
ar
X

iv
:1

80
2.

03
74

4v
3

 [
cs

.L
O

]
 1

3
A

pr
 2

02
0

Under consideration for publication in Math. Struct. in Comp. Science

Denotational semantics for guarded dependent

type theory

ALE Š B IZJAK1 and RASMUS EJLERS MØGELBERG2†

1 Aarhus University
2 IT University of Copenhagen

Received April 14, 2020

We present a new model of Guarded Dependent Type Theory (GDTT), a type theory with

guarded recursion and multiple clocks in which one can program with, and reason about

coinductive types. Productivity of recursively defined coinductive programs and proofs is encoded

in types using guarded recursion, and can therefore be checked modularly, unlike the syntactic

checks implemented in modern proof assistants.

The model is based on a category of covariant presheaves over a category of time objects, and

quantification over clocks is modelled using a presheaf of clocks. To model the clock irrelevance

axiom, crucial for programming with coinductive types, types must be interpreted as presheaves

internally right orthogonal to the object of clocks. In the case of dependent types, this translates

to a lifting condition similar to the one found in homotopy theoretic models of type theory, but

here with an additional requirement of uniqueness of lifts. Since the universes defined by the

standard Hofmann-Streicher construction in this model do not satisfy this property, the universes

in GDTT must be indexed by contexts of clock variables. We show how to model these universes

in such a way that inclusions of clock contexts give rise to inclusions of universes commuting with

type operations on the nose.

1. Introduction

Type theories with dependent types such as Martin-Löf’s (1973) Type Theory or the Extended

Calculus of Constructions (Luo 1994) are systems that can be simultaneously thought of as

programming languages and logical systems. One reason why this is useful is that programs, their

specification and the proof that a program satisfies this specification, can be expressed in the

same language. In these systems, the logical interpretation of terms forces a totality requirement

on the programming language, i.e., rules out general recursion, since nonterminating programs

can inhabit any type, and thus be interpreted as proofs of false statements.

The lack of general recursion is a limitation both from a programming and a logical perspective.

For example, when programming with coinductive types, the natural way to program and reason

about these is by recursion. For example, the constant stream of zeros can be naturally described

as the solution to the equation zeros = 0 :: zeros. To ensure logical consistency, such recursive

definitions must be productive, in the sense that any finite segment of the stream can be computed

† Corresponding author. Full address: IT University of Copenhagen, Department of Computer Science, Rued

Langgaards Vej 7, 2300 Copenhagen, Denmark. Email: mogel@itu.dk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/344890639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1802.03744v3
mailto:mogel@itu.dk

2

in finite time. Modern proof assistants such as Coq (2004) and Agda (Norell 2007) do support

coinductive types and recursive definitions such as the above but the productivity checks are

based on a syntactical analysis of terms, and are not modular. This means that using these in

larger applications requires sophisticated tricks (Danielsson 2010). This paper is concerned with

a new technique using guarded recursion to express productivity in types.

Guarded recursion in the sense of Nakano (2000) is a safe way of adding recursion to type

theory without breaking logical consistency. The idea is to guard all unfoldings of recursive

equations by time steps in the form of a modal type constructor ◮. The type ◮A should be

thought of as a type of elements of A available one time step from now. Values can be preserved

by time steps using an operator next satisfying next t : ◮A whenever t : A. The fixed point

operator has type fix : (◮A → A) → A and computes, for any f , a fixed point for f ◦ next.

This is particularly useful when programming with guarded recursive types, i.e., recursive types

where all occurrences of the type parameter appears guarded by a ◮. For example, a guarded

recursive type of streams would satisfy Str = Nat×◮Str and the stream of zeros can be defined

as fix(λxs. 〈0, xs〉). The type ◮ Str → Str in fact exactly captures productive recursive stream

definitions. Using universes, the type Str can itself be computed as a guarded recursive fixed

point. In this paper we use universes à la Tarski, i.e., for any term A : U there is a type El(A).

If we assume an operation ◮ :◮U → U satisfying El(◮(next(A))) = ◮El(A), then the type of

guarded streams can be encoded as Str
def
= El(fix(λX.Nat×◮(X))).

The guarded recursive type of streams above is not the usual type of streams. In particular, a

term of type Str → Str must always be causal in the sense that the n first element of output only

depend on the n first elements of input. Indeed, causality of maps is crucial for the encoding of

productivity in types. On the other hand, a closed term of type Str does denote a full stream of

numbers, and likewise a term of type Str in a context consisting solely of a variable x : Nat gives

rise to an assignment of numbers to full streams of numbers. In general, this holds if the context

is stable, i.e., consists entirely of time-independent types.

1.1. Guarded recursion with multiple clocks

Atkey & McBride (2013) proposed a way to program with coinductive types using this idea,

expressing time-independence by indexing all ◮ operators, next and fix by clocks. For example,

if t : A and κ is a clock, nextκ t :
κ
◮A and the type

κ
◮A is to be thought of as elements of type

A available one κ-time step from now. Likewise the guarded recursive type of streams must be

indexed with a clock and assumed to satisfy Strκ = Nat×
κ
◮Strκ. There are no operations on

clocks, only clock variables, although we will see that a single clock constant can be useful. We

refer to this as guarded recursion with multiple clocks, and the case of a single operator ◮ as

guarded recursion with a single clock or sometimes simply the single clock case.

In turn, clock quantification of guarded dependent type theory allows us to define the coinduc-

tive type of streams from the guarded recursive type of streams as ∀κ. Strκ. Clock quantification

behaves similarly to the dependent product type in the sense it has analogous introduction and

elimination rules; terms of this type are introduced by clock abstraction Λκ.t, and eliminated us-

ing clock application t[κ′], provided κ′ is a valid clock. However, clock quantification additionally

satisfies the clock irrelevance property, which is crucial for showing that types such as ∀κ. Strκ

satisfy the properties expected of coinductive types, i.e., that they are final coalgebras. Using

Denotational semantics for guarded dependent type theory 3

these constructs and properties we can program with streams using guarded recursion, ensuring

productivity of definitions using types.

This paper presents a model of GDTT (Bizjak et al. 2016), an extensional type theory with

guarded recursion and clocks, in which one can program with, and reason about guarded recursive

and coinductive types. To motivate some of the constructions of GDTT, we now take a closer look

at the encoding of coinductive streams as ∀κ. Strκ. As a minimal requirement for this to work,

we need an isomorphism of types ∀κ. Strκ ∼= Nat×∀κ. Strκ. This isomorphism is a composition

of three isomorphisms

∀κ. Strκ = ∀κ.Nat×
κ
◮Strκ

∼= (∀κ.Nat)× ∀κ.
κ
◮ Strκ

∼= Nat×∀κ.
κ
◮Strκ

∼= Nat×∀κ. Strκ

The first isomorphism follows from the fact that ∀κ.A behaves essentially as the dependent prod-

uct type
∏

(κ : clock) .A, and thus distributes over binary products. For the second isomorphism,

we need Nat ∼= ∀κ.Nat. One direction of this isomorphism maps x : Nat to Λκ.x, and the opposite

way evaluates an element in
∏

(κ : clock) .Nat at a clock constant κ0. The composition on Nat is

obviously the identity, but for the other composition to be the identity, we need to assume the

η-axiom for ∀κ.A, and the clock irrelevance axiom, which states that whenever t : ∀κ.A and κ

is not in A, then evaluating t at different clocks give the same result. One of the main contribu-

tions of this paper is that this axiom can be modelled using a notion of orthogonality. The last

isomorphism requires an inverse force : ∀κ.
κ
◮A→ ∀κ.A to the map induced by nextκ.

In this paper we focus on modelling GDTT, and refer the reader to (Møgelberg 2014) for a

proof of correctness of the coinductive type encodings.

1.2. A model of guarded recursion with multiple clocks

In the single clock case guarded recursion can be modelled in the topos of trees, i.e., the category

Setω
op

of presheaves over the ordered natural numbers ω. In this model, a closed type is modelled

as a sequence of sets (Xn)n∈N together with restriction maps Xn+1 → Xn. We think of Xn as the

type as it looks if we have n steps to reason about it. For example, in the guarded recursive type

of streams, since the tail takes one computation step to compute, one can compute the n+1 first

elements of the stream in n steps. We can represent this by the object defined as Strn = Nn+1

with restriction maps as projections.

In this model ◮X is the object given by (◮X)0 = 1 and (◮X)n+1 = Xn. Redefining Strn

to be Nn+1 × 1 (and associating products to the right) one gets Str = N × ◮Str. In the empty

context a term t :
κ
◮A→ A is modelled as a family of maps tn+1 : An → An+1 and t0 : 1→ A0.

The fixed point operator maps such a family to the global element fix(t) : 1 → A defined as

fix(t)n = tn ◦ · · · ◦ t0. We refer to (Birkedal et al. 2012) for further details.

In this paper we extend this to a model of guarded recursion with multiple clocks. The model is

a presheaf category over a category T of time objects. In the single clock case, a time object was

simply a number indicating the number of ticks left on the unique clock. In the case of multiple

clocks, a time object consists of a finite set of clocks E , together with a map δ : E → N indicating

the number of ticks left on each clock. A morphism of time objects σ : (E , δ) → (E ′, δ′) is a

4

map σ : E → E ′ such that δ′(σ(λ)) ≤ δ(λ) for each λ ∈ E . Such a morphism can rename clocks,

introduce new clocks (elements of E ′ outside the image of σ) and even synchronise clocks (by

mapping them to the same clock). The inequality requirement corresponds to the inequalities

between numbers in the topos of trees.

We consider covariant presheaves on T, i.e., the category of functors T→ Set. In this category

there is an object of clocks given by C(E , δ) = E , which we use to model clock variables. Clock

quantification is modelled as a dependent product over C. With this interpretation, for a type A

in which κ does not appear free, the type ∀κ.A is modelled as a simple function type C → A.

The clock irrelevance axiom mentioned above then states that the map A→ (C → A) mapping

an element x in A to the constant map to x is an isomorphism. Of course, this does not hold for

all presheaves A, and so we must show that this holds for the interpretation of any type. Note

that it does not hold for A = C, and so, although ∀κ.A is modelled as a dependent product over

the presheaf of clocks, there is no type of clocks in the type theory. This is similar to the status

of the interval in cubical type theory (Cohen et al. 2016), which is not itself a type, but still the

set of types is closed under dependent products over the interval (these are path types).

For dependent types the condition becomes a unique lifting property. In a presheaf model of

type theory a type depending on a context is modelled as a family A over a presheaf Γ. To

this can be associated a projection p : Γ.A → Γ corresponding to syntactic projection between

contexts. This must satisfy the condition that for all Y , and for all commutative squares as in

the outer square below (where πY is the projection), there exists a unique h such that the two

triangles commute.

Y × C Γ.A

Y Γ

f

πY p

g

h

We say that such a map p is internally right orthogonal to C. This condition is similar to the

notion of fibration used in models of homotopy theoretic models of type theory (Awodey &

Warren 2009, Kapulkin & Lumsdaine 2012) and cubical type theory (Bezem et al. 2013), except

that here the liftings are unique. This means that it can be considered a property that must be

proved for each type, rather than structure that is part of the interpretation of a type.

1.3. Universes

Since our model is a presheaf category, one would hope that modelling universes would follow

the standard Hofmann-Streicher construction (Hofmann & Streicher 1999), restricting to the

elements internally right orthogonal to C. Unfortunately, this universe U is not itself internally

right orthogonal to C. The reason is that there is a map U × C → U mapping a type A and

a clock κ to
κ
◮A, and this map is not constant in the C component. This is a new semantic

manifestation of a known problem, and we follow the solution used in GDTT, which is to have a

family of universes (U∆)∆ in the syntax, indexed by finite sets of clock variables. Each universe

U∆ is to be thought of as the universe of types independent of the clocks outside of ∆, and the

type operation
κ
◮ is restricted on the universe U∆ to the κ in ∆.

This means that universes are indexed by a new dimension, similar to the indexing of universes

by natural numbers used to avoid Russell’s paradox (Martin-Löf 1973). Fortunately, there are

Denotational semantics for guarded dependent type theory 5

inclusions U∆ → U∆′ for ∆ ⊆ ∆′, and we prove universe polymorphism in this dimension. This

means that operations on types such as dependent product can be defined on the universes in

such a way that they commute with the inclusions mentioned above, not just up to isomorphism,

but indeed up to identity. We hope that, as a consequence of this result, the indexing of universes

by clock contexts can be suppressed in practical applications, just like the indexing by natural

numbers is often suppressed.

1.4. Related work

The notion of guarded recursion studied in this paper originates with Nakano (2000). Much of

the recent interest in guarded recursion is due to the guarded recursive types, which can even

have negative occurences and thus, by adding ◮ operators in appropriate places, provide approx-

imations to solutions to equations that can not be solved in set theory. These have been used

to construct syntactic models and operational reasoning principles for (also combinations of)

advanced programming language features including general references, recursive types, count-

able non-determinism and concurrency (Birkedal et al. 2012, Bizjak et al. 2014, Svendsen &

Birkedal 2014). This technique can be understood as an abstract form of step-indexing (Appel

& McAllester 2001), the connection to which was first discovered by Appel et al. (2007). Most

of these applications have been constructed using logics with guarded recursion, such as the in-

ternal language of the topos of trees (Birkedal et al. 2012), but recently GDTT has been used to

construct denotational models of programming languages like FPC (Møgelberg & Paviotti 2016),

modelling the recursive types of these as guarded recursive types.

Most type theories with guarded recursion considered until now have been extensional, with

the exception of guarded cubical type theory (Birkedal et al. 2016). This has, however, only been

developed in the single clock case, although there exists an experimental version with multiple

clocks.

Guarded recursion with multiple clocks was first developed in the simply typed setting by

Atkey & McBride (2013). The second named author (Møgelberg 2014) extended these results

to a model of dependent type theory and proved correctness of the coinductive type encodings

inside a type theory with guarded recursion. These two early works used a restricted version of

clock application, allowing t[κ′] : A [κ′/κ] for t : ∀κ.A only if κ′ does not appear free in ∀κ.A. This

condition can be thought of as disallowing the clocks κ and κ′ to be synchronised in A, and was

motivated by the models considered at the time. This restriction has unfortunate consequences

for the syntactic metatheory. In particular, the present authors do not know how to prove type

preservation for clock β-reductions in these systems.

This led us to suggest a different model (Bizjak & Møgelberg 2015) given by a family of presheaf

categories GR (∆) indexed by clock contexts (finite sets of clock variables) ∆. This model should

in principle lead to a model of GDTT, but this was never done in detail, due to a problem with

modelling substitution of clock variables. Such substitutions are given by maps σ : ∆ → ∆′

and must correspond semantically to functors GR (∆)→ GR (∆′). While these functors can be

defined in a natural way, they do not commute with dependent function types up to identity,

only up to isomorphism. This problem can be thought of as a coherence problem, similar to the

one arising when modelling type theory in locally cartesian closed categories (Hofmann 1994). It

is very likely that Hofmann’s (1994) solution to the latter problem can be adapted to construct

an equivalent family of categories for which the functors preserve construction on the nose, but

6

we prefer the solution presented here, which organises all these categories inside one big presheaf

category, thereby reducing the model construction to the known construction of modelling type

theory in a presheaf category. The precise relation to the categories GR (∆) is discussed in

Section 9.

Recently, GDTT has been refined to clocked type theory (CloTT) (Bahr et al. 2017), which

has better operational properties, and indeed strong normalisation has been proved for clocked

type theory in the setting without identity types. The principal novel feature of CloTT is the

notion of ticks on a clock introduced in contexts as assumptions of the form α : κ, for κ a clock.

Ticks can be used to encode the delayed substitutions (see Section 6) of GDTT, and reduce

most of the equalities between these to β and η equalities. Since the initial development of the

research reported here, Mannaa & Møgelberg (2018) have developed a model CloTT based on the

model presented here. Their paper however, does not describe how to model the clock irrelevance

axiom, nor universes as presented here. Also, the presence of ticks makes the model construction

for CloTT rather complicated and so we have chosen to present the model in the simpler setting

of GDTT first.

In recent work on guarded computational type theory, Sterling & Harper (2018) propose a clock

intersection connective to be used as a special ‘irrelevant’ quantification over clocks. Using this

they encode coinductive types, while avoiding the indexing of universes by clock contexts as done

here. Irrelevant clock quantification is interpreted using intersection of sets in a syntactic model,

in which types are essentially indexed sets of values. This is similar to the original interpretation

of clock quantification in the work of Atkey & McBride (2013). A related irrelevant quantification

over sizes appears in the work of Abel et al. (2017). However, it is unclear how to give denotational

semantics of such a constructor. We remark that the model used by Sterling & Harper (2018)

is based on a category very similar to the presheaf category used in this paper and that these

models were discovered independently.

One way of understanding the need for multiple clocks for encoding coinductive types is that

they provide a controlled way of eliminating the ◮modality as in the term force : ∀κ.
κ
◮A→ ∀κ.A

mentioned above. As an alternative solution to this problem, ? have suggested to use an always

modality � satisfying �◮A ∼= �A. It is yet unclear how far this idea can be extended, in

particular if it can be used for encoding nested inductive and coinductive types.

Sized types (Hughes et al. 1996) offer a different approach to the problem of encoding produc-

tivity in types. The idea is to annotate approximations of a coinductive type with the number

of unfoldings that can be applied to it. The real coinductive type is then the approximation

associated with an infinite ordinal. When programming with sized types, the sizes sometimes

get in the way, motivating the concept of irrelevant quantification over sizes mentioned above.

The syntactic theory of sized types is further developed than that of guarded recursion (Abel &

Pientka 2013, Abel et al. 2017, Sacchini 2013), and sized types are also available in an experi-

mental extension of Agda. Sized types have not been used as abstract step-indexing in the sense

described above for guarded recursion, and the authors are not aware of any work on denotational

semantics for sized types.

Our view is that guarded recursion should be thought of as an abstraction of sized types,

providing similar benefits as the abstraction of step-indexing, in particular by hiding Kripke

structure present in the model. This view is supported by work by Veltri & van der Weide

(2019) in which a model of guarded recursion is constructed in Agda using sized types to model

recursion. In this work, the model is restricted to a simply typed language language specialised

Denotational semantics for guarded dependent type theory 7

to the case of just 0 or 1 clocks, thus avoiding the issue of clock synchronisation treated in this

paper.

1.5. Overview

Section 2 presents a basic type theory Core-GDTT for guarded recursion with multiple clocks.

This can be thought of as the core of GDTT (Bizjak et al. 2016) although we use a slightly different

presentation. Section 3 then presents a basic model of Core-GDTT in the presheaf category SetT,

and Section 4 shows how to model the clock irrelevance axiom. The following sections 5 and 6

then extend Core-GDTT with extensional identity types and delayed substitutions, a construction

needed for reasoning about guarded recursive and coinductive types. Section 7 is devoted to

universes and modelling universe polymorphism in the clock context dimension and Section 8

sketches how to extend Hofmann’s interpretation of dependent type theory syntax (Hofmann

1997) to interpreting GDTT into the model presented in this paper. Finally the relations to the

categories GR (∆) constructed in previous work (Bizjak & Møgelberg 2015) by the authors is

discussed in Section 9.

2. A basic type theory for guarded recursion

This section introduces Core-GDTT a presentational variant of a fragment of the type theory

GDTT (Bizjak et al. 2016). The fragment is the one not mentioning universes, delayed substitu-

tions and identity types. All these will be treated in Sections 5–7. The variation referred to above

is in the treatment of clocks, which in previous work (Bizjak et al. 2016, Møgelberg 2014, Bizjak

& Møgelberg 2015) had a separate context. Here we simply include them in the context as if they

were ordinary variables to simplify the presentation of the denotational semantics. Section 2.1

sketches an equivalence between Core-GDTT and the corresponding fragment of GDTT.

The rules for context formation, type judgements and equalities can be found in Figure 1. Note

that clock has a special status. In particular, it is not a type. Its status is similar to that of the

interval type in cubical type theory (Cohen et al. 2016). Ignoring ◮ and the clock irrelevance

axiom, the type theory Core-GDTT is in fact just a fragment of a type theory with a base type

clock in which types like
∏

(x : A) .clock or
∑

(κ : clock) .A are not allowed. Under this view,

the type ∀κ.A can be thought of as a dependent product type
∏

(κ : clock) .A, in fact its basic

behaviour is exactly like a dependent product, as can be seen from the equality rules. We make

use of this view to establish soundness of the model given in Section 3. What distinguishes it from

an ordinary dependent product is the clock irrelevance axiom stated at the bottom of Figure 1.

The set fv(A) is the set of free variables of A defined in the usual way, and so the assumption

κ /∈ fv(A) implies that ∀κ.A reduces to a simple function space clock → A. The axiom states

that all maps of this type are constant. In Section 4 we explain how to model the type theory

with this additional axiom.

In Figure 1 the equalities should be understood as equalities of terms in a context. For brevity

we have omitted the context in most statements except the clock irrelevance axiom, which, unlike

the other rules, is type directed.

The term constructor prev κ is a restricted elimination form for
κ
◮, and binds κ. An unrestricted

eliminator prev κ would be unsafe, because terms of the form fixκ x. prev κ.x would inhabit any

type. As the model presented in this paper shows, however, it is safe to eliminate a
κ
◮, as long as

8

Wellformed contexts

· ⊢

Γ ⊢ A type x /∈ Γ

Γ, x : A ⊢

Γ ⊢ κ /∈ Γ

Γ, κ : clock ⊢

Wellformed clocks
κ : clock ∈ Γ

Γ ⊢ κ : clock

Type formation

Γ, x : A ⊢ B type

Γ ⊢
∏

(x : A) .B type

Γ, x : A ⊢ B type

Γ ⊢
∑

(x : A) .B type

Γ ⊢ A type Γ ⊢ κ : clock

Γ ⊢
κ
◮A type

Γ, κ : clock ⊢ A type

Γ ⊢ ∀κ.A type

Typing judgements

Γ, x : A,Γ′ ⊢ x : A

Γ, x : A ⊢ t : B

Γ ⊢ λx.t :
∏

(x : A) .B

Γ ⊢ t :
∏

(x : A) .B Γ ⊢ u : A

Γ ⊢ t u : B [u/x]

Γ ⊢ t : A Γ ⊢ u : B [t/x]

Γ ⊢ 〈t, u〉 :
∑

(x : A) .B

Γ ⊢ t :
∑

(x : A) .B

Γ ⊢ π1t : A

Γ ⊢ t :
∑

(x : A) .B

Γ ⊢ π2t : B [π1t/x]

Γ ⊢ t : A Γ ⊢ κ : clock

Γ ⊢ next
κ t :

κ
◮A

Γ, κ : clock ⊢ t :
κ
◮A

Γ ⊢ prev κ.t : ∀κ.A

Γ, x :
κ
◮A ⊢ t : A

Γ ⊢ fix
κ x.t : A

Γ, κ : clock ⊢ t : A

Γ ⊢ Λκ.t : ∀κ.A

Γ ⊢ t : ∀κ.A Γ ⊢ κ′ : clock

Γ ⊢ t
[

κ′
]

: A
[

κ′/κ
]

Γ ⊢ t : A Γ ⊢ A = B

Γ ⊢ t : B

Equalities

(λx.t)u = t [u/x] λx.tx = t (if x /∈ t)

πi 〈t1, t2〉 = ti 〈π1t, π2t〉 = t

(Λκ.t)κ′ = t
[

κ′/κ
]

Λκ.t[κ] = t (if κ /∈ t)

prev κ. (nextκ t) = Λκ.t next
κ ((prev κ.t)[κ]) = t

fix
κ x.t = t [nextκ(fixκ x.t)/x]

Clock irrelevance axiom

Γ ⊢ t : ∀κ.A κ /∈ fv(A) Γ ⊢ κ′ : clock Γ ⊢ κ′′ : clock

Γ ⊢ t
[

κ′
]

= t
[

κ′′
]

: A

Figure 1. Syntax of Core-GDTT, a fragment of GDTT.

Denotational semantics for guarded dependent type theory 9

κ does not appear in the ordinary (non-clock) variables of the context. This is ensured in the rule

for prev κ by requiring that κ is at the end of the context. One might have expected a simpler

rule of the form

Γ, κ : clock ⊢ t :
κ
◮A

Γ, κ : clock ⊢ prev κ.t : A

but this rule is not closed under substitution of clock variables. This problem is solved by binding

κ.

Some example terms. We refer to Bizjak et al. (2016) for more extensive and detailed motivation

and explanation of the usage of the type theory. We briefly show here some example terms on

streams. The type Strκ of guarded streams of natural numbers is the unique type satisfying

Strκ = N×
κ
◮Strκ. To understand this example it is not important how this type can be defined,

only that it satisfies the stated judgemental equality. For readers familiar with guarded dependent

type theory we remark that it can be defined as using the guarded fixed point on the universe

U{κ} as outlined in the introduction of this paper. Using the mentioned judgemental equality we

can type

headκ : Strκ → N

headκ
def
= λxs.π1(xs)

tailκ : Strκ →
κ
◮ Strκ

tailκ
def
= λxs.π2(xs)

Notice that the tailκ introduces a
κ
◮ modality: The tail of a guarded stream is only available

later. This prevents non-productive stream definitions. However once the streams are defined we

wish to use them without introducing later modalities. This can be achieved by the type Str of

streams of natural numbers. It is defined from the type of guarded streams as Str
def
= ∀κ. Strκ.

Thus, the tail function on streams is defined as

tail : Str → Str

tail
def
= λxs. prev κ. tailκ(xs[κ])

2.1. Relation to previous presentations

Judgements of GDTT as presented in (Bizjak et al. 2016) have a separate context for clock

variables. For example, typing judgements have the form Γ ⊢∆ t : A where ∆ is a clock context

of the form κ1, . . . κn, and Γ consists exclusively of ordinary variable declarations. The two

presentations are equivalent in the sense that Γ ⊢∆ t : A is a valid judgement in the presentation

of (Bizjak et al. 2016) iff κ1 : clock, . . . , κn : clock,Γ ⊢ t : A is valid in the presentation used here.

Another minor difference is that GDTT as presented in (Bizjak et al. 2016) has a clock constant

κ0. The clock constant can be easily added to Core-GDTT by a precompilation adding a fresh

clock variable to the left of the context in each judgement.

3. A presheaf model

This section defines the category SetT as that of covariant presheaves on the category of time

objects T. As any presheaf category, SetT has enough structure to model dependent type theory.

The category SetT contains an object C of clocks which can be used to model clock quantification

10

and guarded recursion. We show that SetT validates almost all the rules of Core-GDTT, apart

from the clock irrelevance axiom, which is the topic of Section 4. The focus in this section, as

in most of the paper, will be to construct the semantic structure needed for modelling the type

theory, leaving the question of how to interpret syntax to Section 8.

We write Fin for the category of finite sets and functions whose objects are finite subsets E of

some given, countably infinite, set of clocks.†

Definition 3.1. Let T be the category with objects pairs (E , δ) with E ∈ Fin and δ : E → N a

function. A morphism (E , δ)→ (E ′, δ′) in T is a function τ : E → E ′ in Fin such that δ′ ◦ τ ≤ δ

in the pointwise ordering.

We use λ to range over elements of E and write E , λ for the union of E with {λ} assuming

λ /∈ E . Likewise, when E and E ′ are disjoint, we write E , E ′ for their union. We use the notation

δ[λ 7→ n] for both the update of δ (when λ ∈ E) and the extension of δ (when λ /∈ E).

The indexing category T should be thought of as a category of time objects. A time object is a

finite set of semantic clocks E which each have a finite number of ticks left on them as indicated

by δ. During a computation, three things can happen: time can pass on the existing clocks, as

captured by a map idE : (E , δ)→ (E , δ′) where δ′ ≤ δ, new clocks can be introduced as captured

by set inclusions i : (E , δ)→ ((E , λ), δ[λ 7→ n]), and clocks can be synchronised as captured by a

map

idE [λ 7→ λ′′, λ′ 7→ λ′′] : ((E , λ, λ′), δ[λ 7→ n, λ′ 7→ m])→ ((E , λ′′), δ[λ′′ 7→ min(n,m)]).

Finally, clocks can be renamed, e.g., via an isomorphism σ : E ∼= E ′ inducing an isomorphism

σ : (E , δ ◦ σ) → (E ′, δ). Any map in the indexing category T can be written as a composition of

these three kinds of maps.

Variables of the form κ : clock will be modelled as the object of clocks C, which is simply the

first projection

C(E , δ) = E .

Lemma 3.1. Let λ be a clock. There is an isomorphism of objects of SetT

C ∼= lim
−→
n∈N

y ({λ}, n)

where y : Top → SetT is the (co)Yoneda embedding, and we write ({λ}, n) for the T object

({λ}, [λ 7→ n]), i.e., the first component is the singleton containing λ, and the second component

is the map which maps λ to n.

Proof. The objects of the diagram are

y ({λ}, n) (E , δ) = HomT(({λ}, n) , (E , δ))

∼= {λ′ ∈ E | δ(λ′) ≤ n}

and up to this isomorphism, the arrows are inclusions of sets. Since colimits are computed

pointwise in presheaf categories, the isomorphism follows.

† The assumption that the objects are subset of a fixed set, as opposed to arbitrary finite sets keeps the category

Fin, and thus also T, small, thus simplifying definitions of, e.g., dependent products.

Denotational semantics for guarded dependent type theory 11

When describing objects and morphisms of SetT we will use the following notation: An object

Γ is a family of sets Γ(E,δ) indexed by (E , δ) ∈ T together with maps

σ · − : Γ(E,δ) → Γ(E′,δ′)

for each σ : (E , δ)→ (E ′, δ′) in T, satisfying the following two functoriality properties

id · x = x (1)

(σ ◦ τ) · x = σ · (τ · x). (2)

A morphism ρ : Γ → Γ′ is a family of maps ρ(E,δ) : Γ(E,δ) → Γ′
(E,δ) such that σ · (ρ(E,δ)(γ)) =

ρ(E′,δ′)(σ · γ) for any σ : (E , δ)→ (E ′, δ′) in T and any γ ∈ Γ(E,δ).

3.1. Interpreting type theory in categories of presheaves

We now recall the notion of category with families (CwF) (Dybjer 1995), which is a standard

notion of model of dependent type theory. We also recall how SetT gives rise to a CwF modelling

Π-, and Σ-types through a standard construction (Hofmann 1997) that works for all presheaf

categories.

Definition 3.2. A category with families comprises

— A category C with a distinguished terminal object

— For each object Γ of C a set C(Γ) of families over Γ.

— For each Γ in C and each family A in C(Γ) a set C(Γ ⊢ A) of elements of A.

— For each morphism γ : ∆ → Γ in C reindexing operations mapping A in C(Γ) to A[γ] in

C(∆) and t in C(Γ ⊢ A) to t[γ] in C(∆ ⊢ A[γ]). These must satisfy the equations A[id] = A,

t[id] = t, A[γ ◦ δ] = A[γ][δ] and t[γ ◦ δ] = t[γ][δ] for all morphisms δ with codomain ∆.

— A comprehension operation associating to each family A in C(Γ) the following: An object Γ.A

in C, a morphism pA : Γ.A → Γ and an element qA in C(Γ.A ⊢ A[pA]), such that for every

γ : ∆→ Γ, and t in C(∆ ⊢ A[γ]) there exists a unique morphism 〈γ, t〉 : ∆→ Γ.A such that

pA ◦ 〈γ, t〉 = γ and qA[〈γ, t〉] = t.

Note that uniqueness implies that 〈γ, t〉 ◦ ρ = 〈γ ◦ ρ, t[ρ]〉.

We will often refer to a CwF simply by its underlying category C leaving the rest of the

structure implicit. Categories with families provide models of dependent type theories in which

contexts are interpreted as objects in the underlying category, types are interpreted as families

and terms as elements. The category SetT is the underlying category of a CwF whose families

above an object Γ are families of sets A(E,δ)(γ) indexed over (E , δ) in T and γ ∈ Γ(E,δ), together

with restriction maps

σ · (−) : A(E,δ)(γ)→ A(E′,δ′)(σ · γ)

indexed by σ : (E , δ) → (E ′, δ′) in T and γ ∈ Γ(E,δ) and satisfying the functoriality properties

(1) and (2). Note that the notation σ · x is overloaded both for a restriction of objects as well as

families.

An element t ∈ SetT(Γ ⊢ A) is a family of elements t(E,δ)(γ) ∈ A(E,δ)(γ) indexed over (E , δ) in

T and γ ∈ Γ(E,δ) satisfying σ · (t(E,δ)(γ)) = t(E′,δ′)(σ ·γ) for every σ : (E , δ)→ (E ′, δ′). Reindexing

of terms and types along morphisms ρ : Γ′ → Γ is defined as A[ρ](E,δ)(γ) = A(E,δ)(ρ(E,δ)(γ)) and

12

t[ρ](E,δ)(γ) = t(E,δ)(ρ(E,δ)(γ)). We will often omit the subscripts (E , δ) when they can be inferred

from the context.

Comprehension is defined as

(Γ.A)(E,δ) = {(γ, a) | γ ∈ Γ(E,δ), a ∈ A(E,δ)(γ)}

with presheaf action defined as σ · (γ, x) = (σ · γ, σ · x).

Recall the following standard result (Hofmann 1997).

Lemma 3.2. The CwF structure on SetT models Π- and Σ-types.

These are constructed as follows, for A ∈ SetT(Γ), B ∈ SetT(Γ.A) and γ ∈ Γ(E,δ)

Π(A,B)(E,δ)(γ) =

(fσ)σ:(E,δ)→(E′,δ′)

∣∣∣∣∣∣

∀E ′, δ′, σ : (E , δ)→ (E ′, δ′), ∀a ∈ A(E′,δ′)(σ · γ),

fσ(a) ∈ B(E′,δ′)(σ · γ, a) such that

τ · fσ(a) = fτ◦σ(τ · a) for composable τ, σ

 (3)

Σ(A,B)(E,δ)(γ) = {(a, b) | a ∈ A(E,δ)(γ), b ∈ B(E,δ)(γ, a)} (4)

with presheaf action on Π(A,B) defined by precomposition, i.e., if τ : (E , δ)→ (E ′, δ′) then

τ · ((fσ)σ:(E,δ)→(E′′,δ′′)) = (fστ)σ:(E′,δ′)→(E′′,δ′′)

Recall also that evaluation mapping an element f ∈ SetT(Γ ⊢ Π(A,B)) and t ∈ SetT(Γ ⊢ A) to

ev(f, t) ∈ SetT(Γ ⊢ B[〈idΓ, t〉]) is defined as

ev(f, t)(E,δ)(γ) = (f(E,δ)(γ))id(E,δ)
(t(E,δ)(γ))

When A,B ∈ SetT(Γ) we write A → B for Π(A,B[p]). When t ∈ SetT(Γ.A ⊢ B) we write λ(t)

for the corresponding abstracted element in SetT(Γ ⊢ Π(A,B)). The semantic β-rule states that

ev(λt, u) = t[〈id, u〉]. Finally, recall the substitution property Π(A,B)[ρ] = Π(A[ρ], B[〈pρ, q〉]),

and similarly for Σ-types.

3.2. Modelling ◮ and guarded recursion

We now explain how to model the ◮-modality and fixed points. First note that there is a family

clock ∈ SetT(1) defined as the object C, since families in context 1 correspond to objects of SetT,

and so, for any Γ, there is a family clock[!Γ] ∈ SetT(Γ), where !Γ : Γ→ 1 is the unique map.

Lemma 3.3. If A ∈ SetT(Γ) and κ ∈ SetT(Γ ⊢ clock[!Γ]) there is a family
κ
◮A ∈ SetT(Γ) and

a mapping associating to each element t ∈ SetT(Γ ⊢ A) an element nextκ(t) ∈ SetT(Γ ⊢
κ
◮A)

both commuting with reindexing, such that for every f ∈ SetT(Γ ⊢
κ
◮A→ A) there is a unique

fixκ(f) ∈ SetT(Γ ⊢ A) satisfying ev(f, nextκ(fixκ(f))) = fixκ(f).

Note that the uniqueness here implies that the construction fixκ(f) commutes with reindexing:

Since

ev(f [ρ], nextκ[ρ]((fixκ(f))[ρ])) = ev(f [ρ], (nextκ(fixκ(f)))[ρ])

= ev(f, nextκ(fixκ(f)))[ρ]

= (fixκ(f))[ρ]

uniqueness implies (fixκ(f))[ρ] = fixκ[ρ](f [ρ]).

Denotational semantics for guarded dependent type theory 13

Proof. If (E , δ) is an object of T and λ ∈ E such that δ(λ) > 0 we write δ−λ for the function

which agrees with δ everywhere except on λ where δ−λ(λ) = δ(λ) − 1. It is elementary that the

identity function defines a morphism

tickλ : (E , δ)→
(
E , δ−λ

)

in T.

With this notation we can define
κ
◮A as follows, omitting the subscript on κ

(
κ
◮A)(E,δ)(γ) =

{
{⋆} if δ(κ(γ)) = 0

A(E,δ−κ(γ))(tick
κ(γ) · γ) otherwise

Let σ : (E , δ) → (E ′, δ′). The map σ · (−) : (
κ
◮A)(E,δ)(γ) → (

κ
◮A)(E′,δ′)(σ · γ), can be defined in

the case that δ′(κ(σ · γ)) = 0 as σ · x = ⋆. If δ′(κ(σ · γ)) > 0 also δ(κ(γ)) > 0 because

δ′(κ(σ · γ)) = δ′(σ · κ(γ)) = δ′(σ(κ(γ))) ≤ δ(κ(γ))

and so σ induces a map σ−κ(γ) : (E , δ−κ(γ)) → (E ′, δ′−σ(κ(γ))), satisfying σ−κ(γ) ◦ tickκ(γ) =

tickσ(κ(γ)) ◦ σ. In this case, we can thus define σ · (−) to be the map

σ−κ(γ) · (−) : A(E,δ−κ(γ))(tick
κ(γ) · γ)→ A(E,δ′−κ(σ·γ))(tick

κ(σ·γ) · σ · γ)

The construction
κ
◮ commutes with reindexing, since

(
κ[ρ]
◮ A[ρ]) =

{
{⋆} if δ(κ[ρ](γ)) = 0

A(E,δ−κ[ρ](γ))(ρ(tick
κ[ρ](γ) · γ)) otherwise

=

{
{⋆} if δ(κ(ρ(γ))) = 0

A(E,δ−κ(ρ(γ)))(tick
κ(ρ(γ)) · ρ(γ)) otherwise

and writing out ((
κ
◮A)[ρ])(γ) = (

κ
◮A)(ρ(γ)) gives the exact same expression.

Analogously, the element nextκ(t) is defined as

(nextκ(t))(E,δ)(γ) =

{
⋆ if δ(κ(γ)) = 0

t(E,δ−κ(γ))(tick
κ(γ) · γ) otherwise

To define fixκ(f), note that by the above definitions

ev(f, nextκ(fixκ(f)))(γ) =

{
(f(ρ))id(⋆) if δ(κ(ρ(γ))) = 0

(f(ρ))id((fix
κ(f))(tickκ(γ) · γ)) otherwise

and thus the fixκ(f) can be defined by induction on κ(ρ(γ)).

3.3. Modelling previous

As noted in Section 2, universal quantification over clocks is simply a special case of a dependent

function space, and so can be modelled in the CwF SetT using Π-types. No special construction

is needed for this. However, in order to model prev we now give an alternative description of

Π types with domain clock in the model as a limit over a family of objects indexed by natural

numbers. Universal quantification over clocks is modelled similarly in the models of (Atkey &

McBride 2013, Møgelberg 2014, Bizjak & Møgelberg 2015).

14

In the following, we will assume a choice of fresh clock names E 7→ λE , such that λE /∈ E and

write ιn : (E , δ)→ ((E , λE), δ[λE 7→ n]) for the inclusion for n ∈ N. Note that tickλ ◦ ιn+1 = ιn.

Lemma 3.4. Let A ∈ SetT(Γ.clock[!Γ]), (E , δ) ∈ T and γ ∈ Γ(E,δ). The set Π(clock[!Γ], A)(E,δ)(γ)

is the limit of the diagram

A(ι0 · γ, λE) A(ι1 · γ, λE) A(ι2 · γ, λE) . . .
tickλE ·(−) tickλE ·(−) tickλE ·(−)

Proof. Let y : Top → SetT be the (co)Yoneda embedding. Uncurrying the definition in (3)

we see that elements of Π(clock[!Γ], A)(E,δ)(γ) correspond to maps mapping objects (E ′, δ′) of

T and elements (σ, λ) ∈ (y(E , δ) × C)(E ′, δ′) to elements in A(σ · γ, λ) naturally in (E ′, δ′). By

Lemma 3.1, the presheaf y(E , δ)× C is isomorphic to the colimit over n of the diagram given by

objects y(E , δ)× y({λE}, n). Thus Π(clock[!Γ], A)(E,δ)(γ) is isomorphic to the limit of a diagram

of the form

X0 X1 X2 X3 . . .

where Xn is the set of maps as above defined just for (σ, λ) ∈ (y(E , δ) × y({λE}, n))(E
′, δ′), and

the maps are given by restriction. It remains to show the isomorphism of the above diagram with

that of the lemma.

The object ((E , λE), δ[λE 7→ n]) is the coproduct in T of (E , δ) and ({λE}, n) with inclusions

given by inclusions of sets. Since the yoneda embedding preserves products, y(E , δ)× y({λE}, n) ∼=

y((E , λE), δ[λE 7→ n]). Up to this correspondence, the restriction of an element in the family

Π(clock[!Γ], A)(E,δ)(γ) to y(E , δ)× y({λE}, n) corresponds to a mapping associating to (E ′, δ′) of

T and elements (σ, λ) ∈ y((E , λE), δ[λE 7→ n])(E ′, δ′) elements in A(σ · (ιn · γ), σ(λE)) naturally

in (E ′, δ′). By a yoneda style argument such mappings are determined by their action on the

identity on ((E , λE), δ[λE 7→ n]) and thus we arrive at the diagram of the lemma.

Rather than modeling prev directly, we model the construct

Γ ⊢ t : ∀κ.
κ
◮A

Γ ⊢ force t : ∀κ.A

Using this, one can define prev as

prev κ.t
def
= force(Λκ.t) (5)

To satisfy the equalities of Figure 1, the term λx. force(x) should be an inverse to λx.Λκ. nextκ(x[κ]).

Using this, one can prove the first equality for force in Figure 1 as follows

prev κ. (nextκ t) = force(Λκ. (nextκ t))

= force(Λκ. (nextκ(Λκ.t)[κ]))

= Λκ.t

The other equality is proved similarly.

We now show that the semantic correspondent to λx.Λκ. nextκ(x[κ]) is an isomorphism.

Lemma 3.5. SupposeA ∈ SetT(Γ.clock[!Γ]). The mapping of elements t ∈ SetT(Γ ⊢ Π(clock[!Γ], A))

to λ(nextq(ev(t[p], q))) in SetT(Γ ⊢ Π(clock[!Γ],
q
◮A)) is an isomorphism.

Denotational semantics for guarded dependent type theory 15

Before proving this, we argue that the mapping referred to is welltyped. By the assump-

tion on t, t[p] ∈ SetT(Γ.clock[!Γ] ⊢ (Π(clock[!Γ], A))[p]) and since (Π(clock[!Γ], A))[p] equals

Π(clock[!Γ.clock[!Γ]], A[〈p ◦ p, q〉]) also ev(t[p], q) is an element in A[〈p ◦ p, q〉][〈id, q〉] = A[〈p, q〉] =

A. Since q ∈ SetT(Γ.clock[!Γ] ⊢) also nextq(ev(t[p], q)) is an element in
q
◮A, and therefore

λ(nextq(ev(t[p], q))) is in SetT(Γ ⊢ Π(clock[!Γ],
q
◮A)). Note that the inverse of this map neces-

sary must commute with reindexing, since the construction of the map does.

Proof. Unfolding definitions, we see that the construction of lemma at γ ∈ Γ(E,δ) is the map

induced by the map of diagrams below.

A(ι0 · γ, λE) A(ι1 · γ, λE) A(ι2 · γ, λE) . . .

1 A(ι0 · γ, λE) A(ι1 · γ, λE) . . .

!

tickλE ·(−)

tickλE ·(−)

tickλE ·(−)

tickλE ·(−)

tickλE ·(−)

tickλE ·(−) tickλE ·(−)

The map induced between the limits is therefore an isomorphism.

With these definitions we can extend the interpretation to the whole of Core-GDTT. However

the interpretation only validates the basic axioms, i.e., β and η laws. It does not validate the

clock irrelevance axiom. To soundly interpret Core-GDTT we need to require that the families

are suitably constant. This is the subject of the next section.

4. Modelling clock irrelevance using orthogonality

In the interpretation above ∀κ.A is interpreted as an ordinary dependent product
∏

(κ : clock) .A.

Under this interpretation, the clock irrelevance axiom concerns functions f of type C → A and

states that each such function must be constant. To model this, we restrict attention in the

model to those families satisfying this property, and show that the collection of these is closed

under the type constructions of Core-GDTT. To capture clock irrelevance semantically, we start

by recalling the category theoretic concept of orthogonality.

A morphism e : A→ B is left-orthogonal to m : C → D (and m is right-orthogonal to e) if all

commutative squares as below have a unique filler h.

A C

B D

f

e mh

g

Often we will simply refer to this as e being orthogonal to m. If B is the terminal object, we

may also refer to this as the object A being left-orthogonal to m and similarly for the case of D

being terminal. We shall need the slightly stronger notion of internal orthogonality (?), which

can be understood by rephrasing the above lifting property as the requirement that the following

16

diagram of hom-sets is a pullback

HomC(B,C) HomC(B,D)

HomC(A,C) HomC(A,D)

m◦(−)

(−)◦e (−)◦e

m◦(−)

The idea of internal orthogonality is to replace the external hom-sets above with exponentials in

a cartesian closed category. The resulting condition is equivalent to the following, which can be

stated also in categories that are not cartesian closed.

Definition 4.1. Let C be a category with finite products. Say a morphism p : A → B is

internally right orthogonal to an object X if for any Y and any f, g making the outer square

below commute, there exists a unique h : Y → A such that the diagram

Y ×X A

Y B

f

πY p

g

h

commutes.

A map p : A→ B in SetT is invariant under clock introduction if it is internally right orthogonal

to any object of the form y ({λ}, n).

Definition 4.2. A family A ∈ SetT(Γ) is invariant under clock introduction if p : Γ.A → Γ is

invariant under clock introduction in the sense of Definition 4.1.

The terminology of being invariant under clock introduction is justified by the following lemma,

the proof of which is on page 17 after preliminary Lemmas 4.2 and 4.3.

Lemma 4.1. A morphism p : A→ B in SetT is invariant under clock introduction if and only

if for all (E , δ) ∈ T, and any (equivalently all) λ 6∈ E and any n the square

A(E , δ) A ((E , λ), δ[λ 7→ n])

B(E , δ) B ((E , λ), δ[λ 7→ n])

y
p(E,δ)

A(ιn)

p((E,λ),δ[λ 7→n])

B(ιn)

is a pullback, where ιn : (E , δ)→ ((E , λ), δ[λ 7→ n]) is the inclusion.

In particular, for any presheaf A, the unique map A→ 1 is invariant under clock introduction

iff A is a constant presheaf. It will be an invariant of the interpretation defined here that the

interpretation of any type is invariant under clock introduction.

Lemma 4.1 can be restated in the following way for interpretations of types.

Corollary 4.1. A family A ∈ SetT(Γ) is invariant under clock introduction if and only if for

any E , any λ 6∈ E , any inclusion ιn : (E , δ)→ ((E , λ), δ[λ 7→ n]), and any γ ∈ Γ(E,δ), the action

ιn · (−) : A(E,δ)(γ)→ A((E,λ),δ[λ7→n])(ι
n · γ) (6)

is an isomorphism.

Denotational semantics for guarded dependent type theory 17

The proof of Lemma 4.1 uses the characterisation of internal orthogonality in Lemma 4.2 together

with the characterisation of exponentiation with certain representable functors in Lemma 4.3.

The following lemma is proved by a straightforward diagram chase.

Lemma 4.2. Suppose C is cartesian closed, X is an object of C and p : A → B a morphism.

Then p is internally right orthogonal to X if and only if

A AX

B BX

y
p

cA

pX

cB

is a pullback. Here cA and cB are exponential transposes of projectionsA×X → A andB×X → B

and pX is postcomposition with p.

By the pullback lemma (MacLane 1998, Exercise III.4.8), we derive the following corollary.

Corollary 4.2. If the morphisms p ◦ q and p are internally right orthogonal to X then so is q.

Lemma 4.3. Let A be an object of SetT. Let λ be a clock and n ∈ N. As in Lemma 3.1 we

write simply n for the map {λ} → N mapping λ to n. Then

Ay({λ},n)(E , δ) ∼= A((E , λE), δ[λE 7→ n])

and up to this isomorphism, cA = A(ι), where ι : (E , δ)→ ((E , λE), δ[λE 7→ n]) is the inclusion.

Proof. In T, the object ((E , λE), δ[λE 7→ n]) is a coproduct of (E , δ) and ({λ}, n) with coproduct

inclusions given by set inclusions (mapping λ to λE). Since y : Top → SetT preserves products,

we get the following series of isomorphisms using the Yoneda lemma and standard definitions of

exponentials in presheaf categories:

Ay({λ},n)(E , δ) = Hom(y(E , δ)× y ({λ}, n) , A)

∼= Hom(y((E , λE), δ[λE 7→ n]), A)

∼= A((E , λE), δ[λE 7→ n])

The morphism cA maps x ∈ A(E , δ) to the natural transformation given by the composition of

the first projection y(E , δ)×y ({λ}, n)→ y(E , δ) and the morphism y(E , δ)→ A corresponding to

x under the Yoneda lemma. Since the projection corresponds to composition with ι, the second

statement of the lemma follows.

Proof of Lemma 4.1 Follows from Lemma 4.2 and Lemma 4.3.

When interpreting syntax dependent types will be interpreted as families invariant under clock

introduction. This will be used to prove soundness of the clock irrelevance axiom. In fact, just to

prove that, it would be enough that the interpretation of every type is internally right orthogonal

to C. This is a slightly weaker statement than being invariant under clock introduction, as the

next lemma states. We have chosen to work with the latter because of the natural characterisation

of Lemma 4.1.

Lemma 4.4. Let C be a cartesian closed category C and let X = lim
−→i

Xi be a connected colimit.

If p : A → B is internally right orthogonal to all Xi, then it is also internally right orthogonal

18

to X . As a consequence, if p is invariant under clock introduction, it is also internally right

orthogonal to C.

The second statement of the lemma follows from the first by Lemma 3.1.

The notion of internal orthogonality can be shown to be equivalent to the one used by Hyland

et al. (1990), and the next lemma follows from (Hyland et al. 1990, Proposition 2.1). Rather than

proving this equivalence, we give here a direct proof.

Proposition 4.1. Suppose C is a locally cartesian closed category and X is an object in C.

The notion of being internally right orthogonal to X is then closed under composition, pullback

(along arbitrary maps), dependent products (along arbitrary maps) and all isomorphisms are

internally right orthogonal to X .

Proof. Closure under composition and the fact that isomorphisms are internally right orthog-

onal to X follow straightforwardly from Lemma 4.2.

To prove the statement for pullbacks, suppose p : B → D is internally right orthogonal to

X and q : A → C is the pullback of p along some map g not assumed to be internally right

orthogonal to X . By the pullback pasting lemma then the outer square below is a pullback.

A B BX

C D DX

y
f

q
y

p

cB

pX

g cD

By naturality of c, the below outer square is equal to the one above, and thus also a pullback.

A AX BX

C CX DX

cA

q qX

fX

pX

cC gX

(7)

Since −X has a left adjoint it preserves pullbacks and so right square of (7) is a pullback. By the

pullback lemma, also the left square is a pullback, and thus q is internally right orthogonal to X .

For dependent products, suppose p : A→ B is internally right orthogonal toX , and f : B → C.

We must show that Πf (p) is internally right orthogonal to X , where Πf : C/B → C/C is the

right adjoint to pullback along f . We write f∗(h) : B ×C Y → B for the result of applying the

pullback functor to an object h : Y → C of C/C and use the notation

(̂−) : HomC/C(h,Πf (p))→ HomC/B(f
∗(h), p)

for the isomorphism of hom-sets, given h : Y → C.

Given Y, h, k as in the outer square on the left below, by naturality, the isomorphism (̂−)

extends to a bijective correspondence of diagonal fillers in the following two diagrams.

Y ×X ΠBA

Y C

k

πY Πf (p)

h

B ×C (Y ×X) A

B ×C Y B

k̂

B×CπY
p

f∗(h)

(8)

Denotational semantics for guarded dependent type theory 19

where B ×C πY is the pullback functor applied to the morphism πY : (h ◦ πY)→ h in C/C.

By the pullback pasting lemma, the following outer diagram is a pullback

(B ×C Y)×X Y ×X

B ×C Y Y

B C

y
π(B×CY)

πC
Y ×idX

πY

y

πC
Y

f∗(h) h

f

From this we conclude that there is an isomorphism φ : (B ×C Y) × X ∼= B ×C (Y × X). An

easy diagram chase verifies (using the universal property of the lower diagram above) that

(B ×C πY) ◦ φ = πB×CY : (B ×C Y)×X → (B ×C Y).

Thus, the fillers of (8) are in bijective correspondence with the fillers of

(B ×C Y)×X A

B ×C Y B

k̂◦φ

πB×CY p

f∗(h)

Since p is assumed to be internally right orthogonal to X , there is a unique filler of the diagram

above, and thus a unique filler of the left diagram of (8). This proves that Πf (p) is internally

right orthogonal to X as desired.

Corollary 4.3. In the CwF structure of SetT, the collection of families invariant under clock

introduction is closed under the operations for taking Π-, and Σ-types as well as reindexing.

Lemma 4.5. If κ ∈ SetT(Γ ⊢ clock[!Γ]) and the family A ∈ SetT(Γ) is invariant under clock

introduction then
κ
◮A is invariant under clock introduction.

Proof. The map ι · (−) is defined to be the identity on {⋆} in the case of δ(κ(γ)) = 0. In the

case of δ(κ(γ)) > 0 it is defined as the action σ−κ(γ)(−) on A. By the assumption the latter is

always an isomorphism and thus so is ι · (−).

We now show that invariance under clock introduction implies the soundness of the clock

irrelevance axiom.

Lemma 4.6. Suppose A in SetT(Γ) is invariant under clock introduction and that t is in

SetT(Γ ⊢ Π(clock[!Γ], A[p])) and κ, κ′ ∈ SetT(Γ ⊢ clock[!Γ]). Then ev(t, κ) = ev(t, κ′).

Proof. Note first that ev(t[p], q) ∈ SetT(Γ.clock[!Γ] ⊢ A[p]). Since Γ.clock[!Γ] = Γ×C, this gives

20

us the commutative outer diagram below.

Γ× C Γ.A

Γ Γ

〈p,ev(t[p],q)〉

p pu

id

Since p : Γ.A → Γ is internally right orthogonal to C by Lemma 4.4, there is a unique lifting u

as indicated in the diagram.

Now,

〈p, ev(t[p], q)〉 ◦ 〈id, κ〉 = 〈p ◦ 〈id, κ〉 , ev(t[p], q)[〈id, κ〉]〉

= 〈id, ev(t[p][〈id, κ〉], q[〈id, κ〉])〉

= 〈id, ev(t, κ)〉

Since 〈p, ev(t[p], q)〉 = u ◦ p this implies

〈id, ev(t, κ)〉 = u ◦ p ◦ 〈id, κ〉 = u

Likewise we can prove that 〈id, ev(t, κ′)〉 = u and so ev(t, κ) = ev(t, κ′).

5. Identity types

Since SetT is a presheaf category it models extensional identity types, i.e., identity types with

the identity reflection axiom. Recall that the rules for these are

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ IdA (t, u) type

Γ ⊢ t : A

Γ ⊢ reflA(t) : IdA (t, t)

Γ ⊢ p : IdA (t, u)

Γ ⊢ t = u

In the CwF structure, this structure is defined, for t, u ∈ SetT(Γ ⊢ A) as

IdA(t, u)(E,δ)(γ) = {⋆ | t(γ) = u(γ)}

Lemma 5.1. Let A ∈ SetT(Γ) and t, u ∈ SetT(Γ ⊢ A). If A is invariant under clock introduction,

so is IdA(t, u).

Proof. We must show that if ι : (E , δ)→ ((E , λ), δ[λ 7→ n]) is given by the inclusion, then

ι · (−) : {⋆ | t(γ) = u(γ)} → {⋆ | t(ι · γ) = u(ι · γ)}

is an isomorphism. First recall that since t and u are elements, t(ι ·γ) = ι · t(γ) and likewise for u.

Since A is invariant under clock introduction, ι · (−) is an isomorphism on A, and so t(γ) = u(γ)

if and only if ι · t(γ) = ι · u(γ). This implies that ι · (−) on IdA(t, u) is also an isomorphism as

required.

6. Delayed substitutions

In the simply typed setting the applicative functor (McBride & Paterson 2008) structure of the

later modality is essential. For instance, it allows us to apply a term f of type
κ
◮(A → B) to

a term t of type
κ
◮A to get a term f ⊛κ t of type

κ
◮B; that is, if we have a function after one

Denotational semantics for guarded dependent type theory 21

κ-step and if after one κ-step we have an argument, we can apply the function at the time, and

get the result after one κ-step.

In GDTT the function types can be dependent, and thus to be able to use the later modality

to its fullest, the applicative functor structure needs to be generalised, so that we can apply

a term f of type
κ
◮ (

∏
(x : A) .B) to a term t of type

κ
◮A. In GDTT the type of the delayed

application f ⊛κ t becomes
κ
◮ [x← t] .B where [x← t] is a delayed substitution, and x is bound

in
κ
◮ [x← t] .B. If at some point we learn that t is of the form nextκ t′ for some t′ we can actually

perform the substitution and get the type
κ
◮B[t′/x]. This process can be iterated, e.g., if B is

also a dependent product
∏

(y : C) .D and s is a term of type
κ
◮ [x← t] .C then the delayed

application f ⊛κ t⊛κ s is well-typed with type
κ
◮ [x← t, y ← s] .D.

Delayed substitutions satisfy convenient judgemental equalities (listed in Figure 3) which en-

sure that delayed substitutions can be manipulated in an intuitive way. For example, if the type

A is well-formed without x then the delayed substitution in
κ
◮ [x← t]A is redundant, and thus

κ
◮ [x← t]A =

κ
◮A. Further, as explained above, if the term t is of type nextκ t′ then we can

perform an actual substitution, and thus
κ
◮ [x← nextκ t′] .B =

κ
◮B[t′/x]. Finally, the order of

bindings in
κ
◮ [x← t, y ← s] .D matters only in as much as it usually does in dependent type

theory. That is, x← t and y ← s can be exchanged provided x does not appear in the type of y.

To conclude this introduction to delayed substitutions we remark that they can be attached to

the term former nextκ t as well and they enjoy analogous rules. As shown in previous work (Bizjak

et al. 2016) a calculus with just these generalised nextκ and
κ
◮ can express the delayed application

construct which was primitive in simply typed calculi with guarded recursion. We refer to (Bizjak

et al. 2016) for extensive examples of how to use delayed substitutions for reasoning about

guarded recursive and coinductive terms.

The typing rules for delayed substitutions and related constructs are recalled in Figure 2 and

the equality rules are recalled in Figure 3. We write ξ : Γ _κ Γ′ for the delayed substitution

ξ from Γ to Γ′. Note that Γ′ is not a context, but a telescope such that Γ,Γ′ is a well-formed

context. The delayed substitution ξ is a list of pairs written as x ← t, which are successively

well-typed in context Γ of types derived from Γ′, as stated in the formation rule in Figure 2.

Delayed substitutions

Γ ⊢ Γ ⊢ κ : clock

· : Γ _
κ ·

ξ : Γ _
κ Γ′ Γ,Γ′ ⊢ A type Γ ⊢ t :

κ
◮ ξ.A

ξ [x← t] : Γ _
κ Γ′, x : A

Well-formed types

Γ,Γ′ ⊢ A type ξ : Γ _
κ Γ′

Γ ⊢
κ
◮ ξ.A type

Well-typed terms

Γ,Γ′ ⊢ t : A ξ : Γ _
κ Γ′

Γ ⊢ next
κ ξ.t :

κ
◮ ξ.A

Figure 2. Typing rules involving delayed substitutions.

22

Type equality

ξ [x← t] : Γ _
κ Γ′, x : B Γ,Γ′ ⊢ A type

Γ ⊢
κ
◮ ξ [x← t] .A =

κ
◮ ξ.A

ξ [x← t, y ← u] ξ′ : Γ _
κ Γ′, x : B, y : C,Γ′′ Γ,Γ′ ⊢ C type Γ,Γ′, x : B, y : C,Γ′′ ⊢ A type

Γ ⊢
κ
◮ ξ [x← t, y ← u] ξ′.A =

κ
◮ ξ [y ← u, x← t] ξ′.A

ξ : Γ _
κ Γ′ Γ,Γ′, x : B ⊢ A type Γ,Γ′ ⊢ t : B

Γ ⊢
κ
◮ ξ [x← next

κ ξ.t] .A =
κ
◮ ξ.A [t/x]

Γ,Γ′,Γ′′ ⊢ A type ξ : Γ _
κ Γ′ ξ′ : Γ _

κ Γ′′

Γ ⊢
κ
◮ ξ.

κ
◮ ξ′.A =

κ
◮ ξ′.

κ
◮ ξ.A

ξ : Γ _
κ Γ′ Γ,Γ′ ⊢ t : A Γ,Γ′ ⊢ s : A

Γ ⊢ Idκ
◮ ξ.A

(nextκ ξ.t, nextκ ξ.s) =
κ
◮ ξ.IdA (t, s)

Term equality

ξ [x← t] : Γ _
κ Γ′, x : B Γ,Γ′ ⊢ u : A

Γ ⊢ next
κ ξ [x← t] .u = next

κ ξ.u :
κ
◮ ξ.A

ξ [x← t, y ← u] ξ′ : Γ _
κ Γ′, x : B, y : C,Γ′′ Γ,Γ′ ⊢ C type Γ,Γ′, x : B, y : C,Γ′′ ⊢ v : A

Γ ⊢ next
κ ξ [x← t, y ← u] ξ′.v = next

κ ξ [y ← u, x← t] ξ′.v :
κ
◮ ξ [x← t, y ← u] ξ′.A

ξ : Γ _
κ Γ′ Γ,Γ′, x : B ⊢ u : A Γ,Γ′ ⊢ t : B

Γ ⊢ next
κ ξ [x← next

κ ξ.t] .u = next
κ ξ.u [t/x] :

κ
◮ ξ.A [t/x]

Γ ⊢ t :
κ
◮ ξ.A

Γ ⊢ next
κ ξ [x← t] .x = t :

κ
◮ ξ.A

Γ,Γ′,Γ′′ ⊢ A type Γ,Γ′,Γ′′ ⊢ u : A ξ : Γ _
κ Γ′ ξ′ : Γ _

κ Γ′′

Γ ⊢ next
κ ξ. nextκ ξ′.u = next

κ ξ′. nextκ ξ.u :
κ
◮ ξ.

κ
◮ ξ′.A

Figure 3. Equality rules involving delayed substitutions.

The typing rule for prev is generalised in (Bizjak et al. 2016) to allow elimination also of ◮

with attached delayed substitutions. We now recall that rule and show that it is admissible.

Proposition 6.1. For any delayed substitution ξ : Γ, κ _κ Γ′, there is a substitution

advκ ξ : Γ, κ : clock→ Γ, κ : clock,Γ′

defined as

advκ (·) = idΓ,κ

advκ (ξ′[x 7→ s]) = (advκ ξ′)[x 7→ (prev κ.s)[κ]]

such that whenever Γ, κ,Γ′ ⊢ A type and Γ, κ : clock ⊢ t :
κ
◮ ξ.A also Γ ⊢ prev κ.t : ∀κ.A(advκ ξ).

Denotational semantics for guarded dependent type theory 23

Moreover, the following equality rule holds

Γ, κ,Γ′ ⊢ u : A ξ : (Γ, κ : clock) _κ Γ′

Γ ⊢ prev κ. nextκ ξ.u = Λκ.u(advκ(ξ)) : ∀κ.A(advκ(ξ))

Note that in the definition of advκ (ξ′[x 7→ s]), the typing assumption on s is

Γ ⊢ s :
κ
◮ ξ′.A

and so the typing of adv relies on the second statement of the proposition. Thus the statements

of welltypedness of advκ(ξ) and of prev κ.t must be proved by simultaneous induction over the

length of ξ.

Proof. We first define the concept of applying nextκ to a substitution obtaining a delayed sub-

stitution. This should be thought of as an inverse operation to advancing a delayed substitution.

Let σ : Γ→ Γ,Γ′ be a substitution which restricted to the context Γ is the identity. Define

nextκ(σ) : Γ _κ Γ′

by induction on the size of Γ′ by

nextκ (σ[x 7→ u]) = nextκ(σ)[x← nextκ(u)]

This is welltyped, since by assumption Γ ⊢ u : Aσ and so Γ ⊢ nextκ(u) :
κ
◮(Aσ) and

κ
◮(Aσ) =

κ
◮ nextκ(σ).A.

Since nextκ(advκ(ξ)) = ξ by the η rule for prev the assumed type of t in the statement of the

proposition is

κ
◮ ξ.A =

κ
◮ nextκ(advκ(ξ)).A

=
κ
◮A(advκ(ξ))

by repeated application of the first and third rule of Figure 3. Thus, Γ ⊢ prev κ.t : ∀κ.A(advκ ξ)

as desired. The equality rule stated at the end of the proposition follows analogously as

prev κ. nextκ ξ.u = prev κ. nextκ [nextκ(advκ(ξ))] .u

= prev κ. nextκ (u(advκ(ξ)))

= Λκ.u(advκ(ξ))

where the last equality is the β rule for prev from Figure 1.

6.1. Semantics of delayed substitutions.

Let Γ be an object of SetT. A telescope over Γ is a sequence of families (A1, . . . An), such that

Ai+1 ∈ SetT(Γ.A1Ai) for each i. Let κ ∈ SetT(Γ ⊢ clock[!Γ]). We define the sets of delayed

sequence of elements SetT(Γ _κ Γ′) to be the set of mappings ξ, associating to each (E , δ) and

γ ∈ Γ(E,δ) such that δ(κ(γ)) > 0 a sequence (ξ1, . . . , ξn) such that

ξi+1(γ) ∈ Ai+1(tick
κ(γ) · γ, ξ1(γ), . . . , ξi(γ))

and such that for every σ : (E , δ)→ (E ′, δ′) such that δ′(κ(σ · γ)) > 0

σ−κ(γ) · (ξi+1(γ)) = ξi+1(σ · γ)

24

Given a telescope (A1, . . . An+1) over Γ and ξ ∈ SetT(Γ _κ (A1, . . . An)), define the family
κ
◮ ξ.An+1 over Γ as

(
κ
◮ ξ.An+1)(γ) =

{
{⋆} if δ(κ(γ)) = 0

An+1(tick
κ(γ) · γ, ξ1(γ), . . . , ξn(γ)) otherwise

with action σ ·(−) defined using σ−κ(γ) ·(−) on An+1. Note that this implies that if (ξ1, . . . , ξn) ∈

SetT(Γ _κ (A1, . . . , An)) and ξn+1 is an element in
κ
◮ ξ.An+1 then (ξ1, . . . , ξn+1) is in the set

SetT(Γ _κ (A1, . . . , An+1)).

If t is an element in An+1 define nextκξ.t as an element of
κ
◮ ξ.An+1 by

(nextκξ.t)(γ) =

{
⋆ if δ(κ(γ)) = 0

t(tickκ(γ) · γ, ξ1(γ), . . . , ξn(γ)) otherwise

If Γ′ is a telescope over Γ and ρ : ∆ → Γ, there is a telescope Γ′[ρ] over ∆ and if further

ξ ∈ SetT(Γ _κ Γ′) we can define the reindexing ξ[ρ] ∈ SetT(∆ _κ[ρ] Γ′[ρ]) as (ξ[ρ])i(γ) =

ξi(ρ(γ)). The two above constructions commute with reindexing in the sense that (
κ
◮ ξ.An+1)[ρ] =

κ[ρ]
◮ ξ[ρ].(An+1[

〈
ρpn, q[pn−1], · · · , q

〉
]) and likewise for next.

There are semantic correspondences to all of the syntactic equalities of Figure 3, but we only

state and prove a few of these. We use notation similar to the syntax for delayed substitutions,

e.g., if Γ′ = (A1, . . . , An) is a telescope over Γ we write Γ.Γ′ for Γ.A1An. If (ξ1, . . . , ξn) ∈

SetT(Γ _κ (A1, . . . , An)) and ξn+1 is an element in
κ
◮ ξ.An+1 we write ξ[ξn+1] for (ξ1, . . . , ξn+1).

Theorem 6.1. Let Γ′ be a telescope over Γ, κ an element of clock[!Γ] and ξ ∈ SetT(Γ _κ Γ′)

1 If t ∈ SetT(Γ.Γ′ ⊢ B) and A ∈ SetT(Γ.Γ′.B). Then

κ
◮ ξ[nextκξ.t].A =

κ
◮ ξ.(A[〈id, t〉])

2 If also Γ′′ is a telescope over Γ, ξ′ ∈ SetT(Γ _κ Γ′′) and A is in SetT(Γ.Γ′.Γ′′[p]) where

p : Γ.Γ′ → Γ then
κ
◮ ξ.(

κ
◮(ξ′[p]).A) =

κ
◮ ξ′.(

κ
◮(ξ[p]).A[swap])

where swap : Γ.Γ′.Γ′′[p]→ Γ.Γ′′.Γ′[p] is the obvious map.

3 If A is in SetT(Γ.Γ′) and t, u ∈ SetT(Γ.Γ′ ⊢ A). Then

Idκ
◮ ξ.A

(nextκξ.t, nextκξ.u) =
κ
◮ ξ.(IdA(t, u))

Proof. Write ξ = (ξ1, . . . , ξn). For the first one in the case of δ(κ(γ)) > 0 we get

κ
◮ ξ[nextκξ.t].A(γ) = A(tickκ(γ) · γ, ξ1(γ), . . . , ξn(γ), next

κξ.t(γ))

= A(tickκ(γ) · γ, ξ1(γ), . . . , ξn(γ), t(tick
κ(γ) · γ, ξ1(γ), . . . , ξn(γ)))

= A[〈id, t〉](tickκ(γ) · γ, ξ1(γ), . . . , ξn(γ))

=
κ
◮ ξ.(A[〈id, t〉])(γ)

In the second one if δ(κ(γ)) < 2 both sides are {⋆}. Otherwise, writing ξ(γ) for (ξ1(γ), . . . , ξn(γ))

Denotational semantics for guarded dependent type theory 25

and likewise for ξ′ we get

κ
◮ ξ.(

κ
◮(ξ′[p]).A)(γ) = (

κ
◮(ξ′[p]).A)(tickκ(γ) · γ, ξ(γ))

= A(tickκ(γ) · tickκ(γ) · γ, tickκ(γ) · ξ(γ), ξ′(tickκ(γ) · γ))

= A(tickκ(γ) · tickκ(γ) · γ, ξ(tickκ(γ) · γ), tickκ(γ) · ξ′(γ))

= A[swap](tickκ(γ) · tickκ(γ) · γ, tickκ(γ) · ξ′(γ), ξ(tickκ(γ) · γ))

=
κ
◮(ξ[p]).A[swap](tickκ(γ) · γ, ξ(γ))

=
κ
◮ ξ′.(

κ
◮(ξ[p]).A[swap])(γ)

In the last statement, if δ(κ(γ)) = 0 both sides are {⋆}. Otherwise

Idκ
◮ ξ.A

(nextκξ.t, nextκξ.u)(γ) = {⋆ | (nextκξ.t)(γ) = (nextκξ.u)(γ)}

= {⋆ | t(tickκ(γ) · γ, ξ(γ)) = u(tickκ(γ) · γ, ξ(γ))}

= IdA(t, u)(tick
κ(γ) · γ, ξ(γ))

=
κ
◮ ξ.(IdA(t, u))(γ)

Finally we note that the collection of families invariant under clock introduction is closed under

◮.

Proposition 6.2. If A is invariant under clock introduction so is
κ
◮ ξ.A.

Proof. The conclusion follows directly from the hypothesis since ι · (−) on
κ
◮ ξ.A is defined to

be ι−κ(γ) · (−) as defined on A when δ(κ(γ)) > 0 and the identity when δ(κ(γ)) = 0.

7. Universes

We now assume we are given a set theoretic universe with its induced notion of small sets. Being

a presheaf category, SetT has a universe object U and a dependent type El of elements defined as

in (Hofmann & Streicher 1999), as we now recall. If (E , δ) is a time object, then the set U (E , δ)

is the set of small families over y(E , δ). Concretely, an element X in U (E , δ) assigns to each

σ : (E , δ)→ (E ′, δ′) a small set Xσ and to each τ : (E ′, δ′)→ (E ′′, δ′′) a map τ · (−) : Xσ → Xτσ

in a functorial way. The action σ · (−) : U (E , δ) → U (E ′, δ′) maps an X to the family (Xτσ)τ .

The family El is defined as El(E,δ)(X) = Xid with action σ · (−) : El(E,δ)(X) → El(E′,δ′)(σ · X)

defined as σ · (−) : Xid → Xσ.

One might hope that this universe could be used to model an extension of Core-GDTT with

one universe. However, U is not a constant presheaf, and therefore not invariant under clock

introduction. Another way to see this is that the map

◮ : C × U → U

defined, at (E , δ) ∈ SetT, as

(◮(λ,X))σ:(E,δ)→(E′,δ′) =

{
1 if δ′(σ(λ)) = 0

Xtickσ(λ)◦σ else

26

does not factor through the second projection. One can restrict the universe U to the families

invariant under clock introduction, i.e., thoseX such that ι·(−) : Xσ → Xισ is an isomorphism for

ι of the relevant form, but this does not rule out the problematic map, and so does not eliminate

the problem. Note that◮ above does indeed encode the constructor◮ since if A ∈ SetT(Γ ⊢ U [!Γ])

and κ ∈ SetT(Γ ⊢ clock[!Γ]) then, if δ(κ(γ)) > 0,

El[(◮(κ,A))](γ) = (◮(κ(γ), A(γ)))id

= (A(γ))tickκ(γ)

= (A(tickκ(γ) · γ))id

= (El[A])(tickκ(γ) · γ)

=
κ
◮(El[A])(γ)

To avoid this problem we follow the approach of GDTT and introduce, for each finite set of

clock variables ∆, a universe of types depending on the clocks in ∆. An element in this universe

is to be thought of as being constant in the dimensions outside ∆, and the operation
κ
◮ is only

defined on the universe for κ ∈ ∆. This rules out the more general ◮ operation mentioned above.

It also means that universes are now indexed over a new dimension (clock contexts). We show

that the operations on types are polymorphic in this dimension.

7.1. Universes in GDTT

We first describe the syntax of Tarski style universes in GDTT. The basic rules are listed in

Figure 4 and the rules for type operations on the universes are listed in Figure 5. The type

U∆ can be formed in a context Γ, whenever ∆ is a sequence of clocks in that context, but

the equality rules say that the universes formed by two lists are equal if the lists contain the

same elements. Inclusions between sets of clocks induce inclusions between universes and these

commute with taking types of elements as well as with all type operations. This is the notion

of universe polymorphism in the clock dimension referred to above. The universe U∆ is closed

under
κ
◮, but only for κ ∈ ∆ thus avoiding the problem described above. The choice of domain

type
κ
◮U∆ for ◮

κ
ensures that guarded recursive types can be defined by guarded recursion. For

example, if B : U∆ and κ ∈ ∆ we can define a type of guarded recursive streams over B as

Str
κ
(B)

def
= fixκ A.B×◮

κ A : U∆

where × is encoded using Σ-types in the usual way. Then

El∆(Str
κ
(B)) = El∆(B×◮

κ
(nextκ(Str

κ
(B))))

= El∆(B)× El∆(◮
κ
(nextκ(Str

κ
(B))))

= El∆(B)×
κ
◮(El∆(Str

κ
(B)))

thus satisfying the expected type equality for guarded recursive streams over El∆(B)). In the last

equality of Figure 5, the typing assumption on A is Γ ⊢ A :
κ
◮U∆ and since Γ, x : U∆ ⊢ in∆,∆′ (x) : U∆′

also Γ ⊢ nextκ [x← A] . in∆,∆′ (x) :
κ
◮U∆′

Denotational semantics for guarded dependent type theory 27

Formation and typing rules

Γ ⊢ κ1 : clock . . . Γ ⊢ κn : clock

Γ ⊢ Uκ1,...,κn type

Γ ⊢ t : U∆

Γ ⊢ El∆(t) type

Γ ⊢ t : U∆ Γ ⊢ U∆′ type ∆ ⊆ ∆′

Γ ⊢ in∆,∆′(t) : U∆′

Equations

U∆ = U∆′ if ∆ = ∆′ as sets

El∆′(in∆,∆′(t)) = El∆(t)

in∆′,∆′′(in∆,∆′(t)) = in∆,∆′′(t)

Figure 4. Universes in GDTT.

Formation and typing rules

Γ ⊢ A : U∆ Γ, x : El∆(A) ⊢ B : U∆

Γ ⊢
∏

∆ (x : A) .B : U∆

Γ ⊢ A : U∆ Γ, x : El∆(A) ⊢ B : U∆

Γ ⊢
∑

∆ (x : A) .B : U∆

Γ, κ : clock ⊢ A : U∆,κ κ /∈ ∆

Γ ⊢ ∀κ.A : U∆

κ ∈ ∆ Γ ⊢ A :
κ
◮U∆

Γ ⊢ ◮
κ A : U∆

Equations

El∆(
∏

∆ (x : A) .B) =
∏

(x : El∆ A) .El∆ B

El∆(
∑

∆ (x : A) .B) =
∑

(x : El∆ A) .El∆ B

El∆(∀κ.A) = ∀κ.El∆,κ(A)

El∆ (◮κ
next

κ ξ.A) =
κ
◮ ξ. (El∆ A)

∏

∆′ (x : in∆,∆′(A)) . in∆,∆′(B) = in∆,∆′(
∏

∆ (x : A) .B)
∑

∆′ (x : in∆,∆′(A)) . in∆,∆′(B) = in∆,∆′(
∑

∆ (x : A) .B)

in∆,∆′ (∀κ.A) = ∀κ. in(∆,κ),(∆′,κ) (A)

in∆,∆′ (◮κ A) = ◮
κ(nextκ [x← A] . in∆,∆′ (x))

Figure 5. Syntax for codes for basic operations on types

28

7.2. A family of semantic universes

To model the universe U∆, we must be in a context where ∆ is defined, and the smallest syntactic

context where this happens is the one with |∆|-many clock variables. This is modelled by the SetT

object C∆ defined as C∆(E , δ) = E∆. Note here that we treat ∆ as a set, and so the exponential

E∆ is the ordinary set-theoretic one. The universe U∆ will be modelled as a family U∆ over C∆.

Recall that such a type corresponds to a (covariant) presheaf over the category of elements of

C∆, i.e., the category whose elements are triples (E , δ, f), such that the first two components

constitute an object in T and the last is a map f : ∆→ E . A morphism σ : (E , δ, f)→ (E ′, δ′, g)

is a morphism σ : (E , δ)→ (E ′, δ′) in T such that g = σf . We will write GR(∆) for the category

of covariant presheaves over this category, and use the same notation (GR(∆)) for the CwF-

structure defined similarly to the CwF structure on SetT. The semantic universe U∆ will be an

object in GR(∆) and the type El∆ will be modelled as a family El∆ over U∆.

To avoid the problem described above with the standard universe in SetT, the universe U∆

should restrict access at level (E , δ, f) to the clocks defined in ∆. To do this, we define U∆
(E,δ,f) to

be the set of small families in SetT over y(f [∆], δ|f [∆]) invariant under clock introduction. Here

f [∆] ⊆ E is the image of f , and the notion of small families should be understood as described

above. In other words, an element of U∆
(E,δ,f) is a family of sets Xσ indexed over morphisms σ in

T with domain (f [∆], δ|f [∆]) together with maps τ · (−) : Xσ → Xτσ satisfying functoriality. The

requirement of invariance under clock introduction means that if ι : (E ′, δ′)→ ((E ′, λ), δ′[λ 7→ n])

is an inclusion, then ι · (−) must be an isomorphism.

For σ : (E , δ, f) → (E ′, δ′, σf) we must define σ · (−) : U∆
(E,δ,f) → U

∆
(E′,δ′,σf). Denote by σ the

restriction and corestriction of σ:

σ : (f [∆], δ|f [∆])→ (σf [∆], δ′|σf [∆]) .

Using this, we define the family (σ · X)τ = Xτσ for τ : (σf [∆], δ′|σf [∆]) → (E ′, δ′′). Note that

this is well-defined, i.e., if X is invariant under clock introduction, so is σ ·X .

Since GR(∆) is equivalent to the slice of SetT over C∆, the notion of invariance under clock

introduction extends to objects and families in GR(∆) by requiring the same for their corre-

sponding projection maps in SetT. By Lemma 4.1 this can be reformulated as requiring that the

maps ι · (−) induced by maps of the form ι : (E , δ, f)→ ((E , λ), δ[λ 7→ n], ιf) are isomorphisms.

Lemma 7.1. The object U∆ is invariant under clock introduction.

Proof. If ι : (E , δ, f) → ((E , λ), δ[λ 7→ n], ιf) is the inclusion then ιf [∆] = f [∆], and ι is the

identity, so (ι ·X)τ = Xτι = Xτ , i.e., ι · (−) is the identity and therefore an isomorphim.

If X is an element in U∆
(E,δ,f), define

El∆(E,δ,f)(X) = Xi:(f [∆],δ|f[∆])→(E,δ)

where i is the inclusion. If σ : (E , δ)→ (E ′, δ′) we must define

σ · (−) : El∆(E,δ,f)(X)→ El∆(E′,δ′,σf)(σ ·X)

The codomain of this map is

El∆(E′,δ′,σf)(σ ·X) = (σ ·X)j = Xj◦σ = Xσ◦i

Denotational semantics for guarded dependent type theory 29

where j : σ[f [∆]] → E ′ is the inclusion. We can therefore define σ · (−) : Xi → Xσ◦i to be the

map that is part of the structure of X .

Lemma 7.2. The family El∆ over U∆ is invariant under clock introduction.

Proof. Let ι : (E , δ, f) → ((E , λ), δ[λ 7→ n], ιf) be the inclusion and let X be an element in

U∆
(E,δ,f). We must show that

ι · (−) : El∆(E,δ,f)(X)→ El∆((E,λ),δ[λ7→n],ιf)(ι ·X)

is an isomorphism. By definition of El∆ this map is ι · (−) : Xi → Xι◦i, which is part of the

structure of X . Since X is an element in the universe U∆ it must be invariant under clock

introduction, which means exactly that all maps of the form ι · (−) are isomorphisms.

We now describe an abstract construction that leads to the universe U∆. This construction

will not be used in the remainder of the paper, and so is not of technical importance, but perhaps

of conceptual interest to some readers. Consider the universe U of small families invariant under

clock introduction in SetT. There is a functor F from SetT to GR(∆) mapping an object Γ to the

presheaf whose value at (E , δ, f) is Γ(f [∆], δ|f [∆]). This extends to families by mapping A over

Γ to the family whose value at γ ∈ Γ(f [∆], δ|f [∆]) is A(i · γ). Note that this is not a mapping of

CwFs, since it does not preserve comprehension:

F (Γ.A)(E , δ, f) = {〈γ, a〉 | γ ∈ Γ(f [∆], δ|f [∆]), a ∈ A(γ)}

F (Γ).F (A)(E , δ, f) = {〈γ, a〉 | γ ∈ Γ(f [∆], δ|f [∆]), a ∈ A(i · γ)}

(Although it does up to isomorphism if attention is restricted to families invariant under clock

introduction). The universe U∆ is this mapping applied to U and El∆ is the same mapping

applied to the family of elements over U .

The next key lemma gives a partial answer to the question of what the universes U∆ classify.

The answer is partial, since it only applies in contexts invariant under clock introduction. As we

shall see below, this result is sufficient for constructing codes for type operations on the universes.

Lemma 7.3. Let Γ be an object in GR(∆) invariant under clock introduction and let A be a

small family over Γ, also invariant under clock introduction. There is a unique code pAq : Γ→ U∆

in GR(∆) such that A = El∆[pAq].

Proof. The assumption of invariance under clock introduction implies that for any object

(E , δ, f) the map i · (−) induced by i : (f [∆], δ|f [∆], f) → (E , δ, f) is an isomorphism on Γ. We

will write i−1 · (−) for the inverse map. The code pAq is defined as

(pAq(E,δ,f)(γ))τ :(f [∆],δ|f[∆],f)→(E′,δ′,τf) = A(E′,δ′,τf)(τ · i
−1 · γ)

We first show that this defines a map of presheaves: If σ : (E , δ, f) → (E ′, δ′, σf) and τ :

(σf [∆], δ′|σf [∆], σf)→ (E ′′, δ′′, τσf) then

(pAq(E′,δ′,σf)(σ · γ))τ = A(E′′,δ′′,τσf)(τ · j
−1 · σ · γ)

where j : (σf [∆], δ′|σf [∆], σf)→ (E ′, δ′, σf) is the inclusion. Since σi = jσ also j−1·σ·γ = σ ·i−1·γ

30

and so

(pAq(E′,δ′,σf)(σ · γ))τ = A(E′′,δ′′,τσf)(τ · σ · i
−1 · γ)

= (pAq(E,δ,f)(γ))τσ

= (σ · (pAq(E,δ,f)(γ)))τ

so (pAq(σ · γ)) = σ · (pAq(γ)) meaning that pAq is a map of presheaves.

This definition defines a code for A since

(El∆[pAq])(γ) = El∆(pAq(γ)) = (pAq(γ))i = A(i · i−1 · γ) = A(γ)

For uniqueness, suppose ρ : Γ → U∆ satisfies El∆[ρ] = A. We must show that ρ(γ) = pAq(γ)

for all γ, but consider first the case where γ ∈ Γ(E,δ,f) for f surjective. In that case (pAq(γ))τ =

A(τ · γ) and

(ρ(γ))τ = (ρ(γ))jτ = (τ · ρ(γ))j = (ρ(τ · γ))j = El
∆(ρ(τ · γ)) = A(τ · γ)

where j : τf [∆]→ E ′ is the inclusion. In general (when f is not surjective) the above implies

ρ(γ) = ρ(i · i−1 · γ) = i · ρ(i−1 · γ) = i · pAq(i−1 · γ) = pAq(i · i−1 · γ) = pAq(γ)

proving uniqueness.

7.3. Reindexing universes

The idea for interpreting the formation rule for the universes U∆ in a semantic context Γ, is to

interpret each κ ∈ ∆ as an element of clock[!Γ], then use this to define a map from Γ to C∆

in SetT, and reindex the universe U∆ along this map. The last of these steps uses the fact that

an object of GR(∆) can be considered a family of SetT over C∆. In fact, these two notions are

equivalent.

In order to prove the substitution lemma, we will generalise the above idea slightly as follows.

Suppose χ is a finite set of morphisms from Γ to C, and suppose we are given a surjective map

from some set ∆ to χ inducing a map 〈χ〉 : Γ→ C∆. Define

Uχ def
= U∆[〈χ〉] Elχ

def
= El∆[〈〈χ〉 ◦ p, q〉]

Proposition 7.1. The objects Uχ and Elχ are welldefined in the sense that they do not depend

on the choice of ∆ or surjection inducing 〈χ〉. Moreover, if ρ : Γ′ → Γ then

Uχ◦ρ = Uχ[ρ] Elχ◦ρ = Elχ[〈ρ ◦ p, q〉]

where {κ1, . . . , κn}[ρ] = {κ1[ρ], . . . , κn[ρ]}.

Proof. If γ ∈ Γ(E,δ) the element 〈χ〉(γ) is a map ∆ → E . By definition, Uχ(γ) = U∆(〈χ〉(γ))

is the set of small families (Xτ)τ :(〈χ〉(γ)[∆],δ|〈χ〉(γ)[∆])→(E′,δ′). Since the map ∆ → χ is assumed

surjective, 〈χ〉(γ)[∆] = {κ(γ) | κ ∈ χ} and thus independent of the choice of ∆ and surjection.

Since Elχ(γ)(X) = Xi for i the inclusion, also Elχ is welldefined. For the last statement, note

that 〈χ〉 ◦ ρ is the map corresponding to the composition ∆→ χ→ χ[ρ], where the last of these

maps κ to κ[ρ], and this map is surjective. Therefore, Uχ◦ρ can be defined as U∆[〈χ〉◦ρ] = Uχ[ρ].

The equality Elχ◦ρ = Elχ[〈ρ ◦ p, q〉] follows similarly.

The codes on universes will be defined below by constructing objects A∆ in GR(∆) and families

Denotational semantics for guarded dependent type theory 31

B∆ over A∆ indexed over ∆ in such a way that whenever χ is as above the families Aχ = A∆[〈χ〉]

and Bχ = B∆[〈〈χ〉 ◦ p, q〉] are well defined, i.e., independent of choice of ∆ and surjection ∆→ χ.

In this case, if each A∆ and B∆ are invariant under clock introduction, by Lemma 7.3 there is a

unique code pB∆q : A∆ → U
∆ in GR(∆) such that El∆[pB∆q] = B∆. In this situation we would

like to define

pBχq = pB∆q[〈χ〉] : Aχ → U
χ

as a map in the category of presheaves over the elements of Γ.

Lemma 7.4. In the situation described above, the map pBχq is well defined, i.e., independent

of the choice of ∆ and surjection ∆ → χ. Moreover, Elχ[pBχq] = Bχ, and if ρ : Γ′ → Γ then

pBχ◦ρq = pBχq[ρ]

Proof. Suppose we are given two different surjections f : ∆ → χ and f ′ : ∆′ → χ inducing

〈χ〉 : Γ → C∆ and 〈χ〉′ : Γ → C∆
′

. We will assume there is an surjection g : ∆ → ∆′ such

that f ′g = f , otherwise apply the argument to each of the two maps in the span of projections

∆ ← ∆ × ∆′ → ∆′. Note that the projections are always surjective, since ∆ is empty iff χ is

empty iff ∆′ is empty. Since f ′g = f also Cg ◦ 〈χ〉′ = 〈χ〉.

We first prove that A∆[C
g] = A∆′ . For this, observe that there is a family

Φ = {evκ : C∆
′

→ C | κ ∈ ∆′}

and a surjection ∆′ → Φ mapping κ to evκ. The induced map C∆
′

→ C∆
′

is the identity. There is

also a map ∆→ Φ mapping κ to evg(κ). Since g is surjective, also this is surjective, and induces

Cg : C∆
′

→ C∆. Thus by assumption

A∆[C
g] = A∆′ B∆[〈C

g ◦ p, q〉] = B∆′

In particular, these arguments apply to U∆ and El∆ proving

U∆[Cg] = U∆′

El∆[〈Cg ◦ p, q〉] = El∆
′

In the second of these equations El∆
′

is considered a family of SetT over C∆
′

.U∆′

. Equivalently,

El∆
′

can be considered a family of GR(∆′) over U∆′

, and (−)[Cg] a morphism of CwFs from

GR(∆) to GR(∆′). From this latter point of view the second equation above is El∆[Cg] = El∆
′

,

and so

El∆
′

[pB∆q[C
g]] = El∆[Cg][pB∆q[C

g]] = (El∆[pB∆q])[C
g] = B∆[C

g] = B∆′

Thus, by the uniqueness statement of Lemma 7.3 pB∆q[C
g] = pB∆′q. So, finally

pB∆q[〈χ〉] = pB∆q[C
g ◦ 〈χ〉′] = pB∆′q[〈χ〉′]

proving welldefinedness of pBχq. The equality El
χ[pBχq] = Bχ follows from the fact that (−)[〈χ〉]

induces a morphism of CwFs:

Elχ[pBχq] = El
∆[pB∆q][〈χ〉] = B∆[〈χ〉] = Bχ

The last statement follows as in the proof of Proposition 7.1.

32

7.4. Inclusions of universes

We now show how to model inclusions of universes and the codes for type operations on universes

described in Figure 5.

Proposition 7.2. Suppose χ ⊆ χ′ are sets of elements of clock[!Γ], and t ∈ SetT(Γ ⊢ Uχ). There

is an element inχ,χ′(t) ∈ SetT(Γ ⊢ Uχ′

) such that Elχ
′

[〈idΓ, inχ,χ′(t)〉] = Elχ(t). If further χ′ ⊆ χ′′

then inχ′,χ′′(inχ,χ′(t)) = inχ,χ′′ (t). Moreover, this construction commutes with reindexing in the

sense that if ρ : Γ′ → Γ then (inχ,χ′(t))[ρ] = inχ[ρ],χ′[ρ](t[ρ]).

Proof. Let 〈χ′〉 : Γ → C∆
′

be induced by a given surjection ∆′ → χ′. Let ∆ ⊆ ∆′ be the

subset mapped to χ, and let 〈χ〉 : Γ→ C∆ be the map corresponding to the projection. There is

a projection π∆,∆′ : C∆
′

→ C∆ and so U∆[π∆,∆′] is an object of GR(∆′). Moreover

U∆[π∆,∆′][〈χ′〉] = Uχ (9)

simply because π∆,∆′ ◦ 〈χ′〉 = 〈χ〉.

Since U∆ and El∆ are invariant under clock introduction, so are U∆[π∆,∆′] and the family

El∆[〈π∆,∆′ ◦ p, q〉]. The latter is a family over C∆
′

.U∆[π∆,∆′] in SetT, but can be likewise consid-

ered a family over U∆[π∆,∆′] in GR(∆′). By Lemma 7.3 there is a unique map in∆,∆′ in GR(∆′)

such that El∆
′

[in∆,∆′] = El∆[〈π∆,∆′ ◦ p, q〉]. By (9) then

in∆,∆′[〈χ′〉] : Uχ → Uχ′

is a map between presheaves over the category of elements of Γ, and the above implies

Elχ
′

[in∆,∆′[〈χ′〉]] = Elχ

We now define

inχ,χ′(t)
def
= in∆,∆′[〈χ′〉](t)

Then

Elχ
′

[〈idΓ, inχ,χ′(t)〉] = Elχ
′

[〈idΓ, in∆,∆′[〈χ′〉](t)〉]

= Elχ[〈idΓ, t〉]

The statement on composition of these inclusions follow from the uniqueness statement of

Lemma 7.3. The element inχ,χ′(t) as defined above can be proved independent of the choice of

∆′ using a slight generalisation of Lemma 7.4, but we omit the argument here. Similar arguments

can also show that it commutes with reindexing.

7.5. Codes for basic type constructors

The codes for Π and Σ-types are modelled as morphisms with domain

Uχ
1 = Σ(Uχ, Elχ → Uχ[p])

The family Uχ
1 classifies Uχ-small families over Uχ-small objects in a sense that we now explain.

First note that there is a family

Elχ1
def
= Elχ[〈p, π1(q)〉] ∈ SetT(Γ.Uχ

1)

and an element

ev(π2(q)[p], q) ∈ SetT(Γ.Uχ
1 .El

χ
1 ⊢ U

χ[pp]),

Denotational semantics for guarded dependent type theory 33

where π1, π2 are the projections out of the Σ-type. So

Elχ2
def
= Elχ[〈pp, ev(π2(q)[p], q)〉] ∈ SetT(Γ.Uχ

1 .El
χ
1)

Suppose now A ∈ SetT(Γ) and B ∈ SetT(Γ.A) are Uχ- small in the sense that there are pAq

and pBq satisfying

pAq ∈ SetT(Γ ⊢ Uχ) Elχ[〈idΓ, pAq〉] = A

pBq ∈ SetT(Γ.A ⊢ Uχ[p]) Elχ[〈p, pBq〉] = B

Now, λ(pBq) ∈ SetT(Γ ⊢ A→ Uχ) and so

〈pAq, λ(pBq)〉 ∈ SetT(Γ ⊢ Uχ
1)

Then

Elχ1 [〈idΓ, 〈pAq, λ(pBq)〉〉] = Elχ[〈p, π1(q)〉][〈idΓ, 〈pAq, λ(pBq)〉〉]

= Elχ[〈idΓ, pAq〉]

= A

and

Elχ2 [〈〈p, 〈pAq, λ(pBq)〉p〉 , q〉] = Elχ[〈pp, ev(π2(q)[p], q)〉][〈〈p, 〈pAq, λ(pBq)〉p〉 , q〉]

= Elχ[〈p, ev(λ(pBq)[p], q)〉]

= Elχ[〈p, pBq〉]

= B

Proposition 7.3. Suppose A, pAq, B and pBq are as above. There are elements

pΠχ
q(pAq, pBq) ∈ SetT(Γ ⊢ Uχ) pΣχ

q(pAq, pBq) ∈ SetT(Γ ⊢ Uχ)

such that

Elχ [〈idΓ, pΠ
χ
q(pAq, pBq)〉] = Π(A,B) Elχ [〈idΓ, pΣ

χ
q(pAq, pBq)〉] = Σ(A,B)

Moreover, if ρ : Γ′ → Γ then

(pΠχ
q(pAq, pBq))[ρ] = pΠχ[ρ]

q(pAq[ρ], pBq[ρ])

(pΣχ
q(pAq, pBq))[ρ] = pΣχ[ρ]

q(pAq[ρ], pBq[ρ])

inχ,χ′(pΠχ
q(pAq, pBq)) = pΠχ′

q(inχ,χ′(pAq), inχ,χ′(pBq))

inχ,χ′(pΣχ
q(pAq, pBq)) = pΣχ′

q(inχ,χ′(pAq), inχ,χ′(pBq))

Proof. First note that since U∆ and El∆ are invariant under clock introduction, by the closure

of these under Π, Σ and reindexing (Corollary 4.3), so is U∆
1 . By a similar argument, also the

families El∆1 , El∆2 and Π(El∆1 , El∆2) are invariant under clock introduction. By Lemma 7.3 there

is a unique morphism pΠ∆q : U∆
1 → U

∆ in GR(∆) such that

Π(El∆1 , El∆2) = El∆[pΠ∆q]

The element

pΠχ
q(pAq, pBq)

def
= pΠ∆q[〈χ〉](〈pAq, λ(pBq)〉)

34

is then welldefined by Lemma 7.4 and satisfies

Elχ [〈idΓ, pΠ
χ
q(pAq, pBq)〉] = Π(Elχ1 , El

χ
2)[〈idΓ, 〈pAq, λ(pBq)〉〉]

= Π(A,B)

For the last statement, note that the map in∆,∆′ : U∆[π∆,∆′]→ U∆′

in GR(∆′) from the proof

of Proposition 7.2 induces a map U∆
1 [π∆,∆′] → U∆′

1 mapping 〈A,B〉 to 〈in∆,∆′(A), in∆,∆′ ◦B〉.

This makes the following diagram commute

U∆
1 [π∆,∆′] U∆′

1

U∆[π∆,∆′] U∆′

pΠ∆q[π∆,∆′] pΠ∆′q

in∆,∆′

by the uniqueness statement of Lemma 7.3 because reindexing El∆
′

along either direction gives

Π(El∆1 [π∆,∆′], El∆2 [〈π∆,∆′ ◦ p, q〉]). From this the final statement follows.

7.6. Universal quantification over clocks

We now describe the codes for universal quantification over clocks. Even though clock quantifi-

cation is modelled using Π-types, this is not a special case of Proposition 7.3, since on the level

of codes, clock quantification involves a change of universe.

Proposition 7.4. Suppose A ∈ SetT(Γ.clock[!]), and that χ is a set of elements of clock[!Γ].

Write χ[p], q for the union of the set χ[p] and q, and suppose

pAq ∈ SetT(Γ.clock[!] ⊢ Uχ[p],q)

is such that A = Elχ[p],q[
〈
idΓ.clock[!], pAq

〉
]. There is an element p∀χq(λ(pAq)) ∈ SetT(Γ ⊢ Uχ)

such that

Elχ [〈idΓ, p∀
χ
q(λ(pAq))〉] = Π(clock[!], A)

Moreover, if ρ : Γ′ → Γ then

(p∀χq(λ(pAq)))[ρ] = p∀χ[ρ]q(λ(pAq[〈ρ ◦ p, q〉]))

and if χ ⊆ χ′ then

inχ,χ′ (p∀χq(λ(pAq))) = p∀χ
′

q(λ(in(χ[p],q),(χ′[p],q)(pAq)))

Proof. The universe U∆,κ is an object in GR(∆, κ), which means that it is a family over C∆,κ.

Abusing notation slightly, write U∆,q for the family over C∆.clock[!] obtained by reindexing U∆,κ

along the isomorphism C∆,κ ∼= C∆.clock[!] and write El∆,q for the result of reindexing the family

El∆,κ along the same map. Note that U∆,q[〈〈χ〉 ◦ p, q〉] = Uχ[p],q and El∆,q[〈〈〈χ〉 ◦ pp, q[p]〉 , q〉] =

Elχ[p],q.

We will now construct the generic clock quantified family over C∆.Π(clock[!],U∆,q) and con-

struct the p∀χq(λ(pAq)) using Lemma 7.3. First observe that

ev(q[p], q) ∈ SetT(C∆.Π(clock[!],U∆,q).clock[!] ⊢ U∆,q[〈pp, q〉])

and so

El∆,q[〈〈pp, q〉 , ev(q[p], q)〉] ∈ SetT(C∆.Π(clock[!],U∆,q).clock[!])

Denotational semantics for guarded dependent type theory 35

and

Π(clock[!], El∆,q[〈〈pp, q〉 , ev(q[p], q)〉]) ∈ SetT(C∆.Π(clock[!],U∆,q))

Since U∆,κ and El∆,κ are invariant under clock introduction and this notion is closed under

reindexing and Π-types, also Π(clock[!],U∆,q) and Π(clock[!], El∆,q[〈〈pp, q〉 , ev(q[p], q)〉]) are in-

variant under clock introduction, and so by Lemma 7.3 there is a map

p∀∆q : Π(clock[!],U∆,q)→ U∆

in GR(∆) such that

Π(clock[!], El∆,q[〈〈pp, q〉 , ev(q[p], q)〉]) = El∆[p∀∆q]

By Lemma 7.4 the element

p∀χq(λ(pAq))
def
= p∀∆q[〈χ〉](λ(pAq))

is welldefined and satifies

Elχ [〈idΓ, p∀
χ
q(λ(pAq))〉] = Π(clock[!], Elχ[p],q[〈〈pp, q〉 , ev(q[p], q)〉])[〈idΓ, λ(pAq)〉]

= Π(clock[!], Elχ[p],q[〈〈pp, q〉 , ev(q[p], q)〉][〈〈idΓ, λ(pAq)〉 ◦ p, q〉])

= Π(clock[!], Elχ[p],q[〈〈p, q〉 , ev(λ(pAq)[p], q)〉])

= Π(clock[!], Elχ[p],q[〈id, pAq〉])

= Π(clock[!], A)

This construction is clearly closed under reindexing, and the last statement can be proved simi-

larly to the last statement of Proposition 7.3.

7.7. Codes for the later modalities

Proposition 7.5. There is a mapping associating κ ∈ χ and t ∈ SetT(Γ ⊢
κ
◮Uχ) to

p
κ
◮q(t) ∈ SetT(Γ ⊢ Uχ)

such that if Γ′ is a telescope of length m over Γ and pAq ∈ SetT(Γ.Γ′ ⊢ Uχ[pm]) and A =

Elχ[p
m][〈idΓ.Γ′ , pAq〉] and ξ ∈ SetT(Γ _κ Γ′) then

Elχ
[〈

idΓ, p
κ
◮q(nextκξ.pAq)

〉]
=

κ
◮ ξ.A

Moreover, if ρ : Γ′′ → Γ then p
κ
◮q(t)[ρ] = p

κ[ρ]
◮ q(t[ρ]), and if χ ⊆ χ′ then

inχ,χ′(p
κ
◮q(t)) = p

κ
◮q(nextκ(t).inχ[p],χ′[p](q))

A few of the typings of the proposition need to be explained. The element nextκξ.pAq is a priori

an element of
κ
◮ ξ.(Uχ[pm]) but the latter family equals

κ
◮Uχ and so p

κ
◮q(nextκξ.pAq) is well

formed. In the last equation, t is considered a delayed sequence of elements in SetT(Γ _κ Uχ),

and inχ[p],χ′[p](q) ∈ SetT(Γ.Uχ ⊢ Uχ′

[p]) and so

nextκ(t).inχ[p],χ′[p](q) ∈ SetT(Γ ⊢
κ
◮(t).Uχ′

[p]) = SetT(Γ ⊢
κ
◮Uχ′

)

making the right hand side of the final equation well formed.

36

Proof. Suppose note that any κ̂ ∈ ∆ defines an element κ̂ ∈ SetT(C∆ ⊢ clock[!]) essentially by

projection. Since q ∈ SetT(C∆.
κ̂
◮U∆ ⊢ (

κ̂
◮U∆)[p]) it defines a delayed sequence of elements (q) ∈

SetT(C∆.
κ̂
◮U∆ _κ̂[p] U∆[p]). Since moreover, El∆[〈pp, q〉] is a family in SetT(C∆.

κ̂
◮U∆.U∆[p])

we can define
κ̂[p]
◮ (q).(El∆[〈pp, q〉]) ∈ SetT(C∆.

κ̂
◮U∆)

By Proposition 6.2, both
κ̂
◮U∆ and

κ̂[p]
◮ (q).(El∆[〈pp, q〉]) are invariant under clock introduction

and so by Lemma 7.3 there is a morphism p
κ̂
◮q :

κ̂
◮U∆ → U∆ in GR(∆) such that El∆[p

κ̂
◮q] =

κ̂[p]
◮ (q).(El∆[〈pp, q〉]). Using this we define

p
κ
◮q(t)

def
= p

κ̂
◮q[〈χ〉](t)

where κ̂ is an element in ∆ mapped to κ. This can be proved independent of choice of ∆ and

surjection ∆→ 〈χ〉 and κ̂ using arguments as in the proof of Lemma 7.4. Then

Elχ
[〈

idΓ, p
κ
◮q(nextκξ.pAq)

〉]
= (

κ[p]
◮ (q).Elχ[〈pp, q〉]) [〈idΓ, next

κξ.pAq〉]

=
κ
◮(nextκξ.pAq).(Elχ[〈pp, q〉])

=
κ
◮ ξ[nextκξ.pAq].(Elχ[〈pp, q〉][

〈
pm+1, q

〉
])

where in the last step m is the length of ξ. Now by Theorem 6.1.1, the latter equals

κ
◮ ξ.(Elχ[〈pp, q〉][〈pm, pAq〉]) =

κ
◮ ξ.(Elχ[

〈
pm+1, pAq

〉
])

=
κ
◮ ξ.(Elχ[p

m][〈id, pAq〉])

=
κ
◮ ξ.A

For the final statement, can be proved using the uniqueness statement of Lemma 7.3.

8. Interpreting syntax

The previous sections define the semantic structure of the model corresponding to each of the

constructions of GDTT. One can use this to define an interpretation of the syntax into the model,

as we briefly sketch here. As is well known, defining interpretation of dependent type theories is

not a simple procedure. In particular, the proof of welldefinedness of the interpretation can not

be separated from the proof of soundness. Here we follow the approach of Hofmann (1997), which

first defines an interpretation of (pre-) contexts, types and term as a partial function, then proves

that this function is defined on all wellformed judgements. To define the partial interpretation

function, syntax must be annotated with typing information, meaning that the syntax interpreted

is not quite the syntax usually presented for dependent type theory. For example, λ-abstractions

must be annotated with not just the type of the variable being abstracted, but also with the

target type of the function created (which is a dependent family (x.A)). Likewise, application is

annotated both with the domain type and with the dependent codomain type.

Definedness of the interpretation of well formed judgements is then proved by induction on

the structure of judgements. This must be done simultaneously with the proof of soundness of

Denotational semantics for guarded dependent type theory 37

the interpretation and with the proof of a substitution lemma. We now sketch how each of these

ingredients must be adapted to interpret GDTT.

The annotation of terms and types must be extended to the new constructions. Universal

quantification over clocks is interpreted as a Π-type, and the annotations must therefore be

similar to those of Π-types. Terms like nextκ and fixκ must be annotated with the type at which

they are applied. Recall from Section 3.3 that prev is compiled away in an initial step using force.

The constant force must be annotated with the dependent type (κ.A) at which it is applied. Type

operations on the universe must be annotated with the context ∆ at which they are applied.

The type constructor
κ
◮ ξ.A must be annotated with the types in the telescope and likewise for

nextκ ξ.t. A notion of pre- delayed substitutions must be defined and these must be (partially)

interpreted as delayed sequences of elements.

Once the partial interpretation function has been interpreted, the welldefinedness of the inter-

pretation of wellformed judgements must be proved by induction on judgements simultaneously

with soundness and a substitution lemma. To this sequence of lemmas must be added the state-

ment that the interpretation of any type is invariant under clock introduction.

The substitution lemma is mostly standard. In particular, the notation of substitution between

contexts can be defined essentially as usual

· : Γ→ ·

ρ : Γ→ Γ′ Γ ⊢ t : Aρ

ρ[x 7→ t] : Γ→ Γ′, x : A

ρ : Γ→ Γ′ Γ ⊢ κ′ : clock

ρ[κ 7→ κ′] : Γ→ Γ′, κ : clock

and likewise the notion of substitution is defined in the standard way. Note in particular that

this means that (U∆)ρ = U∆ρ. Substitution on a delayed substitution ξ is defined by distributing

the interpretation over the terms in ξ. The substitution lemma is as follows.

Lemma 8.1. If ρ : Γ′ → Γ is a substitution, then

— if Γ ⊢ A type also Γ′ ⊢ Aρ type and JΓ′ ⊢ AρK = JΓ ⊢ AK [JρK].

— if Γ ⊢ t : A also Γ′ ⊢ tρ : Aρ and JΓ′ ⊢ tρK = JΓ ⊢ tK [JρK]

— if ξ : Γ _κ Γ′′ then also ξρ : Γ′ _κρ Γ′′ρ and JξρK = JξK [JρK].

9. Recovering the categories GR (∆)

In this final section we discuss the relation to the family of categories GR (∆) defined in previous

work by the authors (Bizjak & Møgelberg 2015). As mentioned in the introduction, this gives a

model of guarded recursion with multiple clocks up to a coherence problem. We first recall the

definition of the categories GR (∆) (note that the notation for this differs from the GR(∆) used

in the paper only by the choice of font).

For a finite set of clock variables ∆ the category GR (∆) is the category of presheaves on the

poset I(∆). The elements of this poset are pairs (E, δ) where E is an equivalence relation on ∆

and δ : ∆ → N is a function which respects the equivalence relation E. The order on I(∆) is

defined so that (E, δ) ≤ (E′, δ′) if E is coarser than E′ (i.e., E′ ⊆ E as subsets of ∆×∆) and δ

is pointwise less than δ′. The idea behind this poset is that δ records how much time is left on

each clock, and the equivalence relation E states which clocks are identified. The order is defined

so that we can pass to a state where there is less time available on each clock, but we can also

identify different clocks, i.e., make the equivalence relation coarser.

The intention of the categories GR (∆) is that types and terms in clock variable context ∆

38

should be modelled in GR (∆). In the present paper, the corresponding fragment is modelled in

GR(∆) with the restriction that families must be invariant under clock introduction. Thus the

next theorem states that the two models are equivalent.

Theorem 9.1. Let ∆ be a finite set of clocks. The full subcategory of GR(∆) on objects invariant

under clock introduction is equivalent to the category GR (∆).

Proof (sketch) Recall that GR(∆) is defined as the category of covariant presheaves on the

category of elements of C∆, for which we write R (∆) in this proof. The indexing poset I(∆) is

equivalent to the preorder S (∆)op where S (∆) is the full subcategory of R (∆) on those objects

(E , δ, f) where f is surjective. Indeed, this equivalence follows from the fact that every function f

on ∆ determines an equivalence relation on ∆, and every equivalence relation E on ∆ gives rise

to the surjective quotient function q : ∆→ ∆/E. Straightforward calculations show this extends

to the claimed equivalence of the poset I(∆) and the preorder S (∆)
op
.

Thus we have that GR (∆) is equivalent to the category of covariant presheaves on S (∆). By

definition there is an inclusion functor i : S (∆) → R (∆) which gives rise, by precomposition,

to a functor i∗ : GR(∆)→ GR (∆). Moreover, there is a functor g : R (∆)→ S (∆) which maps

(E , δ, f) to
(
f [∆], δ|f [∆], f

)
. This functor gives rise to a functor g∗ : GR (∆)→ GR(∆). It is easy

to see g ◦ i = id and that there is a natural transformation ε : i ◦ g → id whose component at

(E , δ, f) is given by the inclusion f [∆]→ E . These transformations define an adjunction i ⊣ g.

Thus g∗ ⊣ i∗ as well; first from g ◦ i = id we have i∗ ◦ g∗ = id, and so the unit η∗ of the

adjunction is the identity natural transformation, and, second, from the counit of the adjunction

i ⊣ g we define the counit ε∗ of the adjunction g∗ ⊣ i∗ pointwise, as in

(ε∗X)(E,δ,f) = X
(
ε(E,δ,f)

)
.

It is standard that an adjunction restricts to an equivalence of full subcategories C of GR (∆)

and D of GR(∆) on objects where the unit and the counit are isomorphisms, respectively. Because

the unit η∗ of the adjunction g∗ ⊣ i∗ is an isomorphism the category C is GR (∆).

The category D on the other hand is the category of those objects X ∈ GR(∆) where for every

(E , δ, f) ∈ R (∆) the component of the counit

(ε∗X)(E,δ,f) = X
(
ε(E,δ,f)

)
= X(ι)

where ι :
(
f [∆], δ|f [∆], f

)
→ (E , δ, f) is the inclusion, is an isomorphism. By Lemma 4.1 this

holds precisely when the object X is invariant under clock introduction. Hence, the adjunction

g∗ ⊣ i∗ restricts to the equivalence of GR (∆) and the full subcategory of GR(∆) on objects

invariant under clock introduction.

Notice, however, that the categories in Theorem 9.1 are not isomorphic. This is the key to

achieving preservation of structure, chiefly dependent products, in the present model, up to

equality, as opposed to only up to isomorphism, as in the previous model (Bizjak & Møgelberg

2015).

Acknowledgements

We thank Patrick Bahr, Lars Birkedal, Hans Bugge Grathwohl and Bassel Mannaa for helpful

discussions. We thank the anonymous reviewers for helpful suggestions which led to a major

revision significantly improving the paper. Bizjak was supported by the ModuRes Sapere Aude

Denotational semantics for guarded dependent type theory 39

Advanced Grant from The Danish Council for Independent Research for the Natural Sciences

(FNU). Møgelberg was supported by a research grant (13156) from VILLUM FONDEN and DFF-

Research Project 1 Grant no. 4002-00442, from The Danish Council for Independent Research

for the Natural Sciences (FNU).

References

Abel, A. & Pientka, B. (2013), Wellfounded recursion with copatterns: A unified approach to termination

and productivity, in ‘Proceedings ICFP 2013’, ACM, pp. 185–196.

Abel, A., Vezzosi, A. & Winterhalter, T. (2017), ‘Normalization by evaluation for sized dependent types’,

PACMPL 1(ICFP), 33:1–33:30.

URL: https://doi.org/10.1145/3110277

Appel, A. W. & McAllester, D. A. (2001), ‘An indexed model of recursive types for foundational proof-

carrying code’, ACM Trans. Program. Lang. Syst 23(5), 657–683.

Appel, A. W., Melliès, P., Richards, C. D. & Vouillon, J. (2007), A very modal model of a modern, major,

general type system, in ‘POPL’, pp. 109–122.

Atkey, R. & McBride, C. (2013), Productive coprogramming with guarded recursion, in ‘Proceedings of

ICFP 2013’, ACM, pp. 197–208.

Awodey, S. & Warren, M. A. (2009), Homotopy theoretic models of identity types, in ‘Mathematical

Proceedings of the Cambridge Philosophical Society’, Vol. 146, Cambridge University Press, pp. 45–

55.

Bahr, P., Grathwohl, H. B. & Møgelberg, R. E. (2017), The clocks are ticking: No more delays!, in ‘32nd

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June

20-23, 2017’, pp. 1–12.

Bezem, M., Coquand, T. & Huber, S. (2013), A model of type theory in cubical sets, in ‘19th International

Conference on Types for Proofs and Programs, TYPES 2013, April 22-26, 2013, Toulouse, France’,

pp. 107–128.

Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H. B., Spitters, B. & Vezzosi, A. (2016), Guarded cubical

type theory: Path equality for guarded recursion, in ‘25th EACSL Annual Conference on Computer

Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France’, pp. 23:1–23:17.

Birkedal, L., Møgelberg, R. E., Schwinghammer, J. & Støvring, K. (2012), ‘First steps in synthetic guarded

domain theory: step-indexing in the topos of trees’, Logical Methods in Computer Science 8(4).

Bizjak, A., Birkedal, L. & Miculan, M. (2014), A model of countable nondeterminism in guarded type

theory, in ‘RTA-TLCA’, pp. 108–123.

Bizjak, A., Grathwohl, H. B., Clouston, R., Møgelberg, R. E. & Birkedal, L. (2016), Guarded dependent

type theory with coinductive types, in ‘FoSSaCS’, pp. 20–35.

Bizjak, A. & Møgelberg, R. E. (2015), ‘A model of guarded recursion with clock synchronisation’, Elec-

tronic Notes in Theoretical Computer Science 319, 83 – 101. The 31st Conference on the Mathematical

Foundations of Programming Semantics (MFPS XXXI).

Cohen, C., Coquand, T., Huber, S. & Mörtberg, A. (2016), ‘Cubical type theory: a constructive inter-

pretation of the univalence axiom’, CoRR abs/1611.02108.

URL: http://arxiv.org/abs/1611.02108

Danielsson, N. A. (2010), Beating the productivity checker using embedded languages, in ‘PAR’, Vol. 43,

pp. 29–48.

Dybjer, P. (1995), Internal type theory, in ‘International Workshop on Types for Proofs and Programs’,

Springer, pp. 120–134.

Hofmann, M. (1994), On the interpretation of type theory in locally cartesian closed categories, in ‘Pro-

ceedings of Computer Science Logic, Lecture Notes in Computer Science’, Springer, pp. 427–441.

40

Hofmann, M. (1997), Syntax and semantics of dependent types, in ‘Extensional Constructs in Intensional

Type Theory’, Springer, pp. 13–54.

Hofmann, M. & Streicher, T. (1999), Lifting Grothendieck universes. Unpublished.

URL: www.mathematik.tu-darmstadt.de/ streicher/NOTES/lift.pdf

Hughes, J., Pareto, L. & Sabry, A. (1996), Proving the correctness of reactive systems using sized types,

in ‘Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA,

January 21-24, 1996’, pp. 410–423.

Hyland, J. M. E., Robinson, E. P. & Rosolini, G. (1990), ‘The discrete objects in the effective topos’,

Proceedings of the London mathematical society 3(1), 1–36.

Kapulkin, C. & Lumsdaine, P. L. (2012), ‘The simplicial model of univalent foundations (after voevod-

sky)’, CoRR abs/1211.2851.

URL: https://arxiv.org/abs/1211.2851

Luo, Z. (1994), Computation and Reasoning. A Type Theory for Computer Science, number 11 in ‘Inter-

national Series of Monographs on Computer Science’, Oxford University Press.

MacLane, S. (1998), Categories for the Working Mathematician, Graduate Texts in Mathematics, second

edn, Springer New York.

Mannaa, B. & Møgelberg, R. E. (2018), The clocks they are adjunctions denotational semantics for clocked

type theory, in ‘3rd International Conference on Formal Structures for Computation and Deduction,

FSCD 2018, July 9-12, 2018, Oxford, UK’, pp. 23:1–23:17.

Martin-Löf, P. (1973), An intuitionistic theory of types: Predicative part, in H. Rose & J. Shepherdson,

eds, ‘Logic Colloquium’, North-Holland, Amsterdam, pp. 73–118.

McBride, C. & Paterson, R. (2008), ‘Applicative programming with effects’, J. Funct. Programming

18(1), 1–13.

Møgelberg, R. E. (2014), A type theory for productive coprogramming via guarded recursion, in ‘Pro-

ceedings of CSL-LICS 2014’, ACM, pp. 71:1–71:10.

Møgelberg, R. E. & Paviotti, M. (2016), Denotational semantics of recursive types in synthetic guarded

domain theory, in ‘Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS ’16, New York, NY, USA, July 5-8, 2016’, pp. 317–326.

Nakano, H. (2000), A modality for recursion, in ‘Proceedings of LICS 2000’, IEEE, pp. 255–266.

Norell, U. (2007), Towards a practical programming language based on dependent type theory, PhD

thesis, Chalmers University of Technology.

Sacchini, J. L. (2013), Type-based productivity of stream definitions in the calculus of constructions, in

‘28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA,

USA, June 25-28, 2013’, pp. 233–242.

Sterling, J. & Harper, R. (2018), Guarded computational type theory, in ‘Proceedings of the 33rd An-

nual ACM/IEEE Symposium on Logic in Computer Science’, LICS ’18, ACM, New York, NY, USA,

pp. 879–888.

URL: http://doi.acm.org/10.1145/3209108.3209153

Svendsen, K. & Birkedal, L. (2014), Impredicative concurrent abstract predicates, in ‘ESOP’.

The Coq Development Team (2004), The Coq proof assistant reference manual, LogiCal Project. Version

8.0.

URL: http://coq.inria.fr

Veltri, N. & van der Weide, N. (2019), Guarded recursion in agda via sized types, in ‘4th International

Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019,

Dortmund, Germany’, pp. 32:1–32:19.

	1 Introduction
	1.1 Guarded recursion with multiple clocks
	1.2 A model of guarded recursion with multiple clocks
	1.3 Universes
	1.4 Related work
	1.5 Overview

	2 A basic type theory for guarded recursion
	2.1 Relation to previous presentations

	3 A presheaf model
	3.1 Interpreting type theory in categories of presheaves
	3.2 Modelling later and guarded recursion
	3.3 Modelling previous

	4 Modelling clock irrelevance using orthogonality
	5 Identity types
	6 Delayed substitutions
	6.1 Semantics of delayed substitutions.

	7 Universes
	7.1 Universes in GDTT
	7.2 A family of semantic universes
	7.3 Reindexing universes
	7.4 Inclusions of universes
	7.5 Codes for basic type constructors
	7.6 Universal quantification over clocks
	7.7 Codes for the later modalities

	8 Interpreting syntax
	9 Recovering the categories GR(Delta)
	References

