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Abstract
Word clustering groups words that exhibit similar properties. One popular method for this is Brown clustering, which uses short-range
distributional information to construct clusters. Specifically, this is a hard hierarchical clustering with a fixed-width beam that employs
bi-grams and greedily minimizes global mutual information loss. The result is word clusters that tend to outperform or complement other
word representations, especially when constrained by small datasets. However, Brown clustering has high computational complexity
and does not lend itself to parallel computation. This, together with the lack of efficient implementations, limits their applicability in
NLP. We present efficient implementations of Brown clustering and the alternative Exchange clustering as well as a number of methods
to accelerate the computation of both hierarchical and flat clusters. We show empirically that clusters obtained with the accelerated
method match the performance of clusters computed using the original methods.
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1. Introduction
Word clusters have been successfully used in NLP tasks
over the past decades, contributing to advances especially
in machine translation (Brown et al., 1993; Auli et al.,
2013), named entity recognition (Ratinov and Roth, 2009;
Ritter et al., 2011), parsing (Koo et al., 2008; Kong et al.,
2014), and processing noisy text (Owoputi et al., 2012).
They remain a competitive representation useful for many
tasks (Dyer et al., 2016; Choi, 2016; Lukasik et al., 2015),
yielding superior extrinsic performance in particular when
limited data is available (Qu et al., 2015) – which is the
case for the majority of languages. More recently, word
clusters induced using the Brown clustering algorithm have
been shown to be highly effective in encoding syntactic in-
formation (Ciosici et al., 2019) and have been used for un-
supervised Part-of-Speech tagging (Cardenas et al., 2019).
Brown clustering (Brown et al., 1992) is a commonly used
word clustering algorithm, performing a bottom-up, win-
dowed, hard hierarchical clustering based on the global ob-
jective of maximized Average Mutual Information (AMI),
which is equivalent to the Maximum Likelihood Esti-
mate (MLE) of the underlying language model (Martin et
al., 1998). The tension between local merges and the global
optimization goal makes the algorithm parallelize hard. Si-
multaneously, the number of merges considered at any one
time directly affects the quality of the final word cluster-
ing (Derczynski and Chester, 2016).
While Brown clustering often provides a useful grouping of
items into classes based on their distributionality (Ciosici et
al., 2019), we find that this process is both slow and also
finds poorer optima than using the alternative Exchange
clustering. Exchange clustering is an alternative to Brown
clustering that optimizes AMI iteratively. Unlike Brown
clustering, Exchange clustering outputs a flat clustering.
For brevity, we refer to the methods by just Brown and Ex-
change, respectively, in the following.
The use of Brown clusters has, from the beginning, been
limited by the slow computation time of Brown, even when
using a windowed approximation (Brown et al., 1992), as

well as lack of fast implementations for the community to
use. This is partially due to the use of a global rather than
local metric as the objective agglomerative clustering func-
tion. In fact, the only available open-source implementa-
tion of Brown is over 15 years old (Liang, 2005) and does
not include an implementation of Exchange as per the orig-
inal paper. Most research aimed at runtime performance of
Brown so far is limited to relaxations of the underlying lan-
guage model in the interest of speed (Dehdari et al., 2016;
Stratos et al., 2014; Uszkoreit and Brants, 2008).
In this paper, we demonstrate that Brown and Exchange can
be combined to speed up computation of Brown clusters
while yielding similar quality clusters, in less time, and re-
taining the tree-based features of the generally slower and
more involved Brown algorithm. An added advantage is
the ability to move away from the local maxima Brown’s
greedy algorithm is prone to. We further retro-fit Exchange
with stochastic merging, to allow escape from local max-
ima in Exchange. We contribute our code to the NLP com-
munity as the only fast implementation of both Brown and
Exchange. It is written in modern C++, and allows hybrid
clustering using the two algorithms.1

2. Background
We cover Brown and Exchange from an algorithmic point
of view, describing their behavior and how they interact
with their objective, in order to provide an informed evalu-
ation later. Both are greedy algorithms that construct clus-
ters as a byproduct of training a two-sided class-based lan-
guage model on a corpus of unstructured text. They model
language using a first-order Markov Model where the class
ci (i.e., the cluster) of the predicted word type wi is condi-
tioned on the class ci−1 of the previous word type wi−1,
i.e., P (wi|wi−1) = P (wi|ci)P (ci|ci−1) (Brown et al.,
1992; Kneser and Ney, 1993; Martin et al., 1998). The opti-
mization goal is to maximize the so-called Average Mutual
Information (AMI), a global objective function that acts as

1https://github.com/manuelciosici/
ExchangeAndBrown
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an intrinsic performance measure (equivalent to maximis-
ing the likelihood of the underlying class-based model).

2.1. Brown Clustering
During clustering, class pairs are repeatedly merged, with
each merge being the one that reduces AMI the least. The
initial state is each word type having its own class, and
the final state is with all word types in one single class.
Each merge alters class-to-class mutual information. The
use of AMI, a global objective function with no local dis-
tance measures, makes this slow to compute and difficult to
parallelize. To reduce computation times, often only a sub-
set of merges are considered. The original paper uses the
top 1 000 classes for this purpose (Brown et al., 1992). This
number was later abstracted to a variable c. The process is
akin to doing beam search for optimal merges, where c de-
termines the beam width.
Later, this was formalized as Generalized Brown (Derczyn-
ski and Chester, 2016), which also includes a method for
decoupling cluster generation from the search for merge
candidates, based on the intuition that each run creates
many intermediate clusterings of size 1 to the size of the
vocabulary |V |. So, to re-create a clustering one can simply
re-run the desired number of merges. This then re-purposes
beam width as a clustering quality factor, with higher beam
widths giving better quality clusterings at the cost of time,
running in O((|V |−c)c2+c log c). Setting the beam width
c to match the number of words in the vocabulary |V |, re-
sults in the original, non-windowed Brown clustering.
Brown clustering’s intrinsic metric, AMI, demonstrates a
typical pattern throughout a clustering run over language
data. When clustering is performed with a subset of
global states being considered at every step, e.g. running
wcluster (Liang, 2005) with c < |V |, AMI rises mono-
tonically as a greater proportion of the vocabulary is rep-
resented in the classes built so far (directly observable in
the generalized form’s merge file output). AMI peaks at the
first point where all words are present in the set of classes
being considered, and subsequently decreases during tree
building phase. The point of peak AMI is reached when the
underlying class-based language model is first fully derived
and has the highest performance in modeling the corpus
used for training. Crucially, peak AMI is thus a core in-
trinsic measure of language model quality (Derczynski and
Chester, 2016). We use peak AMI to measure a clustering
run’s performance, i.e., the MLE of the language model.

2.2. Exchange Clustering
Exchange seeks to generate a hard, flat clustering of words
from a corpus while optimizing AMI. Like Brown and
first-order Markov models, it uses a two-sided model
P (wi|wi−1) = P (wi|ci)P (ci|ci−1), where the class ci of
the predicted word wi is conditioned on the class ci−1 of
the previous word wi−1 (Kneser and Ney, 1993). The tar-
get number of clusters is pre-specified and clusters are ini-
tialized according to some heuristic. For each iteration,
words are examined in order (e.g. in descending corpus fre-
quency), and each word is moved to the cluster which gives
the highest AMI (see Algorithm 1). This runs in O(c|V |n),
where n is the number of iterations. Exchange moves words

Algorithm 1 Exchange clustering

1: Initialise c empty clusters as C
2: Assign every word w in vocabulary V from corpus D

to a cluster
3: Iteration count i = 0
4: while Stopping condition not met do
5: for word wi do
6: Calculate best target cluster Ct for wi

7: Move wi to Ct

8: Increment i

from one cluster to another with the aim of minimizing the
perplexity of the underlying two-sided class-based bi-gram
language model on the provided corpus. Stopping criteria
are not explicitly defined for Exchange; in Section 5.3. we
present two stopping criteria implemented in our code.
Several versions of Exchange exist that relax the two-
sided class-based language model to a single-sided one, i.e.,
P (wi|wi−1) = P (wi|ci)P (ci|wi−1) (Goodman, 2001).
The relaxation allows for some optimizations via caching,
but at the cost of increasing the number of parameters that
require estimation by a factor of |V | (Dehdari et al., 2016;
Uszkoreit and Brants, 2008).

3. Hybrid Clustering
We introduce a new approach that combines the strengths
of the two above algorithms to achieve better runtime per-
formance and better quality at the same time. The core idea
is to think of Exchange as an efficient way of generating
intial clusters, and of Brown as a refinement method for
these clusters, as well as for creating a hierarchy over these
clusters.
We propose a hybrid clustering, where one first runs Ex-
change over the data to initialize a set number of clusters
c. We then run Brown clustering to generate a hierarchy,
taking as input the clusters C computed by Exchange and
also the source corpus.
The original Brown algorithm (Brown et al., 1992) exe-
cutes in two stages – clustering and tree-building. The point
where it switches from the clustering stage to the tree build-
ing one is the point of peak AMI (i.e., the point where the
language model can model the entire vocabulary).
In hybrid clustering, we use Exchange for the cluster-
ing part and Brown for building the hierarchical structure.
Thus, for a hybrid clustering, one defines a set number of
classes c, runs Exchange over the corpus to compute the c
classes, and then runs Brown over the flat clustering.
This has the advantage of giving a second chance to avoid
local maxima that the greedy Brown algorithm is likely to
corner itself into. For this we use the same frequency-based
initialization method as Exchange (Martin et al., 1998).
Hybrid clustering is a faster method, with fewer hyper-
parameters (no need to specify a window size), that
achieves higher AMI, and matches the performance of
Brown clusters in downstream tasks.

4. Experimental Setup
We perform experiments to demonstrate the performance
gains of our proposed hybrid clustering method with tra-
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Peak AMI Time (s) c speedup
Brown 0.625 9.99

10 2.49×
Hybrid 0.708 4.00
Brown 1.188 10.93

40 1.69×
Hybrid 1.322 6.44
Brown 1.803 20.19

160 2.73×
Hybrid 1.845 7.38
Brown 2.108 49.05

320 6.64×
Hybrid 2.137 7.38
Brown 2.504 154.70

640 1.82×
Hybrid 2.521 84.71
Brown 2.961 678.80

1280 2.24×
Hybrid 2.972 302.1

Table 1: Peak AMI value with varied beam width / cluster
count c. Time is wallclock seconds.

ditional Brown using the implementation of Liang (2005).
This is run with min-occur set to 1, in order to preserve
information and provide a fair, higher-AMI clustering that
incorporates a maximum amount of corpus knowledge. In
other words, we do not eliminate low frequency words from
the vocabulary. Comparing Brown, Exchange, or the hy-
brid method with other word representations is out of scope
for this work. For comparisons of Brown or Exchange
with other word representation methods, in particular word
vectors, see Bansal et al. (2014), and Qu et al. (2015);
for characterization of syntactic information encoded by
Brown clusters see Ciosici et al. (2019).

5. Results and Analysis
5.1. Computation and AMI performance
We measure the reduction in computation time and im-
provement in language modeling. For this first experiment
we focus on English, using one million words from Reuters
Corpus (RCV) (Rose et al., 2002). We use a machine with
dual Intel 8176 and 512GB RAM. Runtime results (mean
of three runs) are presented in Table 1.
Our hybrid method provides a higher peak AMI and much
lower run-time than Brown, in every case. The gap in AMI
closes as the number of clusters generated rises. This is
expected; the information present in a clustering rises as
the number of clusters increases from 1, though drops as
the number of clusters approaches the number of items (i.e.
|V |, which is typically large for NLP applications). This
behavior is preserved in larger corpora, see Table 2 for the
full RCV corpus of 114M tokens.

5.2. Downstream performance
As higher AMI can result from overfitting of the language
model to the training corpus, we supplement the experi-
ment with extrinsic downstream evaluation in Named En-
tity Recognition (NER). The aim is to compare the perfor-
mance of Brown clusters with that of hybrid clusters in a
downstream task to study the information encoded.
We perform NER using a classifier based on Conditional
Random Fields (CRF) (Derczynski et al., 2015a) with per
token cluster bitstring IDs from the cluster hierarchy and
character skip-2-gram features over the English newswire
train and test splits of the CoNLL 2003 shared task (Tjong

c = 10 40 160 640 2560
Brown 0.565 1.143 1.671 2.154 2.631
Hybrid 0.694 1.271 1.747 2.189 2.650

Table 2: Peak AMI for Exchange and Brown over the com-
plete RCV1 dataset, varying c; i = 10.

c = 10 40 160 320 640 2560
Brown 72.86 73.41 73.99 74.72 74.60 74.32
Hybrid 72.44 74.04 74.08 74.98 75.35 74.16

Table 3: Extrinsic F1 on CoNLL 2003 NER.

Kim Sang and De Meulder, 2003). We choose this simple
setup in order to focus on the performance impact of the
clustering on the task and to verify cluster quality.
To avoid further AMI loss, instead of “shearing” clusters
at fixed bit depths, we use roll-up feature generation (Der-
czynski and Chester, 2016). Brown cluster trees are asym-
metrical, so when one derives Brown clustering features by
truncating bit strings (e.g. cutting them at length 4, 6, 10
and 20 as per Ratinov and Roth (2009)), the result is often
a “false” clustering that never actually occurred during the
running of Brown. Such truncation-based extractions offer
lower AMI and yield reduced extrinsic performance (Der-
czynski and Chester, 2016). To retain the maximum AMI,
then, one may instead trivially “re-play” the clustering up
to the point where the number of leaves on the tree matches
the desired number of classes, preserving the structure in-
tended in the algorithm’s output. This has the added ad-
vantage of allowing any arbitrary number of output clusters
o both up to and beyond c all the way to |V |, instead of
being constrained to o ≤ c; o ≤ 2n;n ∈ Z+ as the older
“shearing” method is.
Extrinsic F1 results in Table 3 show that our hybrid ap-
proach’s performance matches that of Brown, indicating no
harmful overfitting, and demonstrating that the speed-up is
not at the expense of cluster quality.

5.3. Stopping criteria
The point at which to stop Exchange is not well-defined
in its original presentation (Kneser and Ney, 1993). We
propose three simple stopping criteria.

5.3.1. AMI Threshold
The first is a cut-off for gradient over iterations. If AMI
increase dips below a given threshold between iterations,
the algorithm stops. This bound can be specified regardless
of the input data size (which drives the AMI values).
The box plots in Figure 1 show the percentage of final
AMI achieved in each of the first 10 iterations of Exchange,
measured over 5 runs, with different values for the desired
number of clusters (18, 50, 100, 500, 800) according to
best practices (Derczynski et al., 2015b), using the English,
French, and Czech Universal Dependencies 2.1 as input
data (Leung et al., 2017). The vast majority of the final
AMI is achieved within three or four iterations. Thus, stop-
ping Exchange after three iterations results in a three-fold
speedup compared to suggestions in the literature (Uszko-
reit and Brants, 2008; Martin et al., 1998). This stopping
criterion can easily be used in our hybrid method as well.
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(c) French UD

Figure 1: Per-iteration Exchange AMI as final AMI percentage. Whiskers mark maximum and minimum values.

1 2 3 4 5 6 7 8 9 10
Iteration

100

101

102

%
 v

oc
ab

ul
ar

y 
ch

an
gi

ng
 c

lu
st

er
s

(a) English UD

1 2 3 4 5 6 7 8 9 10
Iteration

10 1

100

101

102

%
 v

oc
ab

ul
ar

y 
ch

an
gi

ng
 c

lu
st

er
s

(b) Czech UD

1 2 3 4 5 6 7 8 9 10
Iteration

10 1

100

101

102

%
 v

oc
ab

ul
ar

y 
ch

an
gi

ng
 c

lu
st

er
s

(c) French UD

Figure 2: Number of words that participate in swaps as the iterations progress. Individual runs are shown in pale blue, and
the mean in a stronger tone.

5.3.2. Words-moved Threshold
We see that AMI approaches its peak quickly and pro-
gresses asymptotically to some theoretical peak. Indeed,
little is left to be gained after the first few iterations. This
motivates the AMI Threshold criterion (Figure 1). How-
ever, this is based on an unknown quantity – the AMI ceil-
ing – which cannot immediately be derived from what one
knows about the data before processing.
A more concrete metric is the number of items (words) that
swap cluster assignment per iteration. This has a known
maximum, |V | and minimum, 0. The swapping behaviour
for three languages can be seen in Figure 2, which shows
the proportion of words moved per iteration, over multiple
runs of Exchange. We see that after the first three iterations,
only a small proportion of the vocabulary, less than 10%,
continue to swap clusters. Candid examinations indicate
that this 10% are typically not common words, i.e. they
represent a small part of the overall frequency mass of the
corpus’ word instances.
Therefore, the next stopping criterion is based on the num-
ber of words that move in an iteration: if this falls be-
low threshold m, clustering stops. Observations of the Ex-
change clustering process suggested that many words will
find an optimal cluster regardless of the distribution of most
other words. We attribute this to the Zipf-Mandelbrot dis-
tribution of word frequencies (Montemurro, 2001) and the
effect frequency has on each word type’s contribution to
global mutual information. That is, the majority of words
share little mutual information with most other words; thus,
most words may be clustered quickly and will not later be
moved – later cluster changes are unlikely to have strong

c Speedup AMI i = 10 AMI Brown AMI
10 9.29× 0.358 50.5% 57.2%
40 8.01× 0.729 55.2% 61.4%

160 6.05× 1.187 64.3% 65.8%
320 5.97× 1.535 71.8% 72.8%
640 7.24× 1.978 78.5% 79.0%
1280 6.97× 2.540 85.5% 85.8%

Table 4: Performance of one-iteration Exchange, vs. 10-
iteration, and Brown. Comparisons are made with AMI
values in Table 1.

far-reaching effects. This motivated stopping after a certain
number of words have been moved. One may define m, the
words-moved threshold, based on e.g. a fraction of the vo-
cabulary size |V |, or on a total amount of frequency mass
in the data and the proportion of terms that comprise it.

5.3.3. Minimal Iteration Threshold
From the words-moved threshold, one can see the Ex-
change does most of the important work early. Based on
this observation, the third stopping criterion is a radical op-
tion: perform one iteration. Exchange is generally faster
than Brown, and also a single iteration is meaningful as
opposed to Brown, which is agglomerative and so intrinsi-
cally requires multiple iterations to reach the target number
of clusters (excluding the unusual extreme case c = |V |−1.
As with many clustering and other machine learning al-
gorithms, depending on the starting conditions, the most
radical and highest volume of changes tend occur in the
earliest epochs. This is the phenomenon behind for exam-
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English UD French UD Czech UD
c \ r 0 0.75 0 0.75 0 0.75

18 0.995 0.992 1.253 1.307 0.828 0.832
50 1.318 1.371 1.768 1.816 1.189 1.129
100 1.596 1.628 2.110 2.147 1.404 1.402
500 2.370 2.362 2.821 2.824 1.988 1.999
800 2.689 2.685 3.056 3.063 2.246 2.244

Table 5: Peak AMI with stochastic merging. i = 50

ple the prevalence of warm-up phases (Goyal et al., 2017),
where learning rates are scaled for the explicit purpose of
attenuating these large moves. In this situation, we believe
there may be an extreme speed advantage in performing
just one iteration, which may provide a large number of
well-clustered items.
Noting the high proportion of AMI achieved in the first it-
eration of Exchange (Figure 1), we experiment with single-
iteration Exchange as a rapid clustering, running in only
O(c|V |). Table 4 shows results of evaluating this one-
shot approach in terms of time taken, and the proportion
of AMI achieved after a full Brown clustering and of a 10-
iteration Exchange clustering. While being fast, the AMI
drop is substantial at low cluster counts. At higher clus-
ter counts one-shot Exchange approaches multiple-iteration
performance, and remains faster. This one-iteration cri-
terion is thus an option for extreme runtime optimisation
at the cost of some AMI, with speedup remaining good at
higher values of c while AMI retention increases.

5.4. Stochastic Merging & Model Selection
Exchange is a greedy method, which depends on both
the prior state and the order in which words are exam-
ined, leaving little opportunity for escaping local maxima.
Stochastic swapping with chance r, with cluster assign-
ment distributed uniformly, gives a chance to escape max-
ima. Stochastic swapping results are given in Table 5. The
value of 0.75 is chosen to give a strong perturbation with
still some chance for a signal to come through; for a given
dataset, it would be best chosen through e.g. Bayesian op-
timisation. For some values of c this is helpful for English
and Czech; in French, we always see an improvement.

6. Conclusion
This paper proposes a method for induction of
distributionally-derived hierarchical word clusterings
both with improved speed and at high quality by combin-
ing Exchange and Brown clustering, versus using Brown
alone. Further, it introduces a simple but effective method
for avoiding local maxima during Exchange clustering,
leading to further performance boosts. C++ code for the
hybrid tool is made available with this paper.1
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