
Hash-Based Authentication Revisited in the Age of
High-Performance Computers

Niclas Hedam
∗

IT University of Copenhagen

nhed@itu.dk

Jakob Mollerup
IT University of Copenhagen

jmol@itu.dk

Pınar Tözün
IT University of Copenhagen

pito@itu.dk

ABSTRACT
Hash-based authentication is a widespread technique for pro-
tecting passwords in many modern software systems includ-
ing databases. A hashing function is a one-way mathemati-
cal function that is used in various security contexts in this
domain. In this paper, we revisit three popular hashing algo-
rithms (MD5, SHA-1, and NTLM), that are considered weak
or insecure. More specifically, we explore the performance
of the hashing algorithms on different hardware platforms,
from expensive high-end GPUs found in data centers and
high-performance computing centers to relatively cheaper
consumer-grade ones found in the homes of end-users. In
parallel, we observe the behavior of different hardware plat-
forms. Our results re-emphasize that despite their theoreti-
cal strength, the practical utilization of widely used hashing
algorithms are highly insecure in many real-world scenarios;
i.e., cracking a password of length 6 takes less than 6 seconds
using a consumer-grade GPU.

1. INTRODUCTION
Hashing is a security technique for authentication and

password protection used in many modern software systems
[7, 11] including database management systems. Hashing
prevents passwords from being visible in files and databases
that keep track of user passwords. Therefore, it prevents
adversaries from gaining access to the users’ password upon
a database breach. For a hashing function to be secure, it
must be a one-way function. Thus, it should be easy to com-
pute the hash of a string, but hard to compute the original
string of a given hash.

The security and viability of a hashing algorithm relies
on the difficulty of reversing a hash to its original value
or finding hash collisions. In this work, we focus on the
former. A traditional approach to reversing a hash is brute-
force attack [11]. A brute-force attack works by taking a
predefined set of words and characters, hashing them and

∗First two authors contributed equally to the paper.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and ADMS 2020.
11th International Workshop on Accelerating Analytics and Data Manage-
ment Systems (ADMS’20), August 31, 2020, Tokyo, Japan.

Service Length Alphanumeric entropy1

Wikipedia 1 62
Netflix 4 14,776,336

Facebook 6 56,800,235,584
Reddit 6 56,800,235,584

Amazon 6 56,800,235,584
LinkedIn 6 56,800,235,584
Instagram 6 56,800,235,584

Ebay 6 56,800,235,584
Yahoo 8 218,340,105,584,896
Google 8 218,340,105,584,896

Microsoft 8 218,340,105,584,896

Table 1: A list of the minimum password length of
various popular internet services including the al-
phanumeric entropy.

comparing the output to the original hash. This method
relies on users having simple and unvarying passwords.

Troy Hunt, a well-renowned security expert, has done a
study on the password requirements of popular websites [5].
The results of the study can be seen in table 1 including
the calculated minimum alphanumeric entropy. The entropy
denotes how many guesses a brute-forcing adversary has to
do before being guaranteed to guess the password, given that
the password is alphanumeric and only lives up to the least
secure requirements.

A brute-force attack does not usually cause an issue for
online web-services since the number of password attempts
per second is limited due to the internet latency as well
as any security measures setup by the web-service. How-
ever, if an adversary has already breached the database of
passwords and is able to download this database to a local
system, then the adversary is only bound by the processing
capabilities of the hardware in that local system. Today,
thanks to the advances in computer architecture, even reg-
ular end-users can get access to computers that are highly
powerful.

One way of limiting the viability of offline brute-forcing
is to design hashing algorithms with a performance penalty.
MD5, one of the most well-known hashing algorithms, in-
duces this performance penalty by using an inner loop of

1The minimum alphanumeric entropy is calculated as the
number of characters to the power of the minimum password
length. We choose to not calculate the entropy including
special-characters as the allowed special characters varies
from service to service.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/344890612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1000 iterations [11]. When the hashing algorithm is slow,
the number of hashes that can be computed per second is
lower. Ideally, a hashing algorithm should be slow enough
that brute-forcing is not viable, but fast enough that the
algorithm is still functional for the regular end-users. A
secure hashing algorithm should also give the ability to in-
crease the performance penalty to protect passwords from
the increasing computing power over time. Bcrypt is an ex-
ample of a hashing algorithm with such functionality, where
the administrator can define a penalty when creating a hash
[11]. As a result, the bcrypt hashing algorithm can be used
continuously, while algorithms with a static penalty, such
as MD5 and SHA-1, have to be replaced over time. On
the other hand, changing from another scheme to bcrypt
increases the complexity of keeping track of which hashing
scheme is used for which user. When using bcrypt, one must
also keep track of which cost parameter is used for each user.

In this paper, we revisit and prove the practical inse-
curity of three widespread hashing algorithms: MD5 and
SHA-1, two very widespread hashing algorithms with vari-
ants proven to be insecure [6], and NTLM, which is used by
many Microsoft products including its operating systems.
Our goal is to analyze the performance of these three hash-
ing algorithms on a set of hardware platforms that range
from expensive high-end GPUs that are commonly found
in data centers and high-performance computing centers to
consumer-grade GPUs that can be found at many house-
holds. Based on this analysis, we re-emphasize how insecure
these hashing algorithms are, especially with the excessive
availability of modern hardware today. In parallel, we dis-
cuss our key observations related to the computing power
offered by a variety of GPUs.

Despite the big focus on data encryption, hash-based au-
thentication has not been a subject that gained traction
in database community even though it is widely used as
the protection measure for user passwords in database sys-
tems and data-intensive applications. There has not been a
thorough study of limitations and strengths of the practical
ways different hash-based authentication algorithms utilized
in real-world data-intensive applications and systems. We
hope this focus changes over time. This work is a prelimi-
nary step in that direction, so that we can get a better un-
derstanding of a variety of methods that we use to securely
access a database and data-intensive applications.

The rest of the paper is organized as follows. First, Sec-
tion 2 describes our experimental setup and methodology.
Then, Section 3 presents our results and Section 4 discusses
the highlights of the results. Finally, Section 5 concludes.

2. EXPERIMENTAL SETUP
To analyze the practical security of MD5, SHA-1 and

NTLM, our methodology is to quantify the hashing through-
put achieved by different modern hardware platforms. We
can, then, assess the security implications of each hashing
algorithm based on these throughput measurements.

2.1 Hardware
Today, GPUs are considered commodity hardware simi-

lar to general-purpose CPUs. A brute-force attack against
hash-based authentication is an embarrassingly parallel pro-
cess, which is a natural fit for acceleration by GPUs. There-
fore, in this paper, we focus on GPUs as the hardware plat-

form, while experimenting with both OpenCL and CUDA
as drivers.

Table 2 lists the GPU types and setups explored in this
paper. These setups are picked with the goal of maximizing
variety based on what was available to us at the time of
experimentation through the computing infrastructure of IT
University of Copenhagen and our home computers.

The setup that represents the enterprise grade CPU-GPU
co-processors is the first one in the list, where a Tesla V100
GPU is connected via PCIe 3.0 to a Intel Xeon Gold 6136
(one GPU per CPU). This setup can be categorized as mod-
ern state-of-the-art CPU-GPU co-processor hosted at data
centers or high performance computing centers. Then, there
are three RTX 2070 GPUs connected to a 4-core desktop
CPU (Intel i7 6700k) with different characteristics: (1) one
connected to CPU via the older PCIe 2.0, while the other
two are connected via PCIe 3.0, and (2) among the ones con-
nected via PCIe 3.0, one of them is overclocked. These three
setups represent a relatively high-end but still consumer-
grade setup. To compare, the Tesla V100 setup has an or-
der of magnitude the cost of the setup for these RTX 2070
GPUs. Finally, there are also older consumer-grade GPUs:
one GTX 1070 and one GTX 770, both connected to a desk-
top CPU found in most households. The variety in GPU
types and setups help us to observe the processing power
across generations of hardware and different budget restric-
tions. We aim to see the level of hardware setup it takes for
a successful brute-force attack.

2.2 Workload
To generate the workload for brute-forcing, we use hash-

cat [3]. Hashcat is a hash recovery and cracking tool that
includes a benchmark mode, thus allowing us to quantify
the hashing throughput of the hardware platforms being
used. Hashcat’s benchmark mode picks the workload that
would utilize the given hardware as well as possible itself.
Therefore, we do not explicitly configure this workload. We
validated that all the GPUs were fully utilized in all exper-
iments. Hashcat also reports MH/s (millions of hashes per
second) value while benchmarking, which we use as the hash-
ing throughput for different hashing algorithms and hard-
ware setups.

Based on the hashing throughput on a platform, one can
reason about the difficulty/easiness of cracking passwords
by calculating the time it takes for a platform to hash all
the passwords of a given class. For example, alphanumeric
passwords are one class of passwords that contain only the
characters a to z, A to Z and 0 to 9, which is 62 unique char-
acters. A password of this class with a length of 6 would al-
low for 626 = 56, 800, 235, 584 different combinations. Given
a GPU with a hashing throughput of 1, 000, 000, 000 hashes
per second, one can hash all 56, 800, 235, 584 alphanumeric
passwords in 57 seconds.

2.3 Possible heating issues
During the initial sensitivity analysis on RTX 2070 GPUs,

we observed a variation of performance for sequential runs.
More specifically, the performance degraded for each sub-
sequent run until it was eventually stable. To investigate
this pattern further, we introduced some waiting time in
between subsequent runs, which impacted the overall GPU
performance in a non-negligible way.

2

27000

28000

29000

30000

31000

0 4 8 12 16 20

M
H/
s

Run no.

MD5

50000

51000

52000

53000

54000

55000

0 4 8 12 16 20

M
H/
s

Run no.

NTLM

8800

9000

9200

9400

9600

9800

0 4 8 12 16 20

M
H/
s

Run no.

SHA‐1

0min.

1min.

2min.

5min.

10+min.

Figure 1: 20 sequential runs using the hashing algorithms with different waiting times in between runs.

GPU CPU Type

Tesla V100 Server Enterprise
RTX 2070 (via PCIe 2) Desktop High-end Home
RTX 2070 (via PCIe 3) Desktop High-end Home
RTX 2070 (5% overclock) Desktop High-end Home
GTX 1070 Desktop Home
GTX 770 Desktop Home

Table 2: List of benchmarked hardware platforms.

Figure 1 plots the results of these series of runs with the
hashing algorithms. Increasing the waiting time between
each run lowers the negative impact on performance and
yields more stable results. Increasing the waiting time to
a minimum of 10 minutes results in nearly no decrease in
performance.

The issue with performance instability was also occasion-
ally observable on Tesla V100. However, the performance
differences across runs were way less significant. Therefore,
we only performed the sensitivity analysis with increasing
waiting times on RTX 2070.

We suspect that the negative impact of running back to
back experiments are due to the heating of the GPU. Ac-
cording to an NVIDIA product brief, the Tesla V100 GPU
artificially slows down if it becomes too hot [12]. While
RTX 2070 is different than V100, it is likely that a similar
feature exist in the RTX 2070. When using a waiting time
between runs, we expect the GPU to cool down before the
subsequent benchmark run, and thus to avoid reaching the
slowdown temperature.

It would have been possible to devise more detailed exper-
iments to investigate the impact of heating more precisely
using heating sensors, external cooling fans, etc. However,
we only had remote access to these GPUs at the time of
experiments due to COVID-19-related lockdowns. We plan
to investigate this further as part of future work.

2.4 Iterations
When reporting results, in most cases, an average of three

runs are used to determine the performance. On the other
hand, while reporting the performance of PCIe 2.0 vs. PCIe
3.0 as well as CUDA vs. OpenCL, more runs were needed
due to the close proximity of the results. Thus, 20 runs
where used for these experiments. For the RTX 2070 GPUs
that exhibit the heating behavior mentioned in Section 2.3,
we wait 10 minutes in between each iteration.

0

10000

20000

30000

40000

50000

60000

M
H/
S

PCIe3 +
OpenCL

PCIe2 +
OpenCL

PCIe3 +
CUDA

PCIe2 +
CUDA

NTLM

MD5

SHA1

Figure 2: Performance on RTX 2070 PCIe 2.0 and
PCIe 3.0 setups with the three hashing algorithms
ran using OpenCL or CUDA.

3. RESULTS
The experiments can be divided into three groups based

on the hardware setups the three hashing algorithms run on:

• PCIe 2.0 vs. PCIe 3.0.

• OpenCL vs. CUDA.

• Comparison across all GPU platforms including multi-
GPU setups.

3.1 PCIe 2.0 vs. PCIe 3.0
The performance test comparing the impact of PCIe 2.0

and PCIe 3.0 are run using the second and third setups from
the list in Table 2. Figure 2 plots the results for all hash-
ing algorithms run using both CUDA and OpenCL. We can
observe that the throughput with PCIe 2.0 connection is
slightly higher than the throughput with PCIe 3.0. How-
ever, the difference in performance between the two slot
types are not huge for our particular hashing algorithms.
This is expected since the hash-based authentication is not
a data-intensive operation. Therefore, the higher bandwidth
of PCIe 3.0 cannot be utilized by this workload.

For a more detailed analysis of the results, Table 3 shows
the difference in throughput between PCIe 2.0 and PCIe
3.0 for the lowest measured value, highest measured value,
and average value for 20 runs. PCIe 2.0 is 1.16% - 2.07%

3

Slot Alg. Low High Average

PCIe3 SHA-1 9,514.50 9,598.20 9,559.60
PCIe2 SHA-1 9,626.20 9,760.60 9,670.87
Diff. # 111.70 162.40 111.27
Diff. % 1.17% 1.69% 1.16%

PCIe3 MD5 30,010.90 30,188.00 30,092.66
PCIe2 MD5 30,355.80 30,767.00 30,513.14
Diff. # 344.90 579.00 420.48
Diff. % 1.15% 1.92% 1.40%

PCIe3 NTLM 53,681.30 54,069.40 53,825.84
PCIe2 NTLM 54,643.80 55,188.00 54,823.18
Diff. # 962.50 1,118.60 997.34
Diff. % 1.79% 2.07% 1.85%

Table 3: The results on RTX 2070 PCIe 2.0 and
PCIe 3.0 setups utilizing OpenCL - lowest, high-
est, and average values. Comparisons are given in
numerical values (PCIe2 - PCIe3) and percentages
((PCIe2 - PCIe3) / PCIe3). All results are in MH/s.

faster than PCIe 3.0. Furthermore, the lowest measured
PCIe 2.0 value exceeds the highest measured PCIe 3.0 value
with the OpenCL driver. However, the differences are rela-
tively small for all the hashing algorithms as also mentioned
above. Therefore, the impact of using PCIe 2.0 instead of
PCIe 3.0 is almost negligible for this particular workload.

3.2 OpenCL vs. CUDA
The performance test comparing the impact of OpenCL

and CUDA are also run using the second and third setups
from the list in Table 2. Figure 2 displays the average of
the results across runs. Based on the figure, similar to the
results from Section 3.1, there is no significant difference
between using the different drivers.

To look at the results in more detail, Table 4 reports the
difference in throughput between OpenCL and CUDA for
the lowest measured value, highest measured value, and av-
erage value for 20 runs. While the performance of hashing
using OpenCL exceeds the performance when using CUDA
for the SHA-1 and MD5 hashing algorithms, for the NTLM
hashing algorithm, we can see that CUDA performs slightly
better than OpenCL. However, the differences are low; at
most 3%.

3.3 All GPU types & multi-GPU
This section compares the performance of the three hash-

ing algorithms on all the GPUs listed in Table 2. We first
focus on individual GPUs. Then, we also compare with two
multi-GPU setups:

1. A distributed setup with 6 Tesla V100 GPUs, where
each GPU is connected to a CPU from three two-socket
Intel Xeon Gold 6136 servers, and

2. 4-core Intel i7 6700k desktop CPU connected to four
RTX 2070 GPUs over a low-cost crypto mining rig
motherboard ASRock H110 Pro BTC+ [1], where three
GPUs are connected with PCIe 3.0, one of which is
overclocked, and one is connected with PCIe 2.0 to
CPU.

Driver Alg. Low High Average

OpenCL SHA-1 9,626.20 9,760.60 9,670.87
CUDA SHA-1 9,338.70 9,644.30 9,572.54
Diff. # 287.50 116.30 98.33
Diff. % 3.08% 1.21% 1.03%

OpenCL MD5 30,355.80 30,767.00 30,513.14
CUDA MD5 29,354.60 30,455.40 30,170.52
Diff. # 1,001.20 311.6 342.62
Diff. % 3.41% 1.02% 1.14%

OpenCL NTLM 54,463.80 55,188.00 54,823.18
CUDA NTLM 54,136.80 55,425.90 54,954.17
Diff. # 327.00 237.90 130.99
Diff. % -0.60% -0.43% -0.24%

Table 4: The results with OpenCL and CUDA on
RTX 2070 PCIe 2.0 setup - lowest, highest, and aver-
age values. Comparisons are given in numerical val-
ues (OpenCL - CUDA) and percentages ((OpenCL
- CUDA) / CUDA). All results are in MH/s.

We use only the OpenCL driver for this comparison since
we didn’t observe a huge difference between OpenCL and
CUDA in Section 3.2.

An overview of the results can be found in Table 5. The
normalized column denotes the relative difference in perfor-
mance with regards to a single Tesla V100 GPU. This allows
us to compare GPU performance among various hardware
platforms. For all hashing algorithms, using 6 Tesla V100
GPUs results in 6 times the performance of one, which shows
the embarrassingly parallel nature of a brute-force attack,
and also verifies the scalability of hashcat benchmark driver
(Section 2.2) used by this study.

Similarly, the multi-GPU setup with four RTX 2070 also
exhibits great scalability; i.e., four GPUs achieving roughly
four times the performance of one. We can also observe that
the different RTX 2070 GPUs behave almost identically. On
the other hand, the overclocked GPU performs around 5%
better.

Figure 3 shows the performance differences across all in-
dividual GPUs for all three hashing algorithms. While the
price of Tesla V100 is an order of magnitude higher than
the price of RTX 2070, the relative performance between
the two GPUs is 2X for this workload.

4. DISCUSSION OF RESULTS
We have analyzed the performance of three hashing algo-

rithms widely used for hash-based authentication by running
brute-force attack on a variety of modern high-performance
GPUs.

Initially, we explored an issue related to performance in-
stability on the RTX 2070 GPUs connected to the desk-
top CPU. We found that waiting 10 minutes between each
subsequent run mitigates certain negative effects of running
back to back experiments such as throughput degradation
and unstable throughput. We suspect this happens due to
overheating of the GPUs even though we are not able to
prove that heating was the exact cause of the performance
degradation and instability. On the other hand, we know
that some NVIDIA GPUs have a built in slowdown feature
to prevent overheating [12]. If overheating is indeed the is-

4

0

20000

40000

60000

80000

100000

M
H/
S

SHA ‐1

Tesla V100

GTX 1070

GTX 770

RTX 2070

RTX 2070
overclocked

0

20000

40000

60000

80000

100000

M
H/
S

MD5

0

20000

40000

60000

80000

100000

M
H/
S

NTLM

Figure 3: Performance of the three hashing algorithms on all GPUs listed in Table 2

GPU Average Normalized

SHA-1
Tesla V100 15,775.60 100
6 x Tesla V100 94,854.40 601
RTX 2070 9,489.33 60
RTX 2070 overclocked 9,909.00 63
4 x RTX 2070 39,002.80 247
GTX 1070 5,983.07 38
GTX 770 941.67 6

MD5
Tesla V100 50,056.00 100
6 x Tesla V100 300,666.67 601
RTX 2070 30,058.83 60
RTX 2070 overclocked 31,918.13 64
4 x RTX 2070 124,231.40 248
GTX 1070 16,713.83 33
GTX 770 3,525.57 7

NTLM
Tesla V100 90,541.93 100
6 x Tesla V100 543,300.00 600
RTX 2070 54,046.73 60
RTX 2070 overclocked 57,410.53 63
4 x RTX 2070 223,606.43 247
GTX 1070 28,550.87 32
GTX 770 5,866.37 6

Table 5: Comparisons of the results using the
OpenCL driver. All results are in MH/s.

GPU
Length2

6 8 10 12

Tesla V100, MD5 1 s 1 hr 194 d 2042 y
Tesla V100, SHA-1 4 s 4 hrs 616 d 6481 y
Tesla V100, NTLM 1 s 40 m 107 d 1129 y

RTX 2070, MD5 2 s 2 hr 323 d 3401 y
RTX 2070, SHA-1 6 s 6 hrs 1024 d 10774 y
RTX 2070, NTLM 1 s 1 hr 180 d 1892 y

Table 6: The maximum time it takes to brute-
force passwords of various lengths with the OpenCL
driver. All numbers are rounded.

Slot Transfer rate Throughput Encoding
PCIe 2 5.0 GT/s 500 MB/s 8b/10b
PCIe 3 8.0 GT/s 1000 MB/s 128b/130b

Table 7: Transfer rates and throughput rates for the
PCIe 2.0 and PCIe 3.0 slots [9, 10].

sue, then cooling of the GPU might play a considerable role
when it comes to performance of various workloads.

Furthermore, we experimented with the hashing perfor-
mance of two different drivers, CUDA and OpenCL, and did
not observe drastic differences between the two. This com-
parison was only performed on one system and as such, the
trends may not hold for other systems. CUDA is the propri-
etary GPU driver from NVIDIA [2] and contains specialized
GPU accelerated libraries for various purposes such as math-
ematics. The hashing algorithms does not necessarily take
advantage of the accelerated libraries from CUDA. Without
further examining the mathematical operations used in the
hashing algorithms, we cannot identify the expected perfor-
mance differences between CUDA and OpenCL.

We also compared the performance difference between us-
ing GPUs mounted with PCIe 2.0 and PCIe 3.0. As shown
in Table 7, the transfer rate and throughput of the PCIe
3.0 is higher than that of PCIe 2.0 [9, 10]. PCIe 2.0 uses
the 8b/10b encoding, which means that to send 8 bytes of
encoded data 10 bytes are transferred. PCIe 3.0 uses the
128b/130b encoding. It was therefore surprising that PCIe
2.0 slightly outperforms PCIe 3.0 with the same GPU even
though the relative difference is at most 2%. The maximum
throughput capacity of the PCIe connection may affect the
performance of workloads with a lot of data transfers. This
is not the case for hashing, as this operation only requires
transferring a small set of data. Therefore, hashing algo-
rithms are bounded by the processing capabilities of the
GPU and not the bandwidth of the connection.

Finally, the main goal of this paper was to revisit the se-
curity of the widely used hashing algorithms for hash-based
password authentication. The three hashing algorithms ex-
plored in this paper, SHA-1, MD5, and NTLM, are not in-
secure from a theoretical perspective, but can be practically
insecure based on how they are used in real-world applica-
tions. As discussed in Section 1, major services allow users

2Assuming passwords with only alphanumeric characters.

5

to set passwords that are dangerously short. One particular
example is LinkedIn, which allows users to set passwords of
length 6 [5]. Unfortunately, the same major company had
an extensive breach in 2012 exposing 164 million email and
password pairs [4]. LinkedIn stored passwords hashed with
the SHA-1 algorithm without any salting (adding additional
bits to passwords to lengthen them before hashing) to pro-
tect the passwords.

Table 6 reports how long it would take to establish a suc-
cessful brute-force attack on passwords of varying lengths
using different GPUs and hashing algorithms based on the
results reported at Table 5. With the average SHA-1 hash-
ing throughput measured on a single RTX 2070, we are able
to crack any alphanumeric passwords that adhere to the
minimum requirements in less than 6 seconds3. A study of
leaked passwords from other breaches showed a mean pass-
word length of 8 to 9 characters [8]. If we assume that
the same distribution holds for the LinkedIn breach, we can
crack all typical alphanumeric passwords in at most around
two weeks4. Disturbingly, the RTX 2070 is a consumer-
grade GPU that can be installed in many home computers.

5. CONCLUSION
Hashing is a popular security mechanism for password au-

thentication used by many modern software systems includ-
ing databases. In this paper, we revisited the practical se-
curity of the three widely used hashing algorithms (MD5,
SHA-1, and NTLM). Our goal was to explore the feasibility
of a brute-force attack to crack passwords. For this goal, we
quantified the throughput of the three hashing algorithms
on a variety of GPUs ranging from high-end to consumer-
grade ones.

On the one hand, the longer and stronger passwords are
still unbreakable using these three algorithms. On the other
hand, we consider a hashing algorithm insecure, if an al-
phanumeric password of the mean length is breakable in
reasonable time. Our results demonstrate that this is the
case for all three algorithms. Thus, we can conclude that
these three hashing algorithms are practically insecure with
the hardware available to consumers in 2020 and the pass-
word requirements of major websites.

Going forward, several other performance aspects can be
explored. First, the performance degradation and instabil-
ity when running back to back experiments on GPUs is a
very relevant topic and deserves further exploration using a
variety of workloads, not just hashing, and measuring the
impact of overheating more precisely. For example, a badly
cooled Tesla V100 GPU may quickly reach 87◦C and have its
clock-rate artificially slowed down to 50%. Reaching 90◦C
can fully shutdown the GPU to prevent permanent damage.
As GPUs are becoming commodity and more widely avail-
able to end-users, especially thanks to the rise of machine
learning, it is highly important to understand the relation
between their energy consumption, heating, and throughput
more thoroughly.

In addition, performing the same study on other types of
accelerators such as GPUs from other vendors (e.g., AMD),
FPGAs, SIMD, etc. would be interesting to better under-
stand the robustness of different password lengths using

3(26 + 26 + 10)6/9, 489, 330, 000 = 5.9 seconds.
4(26+26+10)9/9, 489, 330, 000 = 1.427·106 seconds = 16.51
days.

hash-based authentication. In such a study one can also
dig deeper into the the impact of different drivers (OpenCL,
CUDA, etc.) on different hardware platforms/accelerators.

Finally, a thorough survey and analysis of different au-
thentication methods for data-intensive systems and appli-
cations would be very valuable.

References
[1] AsRock. AsRock H110 Pro BTC+ Motherboard. htt

ps://www.asrock.com/mb/Intel/H110\%20Pro\

%20BTC+/index.asp. 2019.

[2] CUDA Toolkit. NVIDIA Corporation. url: https://
developer.nvidia.com/ cuda- toolkit (visited on
05/02/2020).

[3] Hashcat. url: https : / / hashcat . net/ (visited on
04/23/2020).

[4] Have I Been Pwned: Pwned websites. url: http://hav
eibeenpwned.com/PwnedWebsites (visited on 05/02/2020).

[5] Troy Hunt. How Long is Long Enough? Minimum Pass-
word Lengths by the World’s Top Sites. Feb. 6, 2018.
url: https://www.troyhunt.com/how- long- is-

long-enough-minimum-password-lengths-by-the-

worlds-top-sites/ (visited on 04/30/2020).

[6] Roman Jasek, Libor Sarga, and Radek Benda. “Secu-
rity Review of the SHA-1 and MD 5 Cryptographic
Hash Algorithms”. In: 2013. url: https : / / pdfs .

semanticscholar.org/32bc/0b6b51905073890df67e

2cc236d23726dd72.pdf (visited on 04/09/2020).

[7] Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography, Second Edition. CRC Press, 2014,
pp. 184–185. isbn: 9781466570269. url: https://www.
crcpress . com / Introduction - to - Modern - Crypto

graphy- Second- Edition/Katz- Lindell/p/book/

9781466570269.

[8] Theodosis Mourouzis, Kyriacos E. Pavlou, and Stylianos
Kampakis. “The Evolution of User-Selected Passwords:
A Quantitative Analysis of Publicly Available Datasets”.
In: CoRR abs/1804.03946 (2018). arXiv: 1804.03946.
url: http://arxiv.org/abs/1804.03946.

[9] PCI Express R© 3.0 Frequently Asked Questions. url:
https://web.archive.org/web/20140201172536/

http://www.pcisig.com/news_room/faqs/pcie3.0_

faq/#EQ2 (visited on 05/02/2020).

[10] Martin Rowe. What does GT/s mean, anyway? Mar.
2007. url: https://www.edn.com/what-does-gt-s-
mean-anyway/ (visited on 05/02/2020).

[11] William Stallings and Lawrie Brown. “Computer Se-
curity: Principles and Practice”. In: 4th ed. Pearson
Education, 2018, pp. 92–98. isbn: 978-1-292-22061-1.

[12] TESLA V100 PCIe GPU ACCELERATOR. 5th ed.
NVIDIA Corporation. Mar. 2018. url: https://ima
ges.nvidia.com/content/tesla/pdf/Tesla-V100-

PCIe-Product-Brief.pdf (visited on 05/02/2020).

6

