
Agile Software Development Practices
and Success in Outsourced Projects: The
Moderating Role of Requirements Risk

Oliver Krancher(B)

IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
olik@itu.dk

Abstract. Although agile practices are gaining in popularity, there is little evi-
dence showing how particular agile practices, in particular those involving the
client, affect the success of outsourced software projects. Data from a matched
survey of sponsors and developers in 60 outsourced information systems projects
indicate negative effects of continuous analysis and positive effects of joint deci-
sion making and continuous integration on project success. Moreover, interaction
analyses show that some positive effects are enhanced and negative effects damp-
ened when requirements risk is high. These findings caution against continuous
analysis in outsourced projects while they support joint decision making and con-
tinuous integration. The findings also empirically substantiate the largely untested
assertion that agile practices help cope with changing requirements.

Keywords: Agile software development · Agile practices · Requirements risk ·
Project success · Continuous integration · Continuous analysis · Joint decision
making · Agile requirements engineering

1 Introduction

Information systems (IS) projects have a notorious reputation for running over time
and budget while not fully satisfying user needs [1]. Many organizations are therefore
turning to agile methods, hoping to increase software quality, reduce costs, shorten time-
to-market, and better handle changing priorities by using agile methods [2]. Teams using
agile methods typically tailor their use of agile methods [2], i.e., they select the practices
to be used in a particular project from the practices advocated in methods such as Scrum
[3] and XP [4]. A key question for these teams is which practices are most likely to lead
to a successful project given the characteristics of the project at hand.

Over the past two decades, empirical research on agile software development has
accumulated knowledge that provides valuable guidance to these teams [5, 6]. Some
research has found positive associations between the use of agile methods in general
(rather than of particular practices) and project success [7, 8], indicating that the general
use of agile methods can enhance project success. Other studies have examined the
effects of particular agile practices on project success and found positive effects of

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 56–72, 2020.
https://doi.org/10.1007/978-3-030-49392-9_4

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/344890574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_4

Agile Software Development Practices and Success in Outsourced Projects 57

pair programming [9, 10] and continuous integration [11] and negative effects of daily
stand-ups [10].

Notwithstanding these insights, evidence of the links between agile practices and
project success remains limited in three major ways. First, in contrast to practices that
involve engineers only (e.g. pair programming, continuous integration) [12], less is
known about the impact of practices that involve engineers and business people, such as
joint decision making and continuous analysis. While qualitative research has explored
such practices, quantitative evidence of their effect on project success is scarce [13].
Such evidence could help practitioners navigate the tradeoff between the benefits (e.g.
enhanced feedback and communication) and drawbacks (high search costs, opportunistic
threats) associated with these practices. Second, few studies have examined the effects of
particular agile practices in the context of outsourced IS projects, i.e., in settings where
client organizations delegate development work to external vendors. This is problematic
because not all agile practices may work equally well across firm boundaries [14, 15].
For instance, frequent requirements revision and reprioritization can entail high contract
adaption costs and opportunistic behavior in outsourced projects. Third, there is sur-
prisingly little evidence of the context factors under which particular agile practices are
effective. In particular, we lack evidence of the potential moderating role of requirements
risk (i.e., the degree to which requirements are uncertain and frequently changing) [1] in
the relationship between agile practices and project success despite the frequent claim
that agile methods help cope with changing requirements.

This paper theorizes and empirically examines how three agile practices affect the
success of outsourced software projects and how these associations are contingent on
requirements risk. The three agile practices in the focus of the paper are continuous inte-
gration (compiling, building, deploying, and testing code several times a day), continu-
ous analysis (continuously triggering and incorporating new information about require-
ments), and joint decisionmaking (client andvendormaking important decisions jointly).
Drawing on a perspective of software development as knowledge integration, it is argued
that practices for knowledge integrationwithin the vendor (continuous integration) come
primarily with benefits whereas practices for client-vendor knowledge integration (con-
tinuous analysis, joint decision making) come with both benefits and costs. As such the
overall effects of client-vendor practices will depend on the need for knowledge inte-
gration, which is primarily rooted in difficulties to articulate requirements up-front (i.e.,
requirement risk). Hypotheses derived from these ideas are tested using data collected
through a matched survey of 60 client sponsors and 60 vendor engineers. The results
emphasize the benefits from within-vendor practices, draw a more differentiated picture
of the effects of client-vendor practices, and largely support the often asserted but rarely
tested moderating role of requirements risk.

2 Theory Background

2.1 Software Development as Knowledge Integration

This paper explains the impact of agile practices on the success of outsourced projects
by drawing on the perspective of software development as knowledge integration. A
knowledge integration perspective holds that project team members possess and acquire

58 O. Krancher

heterogeneous knowledge and that a key challenge lies in fusing this heterogeneous
knowledge into usable software [16, 17]. Software development teams typically comprise
business people possessing business knowledge (e.g. ideas about requirements for the
software) and engineers possessing technical knowledge (e.g. programming languages,
design patterns) and knowledge about existing software systems [17–19].

From a knowledge integration perspective, a key challenge lies in the interdepen-
dencies between these knowledge areas. For instance, business people often realize
their requirements (business knowledge) only after they have seen a first version of
the software [16, 20]. But engineers can build a first version (i.e., apply their technical
knowledge) only after business people articulate a first version of requirements (busi-
ness knowledge). These interdependencies challenge the assumption of independence
of requirements (business knowledge) from design options (technical knowledge) and
from the functionality of existing software systems (software knowledge), an assump-
tion inherent to plan-based software development [16, 17]. Interdependencies exist not
only between the business and technical spheres but also within spheres. For instances,
interdependencies within the technical sphere manifest because engineers need to know
about design decisions and code changes made by other engineers to ensure alignment
with own code contributions. The strength of these interdependencies is, to large extent,
driven by requirements risk (i.e., the degree to which requirements are uncertain and
frequently changing) [1]. The fuzzier the ideas about requirements are, the more efforts
will be needed to arrive at a shared understanding of how a useful software for the given
purpose should look like and the more efforts will be needed to coordinate development
actions in the face of changing requirements.

Although knowledge integration issues and requirements risk arise in a variety of
projects, outsourced projects face the peculiar challenge of integrating the client’s busi-
ness knowledge and the vendor’s technical knowledge across firm boundaries [17, 18].
The rich literatures on IS outsourcing and on theories of the firm point to two key
challenges that arise from this boundary [21–23]. First, individuals from different orga-
nizations often lack shared knowledge and shared assumptions about effective problem-
solving processes, which makes coordination more difficult [21, 22]. Second, different
organizations may work towards different goals. In particular, fuzzy requirements may
invite opportunistic behavior by the vendor because it is difficult to legally enforce
contracts when requirements are unclear at the outset [22, 23].

2.2 Agile Practices for Within-Vendor and Client-Vendor Knowledge Integration

Agile methods help address knowledge-related interdependencies by establishing feed-
back processes and team-based organizing structures [20]. Three agile practices may be
particularly suitable to this end: continuous integration, continuous analysis, and joint
decisionmaking.While continuous integration addresseswithin-vendor knowledge inte-
gration, continuous analysis and joint decision making address knowledge integration
between client and vendor.

Within-Vendor Knowledge Integration. A key agile practice for within-vendor
knowledge integration is continuous integration, i.e., the practice of engineers com-
piling, building, and testing code many times a day, typically by relying on tools for

Agile Software Development Practices and Success in Outsourced Projects 59

automating build and deployment processes [11, 24]. Continuous integration promotes
knowledge integration within the technical sphere (i.e., between engineers) because it
provides engineers with immediate feedback about how their code contributions work
together with other engineers’ contributions [20]. An attractive feature of continuous
integration in outsourcing is that it enables rapid feedback without involving the client,
allowing the use of the practice even in projects in which clients do not fully embrace
agile methods. Although there is evidence linking continuous integration to higher qual-
ity and productivity in open-source development [11], there is little research examining
whether these benefits also hold in outsourcing.

Client-Vendor Knowledge Integration. A key agile practice for client-vendor knowl-
edge integration is continuous analysis, i.e., continuously triggering and incorporating
new information about requirements. The notion of triggering information about require-
ments alludes to the fact that business people often lack clarity about their requirements
at the outset of projects and trigger this information through activities such as testing
early versions of the software. They incorporate this information by revising or repri-
oritizing requirements for the next iteration. In Scrum, continuous analysis manifests
through the revision and reprioritization of the product backlog during sprint planning
and through the test of the software in the sprint review [3]. Continuous analysis is in
line with the agile manifesto principles to “[w]elcome changing requirements, even late
in development” and to “[d]eliver working software frequently” [25]. It encompasses
concepts such as iterative requirements engineering [26], dynamic prioritization [27],
agile requirements prioritization [13, 15], and iterative requirements [13]. Continuous
analysis enables client-vendor knowledge integration because it establishes a feedback
loop between requirements that result from the business knowledge primarily held by the
client and the working version of the software that results from the technical knowledge
primarily held by the vendor [17]. Although this feedback loopmay be particularly valu-
able for addressing the lack of shared understanding in outsourcing, continuous analysis
may also entail contract adaption costs and opportunistic threats in outsourcing, as I will
argue later. Given this trade-off, an important unresolved challenge for practitioners is to
decide on the amount of analysis that is made up-front versus continuously throughout
a project [28].

A second key practice for client-vendor knowledge integration is joint decision mak-
ing [29], defined as the extent to which important decisions are jointly made by client
and vendor. In Scrum, joint decision making manifests in decision making by a team that
comprises not only engineers but also the product owner as a business representative
[3]. Joint decision making is related to the agile manifesto principle that “[b]usiness
people and developers must work together daily throughout the project” [25]. Although
daily interaction with business people may not always be possible in outsourced soft-
ware projects, it is possible to frequently interact in order to make important decisions
jointly, which is akin to a team-based organizing mode [14]. Joint decision making pro-
motes knowledge integration between client and vendor because it urges each party to
communicate and to incorporate the other party’s perspective when making important
decisions.While joint decisionmakingmay thus help address the frequent lack of shared
knowledge in outsourcing, it may also entail lower benefits of specialization and oppor-
tunistic threats, as I will argue later. An important unresolved issue is thus under which

60 O. Krancher

circumstances projects should leverage joint decision making versus an approach where
clients make business decisions and vendors technical decisions [28].

3 Hypotheses

Drawing on the knowledge integration perspective outlined above, this section develops
hypotheses about how the three practices and their interaction with requirements risk
affects project success. In line with prior studies on IS project success [30, 31], the
focus lies on two dimensions of success: effectiveness and efficiency. Effectiveness
(also termed product performance) refers to the degree to which the developed software
meets the client’s requirements whereas efficiency (also termed process performance)
refers to the extent to which a project is completed within time and budget [31].

3.1 Continuous Integration

Continuous integration is likely to enhance success by enabling rapid feedback within
the vendor’s development team and efficiency gains due to automation. By frequently
compiling, deploying, and testing software, vendor engineers receive rapid feedback on
their code contributions, allowing the early discovery of integration problems (within-
vendor knowledge integration). Identifying defects early has positive impact on the
quality of the delivered software (i.e., effectiveness) because it will make it easier for
developers to fix defects before go-live. Continuous integration will also have positive
impact on efficiency because problems are identified more easily when only small code
contributions are added at a time and because the automation infrastructure behind
continuous integration shortens work and wait times [32]. In outsourcing continuous
integration appears particularly suitable because it allows leveraging feedback processes
irrespective of the degree to which clients are willing to adopt agile practices.

While continuous integration is likely to have a positive main effect on project suc-
cess, this effect will be more pronounced under high requirements risk. When require-
ments are uncertain and frequently changing, this has downstream effects by making
the engineers’ work more uncertain, increasing thus the need for knowledge integration.
Continuous integrationwill help address this increased need by providing engineers with
rapid feedback on their code contributions. These arguments suggest:

H1a: Higher amounts of continuous integration are positively associated with success
(i.e., effectiveness and efficiency).
H1b: The association between continuous integration and success depends on require-
ments risk such that the association is stronger when requirements risk is high.

3.2 Continuous Analysis

Unlike continuous integration, continuous analysis presents projects with a trade-off
between the benefits and the costs that arise from the practice. Continuous analysis
enables client-vendor knowledge integration by allowing clients to learn about require-
ments and their relative importance when looking at new versions of the software and

Agile Software Development Practices and Success in Outsourced Projects 61

discussing requirements with the vendor [13, 26]. In line with these ideas, a case study
reported increased client satisfaction due to continuous analysis [33].

Notwithstanding these benefits, continuous analysis practices are also associated
with two caveats. First, continuous analysis may involve a long and costly search process
where business people realize their true requirements only after developers have spent
high efforts on developing functionality that ends up discarded. In outsourced projects,
these search processes can also entail high efforts for adapting contracts [14]. Second,
frequently revising requirements introduces opportunistic threats in outsourced projects
[23]. Vendors may opportunistically leverage the fuzziness of initial specifications to
ask for generous compensation of work that was not originally anticipated.

Given these benefits and drawbacks, it is difficult to predict the net effect. However,
it is likely that the benefits and drawbacks are salient to a different degree depending
on requirements risk. Under high requirements risk, it may not be feasible to accurately
identify requirements during a detailed up-front analysis [16]. Continuous analysis will
then often be the only feasible alternative. Conversely, when requirements risk is low,
articulating requirements up-front is feasible and disciplined up-front analysis may be
more efficient that continuous analysis. This leads to the following hypothesis:

H2: The association between continuous analysis and success depends on requirements
risk such that the association is more positive when requirements risk is high than when
requirements risk is low.

3.3 Joint Decision Making

Like continuous analysis, joint decision making presents projects with a trade-off
between benefits and drawbacks of the practice. If client and vendor make key deci-
sions jointly, this entails high amounts of communication, which allows the different
stakeholders to integrate their knowledge and may lead to higher project success [34,
35]. Indeed, studies of agile software development point to the importance of close
customer collaboration [36] and of reconciling the perspectives of all participants [37].

Notwithstanding these benefits, joint decision making comes at the costs of sacrific-
ing economies of specialization and of opportunistic threats. Economies of specialization
may be sacrificed because, as indicated by the knowledge integration literature, it can
be difficult and effortful to transfer knowledge from one domain to another [17, 38].
From this perspective, joint decision making can involve high communication efforts
and the risk that the voice of the person most knowledgeable in a domain is overruled
by others. A potentially more efficient alternative can be to leave business decisions to
the client and technical decisions to the vendor. Joint decision making may also entail
opportunistic threats because vendors may, for example, falsely attribute a problem in
the software to a joint client-vendor decision rather than to their own omissions.

Like in the case of continuous analysis, the net effect of these benefits and draw-
backs is unclear. It is likely, though, that the relative size of these benefits and drawbacks
depends on requirements risk. When requirements risk is low, the need for knowledge
integration is low. It is then feasible for the client to make business decisions and for
the vendor to make design decisions based on the client’s business decisions [17]. With
each party making decisions in the area in which the party is most knowledgeable, this

62 O. Krancher

approach will ensure efficiency and accountability [14, 17]. Conversely, when require-
ments risk is high, this separation of decisions rights may not be feasible because clients
will make poor decisions about requirements at the outset, and design decisions based
on poor requirements are unlikely to yield a satisfactory software. I therefore anticipate:

H3: The association between joint decisionmaking and success depends on requirements
risk such that the association is more positive when requirements risk is high than when
requirements risk is low.

4 Methods

4.1 Data Collection

I tested the hypotheses through a matched survey involving client sponsors reporting on
project success and vendor engineers reporting on agile practices and further variables.
A matched survey addresses concerns of common-method bias [39] and allows gather-
ing data from the informants most knowledgeable about each construct (i.e., sponsors
reporting about success, engineers reporting about agile practices). The sampling frame
were outsourced IS projects that were completed within the last 12 months. Students
and I contacted client organizations from Switzerland and Denmark. Once they agreed
to participate, they identified a list of suitable projects along with contact information
of the sponsor, the project manager (not used for this study), and a developer from the
vendor. We then invited sponsor, project manager, and developer to respond to an online
questionnaire that was specifically designed for their role (sponsor, project manager,
developer). We obtained responses from 100 sponsors and 92 engineers. Responses
matched for 65 projects. From these 65 projects, I removed 5 due to missing data or
due to unengaged responses, yielding a final sample size of 60. Table 1 shows sample
characteristics. 49 responses (82%) were from the public sector. The sample did not
include offshore projects. All projects except for 2 were single-sourcing.

Table 1. Sample characteristics

Project size # Projects Country # Sector # Type #

$0–$100 K 12 Switzerland 40 Public 49 Development 38

$100 K–$1 M 33 Denmark 20 Private 11 Enhancement 22

$ > 1 M 15

4.2 Instrument Development, Validation, and Estimation

Table 2 shows the final instrument. I relied on existing scales with the exception of the
continuous analysis construct for which I developed new items. In linewith the definition
of continuous analysis as the continuous triggering and incorporating of information

Agile Software Development Practices and Success in Outsourced Projects 63

about requirements, the items asked about triggering (CA4-5) and incorporating (CA1-
3) information, measuring the frequency of these activities in order to capture to what
extent they were performed continuously. Following established positivist survey design
procedures [40], we performed a pretest with 6 practitioners using an item rating task
and a pilot test comprising 43 responses. I used SmartPLS (v3.2.8) to assess the validity
of the final instrument. To establish convergent validity, I verified that average variance
extracted (AVE) was greater than .50 for all latent constructs (lowest AVE value: .56)
[41]. Moreover, all factor loadings were at least .6, with their average exceeding .7 for all
constructs [42]. To establish discriminant validity, I verified that construct correlations
were below AVE square roots [41]. Discriminant validity was also supported by the
HTMT Ratio Test [43]. Reliability was supported by Cronbach alpha values above .7
(see Table 2).

I used OLS regression to estimate the models. OLS regression has higher power
for detecting interaction effects than alternative strategies such as PLS or AMOS [44].
The regression models included several control variables. Task interdependence reflects
the degree to which development team members affect each other in their work [45].
Knowledge specificity, a construct fromoutsourcing research, reflects the degree towhich
engineers need knowledge specific to client in order to perform theirwork [46]. Both high
task independence and high knowledge specificity might invite the use of agile methods
and may correlate negatively with success. It is therefore important to control for these
variables. I also controlled for project size, country (Switzerland vs. Denmark), and
sector (public vs. private), for similar reasons. As established in social science research,
I relied on hierarchical regression, where I first estimated a model with main effects and
then added interaction effects. Given the relatively small sample size of 60 (which is
largely due to the matched survey design), I considered significant effects at the p < .1
level in the analysis. I verified that the assumptions behind OLS regression were met.
Variance inflation factorswere below10 (highest value: 2.67), indicating no concernwith
multicollinearity. Residual plots were in line with the pattern of a normal distribution.
Scatter plots showed no departure from linear effects.

Table 2. Survey items

Construct Items Source

Effectiveness (α = .89) The software …
[Effect1] … meets the functional
requirementsa,

[Effect2] … meets end user
requirementsa

[Effect3] … fulfils technical
requirementsa

[Effect4] … is reliablea

[Effect5] … meets expectations with
respect to ease of usea

[47, 48]

(continued)

64 O. Krancher

Table 2. (continued)

Construct Items Source

Efficiency (α = .90) [Effic1] All services were provided on
timea

[Effic2] The services in this project
were provided exceptionally quicklya

[Effic3] We ([client]) incurred large
unplanned efforts for coordinating and
monitoring [vendor] (reverse-coded)a

[Effic4] We ([client]) incurred large
unplanned efforts for guiding [vendor]
(rev.)a

[46, 47, 49]

Continuous integration (α = .82) [CI1] Members of the development
team integrate code changes several
times a daya

[CI2] The development team has a
process that generates a build of the
software several times a daya

[CI3] The developer team is
automatically notified of any issues
related to the automated compiling,
deployment or testing of codea

[CI4] In this project, we create the
build (i.e., an executable version of the
software such as by including
configuration files and an installer) in a
fully automated way (e.g. by using a
script or code)a

[CI5] How often does the development
team deploy code during development
phases to environments to which
[client] has no access?b

[2]

Continuous analysis (α = .83) How often do you perform the
following actions:
[CA1] … Adjust requirementsb

[CA2] … Evaluate the priorities of
requirementsb

[CA3] … Set the delivery scope for a
particular periodb

[CA4] … Have software tested by
employees of [client]b

[CA5] How often does the
development team deploy code during
development phases to environments
to which [client] has access?b

Newly developed

(continued)

Agile Software Development Practices and Success in Outsourced Projects 65

Table 2. (continued)

Construct Items Source

Joint decision making (α = .76) In this project, [client] and [vendor] …
[JDM1] … set goals togethera

[JDM2] … developed task strategies
togethera

[JDM3] … diagnosed problems
togethera

[JDM4] … evaluated deliverables
togethera

[29]

Requirements risk (α = .81) This project was characterized by …
[RR1] … continually changing scope
and system requirements
[RR2] … unclear requirements
[RR3] … conflicting requirements
[RR4] … requirements not adequately
identified

[1]

a 5 point Likert scale (completely disagree, rather disagree, neutral, rather agree, fully agree)
b 7 point scale (less than once a month, once a month, several times a month but not every week,
about once a week, several times a week but not every day, about once a day, more often than once
a day)

5 Results

Table 3 shows the regression results. High R2 values ranging from .37 to .50 support
the explanatory power of the models. H1a predicted a positive relationship between
continuous integration and project success. As the results show, continuous integration
had no significant association with effectiveness (β = .18, p > .1, Model 1a) but a
significant positive association with efficiency (β=.23, p<.1, Model 1b). H1a is thus
supported for efficiency but not for effectiveness. H1b predicted a positive interaction of
this relationship with requirements risk. I found a significant positive interaction effect
for effectiveness (β = .20, p < .1, Model 2a) and an insignificant interaction effect for
efficiency (β= .02, p> .1). H1b is thus supported for effectiveness but not for efficiency.

Even though no main effects of continuous analysis were hypothesized, there was a
significant negative effect of continuous analysis (β = −.31, p < .05) on effectiveness.
H2 predicted a positive interactive effect of continuous analysis and requirements risk
on success. The results show such a positive interaction effect for effectiveness (β= .31,
p > .05) but not for efficiency. H2 is thus supported for effectiveness.

Although not hypothesized, joint decisions had a significantmain effect on efficiency
(β = .24, p< .1). H3 predicted a positive interactive effect of joint decision making and
requirements risk on success. Such a significant positive effect was found for efficiency
(β = .24, p < .1) but not for effectiveness (β = .17, p > .1).

66 O. Krancher

Table 3. Regression results

Predictor Model 1a:
Effectiveness, main
effects

Model 2a:
Effectiveness, main
and interaction
effects

Model 1b:
Efficiency, main
effects

Model 2b:
Efficiency, main
and interaction
effects

Intercept −.06 (.28) .02 (.26) −.13 (.27) −.10 (.26)

Task
interdependence

−.15 (.13) −.18 (.12) −.11 (.13) −.11 (.12)

Knowledge
specificity

−.24† (.14) −.20 (.13) −.29* (.13) −.24 (.13)

Project size .25 (.20) .03 (.20) .27 (.20) .07 (.20)

Public sector −.28 (.40) −.29 (.37) −.42 (.39) −.45 (.37)

Switzerland .43 (.38) .44 (.35) .72† (.37) .83* (.36)

Requirements
risk

−.02 (.13) .00 (.13) .04 (.13) .01 (.13)

Continuous
integration

.18 (.13) .18 (.12) .23† (.13) .23† (.12)

Continuous
analysis

−.31* (.12) −.31** (.11) −.17 (.12) −.17 (.12)

Joint decision
making

.17 (.13) .13 (.12) .24† (.13) .20 (.12)

Continuous
integration ×
requirements
risk

– .20† (.11) – .02 (.11)

Continuous
analysis ×
requirements
risk

– .31* (.13) – .19 (.13)

Joint decision
making ×
requirements
risk

– .15 (.12) – .27* (.12)

R2 .37 .50 .41 .50

Adj. R2 .26 .38 .30 .37

F 3.26** (9, 50) 3.97*** (12, 47) 3.83** (9, 50) 3.84 (12, 47)***

(† p < .1, * p < .05, ** p < .01, *** p < .001, n = 60, standard errors in parentheses, significant
numbers in bold, all variables standardized except for binary variables)

6 Discussion

This research was motivated by a lack of studies that examined how particular agile
practices affect the success of outsourced projects and how these effects depend on
requirements risk. I found a positive main effect of continuous integration on efficiency

Agile Software Development Practices and Success in Outsourced Projects 67

and a positive interactive effect of continuous integration and requirements risk on effec-
tiveness. The left-hand side of Fig. 1 illustrates this interaction effect. As the plot shows,
continuous integration contributes strongly to effectiveness when requirements risk is
high (i.e., one standard deviation above the samplemean, see the steep slope of the dashed
line) while continuous integration hardly contributes to effectiveness when requirements
risk is low (i.e., one standard deviation below the sample mean, see the relatively flat
solid line). By and large, these findings echo the expectation that teams hardly face a
trade-off when deciding for or against continuous integration practices. It appears that
the rapid feedback and automation efficiencies associated with continuous integration
make it easier for teams to deliver software on time and in budget. Moreover, when
requirements are uncertain and frequently changing, continuous integration helps teams
to develop software of highquality despite a volatile environment, as indicated by the pos-
itive interaction effect on effectiveness. These findings echo Vasilescu and colleagues’
[11] observation that continuous integration led to higher quality and productivity in
open-source software development while the findings extend the boundary conditions
of this effect to outsourced projects.

Fig. 1. Interaction plots

I found no significant effect of continuous analysis on efficiency and a significant
negative effect on effectiveness, which is dampened under high requirements risk. The
interaction plot in the center of Fig. 1 illustrates this interaction. As the plot shows,
continuous analysis has a strong negative relationship with effectiveness under low
requirements risk (see the negative slope of the solid line) and hardly any effect on
effectiveness under high requirements risk. These results indicate that, in outsourced
projects, the drawbacks from continuous analysis dominate over its benefits, in particu-
lar in projectswith lowormoderate requirements risk. It seems that continuously revising
and reprioritizing requirements based on the insights gained from testing the software
is jeopardizing the quality of the software, unless in settings where requirements are
highly uncertain. Possibly, continuous analysis results in search processes where engi-
neers spend high efforts addressing requirements that turn out not to be needed, giving
thus engineers too little time to develop the features that are needed. It might also be
that vendors opportunistically shirk efforts when continuous analysis has eroded the
accountability required for contractual governance. While these findings resonate with

68 O. Krancher

the classic finding that scope creep jeopardizes project success [31], they suggest that the
positive effects of incorporating ongoing customer learning found in other settings [13,
20, 33] need not necessarily transfer to outsourced projects, where the interface between
engineers and business people is complicated by firm boundaries. It may also be that
the negative results on continuous analysis reflect the fact that 82% of the projects were
from the public sector, an environment where public tendering procedures can make it
difficult to deviate from initial specifications [50].

I found no significant effect of joint decision making on effectiveness but a sig-
nificant positive effect on efficiency, which is even stronger when requirements risk is
high. The interaction plot on the right-hand side of Fig. 1 illustrates this interaction.
While joint decision making hardly has an effect on efficiency when requirements risk
is low, it has a strong positive effect when requirements risk is high. This suggests that
clients and vendors should make important decisions jointly in those projects where
at least moderate amounts of uncertainty is surrounding software requirements. Under
these circumstances, joint decision making may help ensure that both economic and
technical concerns are taken into account when problems or modified requirements call
for new decisions to be made. These findings are in line with the benefits from tight
customer collaboration and frequent communication found elsewhere [35–37] although
my findings also show that the benefits from joint decision making fade to the extent
that requirements become more certain. Indeed, when requirements are well known, a
more classic division of decision making where the client makes business decisions and
the vendor technical decisions can be slightly more efficient according to the results.

Importantly, although both continuous analysis and joint decision making are com-
plicated by firm boundaries in outsourcing, the results indicate that joint decisionmaking
is beneficial while continuous analysis is not. Possibly joint decision making can bet-
ter address the opportunistic threats inherent to outsourcing than continuous analysis
because it allows clients and vendors to blend their knowledge while also helping to
develop cooperative norms and giving clients control over development work without
sacrificing the accountability enabled by clear up-front requirements.

6.1 Contributions

This study makes three key contributions. First, it contributes to the discourse on agile
practices in outsourced projects. While existing work on outsourcing has provided case
study evidence [15] and developed arguments centered on geographic dispersion [14],
this paper extends existing work by providing quantitative evidence of the effects of
practices on success and by incorporating arguments of the theory-of-the-firm literature,
which focuses on opportunistic threats and knowledge barriers due to firm boundaries.
The findings reported here echo Batra’s [14] expectation that continuous integration
(or delivering working software frequently) is effective in outsourcing while continu-
ous analysis (or welcoming changing requirements) can be problematic. These findings
are also consistent with our expectation that continuous feedback processes within the
vendor team (i.e., continuous integration) are less problematic than continuous feed-
back processes that involve client and vendor (i.e., continuous analysis). Extending
Batra’s expectation that joint decision making (or business people and developers work-
ing together daily) is difficult to enact, the results show that joint decision making can

Agile Software Development Practices and Success in Outsourced Projects 69

contribute to project efficiency,making this a prime strategy for client-vendor knowledge
integration under the opportunistic threats associated with outsourcing. Taken together, a
key practical recommendation for outsourced projects is to engage in a detailed up-front
analysis akin to plan-based software development (i.e., low use of the continuous anal-
ysis practice) involving both client and vendor, while leveraging continuous feedback
during development through continuous integration practices.

Second, the paper contributes to the discourse on agile practices that involve engi-
neers and business people. While research on continuous requirements engineering has
produced important insights into how teams can best enact continuous analysis and joint
decision making [13, 15, 26], the study at hand contributes evidence of the effects of
these practices on project success, and thus implications for whether teams should rely
on these practices in a given project. Indeed, important unresolved challenges for practi-
tioners are to decide on the amount of analysis that is made up-front versus continuously
throughout a project and on the extent parties from all business and technical domains
should be involved in decision making [28]. These questions are gaining importance
as agile practices are increasingly used in enterprise-level projects where organizations
blend agile and plan-based practices to balance the needs for control and flexibility [28,
51]. Although the findings obtained here on outsourced projects need not generalize to
other settings, they point to the potential caveats of business-facing practices, in par-
ticular continuous analysis. Moreover, this paper shows a research design that allows
empirically evaluating business-facing agile practices in other settings.

Third, this study provides some empirical justification for the largely untested asser-
tion that agile methods help cope with changing requirements. The results demonstrate
that all three agile practices have more positive effects (either on effectiveness or on effi-
ciency) when requirements risk was high. This is important evidence for teams wishing
to select the practices most likely to increase the success of a project at hand.

6.2 Strengths and Limitations

The study presented here has strengths and limitations. A strength is the matched survey
design to avoid common-method bias, which is otherwise often difficult to rule out in
survey research.A drawback of this approachwas the low sample size,which implied rel-
atively low power. Another strength of the paper is the relatively high variance explained
(R2 values) due to the use of control variables (e.g. knowledge specificity) that have high
explanatory power and that have rarely been used IS project research. Yet, despite the
use of powerful control variables, the correlational research design does not allow rul-
ing out endogeneity due to self-selection of agile methods. Future research could rely
on econometric techniques to allow stronger causal inference. Another limitation is the
sample, which is characterized by a high percentage of projects from the public sector.
Future research could examine whether the findings hold in sample with more projects
from the private sector. Finally, this study examined the moderating role of requirements
risk but not of other potentially relevant factors such as geographic distance, project size
and type, the client’s agile culture, and the sourcing design (e.g. multi-sourcing [52],
plural sourcing). This remains future research.

70 O. Krancher

References

1. Keil, M., Rai, A., Liu, S.: How user risk and requirements risk moderate the effects of formal
and informal control on the process performance of IT projects. Eur. J. Inf. Syst. 22, 650–672
(2013)

2. Tripp, J.F., Riemenschneider, C., Thatcher, J.B.: Job satisfaction in agile development teams:
agile development as work redesign. J. Assoc. Inf. Syst. 17, 267 (2016)

3. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
4. Beck, K.: Embracing change with extreme programming. Computer 32, 70–77 (1999)
5. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards

explaining agile software development. J. Syst. Softw. 85, 1213–1221 (2012)
6. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda. J. Syst.

Softw. 123, 176–189 (2017)
7. Maruping, L.M., Venkatesh, V., Agarwal, R.: A control theory perspective on agile

methodology use and changing user requirements. Inf. Syst. Res. 20, 377–399 (2009)
8. Serrador, P., Pinto, J.K.: Does agile work?—A quantitative analysis of agile project success.

Int. J. Proj. Manag. 33, 1040–1051 (2015)
9. Kude, T., Mithas, S., Schmidt, C.T., Heinzl, A.: How pair programming influences team

performance: the role of backup behavior, shared mental models, and task novelty. Inf. Syst.
Res. 30, 1145–1163 (2019)

10. Recker, J., Holten, R., Hummel, M., Rosenkranz, C.: How agile practices impact customer
responsiveness and development success: a field study. Proj. Manag. J. 48, 99–121 (2017)

11. Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V.: Quality and productivity outcomes
relating to continuous integration in GitHub. Presented at the Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (2015)

12. Tripp, J.F., Armstrong, D.J.: Agile methodologies: organizational adoptionmotives, tailoring,
and performance. J. Comput. Inf. Syst. 58, 170–179 (2018)

13. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Comput. Hum. Behav.
51, 915–929 (2015)

14. Batra, D.: Modified agile practices for outsourced software projects. Commun. ACM 52,
143–148 (2009)

15. Daneva,M., et al.: Agile requirements prioritization in large-scale outsourced systemprojects:
an empirical study. J. Syst. Softw. 86, 1333–1353 (2013)

16. Walz, D.B., Elam, J.J., Curtis, B.: Inside a software design team: knowledge acquisition,
sharing, and integration. Commun. ACM 36, 63–77 (1993)

17. Tiwana, A.: Beyond the black-box: knowledge overlaps in software outsourcing. IEEE Softw.
21, 51–58 (2004)

18. Krancher, O., Dibbern, J.: Knowledge in software-maintenance outsourcing projects: beyond
integration of business and technical knowledge. Presented at the 48th Hawaii International
Conference on System Sciences (2015)

19. Krancher, O., Dibbern, J.: Learning software-maintenance tasks in offshoring projects:
a cognitive-load perspective. In: Proceedings of the 33rd International Conference on
Information Systems, pp. 1–18 (2012)

20. Krancher, O., Luther, P., Jost, M.: Key affordances of platform-as-a-service: self-organization
and continuous feedback. J. Manag. Inf. Syst. 35, 776–812 (2018)

21. Kogut, B., Zander, U.: What firms do? Coordination, identity, and learning. Organ. Sci. 7,
502–518 (1996)

22. Dibbern, J., Winkler, J., Heinzl, A.: Explaining variations in client extra costs between
software projects offshored to India. MIS Q. 32, 333–366 (2008)

Agile Software Development Practices and Success in Outsourced Projects 71

23. Williamson, O.E.: The economics of organization: the transaction cost approach. Am. J.
Sociol. 87, 548–577 (1981)

24. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Pearson Education, Boston (2010)

25. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9, 28–35 (2001)
26. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. IEEE

Softw. 25, 60–67 (2008)
27. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation.

Computer 34, 120–127 (2001)
28. Cobb, C.G.: The Project Manager’s Guide to Mastering Agile: Principles and Practices for

an Adaptive Approach. Wiley, Hoboken (2015)
29. Lin, T., Hsu, J.S., Cheng, K., Wu, S.: Understanding the role of behavioural integration in

ISD teams: an extension of transactive memory systems concept. Inf. Syst. J. 22, 211–234
(2012)

30. Gopal, A., Gosain, S.: The role of organizational controls and boundary spanning in software
development outsourcing: implications for project performance. Inf. Syst. Res. 21, 1–23
(2010)

31. Wallace, L., Keil, M., Rai, A.: How software project risk affects project performance: an
investigation of the dimensions of risk and an exploratory model. Decis. Sci. 35, 289–321
(2004)

32. Krancher, O., Luther, P.: Software development in the cloud: exploring the affordances of
platform-as-a-service. Presented at the 36rd International Conference on Information Systems
(2015)

33. Dagnino, A., Smiley, K., Srikanth, H., Antón, A.I., Williams, L.A.: Experiences in applying
agile software development practices in new product development. Presented at the IASTED
Conference on Software Engineering and Applications (2004)

34. Espinosa, J.A., Nan, N., Carmel, E.: Temporal distance, communication patterns, and task
performance in teams. J. Manag. Inf. Syst. 32, 151–191 (2015)

35. Krancher, O., Dibbern, J., Meyer, P.: How social media-enabled communication awareness
enhances project team performance. J. Assoc. Inf. Syst. 19, 813–856 (2018)

36. Strode, D.E., Huff, S.L., Hope, B., Link, S.: Coordination in co-located agile software
development projects. J. Syst. Softw. 85, 1222–1238 (2012)

37. Drury,M., Conboy,K., Power,K.:Obstacles to decisionmaking in agile software development
teams. J. Syst. Softw. 85, 1239–1254 (2012)

38. Grant, R.M.: Toward a knowledge-based theory of the firm. Strategy Manag. J. 17, 109–122
(1996)

39. Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y., Podsakoff, N.P.: Common method biases in
behavioral research: a critical review of the literature and recommended remedies. J. Appl.
Psychol. 88, 879–903 (2003)

40. MacKenzie, S.B., Podsakoff, P.M., Podsakoff, N.P.: Construct measurement and validation
procedures in MIS and behavioral research: integrating new and existing techniques. MIS Q.
35, 293–334 (2011)

41. Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables
and measurement error. J. Mark. Res. 18, 39–50 (1981)

42. Straub, D., Boudreau, M.-C., Gefen, D.: Validation guidelines for IS positivist research.
Commun. Assoc. Inf. Syst. 13, 63 (2004)

43. Henseler, J., Ringle, C.M., Sarstedt, M.: A new criterion for assessing discriminant validity
in variance-based structural equation modeling. J. Acad. Mark. Sci. 43, 115–135 (2015)

44. Goodhue, D., Lewis, W., Thompson, R.: Research note-statistical power in analyzing inter-
action effects: questioning the advantage of PLS with product indicators. Inf. Syst. Res. 18,
211–227 (2007)

72 O. Krancher

45. Langfred, C.W.: Autonomy and performance in teams: The multilevel moderating effect of
task interdependence. J. Manag. 31, 513–529 (2005)

46. Dibbern, J., Chin, W.W., Kude, T.: The sourcing of software services: knowledge specificity
and the role of trust. ACM SIGMIS Database 47, 36–57 (2016)

47. Lee, G., Xia, W.: Toward agile: an integrated analysis of quantitative and qualitative field data
on software development agility. MIS Q. 34, 87–114 (2010)

48. Liu, S.: Effects of control on the performance of information systems projects: the moderating
role of complexity risk. J. Oper. Manag. 36, 46–62 (2015)

49. Krancher, O., Kotlarsky, J., Oshri, I., Dibbern, J.: How formal governance affects multisourc-
ing success: a multi-level perspective. Presented at the Thirty Ninth International Conference
on Information System (2018)

50. Stürmer, M., Krancher, O., Myrach, T.: When the exception becomes the norm: direct awards
to IT vendors by the swiss public sector. Presented at the 10th International Conference on
Theory and Practice of Electronic Governance (2017)

51. Dingsøyr, T., Falessi, D., Power, K.: Agile development at scale: the next frontier. IEEESoftw.
36, 30–38 (2019)

52. Oshri, I., Dibbern, J., Kotlarsky, J., Krancher, O.: An information processing view on joint
vendor performance in multi-sourcing: the role of the guardian. J. Manag. Inf. Syst. 36,
1248–1283 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Agile Software Development Practices and Success in Outsourced Projects: The Moderating Role of Requirements Risk
	1 Introduction
	2 Theory Background
	2.1 Software Development as Knowledge Integration
	2.2 Agile Practices for Within-Vendor and Client-Vendor Knowledge Integration

	3 Hypotheses
	3.1 Continuous Integration
	3.2 Continuous Analysis
	3.3 Joint Decision Making

	4 Methods
	4.1 Data Collection
	4.2 Instrument Development, Validation, and Estimation

	5 Results
	6 Discussion
	6.1 Contributions
	6.2 Strengths and Limitations

	References

