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Abstract

Estimating the distance covered by a propagation phe-
nomenon on a network is an important task: it can help us
estimating the infectiousness of a disease or the effectiveness
of an online viral marketing campaign. However, so far the
only way to make such an estimate relies on solving the opti-
mal transportation problem, or by adapting graph signal pro-
cessing techniques. Such solutions are either inefficient, be-
cause they require solving a complex optimization problem;
or fragile, because they were not designed with this prob-
lem in mind. In this paper, we propose a new generalized
Euclidean approach to estimate distances between weighted
groups of nodes in a network. We do so by adapting the Ma-
halanobis distance, incorporating the graph’s topology via the
pseudoinverse of its Laplacian. In experiments we see that
this measure returns intuitive distances which agree with the
ones a human would estimate. We also show that the mea-
sure is able to recover the infection parameter in an epidemic
model, or the activation threshold in a cascade model. We
conclude by showing that the measure can be used in on-
line social media settings to identify fast-spreading behaviors.
Our measure is also less computationally expensive.

Introduction

Network analysis has emerged as a versatile tool for ana-
lyzing complex phenomena in the real world. Applications
include the detection of groups in social systems (Fortunato
2010), the prediction of future connections (Lü and Zhou
2011), and the description of emerging properties of com-
plex systems (Barabási and Bonabeau 2003). Of particular
interest for this paper, two complementary tasks in network
analysis are the modeling of the diffusion of diseases in so-
cial networks (Colizza et al. 2006) and the planning of viral
marketing campaigns on social media (Leskovec, Adamic,
and Huberman 2007). Both cases can be represented with
the same model: nodes in the network transition between
two states, infected and not infected. In the former case we
want to minimize the number of people infected by a dis-
ease, in the latter case we want to maximize the number of
users converted into customers by the campaign.

Copyright c© 2020, Association for the Advancement of Artificial
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Figure 1: Different activation states of a network. Active
nodes in red and inactive nodes in gray.

In this paper, we focus on an aspect of these problems
that has hitherto not received much attention. In network
epidemics, one is usually interested in modeling the evolu-
tion of the system at large: how many nodes are infected at
which point in the disease’s history? What are the best im-
munization strategies to prevent a global outbreak? In viral
marketing, one defines complex contagion rules and tries to
find the smallest possible seed set of initially infected nodes
such that, once the campaign is over, the maximum possible
number of users will be converted into customers.

Here, we take an outsider perspective. We take the epi-
demic / viral marketing as an unfolding event – or one that
has already reached its final state –, with no possibility of
intervention. We are interested in estimating how quickly
the spreading event is passing through the network. In other
words, given an initial and a final state of infected nodes, we
want to estimate the distance between the two states.

Consider Figure 1. In Figure 1(a) we have a possible ini-
tial state of the network, with some nodes affected by a cam-
paign and others which are not. Figure 1(b) and 1(c) are two
possible outcomes of word of mouth. Which of the two re-
sults is the farthest from the initial condition?

In practice, we can consider the initial and final states
as vectors. We want to calculate a spatial distance between
these vectors. The trivial solution would be to estimate their
Euclidean distance. However, these vectors do not live on an
Euclidean space. The shape of the space is complex, and it
is defined by the topology of the network. We need to ex-
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tend the Euclidean distance to be applicable to a network
topology. We do so by creating a new measure inspired by
the Mahalanobis distance (Mahalanobis 1936), in which we
use information coming from the graph Laplacian. We focus
on the graph Laplacian due to its relationship with diffusion
processes (Coifman and Lafon 2006).

To the best of our knowledge, this is the first time that
the network state distance problem is presented in this spe-
cific framing. There are other approaches in the computer
science literature that can be adapted to estimate some sort
of network state distance. Two examples are the earth mover
distance in computer vision (Rubner, Tomasi, and Guibas
2000) and the field of signal processing on graphs (Shuman
et al. 2013). However, we show in the paper that our prob-
lem is a more general version of such alternatives, and thus
calls for a different approach.

Solving this problem has a number of potential applica-
tions. In network epidemics, estimating the distance between
two time steps in the infection propagation allows us to com-
pute the speed of infection. This can be used to estimate the
infectiousness parameters of a previously unknown disease,
with fewer a priori assumptions. In online viral marketing,
knowing the distance covered by previous campaigns allows
us to identify which one was more successful at spreading on
larger distances on the network, which could inform future
campaigns. If one is reconstructing a network from indirect
observations – e.g. projecting a bipartite network (Coscia
and Rossi 2019) – with our measure they could benchmark
the quality of their inferred topology: since the spreading
should follow the topology, shorter distances imply a bet-
ter alignment between the topology and the actual spreading
phenomenon. Finally, this measure could be used to evalu-
ate the temporal granularity with which we are observing a
spreading phenomenon. If the disease jumps over large dis-
tances between temporal snapshots, this could mean that the
temporal granularity of the observation should be increased.

In the experimental section, we validate our choice of
measure by showing intuitive spreading events, in which
the measure’s behavior matches the distance that a human
would estimate. Then, we show how our measure is able to
inform us on each of the analytic scenarios we presented in
the previous paragraph, by means of synthetic testing. We
also show the behavior of the measure in a real world sce-
nario using an online social media. Finally, we show that es-
timating spreading distances on a network with our method
is not computationally demanding, allowing us to process
networks of moderate size. In all cases, we show how our
measure compares favorably with alternatives defined for re-
lated tasks and adapted to fit our problem definition.

The main contributions of the paper are the following:
(i) We introduce the problem of estimating the distance of
vectors on a network topology, a generalization of the earth
mover distance problem in computer science; (ii) We con-
nect such problem with applications in network epidemics
and viral marketing; (iii) We propose a scalable solution,
which matches the human intuition of distances on simple
spaces; (iv) We perform extensive experiments showing the
usefulness of such measure in different applications.

We release our code as a public open source library that

anyone can use to solve the vector distance problem on net-
works1. The archive also contains the code necessary for the
replication of our experiments.

Related Work

In this paper we focus on the problem of establishing the
distance between two node occupancy vectors on a net-
work. Note that here we look at changes of vectors in an
unchanging network topology, thus approaches estimating
the distance between two networks (Galas et al. 2017) are
not applicable. Node vectors have been used to describe epi-
demics (Colizza et al. 2006), viral marketing (Kempe, Klein-
berg, and Tardos 2003) (Leskovec, Adamic, and Huberman
2007) (Pennacchioli et al. 2013), infrastructure loads (Bar-
rat, Barthelemy, and Vespignani 2008), transportation (Ba-
navar et al. 2000), and more. However, in the data science
and physics network literature, the problem of estimating the
distance between two such vectors has rarely been tackled.

Estimating the distance between two vectors is a well
studied and understood problem. There exist many solutions
to it, ranging from simple linear correlations to more so-
phisticated distance measures like cosine or Mahalanobis
distances (Mahalanobis 1936). The problem with these ap-
proaches is that they do not account for an underlying net-
work structure. A large element-wise difference between
portions of these vectors might be a small change, because
the nodes they represent are clustered in the network. Vice
versa, small differences should be amplified if they refer to
nodes that are far from each other in the graph topology.

The closest related literature to this paper is the one on the
optimal transportation problem (OTP). In its original formu-
lation (Monge 1781), it still focuses on the distance between
two probability distributions without an underlying network.
However, it has been observed how this problem can be ap-
plied to transportation through an infrastructure, known as
the multi-commodity network flow (Hitchcock 1941). In its
most general form, the assumption is that we have a distri-
bution of weights on the network’s nodes, and we want to
estimate the minimal number of edge crossings we have to
perform to transform the origin distribution in the destina-
tion one. This is a complex problem, which has lead to an
extensive search for efficient approximations (Erbar et al.
2017) (Pele and Werman 2009). All these approaches are
interchangeable here, because they aim to more efficiently
calculate the same measure, and we are only interested in
the measure itself.

To the best of our knowledge, OTP on graphs has been
mostly studied in the context of computer vision (Rubner,
Tomasi, and Guibas 2000). OTP is similar to, but not the
same as, the problem in this paper. OTP, as the name says,
is an optimization problem. Optimality implies that the en-
tire network structure is used to determine the most efficient
way to transport the node weights. Here we reject such con-
straint. By doing so, we can estimate the distances in more
computationally efficient ways.

Another closely related literature is the one on signal pro-
cessing in graphs (Shuman et al. 2013). In this scenario,

1http://www.michelecoscia.com/?page id=1733
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the nodes of a network are assumed to be sensors captur-
ing an underlying signal. The structure of the network is
used to represent interdependences and/or correlations be-
tween these sensors. Given the observed data, represented as
node weights, one wants to design localized transformation
methods that account for the structure of the data domain.
After the proper transformation is applied, we can represent
graph signals as independent from the graph’s topology, i.e.
embedded in the “true” space. A popular approach to the
problem is to perform graph spectroscopy (Hammond, Van-
dergheynst, and Gribonval 2011) by calculating the eigen-
vectors of the graph Laplacian, also known as the “graph
Fourier transform”. These approaches can be used to estab-
lish the distance between two different signals on a graph, as
we show later.

Problem Definition

Let G = (V,E) be a graph, where V represents the set of
nodes and E ⊆ V × V the set of edges. In this paper, we
consider an undirected unweighted graph. Undirected means
that, if (u, v) ∈ E is an edge, then (u, v) = (v, u) – with
u, v ∈ V . In principle, extensions of our approach to di-
rected weighted graphs should be trivial. With A we indicate
the adjacency matrix of G, with Auv = 1 if (u, v) ∈ E, zero
otherwise. Since the graph does not contain self loops, the
diagonal of A is equal to zero.

Our problem is dynamic: we are observing the status of
the system at different moments in time. We use ti to refer
to the time step i. In our problem definition, the topology of
the graph is static. For any i �= j, G = Gti = Gtj , meaning
that the sets of nodes and edges are the same.

Let us assume that there exists a function f which takes
as input a time step ti and a graph G. The function returns a
vector of length |V |, which represents the activation state of
the nodes in the graph. f can represent any real world phe-
nomenon affecting the nodes of a network. For instance, in a
social network, f could have non-zero elements to indicate
the nodes currently affected by a disease. For simplicity, in
many tests we will add a constraint: f returns relative activa-
tion states, i.e.

∑
f(ti, G) = 1. However this is not a strict

requirement for our framework.
f returns different activation states at different times, or

f(ti, G) �= f(tj , G). In our example, it means that the peo-
ple affected by the disease at time j might be different from
the infected set at time i. Specifically, some people might
have contracted the disease from their neighbors, while oth-
ers might have recovered. Informally, in this paper we want
to define a distance measure that can estimate how much
f(ti, G) differs from f(tj , G). How quickly does the dis-
ease spread and do individuals recover in the network?

Formally, our problem definition is:

Definition 1 Given a graph G = (V,E) and a function f
determining the activation state of the nodes of G at time t,
define a metric δ(f(ti, G), f(tj , G)), which takes as input
two node vectors and returns their distance calculated using
G’s topology.

Note that we want δ to be a metric, thus it has to satisfy
the defining characteristics of a proper metric:

(0, 1, 0) (0, 0, 1)(1, 0, 0)

Figure 2: Three points in a three dimensional space, in their
vector form and in their representation on a chain graph.

1. Non-negativity, meaning that if f(ti, G) �= f(tj , G) then
δ(f(ti, G), f(tj , G)) > 0. Comparing two distinct node
vectors will always result in a non-zero distance.

2. Identity of indiscernibles: δ(f(ti, G), f(ti, G)) = 0. If
we are comparing a vector to itself – or to another vector
identical to itself –, we expect it to have a distance of zero.

3. Symmetry, which implies that: δ(f(ti, G), f(tj , G)) =
δ(f(tj , G), f(ti, G)). The distance between two vectors
is the same regardless which vector we consider as origin
and which we consider as destination.

4. Triangle inequality, meaning: δ(f(ti, G), f(tk, G)) ≤
δ(f(ti, G), f(tj , G)) + δ(f(tj , G), f(tk, G)), assuming
i �= j �= k. We want δ to be a true metric, where the
space is defined by the topology of the network.

Methods

Generalized Euclidean

The core issue in this paper is estimating the distance be-
tween two vectors, a and b. The most obvious choice is as-
suming that the vectors live in an n-dimensional Euclidean
space. The number of dimensions is the length of the vec-
tor which, in our case, is the number of nodes in the net-
work: |V |. Then, one can simply calculate the Euclidean
distance between the two points identified by the vectors:
δ(a, b) =

√
(a− b)T (a− b). In this formula, (a − b) is

the element-wise difference of the vectors a and b, while
(a− b)T is its transpose.

The problem with the Euclidean distance is that each di-
mension contributes equally to the spatial distance between
the points. In a network, this is not the case. Since each di-
mension is a node in the network, some dimensions con-
tribute less to the distance than others. If two vectors only
differ along two dimensions, it makes a difference whether
the two corresponding nodes are connected or not. In Figure
2, the middle and the right vectors are equidistant from the
left vector if we use the Euclidean formula – their distance
is
√
2. However, on the graph topology, the rightmost vector

should be farther from the left vector than the middle vector,
as the two nodes are farther from each other.

The Mahalanobis distance solves the problem of dif-
ferential contribution to the total distance by different di-
mensions (Mahalanobis 1936). In the Mahalanobis dis-
tance, we multiply the squared vector difference by the
inverse of the vectors’ covariance matrix S: δ(a, b) =√

(a− b)TS−1(a− b). The interpretation is that some di-
mensions are correlated with each other and thus contain
less unique information than others. Therefore, each of them
should contribute less to the overall distance. S only depends
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on the vectors we are comparing, thus it also ignores G’s
topology, as does the Euclidean distance.

In this paper we propose to replace the covariance matrix
S with a matrix Q which contains the graph’s topological in-
formation. One constraint we have to respect is that Q needs
to be positive (semi)definite, otherwise the xTQx product
could be negative for some vector x, which would result in a
nonsensical distance estimation. For this reason, we cannot
use the adjacency matrix of the graph, which is not positive
semidefinite – unless the graph is empty.

We focus on the graph Laplacian L, due to its relationship
with diffusion processes (Coifman and Lafon 2006). The in-
tuition behind the use of the graph Laplacian is that it can
be interpreted as a matrix representation of a particular case
of the discrete Laplace operator. This means that we can use
the graph Laplacian to describe the heat exchange between
nodes until we reach an equilibrium. If f is the function as-
signing the heat to each node, then:

df

dt
= −kLf,

where k is the heat capacity. In other words, the change df
at each discrete interval of time dt is regulated by L. Thus,
we can see the node vector distance as the process of trans-
ferring the heat from the origin to the destination nodes, and
the graph Laplacian is what regulates such exchange.

The graph Laplacian L is the degree matrix D (a matrix
with the node’s degree on the main diagonal and zeros ev-
erywhere) minus the adjacency matrix A: L = D − A. The
smallest eigenvalue of L is zero, making L positive semidef-
inite. However, L represents relations between nodes: it tells
us how much heat flows from a node to another. We need
the opposite: a measure of the distance between them. Thus
we would need to have Q = L−1. This is not possible, be-
cause L is singular and singular matrices cannot be inverted.
We can approximate L−1 by calculating L’s Moore-Penrose
pseudoinverse L+.

If Q1ΣQ
T
2 = L is the single value decomposition of the

Laplacian matrix L, then Q2Σ
+QT

1 = L+ is its Moore-
Penrose pseudoinverse. Here, Σ is a diagonal matrix con-
taining L’s singular values, the solution of L’s singular value
decomposition problem (SVD). Σ+ is the diagonal matrix
containing the reciprocals of A’s singular values. It holds
that LL+L = L and that L+LL+ = L+.

Thus, if f(ti, G) and f(tj , G) represent the two node vec-
tors of which we want to estimate the distance, our proposal
for the δ function is:

δ(f(ti, G), f(tj , G), G) =√
(f(ti, G)− f(tj , G))TL+(f(ti, G)− f(tj , G)),

(1)

with L+ being the pseudoinverse of the Laplacian of G.
This δ is a proper metric. It is non-negative, because L+

is positive semidefinite and thus xTL+x ≥ 0 no matter x.
It respects the identity of indiscernibles, as 0TL+0 = 0 no
matter what L+ is. It is symmetric, as (a− b)TL+(a− b) =
(b − a)TL+(b − a). It also inherits the triangle inequal-
ity property from the Mahalanobis form by means of the
Cauchy-Schwarz inequality.

When it comes to computational complexity, the core of
the method is the computation of the pseudoinverse of the
Laplacian, which is in turn dominated by the complexity of
solving the SVD problem. Since L is a |V | × |V | square
matrix, the time complexity of solving SVD – and, therefore,
estimating the generalized Euclidean distance – is O(|V |3).
While this is a hefty price to pay, as we show in the last part
of the Experiments section this cost has to be paid only once
per network: the pseudoinverse can be cached to solve an
arbitrary number of distance estimations between any node
vectors on that network.

Alternative Approaches

In this paper, we compare our generalized Euclidean (GE)
approach with two alternatives: Earth Mover Distance
(EMD) and the Graph Fourier Transform approach (GFT).

Earth Mover Distance EMD is a way to solve the opti-
mal transportation problem. In practice, EMD is trying to
minimize the number of edge crossings to transport all the
weights from f(ti, G) to f(tj , G), and returning the number
of such edge crossings. More formally, in EMD we want to
find a set of movements M such that:

M = argmin
mu,v

∑
u

∑
v

mu,vdu,v,

where u and v are the weighted entries of f(ti, G) and
f(tj , G), respectively; mu,v is the amount of weights from
u that we transport into v; and du,v is the distance between
them (more on this below). Then:

EMD(f(ti, G), f(tj , G)) =

∑
u

∑
v
mu,vdu,v

∑
u

∑
v
mu,v

,

where the mu,v movements come from the M we found
at the previous step. Finding the optimal M is hard and ap-
proximations exist in the literature. Here we use the one2

formulated by Pele and Werman (Pele and Werman 2008;
2009). The thing we are left to determine in the EMD for-
mula is the distance function du,v between pairs of nodes.
In this paper, we choose this to be the length of the shortest
path between u and v. This is zero if u = v.

Graph Fourier Transform Suppose that we have a sig-
nal s on a graph, which is an activation pattern of its nodes.
In this scenario, each node is a sensor and edges express de-
pendencies between sensors – i.e. their results are correlated.
Thus, we should expect the true signal ŝ to be distorted by
such correlations. The aim of the Graph Fourier Transform
is to reconstruct the original signal. This is achieved by the
following operation: ŝ = Φs.

Here, Φ is the matrix of generalized eigenvectors of L,
the graph Laplacian of G. If λ0 ≤ λ1 ≤ · · · ≤ λn are the
sorted eigenvalues of L and l0, l1, . . . , ln are the correspond-
ing eigenvectors, then Φ = (l0, l1, . . . , ln). Once we recon-
struct the true signal ŝ, we can filter it so that we take into

2https://github.com/wmayner/pyemd
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account the topology of the graph. This is usually achieved
by filtering the signal in the spectral domain, multiplying it
with the diagonal matrix of the Laplacian’s eigenvectors (Λ).
This is the Laplace operator.

Putting this together, we have that:

f̂(ti, G) = ΛΦT f(ti, G).

Once we apply this transformation to both f(ti, G) and
f(tj , G), we have encoded G’s topology in the vectors. The
Euclidean distance between f̂(ti, G) and f̂(tj , G) is the
node vector distance that we are looking for.

Experiments

In this section we test our approach on a number of dimen-
sions. First, we ask whether these measures make intuitive
sense. Second, we use them to recover salient characteristics
of different network processes we can observe (epidemics,
viral marketing campaigns, etc). Then, we perform a case
study on real world data. Finally, we test their scalability.

A word of warning when interpreting the results. We ex-
pect the GE approach we propose to perform better than the
spectrum GFT method, because it is better tailored to the
actual problem definition. However, we do not expect GE to
outperform the EMD approach. In fact, we expect the op-
posite: EMD is an optimization approach and thus allows
for more precise solutions. The reason why we propose and
prefer generalized Euclidean over EMD is in its promising
scalability, which is an improvement over EMD.

Intuitiveness

We start with synthetic network tests. The objective is to cre-
ate simple networks. In these networks, a human would be
able to tell which vector pairs are more distant from each
other than another pair of vectors. We then compare the re-
sults from each measure with our expectation.

Chain Test The first test we run is the simplest possible:
the chain test. In the chain test we create chain graphs of
progressive lengths. The first vector occupies one end of the
chain and the second vector occupies the other end. Clearly,
the longer the chain the more the two vectors are distant
from each other. Figure 3 shows a depiction of this setup.

We calculate the distance between the vectors for growing
chain sizes: we start with a chain from two to one hundred
nodes. Figure 4(a) shows the result for all the measures we
consider. The Euclidean distance (in gray), as we know, ig-
nores the graph’s topology and considers all vectors to be at
the same distance from each other:

√
2.

Our generalized Euclidean measure (in red), instead,
grows sub-linearly with the chain’s length. In fact it scales
as

√|E|, giving it a rather intuitive meaning: in this test,
the distance between the vectors is the square root of the
number of edges you need to cross to go from one to the
other. GFT (in blue) has a different profile: it quickly grows
as small chains become slightly less small, but the relative
difference between a chain of length 90 with one of length
100 is negligible. The EMD approach has instead a perfectly
linear relationship with the number of edges.

Random Chain The chain test is intuitive for a human,
but it might be too simple to benchmark a distance measure.
With the random chain test we aim at maintaining the intu-
itive aspect of the test, introducing random fluctuations.

In this test, we generate a random network by specifying
a number n of columns. Each column contains 10 nodes.
Nodes in column i can only connect to nodes in column i+1
and i − 1, with the exception of the first and last columns,
which only connect to one column. For each column pair, we
extract 20 random edges. We vary n from 2 to 21 columns.

For each network of n columns, we set the source vec-
tor as occupying the first column and the target vector as
occupying the nth (last) column. The expectation would be
that, in networks with fewer columns, the source and tar-
get vectors are closer to each other than in networks with
more columns. We thus expect a positive correlation be-
tween number of columns and covered distances.

Figure 4(b) reports the results. Since the networks are ran-
dom, we repeat the experiment ten times and we report the
average and standard deviation. The figure shows that the
generalized Euclidean approach behaves as it should, with
increasing distances for increasing column counts. The GFT
approach, on the other hand, has only a mild correlation with
the number of columns. This proves that it is not robust
enough when the topology of the network becomes more
complex. EMD, like generalized Euclidean, has a tight rela-
tionship with what a human would expect.

Small World A harder test uses small world random net-
works following the Watts-Strogatz model (Watts and Stro-
gatz 1998). In this model, nodes are placed in a low-
dimensional space at regular distances. Each node is con-
nected to its k nearest neighbors, creating a regular lattice.
Then, with a random probability p, an edge can be rewired
so that it will connect two random nodes. One can see that,
if p = 0, the network has long shortest path lengths, because
the paths need to traverse the regular lattice. As p grows,
more and more random shortcuts are added, decreasing the
average shortest path length.

Since nodes are placed and connect to each other based
on their position in a space, we can set our source and target
vectors to be at the antipodes of this space. Then, intuitively,
the lower the average path length in the network the closer
the two vectors are. Thus we can plot the distance between
the two vectors against the average path length of the net-
work and expect to find a positive correlation.

Figure 5 shows this relationship. We can see that our gen-
eralized Euclidean has a tight relationship with the average
path length in the network, while the GFT spectrum ap-
proach can distinguish between a high and low path lengths,
but with (i) a non-linear relationship, and (ii) failing for very
long path lengths. The EMD approach has also a tight re-
lation with the average path length, but not as tight as the
generalized Euclidean.

Scaling Vectors So far, for the sake of intuition, we as-
sumed that all tested vectors sum to the same value: one. In
other words, the f(t, G) vectors are normalized: they repre-
sent relative activation states. This was done not to conflate
changes in position on the network with changes in intensity
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(a) Short distance. (b) Medium distance. (c) Long distance.

Figure 3: The expectation of the chain test. Origin node in red, destination node in green. As the chain gets longer, we expect
the distance measure to return higher values.
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Figure 4: The distance measure behavior (y axis) for increas-
ing: (a) chain sizes (in number of nodes); and (b) column
counts.

 0.1

 1

 10

 10

G
E

APL

(a)

 3.02

 3.04

 3.06

 3.08

 3.1

 3.12

 10

G
F

T

APL

(b)

 1

 10

 100

 10

E
M

D

APL

(c)

Figure 5: The relationship between the distance between
vectors at the antipodes of a Watts-Strogatz model (y axis)
and its average shortest path length (x axis) for: (a) GE, (b)
the GFT spectrum approach, and (c) EMD.

in the signal. However, whether the distance measure is able
to properly capture changes in scale is an important prop-
erty for many applications. For instance, in viral marketing,
the value on a specific node could be the absolute level of
engagement of the user in the campaign.

In this test we create a vector on a network and we scale
it by a factor of c which can be smaller or larger than one:
f(t2, G) = c× f(t1, G). Here, for simplicity, G is a Erdos-
Renyi random graph. We then track the distance values as
c changes (Figure 6). We can see that all measures are well
behaved. The more we shrink or expand the original vec-
tor, the further the origin and destination move apart. The
generalized Euclidean approach is less sensitive to shrink-
ing/expanding. Whether this is a desirable property or not is
left as a consideration on a case by case basis.

To sum up the results for all the tests conducted so far,
we calculate the Spearman rank correlation between expec-
tation and measurements, and report the results in Table 1.
The table tells us the relationship between the intuitive dis-
tance expectation between two vectors and the distance as
measured with different techniques. Recall that the expecta-
tions are as follows: (i) chain – the longer the chain, the most
distant its origin-destination nodes are; (ii) random chain –
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Figure 6: The distance measure behavior (y axis) for differ-
ent c scaling factors of the original vector (x axis).

Method Chain Rnd Chain SW Scale
GE 1.00 0.98 0.93 1.00
Spectrum 1.00 0.55 0.53 1.00
EMD 1.00 0.99 0.77 1.00
Euclidean N/A -0.05 N/A N/A

Table 1: The Spearman correlation between the distance val-
ues obtained with alternative measures and the intuitive hu-
man expectation, explained in the text, for various tests.

the longer the chain, the most distant its origin-destination
node columns are; (iii) small world – the higher p, the more
shortcuts we add, thus the closer origin-destination nodes
are; (iv) scaling – the farther from 1 the scaling factor is, the
farther origin-destination nodes are.

GE manages to consistently match our expectation, while
GFT is more erratic. It works well in simple cases, but
breaks down as the test networks become more and more
complex. EMD is more consistent than GFT, but it has its
own failure scenarios.

Potential Applications

Estimating Infectivity In the first application scenario,
we look at simple contagion. This is an SI model of an epi-
demic outburst scenario. In an SI model, nodes can be in
two states: Susceptible (S) and Infected (I). If a susceptible
node has at least an infected neighbor, it will transition to
the infected state with probability psi.

This is simple contagion because nodes need no reinforce-
ment to be infected: a single contact is sufficient. The idea is
that we can recover the infectiousness psi of the disease by
monitoring how quickly it spreads through the network. The
farther the disease spreads, the more infectious it is.

We create a series of networks with 100 nodes and
roughly 500 edges, with different topologies: Erdos-Renyi
(ER), Barabasi-Albert Scale Free (SF), Power-law Clustered
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Topology GE GFT EMD
ER 0.4581*** 0.3107*** 0.6678***
SF 0.4568*** 0.2465*** 0.6145***
PC 0.4670*** 0.2264*** 0.6288***
CM 0.5712*** 0.3974*** 0.5992***

Table 2: The Spearman correlation coefficients (*** p <
0.001, ** p < 0.01, * p < 0.05) with the infection param-
eter in the SI model, for all types of random networks. All
differences between coefficients are significant – estimated
via bootstrapping.

(PC), and CaveMan (CM). We pick 10 random nodes in the
networks. We set psi to a uniform random value between
0 and 1. We perform five steps in the SI model. We then
compare the vector distance between the initial state with
the final state. We repeat the process approximately 1, 000
times per network topology. We then correlate psi with the
start-end distance as a predictor.

Table 2 reports the results, specifically the Spearman cor-
relation coefficient. All methods return distance estimations
significantly related to psi (p < 0.001), i.e. they are good
predictors. The EMD approach has a tighter relationship
with psi, given by its higher correlation coefficient, but GE
is not far behind. We can conclude that the generalized Eu-
clidean is a proper predictor of infectivity in the SI model,
as GFT and EMD are.

Viral Campaign Post-Mortem In this test we repeat the
setup of the previous section. We have four network topolo-
gies, a contagion process, and we use the distance measures
to predict the infection parameter regulating the process. The
difference is that, in the previous section, we used a simple
SI model. In simple contagion a node is activated with prob-
ability psi if it has at least one infected neighbor and cannot
revert from infected to susceptible.

Here, instead, we perform complex contagion: a cascade
model. In the cascade model, a node needs at least a fraction
β of active neighbors to be active. If β = 0.2 a node needs
at least two out of five neighbors infected to transition to
the infected state. A node with a single neighbor out of five
infected will not transition. Moreover, the node will transi-
tion back into the susceptible state every time its fraction of
infected neighbors falls lower than β.

This prediction task is harder because β controls two as-
pects of the process: the infection of susceptible nodes and
the recovery of infected nodes. Thus this test shows a differ-
ent facet of the same problem. It models a viral marketing
campaign where sustained usage from the target audience is
required for the campaign to be successful. Sustained usage
comes from peer pressure.

Table 3 reports the results, specifically the Spearman cor-
relation coefficient. We see that this task was more challeng-
ing, as the coefficient are lower. Moreover EMD fails in all
but one case. Our generalized Euclidean approach was able
to be the best predictor in all cases but the random graph.
Thus one could use GE to examine the results of a viral mar-
keting campaign and infer what is the level of peer pressure
that sustained the cascade.

Topology GE GFT EMD
ER 0.1662** 0.2629*** -0.0046
SF 0.3426*** 0.2854*** 0.0467
PC 0.3373*** 0.2406*** 0.0150
CM 0.5844*** 0.3557*** 0.5291***

Table 3: The Spearman correlation coefficients (*** p <
0.001, ** p < 0.01, * p < 0.05) with the infection parameter
in the cascade model, for all types of random networks. All
differences between coefficients are significant – estimated
via bootstrapping.
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Figure 7: The procedure to generate a noisy projection. From
left to right: original network with marked maximal cliques,
bipartite version connecting nodes to their cliques (with a
noisy element added in blue), noise projection adding the
unusually weak connection to node 4 that the filtering should
catch and filter even if there are non-noisy connections in the
network with the same weight.

Evaluating Bipartite Projections In many common sce-
narios, we do not observe a network directly. We instead
have entities with a collection of common attributes and
we perform a network projection: we connect two entities
if they are similar to each other, i.e. they have common at-
tributes. Then, since attributes can be noisy or too common,
we usually filter the network by keeping only statistically
significant similarity values. This projection and filtering
strategy is tricky, due to different edge generating processes
and possible sources of noise. Thus there are many different
ways to solve the problem (Coscia and Rossi 2019). A nat-
ural question is: how do we know whether we performed a
good projection and filtering?

GE can provide an answer. Suppose we have data about
memes spreading on a social network. Unfortunately we
cannot observe the social relationship directly, rather peo-
ple connect in a bipartite network to specific attribute values
(their age, gender, etc). A network projection of people re-
flects some true relationship if the meme does not jump long
distances over the network’s topology, under the assumption
that the meme “infects” people with similar characteristics.
In this section we test this application scenario.

We do so by creating a ground-truth unipartite network.
We detect all maximal cliques in the network, with edges be-
ing cliques of size two. We create a bipartite version of this
network, connecting each node to the maximal cliques it be-
longs to. At this point, the bipartite network has no noise:
if we were to simply project it into a unipartite one, and
perform no filtering, we would obtain the original network.
Thus, we add noise to the bipartite structure.

For each node in the bipartite structure we note down its
average number of common cliques shared with its neigh-
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Projection Filter EMD GE GFT
hyper Disparity Filter 0.0862 0.0430 0.3690
hyper Naive Threshold 0.1053 0.0969 0.3968
hyper Noise-Corrected 0.0447 0.0233 0.0983
probs Disparity Filter 0.0543 0.0257 0.2711
probs Naive Threshold 0.0543 0.0277 0.2853
probs Noise-Corrected 0.0351 0.0531 0.1095
simple Disparity Filter 0.1085 0.0849 0.3238
simple Naive Threshold 0.4840 1.0057 0.2067
simple Noise-Corrected 0.0415 0.0218 0.0974
ycn Disparity Filter 0.1798 0.1002 0.5356
ycn Naive Threshold 0.1468 0.0607 0.4818
ycn Noise-Corrected 0.1170 0.0479 0.1838

Table 4: The absolute relative error between the distance as
computed on the ground truth and the one on the noisy pro-
jection, for each projection and filtering technique. Best per-
forming combinations in bold, worst performing in italics.

bors in the unipartite structure. Then, we pick randomly a
pair of nodes and we attempt to create a set of noisy bipar-
tite edges. We connect the two nodes with half of their com-
bined expected common neighbors count. This would gen-
erate an edge in the projection with a weaker weight than
expected. Thus the noisy projection would have extra noisy
edges and the filtering phase should be able to identify them,
because their weight is lower than expected – although it can
be higher than non-noisy edges. Figure 7 shows an example.

We then apply a collection of projecting and filtering
strategies, obtaining a collection of different unipartite pro-
jections, all with the same number of edges – which is the
same number of edges in the ground truth – with one excep-
tion, discussed later. We perform a simple one-edge spread
process on the ground truth and we calculate its distance us-
ing our three measures (GE, GFT, EMD). Then, for each
noisy projection, we record its absolute relative error with
the distance calculated from the ground truth. The closer the
projection was to the ground truth, the better it performed.

The bipartite projection methods we use are: simple pro-
jection, i.e. multiplying the bipartite adjacency matrix with
its transpose; hyperbolic (Newman 2001); ProbS (Zhou et
al. 2007); and YCN (Yildirim and Coscia 2014). The filter-
ing strategies we use are: naive, simply filtering out edges
with lowest weights; disparity filter (Serrano, Boguná, and
Vespignani 2009); and noise-corrected (Coscia and Neffke
2017).

The procedure we used to generate the bipartite structure
and its noise closely reflects the simple projection and the
noise-corrected backboning assumptions, thus we should ex-
pect our measure to pick the simple+NC as the best per-
forming one. On the other hand, in the simple projection
with naive threshold it was impossible to find a threshold
to obtain the same number of edges as the other cases. This
projection contains less than half the number of edges as
the other projections. Therefore, we expect the simple+naive
strategy to return the highest errors.

Table 4 shows the absolute relative errors of each pro-
jection, averaged over ten repetitions of the experiment. GE
and GFT pick up the simple+NC strategy as the best. EMD
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Figure 8: The distance measure behavior (y axis) for differ-
ent observation gaps sizes (x axis).

ranks it as second best, which is a failure of this measure.
On the other hand, GE and EMD correctly spotted the worst
projection (simple+naive), while GFT could not. To sum up,
the only measure that identified both the best and the worst
projections was our proposed metric, GE.

Temporal Granularity When we observe a spreading
phenomenon on a network we need to choose the observa-
tion frequency. If it is too often we do not observe enough
change in the system. If it is too rare, the spreading event
appears to jump longer distances than it actually does. We
could use the methods presented in this paper to make an
informed choice on the proper observation frequency.

To test this scenario, use use the random chain network
model we presented earlier. We create a network with 20
columns of 10 nodes each. We start the process by occupy-
ing the first column. Then, at each natural time step, we pick
5 random nodes and we move them to the next column. We
repeat the process until all nodes reach the final column.

We then introduce a skip parameter s. With s = 1 we
observe the natural evolution of the system. With s = 2 we
make an observation only at every other time step. With s =
3 we skip two steps, and so on. The real distances are the
ones computed for s = 1. For s > 1, we overestimate the
speed of the phenomenon. We expect a proper measure to
show higher distances between snapshots as s gets larger.

Figure 8 shows the behavior of each measure as s grows.
We show the ratio between the distance for s = x and the
one we would get for s = 1. The figure shows that both
EMD and GE grow as we would expect: higher s values im-
ply a higher overestimation of the average distance between
observations. GFT is much flatter and thus would fail to no-
tice that our observation interval is longer than appropriate.

Social Media Case Study

In this case study we use data coming from the Anobii web-
site. Anobii is a social media where users keep online book-
shelves of all the books they read. Anobii also has a social
network feature through which users can add each other as
friends. The data was collected to study the effects of anon-
imity and bots in social media (Aiello et al. 2010). The data
contains snapshots taken at 15 days intervals, starting from
Sept 11 2009 until Dec 24 2009. Anobii is particularly pop-
ular in Italy and that is why most of the examples of popular
books we see in this section are Italian books.
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Rank Title Author GE
1 Narcissus and Goldmund H Hesse 0.003284
2 The Old Man and the Sea E Hemingway 0.002955
3 The Late Mattia Pascal L Pirandello 0.002852
4 Eva Luna I Allende 0.002794
5 I Malavoglia G Verga 0.002790
6 Zeno’s Conscience I Svevo 0.002789
7 Two Out of Two A De Carlo 0.002776
8 Angels & Demons D Brown 0.002768
9 I Kill G Faletti 0.002767

10 Reads like a novel D Pennac 0.002736

Table 5: The longest biweekly jumps in the Anobii dataset.

Rank Title Author GE
1 Millennium S Larsson 0.001887
2 Norwegian wood H Murakami 0.001726
3 Breaking dawn S Meyer 0.001691
4 Slaughterhouse-Five K Vonnegut 0.001552
5 Narcissus and Goldmund H Hesse 0.001538
6 Fight Club C Palahniuk 0.001514
7 The Girl Who Played w Fire S Larsson 0.001513
8 Eclipse S Meyer 0.001496
9 Reads like a novel D Pennac 0.001467

10 The Rotters’ Club J Coe 0.001425

Table 6: The top 10 books with the highest average biweekly
speed in the Anobii dataset.

The social network represents the space through which
books spread. A book “infects” a user when the user puts
the book on their bookshelf. With GE we calculate the dis-
tance covered by the book over time. To perform this analy-
sis we extract the k-core of the social network, setting k = 4:
we recursively remove nodes with degree lower than 4. This
is done to avoid overestimating distances covered by books
mostly present in the fringes of the network. We also focus
exclusively on the most popular books: books that are in at
least 1, 000 bookshelves in every observed snapshot. The fi-
nal network view contains 14, 805 nodes, 79, 646 edges, and
we track a total of 113 books. Due to the size of the network,
we are not able to report results for the EMD and GFT ap-
proaches.

We perform two analyses. First, we calculate the speed of
all books from one snapshot to another and take the maxi-
mum distance covered. Table 5 shows the ten longest jumps
in the network. These are the books experiencing the longest
biweekly jumps. One common characteristic in this list is
that it predominantly contains classics of Italian literature, or
other books very popular in Italy, such as Hemingway’s. In-
terestingly, all of these jumps happen in the last week of ob-
servation, which is the beginning of the school winter break
in Italy, also the period in which students are more likely to
have to read a classic book as holiday homework.

In the second analysis we instead calculate the average
speed of the books across the entire observation period. To
do so, we average all the biweekly speeds of each book. Ta-
ble 6 shows the ten books with the highest average speed.
One can see that there is some sort of overlap between
the two lists, with notable and meaningful differences. The
books with higher average speed in the final quarter of 2009
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Figure 9: Average and standard deviation of ten runs of the
runtime of each distance measure in seconds (y axis) against:
(a) the number of non-zero entries in the input vectors; and
(b) the number of nodes in the input network.

are books that have a reasonable external push which might
cause such drift. For instance, the movie adaptation of “The
Girl who Played with Fire” came out on Sept 25 2009 in
Italy, which is right at the beginning of our observation pe-
riod. Interest in the movie is likely to have spurred interest
in the Millenium trilogy of books written by Stieg Larsson,
which in fact experienced the highest average speed and the
seventh highest speed, respectively.

This case study shows that the estimation of propagation
distance and speed in the network can be used to identify
events. In this particular case, it could be used to estimate
whether a marketing campaign is having an effect.

Time Efficiency

Here we analyze the runtime of the various distance mea-
sures on two dimensions. First, we test how much the size
of the input vector affects the running time, meaning the
number of non-zero entries in f(t, G). Then we test the con-
sequences of calculating the distances on larger networks,
with increasing number of nodes but keeping the average de-
gree constant. In both cases, we test on Erdos-Renyi random
graphs with an average degree of three.

A note on the implementations. Both GE and the GFT
are implemented using scipy Python standard functions.
These make use of optimized linear algebra routines, which
use all available CPUs. To calculate EMD, we need to cal-
culate the lengths of all pairs of shortest path. To make the
comparison fair, we naively parallelize the problem, calcu-
lating the single origin shortest path for each node separately
on each available CPU. Moreover, for the Earth Mover Dis-
tance we only need to know the distances between nodes
with a non-zero entry in f(t, G), in some cases drastically
reducing the number of shortest path calculations.

Figure 9(a) shows the runtimes for all measures, varying
the number of non-zero entries in the input vectors. We set
the number of nodes to 1, 000 and the number of edges to
1, 500. Neither GE nor the GFT are affected by the input
size, because the computationally expensive parts of esti-
mating these distances reside in operations that must take
the whole of the graph as input. In case of GE, this is the
pseudoinversion of the Laplacian. For GFT, it is calculating
the Laplacian’s eigenvectors, which is more expensive than
pseudoinverting, hence GE is more time efficient than GFT.
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Figure 10: The portion of the runtime that cannot be cached
for each distance measure.

On the other hand, EMD is affected, as the input size de-
termines the number of shortest path calculations necessary
to estimate it. GE and GFT are suited for vectors with many
non-zero entries, where EMD might become unusable. EMD
is, instead, more applicable to the case of large networks in
which node activity is rare (Zhou, Zha, and Song 2013).

Figure 9(b) shows the runtimes for all measures, varying
the number of nodes in the input network. We set the num-
ber of non-zero entries in the input vector to be 80% of the
number of nodes of the network. In this case all distance
measures are affected. While EMD has an unfavorable mul-
tiplicative factor, the trend for the measures is asymptoti-
cally the same. Thus, keeping fixed the number of non-zero
entries in the input vector, generalized Euclidean can guar-
antee at best a multiplicative speedup.

The time efficiency comparison above, however, may not
be the best reflection of real-world conditions. The analytic
scenario we consider in this paper is the one where the net-
work’s topology stays constant, but one has potentially many
events changing the nodes’ statuses: many different cam-
paigns happening on the same social network, or one cam-
paign observed at regular intervals for a long period of time.
Thus, while there is one single network, there can be poten-
tially hundreds or thousands vector pairs to compare.

The most expensive part of all three frameworks has to do
with the network’s topology: generalized Euclidean needs to
calculate the pseudoinverse of the Laplacian, GFT needs to
calculate its eigenvectors, EMD needs to compute all short-
est paths. The result of all these operations can be cached
and reused if the topology of the network does not change.
Thus, they only need to be run once.

Figure 10 shows the percentage of running time for each
distance measure spent on parts that are dependent on the
node vectors and thus cannot be cached. A measure for
which this percentage is lower is better, because it would re-
sult in higher time savings when reusing the cached content.
From the figure, we can see that for both GE and GFT the
running time involved in non-cachable operations is negligi-
ble: lower than 0.1%. Thus one could calculate more 1,000
distances on the same network and only doubling the run-
ning time. On the other hand, EMD has a larger portion of
non-cachable operations, 1.5% of the total, due to its nature
as an optimization strategy. Thus running times would dou-
ble after just a little more than 66 distance calculations.

Conclusion

In this paper we consider the problem of calculating the net-
work distance between activation states of nodes. Nodes that
are directly connected are closer than nodes separated by
many edges, thus a process that travels across many connec-
tions is covering longer distances. Estimating the distance
between node activation states is a crucial problem in net-
work science. Experiments show that it can inform us about
the infectiousness of a disease or a viral marketing cam-
paign, and whether we are observing a process with the cor-
rect time granularity. In the paper, we observe that there are
methods to solve this problem in the literature, but they are
not explicitly designed for this particular scenario. The Earth
Mover Distance is an optimization approach that is accurate
but computationally too expensive, while the Graph Fourier
Transform is as efficient, but largely imprecise. Thus, we
propose a new generalized Euclidean distance based on the
Mahalanobis distance, which we prove being intuitive and
bringing together the best of EMD and GFT without the
downsides. Additional experiments show the usefulness of
the measure in an online social media scenario.

Our work opens the way for possible future extensions.
While viral marketing and network epidemiology are two
important problems, we can envision the application of such
distance metrics on networks in many other scenarios. Now
that we defined the problem as separate from the optimal
transportation problem on a graph, we could investigate pos-
sible distance measures based on shortest paths without wor-
rying about the optimization constraint. Moreover, because
it is computationally efficient and modular, our generalized
Euclidean measure could be further optimized to scale up to
networks of millions, rather than thousands, of nodes.
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