anti-phase with each other. The stim-

ulus signal at the beginning is forced to adjust the oscillated sub population in phase with each

other [33]. Finally, with in-phase oscillated neurons and sufficient amplitude of IDBS, the

desynchronization occurs. For FAS, the sparse LFP pattern of the STN population after the

Fig 5. Adjusted stimulation signal by FAS protocol. The frequency of the DBS signal is modulated based on the

feedback control signal (blue line). Peaks of the control signal indicate high synchronization and therefore, HFS DBS is

used for maximum therapeutic effects. With lower amplitudes of the control signal, the urge for HFS decreases and

IDBS is then adapted to lower frequencies. The cathodic and anodic peaks of the stimulus signal were set to 100 μA and

-10 μA, respectively. The control signal is magnified 100 times for better clarification.

https://doi.org/10.1371/journal.pone.0207761.g005
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initial delay of 200 mS in Fig 6A, shows the desynchronization capability achieved by this pro-

tocol. Another method of stimulation called Pulsatile delayed feedback [16, 17], was investi-

gated as shown in Fig 6A. In this method, the amplitude of the stimulation signal is modulated

according to the synchrony dynamics of the measured LFP. An interphase gap was also

designed in the stimulus signal which provides better desynchronizing effects [16]. In contrast

with the FAS and Pulsatile protocols, we studied open loop stimulation techniques such as

HFS with stimulation frequency of 130 Hz and also a new stimulation method called Variant

Frequency Stimulation (VFS) [29]. The VFS protocol sends the stimulus signal in fixed length

blocks of different frequencies. As shown in Fig 6A, VFS applies an HFS block to the STN pop-

ulation, followed by two blocks of LFS and finally two blocks of HFS, again. Although VFS

might be beneficial to address various symptoms associated with PD, it lacks efficient desyn-

chronization results. The Power Spectral Density (PSD) of the filtered LFP signal under

healthy and PD states are depicted in Fig 6B. Under healthy condition, the highest power

occurred at 8 Hz and other peaks of the PSD were due to subsequent harmonics of the LFP sig-

nal. The PSD peaks for PD states occurred in the beta frequency range (13–35 Hz). It has been

suggested that changes in the power of beta LFP oscillations might represent correlations with

motor performance [68, 69]. For instance, reduction of beta band LFP power was shown to

correlate with improvement in motor impairment [68, 69]. LFP oscillation in lower beta

Fig 6. Desynchronization of STN population by various DBS protocols. A) DBS signals tends to abrupt the synchronization of the STN population, however, closed

loop stimulation such as FAS and Pulsatile show better desynchronization effects. B) The normalized PSD of the LFP measurements for healthy, PD and different

stimulation methods are shown. The LFP is down sampled and filtered using Welch’s Method and both FAS and Pulsatile were able to suppress the 14 Hz beta band

oscillations, while FAS achieved better desynchronization for 34Hz oscillations. The PSD of HFS and VFS shows similar oscillation frequency with the ability to suppress

the low beta band oscillations, whereas the VFS method also shows a small oscillation at 9 Hz consistent with the PSD of the healthy condition.

https://doi.org/10.1371/journal.pone.0207761.g006
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frequencies (13–20 Hz) are mainly associated with akinesia and bradykinesia, while high

beta oscillations (20–35 Hz) are related to motor signs such as context recognition [70,

71]. The PSD results under healthy and PD conditions are consistent with previous stud-

ies [72, 73]. Our model was able to show a broad PSD peak at lower beta band at 14 Hz

(Fig 6B). This high power spectrum reflects the synchronous dynamics of the STN neuro-

nal population firings. Essentially, the STN neurons in PD fire with the same frequency

and small delay from one another. Interestingly, the model also captured the emergent of

34 Hz oscillation (third peak of PSD under PD state in Fig 6B), which was observed previ-

ously in [65]. The STN population resonating with the GPe neurons causes the appearance

of 34 Hz oscillation in PD. Both FAS and Pulsatile were able to suppress these oscillations,

however the 34 Hz oscillation was more suppressed by FAS compared to the Pulsatile pro-

tocol. Also, the first peak in the PSD of the FAS and Pulsatile methods falls within the first

peak of healthy PSD. FAS beta band oscillations were similar to [72, 73] where irregular or

adaptive frequency stimulations are shown to suppress the high beta band oscillations bet-

ter than HFS or other closed-loop stimulation methods. On the other hand, the HFS

method shows to suppress the 14 Hz oscillation, however, from its PSD, it does not match

the healthy conditions oscillations. The PSD of HFS shows a main peak of oscillation at 23

Hz and a smaller oscillation at 43 Hz. The 43 Hz oscillation is consistent with the results

obtained in [72]. The reason for lower oscillation (23Hz) is due to parameter difference

and initialization of our model. Additionally, HFS is shown to alter the intrinsic dynamics

of the STN population and evoke neurons to fire at the frequency of stimulation [72]. The

oscillations under VFS were similar to HFS, however, as shown in Fig 6B, there is a smaller

oscillation at 9Hz consistent with the fist peak of the healthy condition. This provides an

interesting hypothesis that variant frequency stimulation might adapt more to the healthy

condition rather than just suppressing the beta band oscillations [29].

The other open loop technique which sends HFS pulses, provides relatively suitable desyn-

chronization, however, HFS is shown to be less energy efficient in comparison with closed

loop therapy [10]. The synchrony dynamics of the STN population was measured by the mag-

nitude of the LFPm(t) signal and the order parameter R(t), as shown in Eqs 14–16 [16, 74].

R tð Þ ¼ j
1

N
PN

j¼1
eiφjðtÞj ð14Þ

φjðtnÞ ¼ 2pn for t ¼ tn ð15Þ

φj tð Þ ¼ 2p
ðt � tnÞ
ðtnþ1 � tnÞ

þ 2pn for tn < t < tnþ1 ð16Þ

where φj(t) calculates the phase of each individual neuron and tn indicates the burst onsets as

they appear at n = 0,1,2,. . . points in time. According to Eq 16, φj(t) increases linearly between

the consecutive bursts (tn,tn+1). The order parameter R(t) ranges from 0 (no synchrony) to 1

(absolute synchrony). Here, we defined a Synchrony Index (SI) that incorporates the phase cal-

culation done by the order parameter with the magnitude of the LFPm(t) signal. Since high

peaks of LFPm(t) represent high synchrony, we multiply R(t) by the normalized LFPm(t) ampli-

tude and then the average of the obtained signal over time is used as the SI value, as stated in

Eq 17.

SI ¼
1

L
PL

t¼0
RðtÞjjLFPmðtÞjj ð17Þ
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The result examines the amount of synchrony between 0 and 1 which corresponds to

the absence and presence of full synchrony, respectively. In Table 3, we showed the mean

of the order parameter R(t) and LFPm(t) signals over a period of 1 S for all protocols

shown in Fig 6A. We also measure the SI for a more comprehensive examination of syn-

chrony. As can be seen in this table, the closed loop stimulation techniques (FAS and Pul-

satile) demonstrated lower RðtÞ in comparison with open loop methods (HFS and VFS).

However, the amplitude of the LFPm(t) signal was lower in cases of HFS and Pulsatile

stimulations. According to the SI values in Table 3, FAS and Pulsatile provided the best

desynchronization, while traditional HFS or VFS protocols were less successful in desyn-

chronization. Furthermore, we measured the percentage of the activated STN neurons by

each stimulation protocol. As shown in Table 3, the FAS method was able to activate

95.2% of the STN neurons which was the highest amount in comparison with other tech-

niques. This shows that amplitude modulation used in other protocols such as Pulsatile

delayed feedback [16, 17] might decrease the efficiency of stimulation in terms of the total

number of activated cells. In contrast, the frequency modulation done by the FAS protocol

provides the highest neuronal activation.

The dynamics of PD in our model are shown through the spectrogram and raster plots

of 125 STN neurons (Fig 7. A right). We can observe a high synchronization at low fre-

quencies in the spectrogram of PD which is a significant property of pathological net-

works [53]. Applying the DBS currents shows desynchronizing effects particularly at the

low frequencies, as shown via the spectrograms of Fig 7B–7E. Comparing the spectro-

grams of 4 different stimulation protocols, we conclude that all stimulations were able to

desynchronize the network at low frequencies, however closed loop FAS and Pulsatile

methods were more effective (Fig 7B and 7C). It was also observed that the power densi-

ties depicted by the spectrograms were more spread, which is consistent with patterns

seen in patients undergoing L-Dopa treatments [75]. According to the power density scale

shown in the color bars of Fig 7, the FAS protocol achieves the highest desynchronization

of the STN population. As shown in the raster plots of Fig 7, neuronal firings under DBS

tends to show a mixture of responses over time. The increased, decreased or stabled firing

rates is believed to be a part of the DBS therapy [76]. Due to the orthodromic modulation

by the DBS signal, these mixture of firing rates happen in the STN population [73]. This

mixture of responses from the STN to GPi neurons might balance the regularization and

inhibition of the GPi cells [76]. The FAS and Pulsatile protocols show better mixture of

responses in comparison with HFS and VFS (Fig 7D and 7E left). However, the adaptive

frequency stimulation in FAS or VFS methods might be more beneficial in terms of

addressing various PD symptoms [29]. In addition, the VFS method showed high

Table 3. Synchrony measures for different stimulation protocols.

Protocol RðtÞ LFPmðtÞ SI Neuronal Activation

FAS 0.53 0.88 0.47 95.2%

Pulsatile 0.61 0.84 0.52 84.4%

HFS 0.66 0.85 0.56 85.6%

VFS 0.69 0.89 0.61 88.8%

The highest desynchronization based on the SI was achieved by the FAS protocol, while obtaining the maximum

number of STN neurons activated.

https://doi.org/10.1371/journal.pone.0207761.t003
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Fig 7. Closed and open loop protocols in desynchronizing STN neurons. A) Synchronous behavior observed under PD

condition in raster plot (left panel) and spectrogram (right panel). B) The spectrogram of synchronization while FAS was

applied was the lowest, indicating the capability of frequency modulated protocols. The mixture of responses in neuronal

firings was prevailing in the FAS protocol (left panel). C) The Pulsatile method also achieved great desynchronization results

and the neuronal firings were observed to be sparse. Open loop stimulation methods such as HFS and VFS (D and E,

respectively) showed semi-synched dynamics in the firing patterns (left panels). Also, the VFS method showed high

synchronization at 100 Hz, as it lacks a precise method defining the length of each stimulation block.

https://doi.org/10.1371/journal.pone.0207761.g007
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synchronization at 100 Hz (Fig 7 E), which is due to the fact that it lacks a precise method

for defining the length of each stimulation block.

Energy consumption

In the FAS protocol, the ability to send HFS whenever needed provides lower energy con-

sumption in comparison with previous stimulation methods [16, 17, 29, 53]. According to [8–

10], the total energy consumed by the DBS signal is measured as follows.

EC ¼
R PW

0
IDBSðtÞ

2ZðtÞdt þM ð18Þ

where Z(t) is the constant impedance set to 1kO, PW is the width of the DBS waveform. And

M denotes the number of misses in neuronal activation or eliciting action potentials. Every

time a DBS pulse is applied to the STN population, we measure the number of neurons that

elicit action potentials. If this number is less than 70% of the whole population, we set M to 1

and consider the DBS pulse as a miss or unsuccessful stimulation (each miss is considered

with the penalty of 2 nJ). The amount of energy consumed by IDBS in the FAS protocol was

42% less than its equivalent traditional HFS method. Comparing energy efficiency of the FAS

protocol with the Pulsatile method [16, 17] reveals a slight difference. The total amount of

energy consumed for 1 S stimulation of a population of 125 STN neurons was 75 nJ and 68 nJ

under the FAS and Pulsatile protocols, respectively. However, FAS was able to stimulate more

neurons than the Pulsatile method, as stated in Table 3. Since the FAS method maintain a con-

stant amplitude for stimulation, the chance of neuronal activation is higher in comparison to

Pulsatile stimulation where the amplitude modulation causes less neuronal activation. Also,

for highly synchronized networks reducing the stimulation amplitude shows a reversing effect

and increases the oscillations [34]. Other frequency methods such as VFS [29] also show low

energy consumption (80 nJ), however they provide lower neuronal activation and desynchro-

nization. The reason why VFS protocol is energy efficient is due to the LFS blocks that target

the STN population. Generally, sending pulses with lower frequencies (LFS) guarantees less

energy consumption. The blocking protocol of high and low frequency stimulation might be

beneficial in the treatment of certain symptoms of PD such as postural instability, gait dysfunc-

tion and speech problems [29, 77, 78]. However, their low desynchronization effect has

inspired this research for devising the FAS protocol with more control over the frequency of

stimulation. In Fig 8, we studied the effect of the network size on the total energy consumed.

The Energy Consumed (EC) was obtained according to the integration of the instantaneous

power of the DBS signal over time, according to Eq 18 [8, 9]. As shown in Fig 8, the EC value

under the FAS protocol increased linearly with the population size. Since the neurons in our

model are arranged in a cubic area, the network size takes a cubic form. The smallest popula-

tion was set at 27 neurons (a cube of 3 neurons in each edge, as shown in Fig 1) and the biggest

population size was consisted of 1000 neurons in a cubic placement. From Fig 8, we can con-

clude that the population size has lower effect on the EC value for FAS and Pulsatile protocols

in contrast with HFS, where EC grows exponentially as the population increases. VFS con-

sumes high energy for relatively large population sizes (>343 neurons in each of the four dif-

ferent nuclei), which make it less practical for patients with severe symptoms. FAS, being the

most energy efficient protocol, can maintain longer battery lifespan and therefore reduces the

costly battery replacement surgeries [13, 55, 79].

Discussion

In this study, we developed a computational model of four nuclei within the basal ganglia

according to the reduced order model of Izhikevich [39]. The synaptic connectivity within
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each nucleus and with other cell types were adjusted using both physiological and mathemati-

cal representations. This significantly reduced the computational cost, while reliably capturing

the neural activations and LFPs. The lower computational cost provided the opportunity to

investigate the effect of DBS on large-scale networks. However, the computational models

such as the one developed in this paper do not represent the whole complexity of physiological

systems [80–82]. For instance, our model does not consider the direct projections from the Th

cells to STN cells [83]. Although we defined a sensory motor cortex current into the network,

the cortical role in the synchrony of STN neurons [84] was not fully represented by this model

and the non-somatic effect of DBS is not fully examined by computational models to date.

Moreover, the changes of the STN neuronal activity seen in PD does not completely reflect the

Thalamo-Cortical level, which is difficult to be produced by models [25]. The mechanism of

beta-band oscillations appearance is more complicated in physiology than computational

models. Beta-band oscillations are not easily detectable by all patients, suggesting implementa-

tion of two sub-bands which carry more information and can be more dependable biomarkers

of PD [35]. Another drawback of our model is that it cannot record the LFP focally [85]. How-

ever, since we only examined the effect of the FAS protocol on the LFP of the STN population,

focal measurements of LFP is not essential. Finally, it is still not clear if the LFP alone can be a

suitable control variable for the closed loop stimulation since it might not be observed in all

patients [35, 86]. On the other hand, it’s been shown recently that interactions of various oscil-

lations observed from various targets within the basal ganglia might reveal more information

rather than the measured LFP [87].

Our model was able to generate the beta-band oscillations at 34 Hz with the burst firings of

the STN neurons under PD or dopamine depletion. As shown in [34], strong oscillations in

PD appear as soon as the amplitude of the stimulation decreases. Therefore, here, we main-

tained a certain amplitude (100 μA) while adjusting the frequency to send HFS only when

there is strong coupling.

The FAS protocol in this research was incorporated in a delayed feedback closed loop man-

ner. Both open loop and closed loop high frequency stimulations might show similar results

since the signal generation circuitry is very similar [34]. However, adapted signals in a delayed

Fig 8. Population size effect on the total energy consumption. As the network size increases, the EC value for FAS

and Pulsatile protocols ascend linearly with a moderate slope. For big networks (>512 neurons in each nucleus), FAS

shows to be more energy efficient than the Pulsatile stimulation. The EC for open loop stimulation therapies such as

HFS protocol grows almost exponentially as the population gets bigger. VFS was able to show a linear growth in EC as

the population size increases, however, it drastically became less energy efficient for medium and big populations

(>216 neurons in each nucleus).

https://doi.org/10.1371/journal.pone.0207761.g008
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feedback method can reduce the side effect of tissue damage, enhance the desynchronization

performance and increase the battery life [11, 32, 88]. Also, closed loop stimulation is superior

to open loop in terms of alleviating the motor symptoms and desynchronization [33]. Further-

more, as the beta-band oscillation does not appear consistently, closed loop stimulation of the

beta-band with more pulses at higher synchronization and less at lower synchronization is

more efficient than the traditional open loop stimulations [89]. The LFP oscillations in PD are

associated with the neural activity of STN [90], which makes them applicable as the controlled

variable.

The LFP recording in our model was filtered by a damped harmonic oscillator and then lin-

early delayed, which has shown to be more effective in desynchronization. The outcome is

used as the control signal which provides the charge balanced properties of HFS along with the

desynchronization efficiency of the delayed feedback signals [91]. The FAS protocol tends to

send HFS during the peaks of the control signal which enhances desynchronization, while

being reliable on tissue safety concerns. Also, as previously shown in [8, 16, 17], the interphase

delay (Fig 1) in the stimulation signal significantly improves the desynchronization process in

a delayed feedback protocol. In addition, longer delays reduce the need for higher amplitude

of stimulation, contributing to prolonged battery life [8].

In summary, the FAS protocol has shown to be more efficient in the suppression of the

STN oscillations along with generating a mixture of firing responses, which has been associ-

ated with the efficacy of DBS [73, 76]. Moreover, we suggest that the FAS protocol could better

control multiple symptoms of PD if the appropriate targets for stimulation are selected rather

than Pedunculopontine Nucleus (PPN) which is used for patients with gait dominant prob-

lems. Additionally, the delayed feedback FAS protocol was more energy efficient compared to

other stimulation methods. For instance, the EC for the FAS protocol in a relatively large net-

work of 1000 neurons, in each nucleus was 16.1%, 74% and 44% less than Pulastile, HFS, and

VFS protocols, respectively (643 nJ for FAS compared to 750 nJ, 1120 nJ, and 926 nJ). Finally,

the feedback stimulation by FAS was able to activate larger regions of the STN populations,

which is crucial in large-scale network simulations [92]. All of these benefits that a frequency

modulation in FAS protocol provides, opens the path towards more algorithms to tackle DBS

therapy in the future by various modulations in stimulation that is administered on demand

or based on a delayed feedback.
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85. Androulidakis AG, Brücke C, Kempf F, Kupsch A, Aziz T, Ashkan K, et al. Amplitude modulation of oscil-

latory activity in the subthalamic nucleus during movement. European Journal of Neuroscience. 2008;

27(5):1277–84. https://doi.org/10.1111/j.1460-9568.2008.06085.x PMID: 18312587

86. Kühn AA, Volkmann J. Innovations in deep brain stimulation methodology. Movement Disorders. 2017;

32(1):11–9. https://doi.org/10.1002/mds.26703 PMID: 27400763

87. Beudel M, Brown P. Adaptive deep brain stimulation in Parkinson’s disease. Parkinsonism & related

disorders. 2016; 22:S123–S6.

88. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, et al. Adaptive deep brain stimulation in

advanced Parkinson disease. Annals of neurology. 2013; 74(3):449–57. https://doi.org/10.1002/ana.

23951 PMID: 23852650

89. Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Current opinion in neurobiology.

2010; 20(2):156–65. https://doi.org/10.1016/j.conb.2010.02.015 PMID: 20359884

90. Moran A, Bar-Gad I. Revealing neuronal functional organization through the relation between multi-

scale oscillatory extracellular signals. Journal of neuroscience methods. 2010; 186(1):116–29. https://

doi.org/10.1016/j.jneumeth.2009.10.024 PMID: 19900473

91. Daneshzand M, Faezipour M, Barkana BD. Delayed Feedback Frequency Adjustment for Deep Brain

Stimulation of Subthalamic Nucleus Oscillations. 2018 40th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC). 2018:2194–7.

92. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, et al. A large-scale model of the func-

tioning brain. science. 2012; 338(6111):1202–5. https://doi.org/10.1126/science.1225266 PMID:

23197532

Robust desynchronization by frequency modulation of delayed feedback deep brain stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0207761 November 20, 2018 22 / 22

https://doi.org/10.1016/j.medengphy.2004.06.003
https://doi.org/10.1016/j.medengphy.2004.06.003
http://www.ncbi.nlm.nih.gov/pubmed/15564109
https://doi.org/10.1111/j.1460-9568.2008.06085.x
http://www.ncbi.nlm.nih.gov/pubmed/18312587
https://doi.org/10.1002/mds.26703
http://www.ncbi.nlm.nih.gov/pubmed/27400763
https://doi.org/10.1002/ana.23951
https://doi.org/10.1002/ana.23951
http://www.ncbi.nlm.nih.gov/pubmed/23852650
https://doi.org/10.1016/j.conb.2010.02.015
http://www.ncbi.nlm.nih.gov/pubmed/20359884
https://doi.org/10.1016/j.jneumeth.2009.10.024
https://doi.org/10.1016/j.jneumeth.2009.10.024
http://www.ncbi.nlm.nih.gov/pubmed/19900473
https://doi.org/10.1126/science.1225266
http://www.ncbi.nlm.nih.gov/pubmed/23197532
https://doi.org/10.1371/journal.pone.0207761

