
Received May 31, 2020, accepted June 11, 2020, date of publication June 15, 2020, date of current version June 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002591

Uvis: A Formula-Based End-User
Tool for Data Visualization
MOHAMMAD AMIN KUHAIL 1 AND SOREN LAUESEN 2
1College of Technological Innovation, Zayed University, Abu Dhabi 144534, United Arab Emirates
2Computer Science Department, IT University of Copenhagen, 2300 Copenhagen, Denmark

Corresponding author: Mohammad Amin Kuhail (mohammad.kuhail@zu.ac.ae)

This work was supported in part by the Danish Research Council’s Nabiit Programme, and in part by the Zayed University, United Arab
Emirates.

ABSTRACT Existing approaches to data visualization are one of these two: accessible to end-user developers
but limited in customizability, or inaccessible and expressive. For instance, commercial charting tools are
easy to use, but support only predefined visualizations, while programmatic visualization tools support
custom visualizations, but require advanced programming skills. We show that it is possible to combine the
learnability of charting tools and the expressiveness of visualization tools. Uvis is an interactive visualization
and user interface design tool that targets end-user developers with skills comparable to spreadsheet formulas.
With Uvis, designers drag and drop visual objects, set visual properties to formulas, and see the result
immediately. The formulas are declarative and similar to spreadsheet formulas. The formulas compute the
property values and can refer to data from database, visual objects, and end-user input. To substantiate
our claim, we compared Uvis with popular visualization tools. Further, we conducted usability studies that
test the ability of designers to customize visualizations with our approach. Our results show that end-user
developers can learn the basics of Uvis relatively fast.

INDEX TERMS End-user development, formulas, visualization tools, information visualization.

I. INTRODUCTION
Data visualization aims at supporting human abilities by
showing data using visual variables such as position, color,
size, and orientation [1]. The insights of data visualization
can be applied in many fields such as healthcare, finance, and
agriculture.

Charting tools allow designers to build a visualization
by selecting predefined visualization templates and mapping
them to data. Designers can adjust the visual properties to a
limited extent. This approach improves learnability (learning
how to build a visualization) as well as task efficiency (build-
ing it fast). However, it lacks expressiveness (customizing the
visualization to specific needs). Data analysis tools such as
Tableau and its predecessor Polaris [2] integrate well with
existing data and help users explore the data. They do not
require programming skills. However, like charting tools,
there is no way to create visualizations beyond what is prede-
fined. Visualization tools such as Lyra [5], iVisDesigner [6],
and Data Illustrator [24] allow the creation of custom visu-
alizations without real programming. These tools are more

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello .

flexible than charting tools. Nevertheless, they are limited in
expressiveness. For instance, they use predefined layouts and
visual properties that cannot refer to other visual properties or
end-user input. Further, it is not possible to create interactive
visualizations with these tools.

Designers may resort to programmatic visualization tools
and libraries such as D3 [3] and Vega [12] to accomplish
their objective. While such tools offer high visualization
expressiveness, they require programming skills accessible to
technical audience.

Despite the diversity of existing visualization tools, there
is still a gap between tools that are accessible to end users,
but limited in expressiveness, and tools that are expressive
but only accessible to professional programmers.

We contribute Uvis, a visualization tool aimed at end-
user developers who have development skills comparable
to spreadsheet formulas, but no training in programming.
Uvis allows designers to drag and drop visual objects and
specify declarative formulas for the visual object properties.
A formula computes the value of a property, and can refer to
data from databases, visual objects, and end-user input.

To assess expressiveness, we created a collection of visu-
alizations. Furthermore, we compared Uvis with popular

110264 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/344890634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-0000-0989
https://orcid.org/0000-0003-2300-6934
https://orcid.org/0000-0003-4970-4554


M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

visualization tools such as D3 [3] and Vega [12]. To assess
learnability and efficiency, we conducted usability studies
with designers. Our results show that Uvis has high expres-
siveness, and its basic principles can be rapidly learned by
designers with IT skills akin to spreadsheet formulas. Part of
this work is based on Kuhail’s thesis from the IT University
of Copenhagen [27].

In a previous work [33], we proposed designing visual
objects for construction of time-oriented visualizations. The
work covered a small part of Uvis principles, and only
focused on expressing time-oriented visualizations. Further,
the work was not mature enough to be evaluated with users
and to be compared with other tools such as D3 and Vega.

II. RELATED WORK
We divide approaches to data visualization and user interface
design into two categories: tools aimed at non-programmers
(charting tools, data analytical tools, and visualization tools),
and tools for designers with programming skills (visualiza-
tion toolkits and programming languages).

A. NON-PROGRAMMER TOOLS
1) CHARTING TOOLS
Charting tools such as Microsoft Excel, RAWGraphs [40],
Flourish [42], and Infogram [43] allow designers to cre-
ate visualizations with predefined templates. Limited cus-
tomization is possible. For instance, designers can change
appearance properties such as color, text formatting, etc. This
approach is accessible to non-programmers, but does not sup-
port custom visualizations. Designers do not have sufficient
control over the building blocks of the visualization. For
instance, not all the visual properties of the visual objects are
available for modification.

2) DATA ANALYTICAL AND EXPLORATORY TOOLS
Data analytical and exploratory tools such as Tableau [44],
Polaris [2], Spotfire [45] and Omni-scope [46] integrate well
with existing data and help users explore the data. Despite the
expressive power of these tools compared to charting tools,
control over graphical output is still limited, making them
unsuitable for novel custom visualizations.

3) VISUALIZATION TOOLS FOR NON-PROGRAMMERS
Visualization tools such as Lyra [5], iVisDesigner [6], Vis-
Composer [7], Data Illustrator [24], DataInk [8], and Char-
ticulator [9] allow creation of custom visualizations without
real programming. These tools use a visual builder as a
development environment [22].

Lyra [5] allows designers to specify visual attributes with
mathematical expressions that refer to data fields. However,
the expressions are limited. For instance, they cannot refer
to other visual properties. Further, it is not possible to create
a dynamic visualization with Lyra. For instance, dynamic
queries [4] are not supported. To cite an example, it is not

possible to add filters that allow for data exploration based
on user input.

iVisDesigner [6] allows designers to develop visualizations
of complex predefined layouts. Designers can drag and drop
visual objects, bind visual properties to data or constant num-
bers. Despite the power of this approach, the visualization
specifications are limited. For instance, designers cannot bind
a visual property to a mathematical expression that refers to
data and other visual properties. Further, it is not possible to
implement interaction beyond what is predefined.

VisComposer [7] allows designers to connect modules
together to transform the data. Further, designers can use
blocks of code to extend their visualizations with custom
behavior. This approach may be accessible to end-user
developers, but real programming is needed for high
expressiveness.

Data Illustrator [24] uses a ‘‘lazy data binding’’
approach. Designers use familiar tools to draw their visual-
izations without underlying specifications. Later, designers
apply data encoding when it is necessary. This approach gives
flexibility to designers. However, similar to the other tools,
expressiveness is still limited as designers cannot specify
visual variables with expressions. Moreover, it is not possible
to design interactive visualizations.

DataInk [8] supports creation of visualizations with direct
manipulation via direct pen and touch input. Designers design
their own glyphs, and map their visual attributes to data.
This approach combines the power of data visualization and
graphic design tools. Nevertheless, the visualizations pro-
duced are static, and expressiveness is limited.

Charticulator allows designers to create charts of differ-
ent layouts such as parallel coordinates [10] and coxcomb
charts [47]. However, like the other tools, it is hard for design-
ers to create a custom visualization with a layout beyond
what is predefined. Further, Charticulator does not support
interactive visualizations.

In conclusion, these tools are innovative, and designed to
be accessible to a wider audience than programmatic tools.
However, according to a survey study [31], these tools do
not allow high customization. As an example, these tools are
not able to make visualizations such as LifeLines [25]. This
visualization requires dynamic queries [4], user interaction,
showing data from various tables, and showing relationships
between data entities.

B. PROGRAMMER TOOLS
1) VISUALIZATION TOOLKITS
Visualization toolkits allow designers to construct traditional
and new visualizations by means of domain-specific pro-
gramming languages tailored for visualization. Examples are
Protovis [11], D3 [3], Prefuse [15], and Improvise [16]. The
approaches of these tools vary from imperative to declar-
ative programming. However, designers may still need to
implement program-like specifications. For instance, design-
ers need to declare variables, program functions, etc. Con-
sequently, the gap between the objective (what the designer

VOLUME 8, 2020 110265



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

wants to accomplish) and the solution (how the designer
accomplishes the objective) remains high. This is described
by Norman as the gulf of execution [17].

Vega [12] is a declarative language for creating, saving,
and sharing interactive visualization design. Vega does not
require developers to write the visualization specifications
in a certain sequence. To support interaction, the tool allows
developers to write imperative statements as event handlers.
To enable custom calculations, Vega uses its own expression
language for writing basic formulas. The expressions can
refer to data from a dataset as well as event data. However,
the expressions have limitations. For instance, they cannot
directly refer to aggregate functions (e.g. sum, max). Data
transformations must be made first. Further, the expressions
cannot refer to visual properties. This limits the designer’s
ability to create custom layouts by aligning different visual
objects in ways beyond what’s predefined. Built on Vega,
Vega-lite [13] provides a high-level grammar that enables
the concise specification of interactive data visualizations.
Vega-lite specifications are shorter than Vega. However, it is
less expressive. For instance, Vega-lite does not support cus-
tom and specific interaction techniques.

Atom [14] is a high-level grammar for unit visualizations,
visualization where every data item is shown by a distinct
visual object (a visual unit). Atom maps each visual object
to one data item. Some visual properties such as fill color
can visualize data. Atom can express a variety of unit visu-
alizations. However, expressiveness is limited. For instance,
visual properties cannot be specified with expressions. Fur-
ther, position properties are determined based on layout def-
inition. Such limits make Atom unsuited for making data
visualizations such as LifeLines [25] where visual objects
show relationships between data entities by being aligned
to other visual objects showing related data. Besides that,
Atom does not support interactivity. Therefore, implementing
interaction such as dynamic queries [4] is not possible with
Atom.

2) GRAPHICAL LIBRARIES
Graphical libraries such as GDI+ [38] and Java 2D [39] are
available for many programming languages. They provide
basic components such as polygon, textbox and drop-down
box. Bymeans of a program, you can create any visualization,
bind to any data and perform any interaction. The program
can be integrated with development environments that allow
programmers to build a user interface. The environments use
the visual builder approach [22]. Programmers manually drag
and drop graphical components (buttons, text boxes, etc.)
and set their properties. However, programming is needed to
make the interface functional.

III. DESIGN
In designing Uvis, we started with a simple idea: Let each
visual property be like a spreadsheet cell with a formula.
It turned out that with this simple approach, the designer does
not need to know programming concepts such as variables,

loops, and recursion, allowing designers to focus on piecing
together visual objects using formulas. The latest version of
Uvis can be found in [37].

This work proposes the Uvis approach that consists of
four elements: a development environment, general-purpose
visual objects, formulas, and documentation. The develop-
ment environment, shown in Figure 1, consists of six panels:
(A) The form being designed, (B) Property grid, (C) Error list,
(D) Data map, (E) Toolbox, (F) Visualization specification
files, and (G) Data view. All the panels are movable. The
visual form (A) contains the visualization the designer is
currently building. The property grid (B) allows the designer
to change the properties of a visual object. The error list
(C) lists the errors in the formulas. The data map (D) shows
the structure of the data the designer wants to show. The
toolbox (E) is a list of the available visual objects. The visu-
alization specifications (F) are saved as .vis files. The data
view (G) shows a sample of the data in the data model. Uvis
uses a small collection of visual objects includingwell-known
components such as ellipses, bars, splines, pie slices, and
labels.

Visual objects can be bound to a data source. As a result,
one visual object is created for each row in the data source.
However, if a visual object is not connected to data, only one
instance of the object is created. A visual property may be
constant or a formula.
Formulas are declarative spreadsheet-like expressions. The

formulas can refer to data fields, visual properties, and func-
tions.

The Uvis documentation is a tutorial that walks the
designer stepwise through themain Uvis concepts. It contains
various examples. Discussing the documentation is outside of
the scope of this paper. The details of the documentation can
be found at [48].

In the following subsections, we will discuss the funda-
mental elements of Uvis: Uvis development environment,
visual objects, and declarative formulas.

A. DEVELOPMENT ENVIRONMENT
The Uvis development environment (Figure 1) is a What-You
See-Is-What-You-Get (WYSIWYG) visual builder where the
designer drags visual objects to the user screen and defines
the properties of the components. When the designer changes
a property specification, the formulas of all properties are
recomputed, and the screen is refreshed. Myers et al. [18]
gave an overview of user interface tools and explained
why visual builders (called interface builders in the paper)
were much more successful with local developers than
program-based tools. Besides the traditional visual builder
features, we incorporated features that support the design
process. As an example, when the designer selects a visual
object, the property grid shows the properties, formulas, and
computed values of the properties (Figure 1B). This allows
designers to inspect all properties of the visual object [34].
As another example of assisting designers, we show the data
map (Figure 1D) as well as data view (Figure 1G). Since

110266 VOLUME 8, 2020



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 1. Uvis development environment. (A) The form being developed. (B) The property grid of the selected visual object showing the properties
and formulas used to specify the object. (C) Error List. (D) The model of the data behind the visualization. (E) A list of visual objects the designer can
use to compose a visualization. (F) Visualization Form files. (G) A view of the ptDiagonsis table (available upon clicking the ptDiagonsis table).

designers may design a visualization of data coming from
several data tables, it is essential to show the data tables and
the relationships between them. The model is a traditional
Entity-Relationship diagram (E-R diagram) [23]. Admittedly,
some designers may not be familiar with E-R diagrams. Uvis
documentation [48] explains the principles of E-R diagrams.
The Table view panel (G) shows a sample of the data when the
designer clicks a table in the data model. Exploring the data in
that manner helps designers make sense of data particularly
if the data have names that are not self-explanatory. Research
showed that novice designers relate to data using concrete
values rather than field names [19], [20].

The design of the development environment is the result
of usability studies and expert feedback. The details of the
usability studies to improve the environment are discussed
in [27]. Earlier versions of the environment such as [35] were
more primitive.

B. VISUAL OBJECTS
Visual objects are the building blocks of a visualization.
Figure 2 shows examples of the visual objects Uvis pro-
vides. Unlikemany existing visualization tools, Uvis supports
standard UI elements (e.g. Button, Textbox, etc.) that
allow for interaction. Furthermore, Uvis includes geomet-
ric shapes such as Triangle, Ellipse, etc. They are
inspired byCleveland [21] recommendations, and can be used
to show data as position, color, orientation, etc. Moreover,

FIGURE 2. Examples of visual objects that Uvis supports.

we designed specialized objects that are commonly used in
visualizations. For example, HTimeScale is a time scale
that shows multiple periods of time horizontally. Designers
can let a property refer to a time scale and get the pixel
position corresponding to a point in time. Further, the time
scale is an interactive object that allows users to navigate
through time by dragging the scale. As another example,
Spiral allows designers to show cyclic time-oriented data
on a spiral.

All visual objects have these common properties:
Rows, Parent, Canvas, Top, Left, Bottom, Right,
Height, Width, BackColor, and BorderColor. The
Rows property binds visual objects to data. The Parent
property specifies the parent element. This property allows

VOLUME 8, 2020 110267



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 3. Example of a default formula: Setting the PieSlice StartAngle
and BackColor.

formulas in child elements to refer to data and visual proper-
ties in parent elements. The Canvas property specifies the
panel on which the object is placed. By default, it is where
the designer has dragged the object. Top, Left, Bottom,
and Right properties position visual objects. Height
and Width are the usual size properties. BackColor
and BorderColor are properties that specify the back-
ground and border color respectively. Specialized objects
such as HTimeScale have special properties such as
BorderValues, which determines the periods of time that
are covered by the object. Moreover, designers can add their
own designer properties. They can compute values that other
properties refer to.

To improve task efficiency without compromising expres-
siveness, some visual objects provide default formulas that
cater for common cases. These formulas are still changeable
by the designers if they want a different appearance or behav-
ior. For instance, the StartAngle of a PieSlice object
has a default formula (Figure 3).

C. DECLARATIVE FORMULAS
Uvis formulas are inspired by spreadsheet formulas, which
have been successful with end-user developers [18]. Uvis
formulas are declarative since they specify what the result
of the computation should be rather than how it should be
done, and where the result should be stored. Further, they
are sequence-free, and do not have loops. Uvis formulas may
refer to data fields and visual properties. When a visual object
is bound to a data row, the formula refers to the data fields of
the row as if they were properties of the component. However,
Uvis must be able to handle any field or table name found in
the database. A fieldmay for instance be calledBackColor,
which is also a built-in property name. To resolve this ambi-
guity, Uvis uses dot (.) for data fields and bang (!) for visual
properties and other Uvis names. The following subsections
will explain Uvis formulas via two examples.

1) UVIS BASIC FORMULAS
Figure 4 illustrates Uvis basic formulas with a bar chart rep-
resenting sales over the course of six months. This example
illustrates a detail-on-demand interaction style [26] as users
can see the sales amount as well as the month upon clicking
a bar. The bars are made with a Box (SalesBox). The
Rows formula binds SalesBox to data in the Sales table.
The data is ordered by the sales amount in ascending order.
The result of data binding is that Uvis creates an instance of
SalesBox for each data row. The Left formula calculates

FIGURE 4. Creating a basic bar chart with Uvis formulas.

the left position of the bars in such a way that they are spaced
5 pixels apart. The Height formula takes the sales amount
and divides it by 1000 to get the height. Upon clicking a
box, the visibility of a child label on top (AmountLabel)
is toggled. AccountLabel is positioned to be on top of its
parent (SalesBox) using the Bottom property. The labels
are initially invisible (Visible is set to be false). The init
keyword indicates that the value is changeable.

2) DATA NAVIGATION AND CONDITIONALS
Figure 5 shows a visualization of patient information inspired
by LifeLines [25]. The visualization shows physician notes
of patient health and diagnoses mapped to a time scale. The
time scale shows three different periods of time of different
zoom levels. The data model of the data behind the table is on
the top right of the figure. Even for a professional developer,
it would be time consuming and challenging to implement
such a visualization. With Uvis, it is possible to build it with
declarative formulas and two imperative formulas to make
it interactive. For space reasons, Figure 5 shows only the
interesting formulas.

The Rows formula of label ptLabel (Component A,
Figure 5) connects the label to the record of the patient whose
ID is the value of ptIDText (Component D, Figure 5). The
Rows formula of ptNoteTitle (Component B, Figure 5)
joins the parent table (Patient with a selected ID) with the
ptNote table.
Uvis uses the operators >- and -< to specify a join

between two database tables. A >- B is a left join where

110268 VOLUME 8, 2020



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 5. Building a visualization inspired by LifeLines [25] to show medical information of a patient. Formulas for the following building blocks are
shown: (A) A label for displaying patient name (ptLabel). (B) Labels for showing patient note titles (ptNoteTitle). (C) Triangles for showing notes
made by physicians regarding the patient health (ptTriangle). (D) A text box for patient ID input (ptIDText). (E) An interactive time line for showing
the time horizontally (timeScale).

we start in A and extend it with a matching B (nulls if there
isn’t any). A -< B is a right join where we start with B. Uvis
also supports inner joins, such as A =< B, where rows are
included only where there is a match.

We have chosen -< and >- because they resemble the
crow’s foot notation in E-R diagrams.

In order to vertically align ptTriangle objects (Com-
ponent C, Figure 5) with the related ptNoteTitle
objects (Component B, Figure 5), the designer needs to
let ptTriangle objects find the related ptNoteTitle
objects. To that end, the designer added a designer property,
noteTitle, in the ptTriangle formula specifications.
This property finds the related ptNoteTitle objects using
the Find operator. Aligning the ptTriangle objects now
is just a matter of setting the Top property to be equal to the
Top of noteTitle.
This example shows that Uvis formulas alone allowed

for a custom layout due to cross-referencing, the ability of
formulas to refer to properties of other visual objects.

To make the background color of the ptTriangle
objects represent note warning, the designer used the
Choose function known from Visual Basic.

3) USER INTERACTION
To interact with the visualization, the end-user types the
patient ID into the textbox ptIDText (Component D,
Figure 5). When done, Uvis executes the FocusLost event
handler, which asks Uvis to refresh the screen. As a result,
Uvis recomputes the formulas, retrieves the information of
the patient with that ID, and displays her information on the
screen. This is an example of a dynamic query [4].

As another example of interaction, the user can drag the
time scale to the right or the left to focus or get an overview of
a specific period of time. This interaction style is inspited by
the Visual Information-SeekingMantra: overview first, zoom
and filter, then details on demand [26].
timeScale (Component E, Figure 5) shows three peri-

ods of time defined by BorderValues. The first period
covers the duration between the patient birth until the second
of January 2015. The second one ends on the twentieth of
January 2015, and the third ends today. Each of the peri-
ods is shown in a ribbon, specified by BorderPixels.
By dragging the time to the left or to the right of a time
period, the user can change the time the scale is representing.
By dragging the time scale borders, the user can change how

VOLUME 8, 2020 110269



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 6. Example visualizations built with Uvis: (A) Task plan. (B) Passenger stats. (C) Train schedule. (D) Medicine tree. (E) Spiral graph.

much space each period is taking up. When the user interacts
with the time scale, BordersChanged is triggered, and as
a result, the formulas will be recomputed, and the screen will
be updated.

The designer has mapped the time of the patient notes
(ptTriangle objects) to the time scale using the HPos
function of the time scale. This function calculates the pixel
location of the patient note time. When the user interacts with
the time scale, the event handler BordersChanged will
ask to refresh the screen. As a result, the patient note triangles
will be repositioned.

IV. EVALUATION
Uvis was designed to be an expressive, task efficient,
and learnable visualization tool. To assess expressiveness,
we built a variety of applications. Furthermore, we compared
Uvis with popular visualization tools such as D3 [3] and
Vega [12]. To assess learnability and efficiency, we con-
ducted usability studies with designers. Our results show that
Uvis has high expressiveness, and its basic principles can be
rapidly learned by designers with IT skills akin to spreadsheet
formulas.

A. EXPRESSIVENESS AND LIMITATIONS
Figure 6 shows example visualizations built with Uvis. The
visualizations are fully explained in [27]. Other visualizations
can be found in [33]. Table 1 shows an overview of these
visualizations. Different data transformations (e.g. filtering,

joining, sorting) have been performed to create the visu-
alizations. Further, different types of formulas have been
used to create the visualizations. The visualizations show
different characteristics and interaction styles. For instance,
some have a radial layout whereas others have a linear
one. Interaction-wise, some visualizations are based on the
details-on-demand metaphor [26], and others allow end-user
dynamic queries [4]. The examples are not novel visual-
izations, but illustrate the expressiveness of Uvis formulas.
We have also created other visualizations such as Circle-
View [29] and Horizon Graph [41]. Some of the visual-
izations were created using only primitive visual objects.
For instance, the visualization inspired by CircleView [29]
was created using PieSlice objects. Other visualiza-
tions such as Horizon Graph required a specialized object
(Area).

Despite resembling visualizations created with template-
based tools such as Tableau, the visualizations in Figure 6
cannot be easily made with template-based tools. Most of
the visualizations are based on combining multiple rela-
tional tables whereas template-based visualizations are typ-
ically based on single datasets. Further, with Uvis, designers
have the freedom to customize the interactivity and appear-
ance of the visualizations in a way that is not possible in
template-based tools.

Uvis expressiveness depends on four main principles:
Rows formula, visual property formula, utility functions, and
visual objects. Table 2 shows examples of what formulas can
refer to.

110270 VOLUME 8, 2020



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

TABLE 1. Characteristics of selected visualizations made with Uvis.

TABLE 2. Examples of Uvis formulas.

The Rows formula is as expressive as SQL statements, but
it is much more compact. For instance, it does not include the
SELECT clause and the specifications of JOIN statements.
For instance, consider the formulas for the Rows and Text
properties:
Rows: Patient -< ptNote
Text: Title

This formula is translated into the following SQL state-
ment:
SELECT ptNote.Title FROM Patient
LEFT JOIN ptNote
ON Patient.ptID=ptNote.ptID
Uvis compiler only selects the fields that are used by the

formulas. In this case, only ptNote.Title was selected
because it was used in the Text property formula. Further,
the ON specifications were extracted from the data map (a file
that describes the primary and foreign keys of tables).

Some advanced visualizations need sorting and grouping
data transformations. Such transformations would require
designers to use SQL-like operators such as Order By and
Group By. Designers would need to learn such skills prior
to attempting such advanced visualizations.
The visual property formulas are expressions similar to

spreadsheet formulas, but they can refer to utility functions,
visual properties, visual object functions, and fields of any
visual object connected to data with a different Rows for-
mula. For a complete reference of Uvis formulas, see the Uvis
reference card [36].
Utility functions resemble Visual Basic and spreadsheet

functions. For instance, the regular math and aggregation
functions are available.
Visual objects provide functions the formulas can call.

For instance, formulas can call the HPos function of
HTimeScale objects.

Despite the expressive power of Uvis formulas, they have
the inherent limitations of declarative formulas. For example,
Uvis formulas alone do not support visualizations that require
recursive algorithms. Such algorithms contain loops and/or
functions that call themselves recursively until a condition is
met. Uvis formulas support recursion if it is within the context
of existing visual objects. Consider the following formula for
a designer Property TotalHeight:
index=0? Height : Me[index-1]

!TotalHeight + Height
This is an example of a conditional formula using the

ternary operator known from JavaScript and other languages.
The formula means if index is equal to zero (first object in
the bundle), the value will be the Height value. Otherwise,
it will be the previous object’s TotalHeight added to the
Height values. This results in the sum of Height values in
a bundle of visual objects. This is an example of recursion that
Uvis formulas allow. However, Uvis formulas and primitive
visual objects alone cannot support a visualization such as
Tree maps which requires a recursive algorithm. A possible
solution is to provide a visual object that performs these
complex layout algorithms. Pantazos developed a TreeMap
visual object that supports a tree map visualization with Uvis
formulas [28].

Another limitation of Uvis formulas is the inability to
create visual objects recursively: For instance, Uvis formulas
fall short if we want to show a recursive tree-like structure,
for instance a folder tree. Since Uvis uses SQL-like formulas,
it inherits SQL limitations. For instance, it is not possible to

VOLUME 8, 2020 110271



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 7. (Top) Data behind a custom scatterplot. (Bottom) The custom
scatterplot showing temperature reading based on the table at top.

send a query that retrieves the nesting levels of the folders.
As a result, it is not possible to create a recursive tree with
Uvis formulas because new visual objects must be defined
for each level in the tree. A possible solution is to create a
specialized visual object that implements the recursive layout.

B. COMPARATIVE ANALYSIS
We selected two popular visualization tools to compare with
Uvis: D3 [3] and Vega [12]. The tools were selected because
they support custom visualizations, have high citations, and
a different approach to visualization construction. For a com-
parative analysis with other tools, consult [32].

We excluded Protovis [11] as it is the predecessor of D3 [3],
and is no longer active. We excluded Vega-lite [13] as it is
based on Vega, and is intended for high-level visualization
grammar. Moreover, the selected tools were ranked based
on the total number of citations on ACM Portal and IEEE
website. In a previous work [32], we compared Uvis with
other tools such as Prefuse [15] and Improvise [16].

We implemented a custom scatterplot (Figure 7) with the
selected tools as well as with Uvis. The scatterplot shows the
daily maximum of temperature in a given city in a certain
period of time. The circles represent the readings. If the
circle is showing the highest temperature in the given period,
it is black. Otherwise, if the circle is showing a temperature
greater than 25, it is red. The rest of the circles are orange.
Although the example is relatively simple, it is a custom
scatterplot, and not a standard scatterplot that can be easily
made with charting tools. Further, all the tools support it with
their language design and visual objects. We were careful not
to select a more advanced example as it may be too lengthy
and tedious to follow, and it may favor one tool over the
others.

1) D3
Figure 8 shows the specifications of this custom scatterplot
with D3. The specifications are written as statements that

are executed one by one. The maximum temperature vari-
able is defined as it will be used later in the visual encod-
ing (line 1). The visualization basic settings are defined in
lines 2-9. D3 uses non-visual scale classes for creating time
and numeric axes (lines 10-15). The designer uses the scales
to generate x and y axes (lines 16-25). Circle objects are
defined (lines 26-29). The circles are bound to temperature
and date data (lines 30-35). Finally, a conditional expression
for the Fill property (background color property) sets the
color of circles with a conditional expression (line 38).

To sum up, D3 visualization specifications are program-
like. Variables and anonymous functions are defined. Further,
the instructions are written and executed in sequence. D3 pro-
vides non-visual scale classes that facilitate the construction
of axes. The axes are not defined directly. Instead, primitive
axis objects are used for drawing the axes. This separation
increases flexibility (e.g designers might define a custom axis
in this way), but increases the steps of such a common task.
D3 uses declarative expressions to specify theCircle visual
objects.

2) VEGA
Figure 9 shows the specifications of the same custom scatter-
plot built with Vega. First, the visualization basic settings are
defined in lines 1-7. The data source is defined in lines 10-12.
Since we need specific appearance for circles showing the
maximum temperature, we need to perform data transforma-
tions to calculate the maximum (lines 14-19). Like D3, Vega
uses non-visual scale classes for creating time and numeric
axes (lines 22-34). The designer uses the scales to generate
x and y axes (lines 35-37). The designer specifies circles and
bind them to temperature and date data (lines 38-46). Finally,
a conditional expression for the Fill property (background
color property) sets the color of circles based on the logic we
discussed earlier (line 47).

Vega uses a declarative approach to visualization specifi-
cations. Unlike D3, Vega does not require the specifications
to be written in a certain sequence. Vega requires data trans-
formations to be explicitly specified for extracting aggregate
functions such as max, min, sum, and average. Like D3, Vega
uses non-visual scale classes that facilitate the construction
of axes. The visual axes are defined separately. To define
a formula-like expression, designers need to use a signal,
a dynamic variable that parameterizes a visualization.

3) UVIS
Figure 10 shows the specifications of the custom scat-
terplot with Uvis. To create the time and numeric axes,
the designer dragged HTimeScale and VNumericScale
visual objects from the toolbox and dropped them on a
form. The designer moved and resized them until they
looked satisfactory. Uvis sets position properties (i.e. Top,
Height, etc.) accordingly. To define the range of time
and numbers the scales show, the designer typed the
value of the BorderValues property in the property
grid (lines 5 and 11). To create circles representing the

110272 VOLUME 8, 2020



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 8. Building a custom scatterplot with D3. (a) defining the visualization. (b) defining the numeric (temperature) and time scales (axes).
(c) defining circles. (d) Visually mapping the circles to temperature and date fields according to the scales.

temperature reading, the designer drags and drops an
Ellipse. The designer bound the Ellipse objects to
data using the Rows formula (line 16). The designer
typed formulas for the position properties (Top and Left)
(lines 17 and 18). The formulas call position functions
(HPos, VPos) provided by the scales to calculate the
positions.

Unlike D3 and Vega, Uvis uses only visible visual objects.
Further, Uvis does not require data transformations to extract
aggregate functions (such as max, sum). Designers spec-
ify the aggregate functions in the property where they will
be used. Like Vega, Uvis uses declarative expressions that

directly define the visual properties. Further, there is no need
to define variables, and the sequence of specifying the expres-
sions is unimportant. The environment shows the available
visual objects, and allows the designers to drag, drop, and
resize them (as long as the position and size properties do
not have dynamic expressions) rather than textually setting
them. Uvis expressions are more expressive than D3 and
Vega as they can refer to visual properties of the same
and other visual objects. For instance, the Left formula
of the TemperatureEllipse refers to a visual prop-
erty Width as well as a function of a visual object HPos
(Figure 10).

VOLUME 8, 2020 110273



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 9. Building a custom scatterplot with Vega. (a) defining the visualization. (b) defining the data transformations. (c) defining the
numeric (temperature) and time scales (axes). (d) defining circles and visually mapping them to temperature and date fields according to the scales.

C. EVALUATION STUDIES
We conducted several evaluation studies. Our objectives
were to evaluate the learnability of Uvis and identify the
concepts that are not easy to learn. Here we show the

details of one evaluation study with seven participants. All
the participants were non-programmers. They had no prior
knowledge of the Uvis formulas, and had never used the
Uvis environment. They had basic knowledge of Excel

110274 VOLUME 8, 2020



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 10. Building a custom scatterplot with Uvis. (a) The visualization
form. (b) The horizontal and vertical scales (axes). (c) The ellipses (circles)
showing the data.

TABLE 3. Profiles of participants of evaluation studies.

formulas, algebra, trigonometry, and sequences, and knew
what a database table is. Further, they knew how to read
simple visualizations such as bar charts. Table 3 shows the
participant profiles in more detail.

We judged that the number of participants we tested with
was sufficient for the purpose of identifying whether the
Uvis concepts were understandable. Nielsen et al. empirically
found out that most of the usability problems are found by
testing with five users [30].

1) METHODOLOGY
Each evaluation study lasted 2 hours on average. The studies
were carried out in a lab. Each participant viewed two screens.
One screen showed a Microsoft PowerPoint-based step-by-
step tutorial available, and the other showed the Uvis environ-
ment. Each participant was asked to follow the instructions in
the tutorial. The tutorial is divided into sections, at the end of
which, designers were given a task to work on their own, but
they could go back to the tutorial and/or example solutions.
The tutorial can be found in [48].

The participants were asked to think aloud while they were
carrying out the tasks. They received no help from us during
the study.

To evaluate ease of learning, we measured task completion
time (T) and the quality of the solution (Q). The quality of
the solution was measured by comparing the participant’s
solution against the optimal solution and then rating it on a
scale 0-10.

To find out which concepts are easy or hard to understand,
and collect other information related to Uvis, we observed
the participants while they used the tool, and asked them
to provide feedback at the end of the evaluation study. The
detailed documentation can be found at [27].

2) TEST TASKS
Figure 11 shows the test tasks the participants carried out in
the evaluation. The tasks are modification tasks. Customizing
a visualization as opposed to building one from the ground up
is less time consuming and challenging to designers because
they have something to build on. This is adequate for our
purpose of identifying Uvis concepts that are hard to under-
stand. The participants were given the desired visual output,
a given visualization, as well as a written description of the
requirements. The participants could ask for clarifications.
• Task 1: The bars show a company’s monthly sales. Posi-
tion the bars representing monthly sales like a horizontal
list, make the bar heights represent the monthly sales,
and order them based on the sales.

• Task 2: The ellipses on top show all runners in a
marathon. The ones on the bottom show runners that are
citizens. For the ellipses on the top, make the male run-
ners blue, and the female runners pink. For the ellipses
at the bottom, show only runners older than 30.

• Task 3: A pie chart shows several classes of passen-
gers (e.g. crew, emperor, etc.). The male passengers are
shown on the top as light blue pie slices. Show female
passengers on the top as pink pie slices.

• Task 4: The red curves represent the high readings of
the weather in three cities in a period of time. Show the
low readings as blue lines.

3) SURVEY QUESTIONS
At the end of the study, the participants were asked to fill out a
survey. The purpose of the survey was to identify weaknesses
in Uvis concepts that would be basis of improvement in future
releases.

VOLUME 8, 2020 110275



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

FIGURE 11. (Left) Test tasks of usability studies: The presented visualizations and the required modifications. (Right) Data tables behind the
visualizations.

TABLE 4. Quantitative results of the evaluation studies.

We asked the participants about their experience in gen-
eral, and any difficulties they encountered during the study.
Furthermore, we asked about formulas that they thought were
hard to understand.

To evaluate understandability of formulas, we asked partic-
ipants about the functionality of some operators such as ‘‘!’’,
‘‘.’’, ‘‘-<’’, and ‘‘index’’.

4) RESULTS
Table 4 shows the quantitative results. The participants were
able to complete the tasks at different times. They managed

to complete most of the requirements. Despite the variability
in quality score and time, the results are encouraging. Task
3 had the lowest average quality score (6.4). This might
be described by designers needing to understand unfamil-
iar formulas such as the formula of SweepAngle in the
PieSlice. Nevertheless, half of the participants success-
fully implemented task 3 as they saw the similarity between
the blue pie slice and the pink pie slice. The longest time a
participant spent on a task was the time participant 7 spent
on the first task (25 minutes). This might be explained by the
number of modifications needed for the task (three different
modifications). Nevertheless, the time the participant needed
was still within the total time we had planned for.

The qualitative results can be summarized as follows:
The participants were able to learn the Rows formulas that
are used to connect the visual objects to data. All partici-
pants were able to explain the ‘‘-<’’ operator. Additionally,
the participants found basic visual property formulas easy to
understand. However, half of the participants were confused
about the difference between the dot operator (.) and the bang
operator (!).

We observed that all participants used most of the Uvis
environment components to work on tasks. In particular,
participants used the data model, data view, and property grid.
Participant 2 appreciated that she viewed everything needed

110276 VOLUME 8, 2020



M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

to complete the task at hand. When asked after the end of
each task about how confident they are about their solution,
two participants inspected their solution to check the visual
mappings and answered ‘‘yes’’.

V. CONCLUSION AND FUTURE WORK
This paper presented Uvis, a visualization tool that targets
end-user developers without programming skills. With Uvis,
designers drag and drop visual objects, set visual proper-
ties with formulas, and see the result immediately. The for-
mulas are declarative and similar to spreadsheet formulas.
The formulas compute the property values and can refer to
fields, visual properties, functions, etc. Cognitive aids assist
designers while implementing a visualization. Uvis formulas
can express custom visualizations that are made of primitive
and specialized visual objects. Since they are declarative,
Uvis formulas do not support visualizations with recursive
layout. As a remedy, a specialized object will have to be
made for that purpose. Our evaluation shows that designers
can learn the basics of Uvis relatively fast, and can customize
visualizations. Based on the evaluation studies we conducted,
we have improved autocompletion of formulas as well as
error messages to help designers understand Uvis better.

Currently Uvis is desktop based. We are working on mak-
ing Uvis available on several platforms including web and
mobile. Uvis currently supports raw relational data. Many
commercial systems hide their data behind web-services and
multi-layer architectures, and are unable to give access to
data in such a way that end-user developers can join tables
and filter them according to end-user needs. We are currently
exploring accessing the data with OData [49], which can take
an SQL statement as a parameter.

REFERENCES
[1] J. Bertin, Semiology of Graphics: Diagrams NetworksMaps. Madison,WI,

USA: Univ. Wisconsin Press, 1983.
[2] C. Stolte, D. Tang, and P. Hanrahan, ‘‘Polaris: A system for query, analysis,

and visualization of multidimensional relational databases,’’ IEEE Trans.
Vis. Comput. Graphics, vol. 8, no. 1, pp. 52–65, Jan./Mar. 2002.

[3] M. Bostock, V. Ogievetsky, and J. Heer, ‘‘D3 data-driven documents,’’
IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12, pp. 2301–2309,
Dec. 2011, doi: 10.1109/TVCG.2011.185.

[4] C. Williamson and B. Shneiderman, ‘‘The dynamic HomeFinder: Evalu-
ating dynamic queries in a real-estate information exploration system,’’ in
Proc. 15th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 1992,
pp. 338–346.

[5] A. Satyanarayan and J. Heer, ‘‘Lyra: An interactive visualization design
environment,’’ in Proc. Eurograph. Conf. Vis. (EuroVis), 2014, vol. 33,
no. 3, p. 10.

[6] D. Ren, T. Hollerer, and X. Yuan, ‘‘iVisDesigner: Expressive interac-
tive design of information visualizations,’’ IEEE Trans. Vis. Comput.
Graphics, vol. 20, no. 12, pp. 2092–2101, Dec. 2014, doi: 10.1109/
TVCG.2014.2346291.

[7] H. Mei, W. Chen, Y. Ma, H. Guan, and W. Hu, ‘‘VisComposer: A visual
programmable composition environment for information visualization,’’
Vis. Inform., vol. 2, no. 1, pp. 71–81, Mar. 2018.

[8] H. Xia, N. H. Riche, F. Chevalier, B. De Araujo, and D. Wigdor,
‘‘DataInk: Direct and creative data-oriented drawing,’’ in Proc. CHI
Conf. Hum. Factors Comput. Syst., 2018, pp. 1–13, Paper 223, doi:
10.1145/3173574.3173797.

[9] D. Ren, B. Lee, and M. Brehmer, ‘‘Charticulator: Interactive construction
of bespoke chart layouts,’’ IEEE Trans. Vis. Comput. Graphics, vol. 25,
no. 1, pp. 789–799, Jan. 2019.

[10] A. Inselberg, ‘‘The plane with parallel coordinates,’’ Vis. Comput., vol. 1,
no. 2, pp. 69–91, Aug. 1985.

[11] M. Bostock and J. Heer, ‘‘Protovis: A graphical toolkit for visualiza-
tion,’’ IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 6, pp. 1121–1128,
Nov. 2009.

[12] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer, ‘‘Reactive vega:
A streaming dataflow architecture for declarative interactive visualiza-
tion,’’ IEEE Trans. Vis. Comput. Graphics, vol. 22, no. 1, pp. 659–668,
Jan. 2016.

[13] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, ‘‘Vega-lite:
A grammar of interactive graphics,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 23, no. 1, pp. 341–350, Jan. 2017.

[14] D. Park, S.M.Drucker, R. Fernandez, andN. Elmqvist, ‘‘Atom:A grammar
for unit visualizations,’’ IEEE Trans. Vis. Comput. Graphics, vol. 24,
no. 12, pp. 3032–3043, Dec. 2018.

[15] J. Heer, S. K. Card, and J. A. Landay, ‘‘Prefuse: A toolkit for interactive
information visualization,’’ in Proc. CHI, 2005, pp. 421–430.

[16] C. Weaver, ‘‘Building highly-coordinated visualizations in improvise,’’ in
Proc. INFOVIS, 2004, pp. 159–166.

[17] D. A. Norman, User Centered System Design: New Perspectives on
Humancomputer Interaction. Boca Raton, FL, USA: CRC Press, 1986.

[18] B. Myers, S. E. Hudson, and R. Pausch, ‘‘Past, present, and future of
user interface software tools,’’ ACMTrans. Comput.-Hum. Interact., vol. 7,
no. 1, pp. 3–28, Mar. 2000.

[19] L. Grammel, M. Tory, and M. D. Storey, ‘‘Erratum to ‘how information
visualization novices construct visualizations,’’’ IEEE Trans. Vis. Comput.
Graphics, vol. 17, no. 2, p. 260, Feb. 2011.

[20] J. Heer, F. Ham, S. Carpendale, C. Weaver, and P. Isenberg, ‘‘Creation
and collaboration: Engaging new audiences for information visualiza-
tion,’’ in Information Visualization (Lecture Notes in Computer Science),
vol. 4950, A. Kerren, J. Stasko, J.-D. Fekete, and C. North, Eds. Berlin,
Germany: Springer, 2008, pp. 92–133.

[21] W. S. Cleveland, The Elements of Graphing Data. Hobart, TAS, Australia:
Hobart Press, 1994.

[22] L. Grammel, C. Bennett, M. Tory, and M. Storey, ‘‘Survey of visualization
construction user interfaces,’’ in Proc. Eurograph. Conf. Vis. (EuroVis),
2013, pp. 1–5.

[23] P. P.-S. Chen, ‘‘The entity-relationship model—Toward a unified view of
data,’’ ACM Trans. Database Syst., vol. 1, no. 1, pp. 9–36, Mar. 1976, doi:
10.1145/320434.320440.

[24] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko, ‘‘Data illustrator: Augmenting vector design tools
with lazy data binding for expressive visualization authoring,’’ in Proc.
CHI, Montreal, QC, Canada, Apr. 2018, pp. 1–13.

[25] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman, ‘‘Life-
Lines: Visualizing personal histories,’’ in Proc. CHI, 1996, pp. 221–227.

[26] B. Shneiderman, ‘‘The eyes have it: A task by data type taxonomy for
information visualizations,’’ in Proc. IEEE Symp. Vis. Lang. Washington,
DC, USA: IEEE Computer Society Press, 1996, pp. 336–343.

[27] M. A. Kuhail, ‘‘Custom formula-based visualizations for Savvy design-
ers,’’ Ph.D. dissertation, Dept. Softw. Syst. Sect., IT Univ. Copenhagen,
Copenhagen, Denmark, 2013.

[28] K. Pantazos, ‘‘Custom data visualization without real programming,’’
Ph.D. dissertation, Dept. Softw. Syst., IT-Univ. København, København,
Denmark, 2013.

[29] D. A. Keim, J. Schneidewind, and M. Sips, ‘‘CircleView: A new approach
for visualizing time-related multidimensional data sets,’’ in Proc. Work.
Conf. Adv. Vis. Interfaces (AVI), New York, NY, USA, 2004, pp. 179–182.

[30] J. Nielsen and T. K. Landauer, ‘‘A mathematical model of the finding
of usability problems,’’ in Proc. ACM INTERCHI Conf., Amsterdam,
The Netherlands, 1993, pp. 206–213.

[31] H. Mei, Y. Ma, Y. Wei, and W. Chen, ‘‘The design space of construction
tools for information visualization: A survey,’’ J. Vis. Lang. Comput.,
vol. 44, pp. 120–132, Feb. 2018.

[32] M. A. Kuhail, S. Lauesen, K. Pantazos, and X. Shangjin, ‘‘Usability
analysis of custom visualization tools,’’ in Proc. SIGRAD Interact. Vis.
Anal. Data, Växjö, Sweden, Nov. 2012, pp. 19–28.

[33] M. A. Kuhail, K. Pandazo, and S. Lauesen, ‘‘Customizable time-
oriented visualizations,’’ in Proc. Int. Symp. Vis. Comput. Berlin,
Germany: Springer, 2012, pp. 668–677.

[34] M. A. Kuhail, S. Lauesen, and K. Pantazos, ‘‘The inspector: A cognitive
artefact for visual mapping,’’ in Proc. IVAPP, Feb. 2013, pp. 1–10.

VOLUME 8, 2020 110277

http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/320434.320440


M. A. Kuhail, S. Lauesen: Uvis: A Formula-Based End-User Tool for Data Visualization

[35] K. Pantazos, M. A. Kuhail, S. Lauesen, and S. Xu, ‘‘uVis studio: An inte-
grated development environment for visualization,’’ in Proc. Vis. Data
Anal., Feb. 2013, pp. 15–30.

[36] S. Lauesen. (Apr. 2020). Uvis Reference Card V2.3. [Online]. Available:
http://www.itu.dk/people/slauesen/S-EHR/UvisCard.pdf

[37] Uvis Trial Version. Accessed: Feb. 2020. [Online]. Available:
https://www.itu.dk/~slauesen/UvisTrial_Latest.zip2009-2020

[38] GDI+. Accessed: Feb. 2020. [Online]. Available: https://rb.gy/bdwj2q
[39] (2012). Java2D. Accessed: Sep. 2019. [Online]. Available:

https://docs.oracle.com/javase/tutorial/2d/index.html
[40] M. Mauri, T. Elli, G. Caviglia, G. Uboldi, and M. Azzi, ‘‘RAWGraphs:

A visualisation platform to create open outputs,’’ in Proc. ACM Italian CHI
Conf., 2017, pp. 28:1–28:5, doi: 10.1145/3125571.3125585.

[41] J. Heer, N. Kong, and M. Agrawala, ‘‘Sizing the horizon: The effects
of chart size and layering on the graphical perception of time series
visualizations,’’ ACM Hum. Factors Comput. Syst., 2009, pp. 1303–1312.

[42] Flourish. Accessed: Apr. 2020. [Online]. Available: https://flourish.studio
[43] Infogram. Accessed: Apr. 2020. [Online]. Available: https://infogram.com
[44] Tableau. Accessed: Feb. 2020. [Online]. Available: https://www.

tableau.com/
[45] Spotfire. Accessed: Feb. 2020. [Online]. Available: https://www.

tibco.com/products/tibco-spotfire
[46] Omniscope. Accessed: Feb. 2020. [Online]. Available: http://www.

visokio.com/omniscope
[47] Florence Nightingale’s Rose Diagram. Accessed: Feb. 2020. [Online].

Available: http://www.historyofinformation.com/detail.php?entryid=3815
[48] M. A. Kuhail, ‘‘Uvis documentation (version V3),’’ Zenodo, Tech. Rep.,

Apr. 2020, doi: 10.5281/zenodo.3865081.
[49] OData Documentation. Accessed: Feb. 2020. [Online]. Available:

https://docs.microsoft.com/en-us/odata/

MOHAMMAD AMIN KUHAIL received the
M.Sc. degree in software engineering from the
University of York, in 2006, and the Ph.D. degree
in computer science from the IT University of
Copenhagen, Denmark, in 2013. He has served as
an Assistant Teaching Professor with the Univer-
sity of Missouri–Kansas City, USA, for six years.
In 2019, he joined Zayed University, United Arab

Emirates , where he is currently serves as an Assistant Professor. He is also a
Computer Scientist and a Software Engineer with a diverse skill set that spans
web development, object-oriented programming, algorithms, usability, and
data science. His research interests include end-user development, usability
analysis, and computer science education.

SOREN LAUESEN received the M.Sc. degree in
mathematics and physics from the University of
Copenhagen, Denmark, in 1965, and the B.Com.
degree from the Copenhagen Business School,
Denmark, in 1979. From 1962 to 1973, he worked
as a Developer/Department Manager with Regne-
centralen, Denmark (Danish computer manufac-
turer). From 1969 to 1972, he was a part-time
Associate Professor with the University of Copen-
hagen, and a Co-Founder of the first computer

science education in Denmark. From 1973 to 1976, he was also a Co-Founder
of the Software Development Department, Brown Boveri, Copenhagen (now
ABB). From 1976 to 1979, he was a Visiting Professor with the University
of Copenhagen, and the Department Manager for the last two years. From
1979 to 1985, he was also a Co-Founder of the Software Development
Center, NCR, Copenhagen. From 1985 to 1999, he was a Professor with
the Copenhagen Business School, and a Co-Founder of the combination
education in business and computer science. He has served as the Head of
the Department, from 1992 to 1996. In 1999, he became a Professor with
the IT University of Copenhagen, where he has served for 20 years. Since
September 2019, he has been a Professor Emeritus with the IT University of
Copenhagen.

110278 VOLUME 8, 2020

http://dx.doi.org/10.1145/3125571.3125585
http://dx.doi.org/10.5281/zenodo.3865081

