
Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.editorialmanager.com/cola/default.aspx

On the semantics for spreadsheets with sheet-defined functions
Alexander Asp Bock⁎,1,a, Thomas Bøgholm1,3,b, Peter Sestoft1,2,a, Bent Thomsenb,
Lone Leth Thomsenb
a IT University of Copenhagen, Rued Langgaards Vej 7, Copenhagen S 2300, Denmark
bAalborg University, Selma Lagerlöfs Vej 300, Aalborg Ø 9220, Denmark

A R T I C L E I N F O

Keywords:
Spreadsheet
Semantics
Funcalc
Sheet-defined function
Recalculation

A B S T R A C T

We give an operational semantics for the evaluation of spreadsheets, including sheet-defined and built-in nu-
meric functions in the Funcalc spreadsheet platform. The semantics allows for different implementations and we
discuss sheet-defined functions implemented using both interpretation and run-time code generation. The se-
mantics specifies the expected result of a computation, also considering non-deterministic functions, in-
dependently of an evaluation mechanism. It can be extended to include the cost of formula evaluation for a cost
analysis e.g. for use in parallelization of computations. An interesting future direction is to investigate experi-
mentally how close our semantics is to that of major spreadsheet implementations.

1. Introduction

Every day spreadsheets are used by millions of people, ranging from
pupils doing their school hand-ins to complex financial, medical or
scientific computations. In 2017 it was estimated that there were 13–25
million spreadsheet developers worldwide [1], i.e. people developing
complex computations using spreadsheets. Yet, despite their wide-
spread use the semantics of spreadsheet computations is rather under-
developed and it is almost impossible to analyze the computational cost
of spreadsheet computations. This paper takes its outset in the seman-
tics for simple spreadsheets sketched in section 1.8 of the book
Spreadsheet Implementation Technology [2].

Inspired by Peyton Jones et al. [3] Sestoft introduced the notion of
sheet-defined functions in the Funcalc spreadsheet platform [2]. Sheet-
defined functions are user-defined functions that can be defined directly
in the cells of special function sheets using the same, familiar formula
syntax already known by end-users, thus sheet-defined functions bring
a natural abstraction mechanism to the world of spreadsheets. Funcalc
also supports the notion of array formula as found in popular spread-
sheet implementations such as Excel and OpenOffice Calc. Sheet-de-

fined functions in the Funcalc spreadsheet platform can be higher order
functions, which together with first class array formulas and a few
simple built-in functions such as map, reduce and fold, give a simple,
yet powerful way of expressing many functions that are currently
hardwired into spreadsheet platforms or have to be provided through
foreign function interfaces.

For example the built-in SUMPRODUCT function from Excel, which
takes as arguments two arrays, multiplies corresponding components in
the given arrays, and returns the sum of those products, can be ex-
pressed as a sheet-defined function sumproduct where cell B1 con-
tains the definition

= B B BDEFINE(sumproduct , 4, 2, 3)

Cells B2 and B3 are input cells and cell B4 is the output cell con-
taining the formula =SUM(MAP(CLOSURE(“BINPROD-
UCT”),B2,B3)). BINPRODUCT is a curried version of the product
operator * easily defined as

= A A ADEFINE(BINPRODUCT , 4, 2, 3)

in cell A1 and formula =A2*A3 in cell A4. The sumproduct function

https://doi.org/10.1016/j.cola.2020.100960
Received 11 November 2019; Received in revised form 18 January 2020; Accepted 23 February 2020

⁎ Corresponding author.
E-mail addresses: albo@itu.dk (A.A. Bock), boegholm@cs.aau.dk (T. Bøgholm), sestoft@itu.dk (P. Sestoft), bt@cs.aau.dk (B. Thomsen),

lone@cs.aau.dk (L.L. Thomsen).
1 Supported by the Independent Research Fund Denmark (grant number DFF-FTP-4005-00141), Popular Parallel Programming (P3) 2015–2019.
2 Supported by the Sino-Danish University Center 2015–2018, PhD scholarship for Declarative Parallel Programming and the Innovation Fund Denmark (grant

number 7076-00029B), Projection of Balances and Benefits in Life Insurance (ProBaBLI) 2018–2022.
3 Supported by IT-vest (grant number AAU-2018-59).

Journal of Computer Languages 57 (2020) 100960

Available online 07 March 2020
2590-1184/ © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/25901184
https://www.editorialmanager.com/cola/default.aspx
https://doi.org/10.1016/j.cola.2020.100960
https://doi.org/10.1016/j.cola.2020.100960
mailto:albo@itu.dk
mailto:boegholm@cs.aau.dk
mailto:sestoft@itu.dk
mailto:bt@cs.aau.dk
mailto:lone@cs.aau.dk
https://doi.org/10.1016/j.cola.2020.100960
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2020.100960&domain=pdf

and its usage is shown in Fig. 1. Also note that the built-in function SUM
could be defined from a curried version of the plus operator + and the
REDUCE function. Including SUM, Funcalc has a number of built-in
functions. In this paper, we only consider the subset of numeric built-in
functions. We briefly discuss the extension of the semantics to other
types of values such as character strings and dates.

As mentioned, sheet-defined functions in Funcalc are inspired by
Peyton-Jones et al. [3]. Other related work include [4], where a
scheme-based spreadsheet implementation is generalised, and [5],
where a Haskell interpreter can be called from Excel. In a recent paper,
[6] McCutchen et al. elaborate the idea of elastic sheet-defined func-
tions that generalises spreadsheet functions to variable sized input ar-
rays. The rationale for the design of elastic sheet-defined functions is
that it avoides the use of map, reduce, fold, and other aggregate op-
erations from classic functional programming. However, elastic sheet-
defined functions require a subtle generalization algorithm. [6] pre-
sents a correctness proof for the algorithm based on a semantics for
spreadsheets with elastic sheet-defined functions. The semantics is
given in terms of a set of recursive equations, which amount to a de-
notational semantics of formulas.

In this paper we give a simple but precise operational semantics for
the evaluation of extended spreadsheet formulas, with array formulas,
sheet-defined functions and closures, as found in the Funcalc spread-
sheet platform [2].

The purpose of this semantics is to serve as a guideline for im-
plementation work, and we discuss how the semantics has guided two
different implementations of sheet-defined functions. The semantics is
also a starting point for further work on defining cost semantics for
spreadsheet calculations which may be useful for guiding parallelisa-
tion of spreadsheet computations.

The rest of this paper is organized as follows: The evaluation se-
mantics for simple Funcalc expressions is elaborated in Section 2 and
semantics for extended spreadsheet expressions is developed
in Section 3. We discuss how the implementation of sheet-defined
functions respects important aspects of the semantics in Section 4. Fi-
nally, we present conclusions and future work in Section 5.

2. Simple spreadsheet semantics

This section describes the evaluation of simple spreadsheets without
array formulas and sheet-defined functions, and hence without array
values and closures. It is reproduced from parts of [2, Section 1.8] and

included here for background; readers familiar with the subject may
skip to Section 3.

The simplified formulas used in this section are described in Fig. 2.
One simplification is to represent a constant cell n by a constant for-
mula =n, although most spreadsheet programs would distinguish them.
Another simplification is to leave out cell area expressions ca1: ca2;
these will be introduced in Section 3.

To describe the evaluation of such formulas, we use the semantic
sets and functions defined in Fig. 3. These are sometimes called se-
mantic domains, but here they are ordinary sets and partial functions.
For instance, = +Value Number Error is the set of values, where a value
v is either a (finite, non-NaN) IEEE 854 binary floating-point number
such as 0.42 in set Number or an error such as #DIV/0! in set Error. The
set Addr contains cell addresses ca such as B2. For presentational sim-
plicity, some additional error values (such as #NAME!) and additional
kinds of values (such as strings), found in realistic spreadsheet pro-
grams, have been left out. They are easily added to the semantics stu-
died here.

To describe the formulas of a worksheet, we use a map ϕ: Addr →
Expr so that when ca ∈ Addr is a cell address, ϕ(ca) is the formula in cell
ca. If cell ca is blank, then ϕ(ca) is undefined. The domain of ϕ is

=dom ca ca() { | () is defined }, the set of cell addresses that have a
formula, that is, the set of non-blank cells. The ϕ function is not affected
by recalculation, only by editing the sheet.

The result of a recalculation is modelled by function σ: Addr →
Value, where σ(ca) is the computed value in cell ca. The σ function gets
updated by each recalculation (see Section 2.2).

2.1. Semantics of formula evaluation

The semantics for formulas is given as a natural semantics [7], a
variant of operational semantics [8], using inference rules that involve
big-step evaluation judgments. An evaluation judgment has the form
σ⊢e⇓v, which says: When σ describes the calculated values of all cells,
then formula e may evaluate to value v. Note that v may be a number
value or an error value.

Fig. 1. Definition and usage of the sumproduct sheet-defined function.

Fig. 2. Syntax of the simplified formula language.

Fig. 3. Sets and maps used in the spreadsheet semantics: Number is the set of
proper IEEE 854 binary floating-point numbers, excluding NaNs and infinities;
Error is the set of error values; Addr the set of cell addresses, each a pair (c, r) of
column and row number; Value the set of values (either number or error); and
Expr the set of formulas.

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

2

To understand inference rules, consider this rule:

…
e v Error

e e v
e e

F(, ,)
(5)i i

n i1

This inference rule consists of a premise above the line and a conclusion
below the line. The conclusion concerns the value of a function call
expression …e eF(, ,),n1 and the premise concerns the value of one of the
call’s argument expressions ei. The rule can be read as follows: If there is
some argument expression ei that may evaluate to an error value vi, then
the function call may evaluate to the error value vi also. That is, the rule
describes the propagation of errors from argument to result in a func-
tion call. If multiple arguments ei and ej may evaluate to different error
values vi and vj, then the rule does not specify which error will be
propagated to the call’s result.

For another example, consider this rule, also for a function call
…e eF(, ,)n1 with n arguments:

…
… …

e v Error e v Error
e e f v v

e v
F(, ,) (, ,)

(5)n n

n n

1 1

1 1

This rule has n premises and can be read as follows: If all argument
expressions …e e, , n1 may evaluate to non-error values …v v, , ,n1 then the
value of the function call is obtained by applying the actual function f to
these values, as in …f v v(, ,)n1 .

The “may” is important because, in general, an expression may
evaluate to multiple different values. For instance, RAND() may eval-
uate to any number between 0.0 (included) and 1.0 (excluded). Hence,
7+1/RAND()may evaluate to some number greater than +7 1 or to the
error #DIV/0! in case RAND() produces 0.0.

The complete set of inference rules that describe when a formula
evaluation judgment σ⊢e⇓v holds is given in Fig. 4. Note that there are
five groups of rules (e1), (e2x), (e3x), (4), (e5x), each corresponding to
one of the five kinds of formulas in Fig. 2. Also, the formula fragments
that appear in the premises are always smaller than the formula that
appears in the conclusion. Hence, one can make a conclusion about a
given formula through a finite number of rule applications.

The formula evaluation rules in Fig. 4 may be explained as follows:
Rule (e1) says that a number constant n evaluates to that constant’s

value.
Rule (e2b) says that a reference ca to a blank cell, that is, one for

which σ(ca) is not defined, gives value 0.0.
Rule (e2v) says that a reference ca to a non-blank cell evaluates to

the value σ(ca) calculated for that cell. This value may be a number or
an error.

Rule (e3e) says that the expression e e eIF(, ,)1 2 3 may evaluate to
error v1 if the condition e1 may evaluate to error v1.

Rule (e3f) says that e e eIF(, ,)1 2 3 may evaluate to value v provided
the condition e1 may evaluate to the non-error number zero and the
“false branch” e3 may evaluate to v.

Rule (e3t) says that e e eIF(, ,)1 2 3 may evaluate to value v provided
the condition e1 may evaluate to some non-error non-zero number v1
and the “true branch” e2 may evaluate to v. Since Funcalc does not have
a boolean type, floating-point numbers are used instead, where 0.0 is
considered false and any number different from 0.0 is considered true.
Note that although in numeric software it is bad practice to compare
floating-point numbers for equality, an IEEE floating-point number ei-
ther is or is not equal to zero, so semantically the comparison v 0.01 is
unproblematic.

Rule (e4) says that function call RAND() may evaluate to any (non-
error) number v greater than or equal to zero and less than one. Hence,
this rule models nondeterministic choice. It permits a formula involving
RAND() to produce a different result on each evaluation. However, it
does not require RAND() to produce a different number every time it is
called. Such a requirement would not make sense; by definition, a
random number generator is permitted to return whatever result it
wants. So according to this operational semantics, RAND() might
consistently return 0.42 whenever it is called, although that would be

rather disappointing and useless.
Rule (e5e) says that a call …e eF(, ,)n1 to a built-in function F may

evaluate to error vi if one of its arguments ei may evaluate to error vi.
Note that if more than one argument may evaluate to an error, then the
function call may evaluate to any of these. Hence, the semantics does
not prescribe an evaluation order for arguments, such as a left to right
or right to left.

Rule (e5v) says that a call …e eF(, ,)n1 to a function Fmay evaluate to
value v if each argument ei may evaluate to non-error value vi, and
applying the actual function f to arguments …v v(, ,)n1 produces value v.
The final result v may be a number such as 5, for instance, if the call is
+ (,)2 3 ; or it may be an error such as #DIV/0!, for instance, if the call
is /(1.0, 0.0).

2.2. Semantics of simple recalculation

Now that we know how to evaluate a formula, given values of all
cells in the worksheet, we can describe the semantics of a recalculation.
A recalculation must find a value for every non-blank cell ca in the
sheet, and that value σ(ca) must agree with the formula ϕ(ca) held in
that cell. These are the central consistency requirements on a re-
calculation, formally described in Fig. 5. These requirements leave it
completely unspecified how the recalculation works, whether it re-
calculates all or only some cells, whether it does so sequentially or in
parallel, whether it guesses the values or computes them, and so on.
This underspecification is essential to permit a range of implementation
strategies and optimizations.

3. Funcalc semantics

In this section, we extend the simple spreadsheet semantics
from Section 2. We first extend the expressions and semantic sets to
account for array formulas and sheet-defined functions. We then discuss
the modelling of array formulas, which is slightly more general than
strictly necessary. With array formulas in the expression language, we
need to extend the semantics for ordinary data sheets. This turns out to
be a smooth extension where “old” rules just pass around an additional
semantic environment for array expressions. We then extend the se-
mantics to account for function sheets, special sheets where one can
define sheet-defined functions directly in the spreadsheet paradigm,
and round of the section with a discussion of the rules for calling sheet-
defined functions, as these rules are some of the more unusual aspects
of this semantics.

3.1. Extended expressions and semantic sets

The simple spreadsheet semantics from Section 2 must be expanded
in two orthogonal directions: to account for array formulas and to ac-
count for sheet-defined functions. This requires extension to the for-
mula expression language, shown in Fig. 6, and to the set of values and
semantic maps, shown in Fig. 7.

A cell area reference ca1: ca2 refers to a block of cells spanned by the
two opposing “corner” cells ca1 and ca2. In Funcalc, a cell area reference
can refer to an ordinary sheet only, not to a function sheet.

An array formula is here modelled as an underlying formula ae
which is itself just an expression, expected to evaluate to an array value,
that is, an array of values. That array value’s components are dis-
tributed over a target cell area, with one such component in each cell.
This is explained in more detail in Section 3.2.

We model a closure as a partial application, that is, a named sheet-
defined function sdf with a prefix …u u[, ,]k1 of its argument values
given, where 0 ≤ k ≤ arity(sdf); see Fig. 7. A closure is created by
CLOSURE from a sheet-defined function sdf by giving it values for some
or all of its arguments. A partially applied closure e0 may be given
further arguments, as in currying, also using CLOSURE. An APPLY call
of a closure e0 must provide all the remaining n arguments, where

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

3

+ =k n arity sdf(), and will call the underlying sheet-defined function.
While the extended semantics has a richer set of values, as shown

in Fig. 7, we still only consider two kinds of base values: floating-point
numbers and error values. We could additionally consider other base
values, such as character strings. However, in some spreadsheet im-
plementations, these have highly idiosyncratic implicit conversions. For
instance, in Excel, ”abc”+45 evaluates to an error, whereas ”123”+45
evaluates to the number 168. So does SUM(”123”,45), but SUM
(A1:A2) evaluates to 45 when cell A1 contains ”123” and A2 contains

45. So in numeric addition, a character string either produces an error,
or is converted to a number, or is ignored. Whereas general spreadsheet
behaviour seems rational and elegant, this appears to call for rather ad
hoc and inelegant rules. For this reason, and because character strings
and other base values pose no new problems and their inclusion in the
semantics provides no new insights, we ignore them here. Moreover,
note that in most spreadsheet implementations, a truth value such as
FALSE, or a date such as 2019-12-29, are just fancily formatted
numbers.

In the simple semantics for formula evaluation on ordinary sheets,
the recalculation consistency requirements could be stated in terms of
the formula ϕ(ca) in a given cell and its post-recalculation value σ(ca).

To account for array formulas, we need the post-recalculation value
α(ae) of each underlying (presumably array-valued) expression ae. This
underlying value will be shared by all the array formula’s components,
see rule (e7) in Fig. 11. In Funcalc, array formulas are allowed on or-
dinary sheets only, not on function sheets.

To further account for a call to a sheet-defined function, we need the
value ρ(ca) of the function sheet cells ca used during the call of the
function. Each call, also each recursive call, has its own fresh ρ map,
and the map is ephemeral: there is no way to refer to a function sheet
cell value after the function has returned. Hence ρ is similar to a stack
frame in ordinary programming language implementation.

Note that α is not needed when evaluating a sheet-defined function,
because function sheets cannot contain array formulas. Also, ρ is not
needed when evaluating cells on an ordinary sheet, because there is no
way to refer to a function sheet cell value after the function has re-
turned. The revised post-recalculation consistency requirements are
shown in Fig. 8.

3.2. Modelling array formulas

An array formula is an expression, such as transpose(e2:g3),
whose result is an array value and where the components of this array
value are spread over a target cell area, such as B2:C4. This situation is
shown in Fig. 9 where the target cell area has been marked and the
formula has been written into cell B2; the array formula is then usually
created by pressing a key combination such as Ctrl+Shift+Enter in
Excel. The effect of doing so is shown in Fig. 10 where the target cells
B2:C4 contain the transpose of the values in E2:G3.

Editing any cell in the range E2:G3 would cause the array expression
to be recalculated and the values in B2:C4 to be updated. The under-
lying array expression is evaluated at most once in each recalculation.

In the extended spreadsheet expressions of Funcalc, we model the
individual cells belonging to an array formula by the syntax ae[i, j] that
suggests indexing into the value of the underlying array expression ae.
In the index (i, j) the i and j are constants, with i ranging over columns
and j over rows, both one-based. For instance, cell B2 in Figs. 9 and 10

Fig. 4. Evaluation rules for simplified spreadsheet formulas.

Fig. 5. The consistency requirements on recalculation for simple formulas.
Requirement (1) says that a recalculation must find a value σ(ca), possibly an
error, for every non-blank cell ca. Requirement (2) says that the computed
value σ(ca) must agree with the cell’s formula ϕ(ca).

Fig. 6. Syntax of the Funcalc extended formula language, with five additional syntactic constructs: a cell area reference, an access to component (i, j) of an array
formula ae, a call of a sheet-defined function, creation of a closure from a sheet-defined function sdf, and call of a closure e0.

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

4

would contain the expression ae[1, 1] where ae is the underlying array
expression transpose(e2:g3), cell B3 would contain ae[1, 2], cell
C2 would contain ae[2, 1], and so on. Indexing into an error value
produces that error value itself, so we need no separate “error version”
of rule (e7) in Fig. 11.

The syntax in Fig. 6 allows an array formula component ae[i, j] to
appear anywhere an expression can, also nested inside another ex-
pression. This is overly general, since ae[i, j] need appear only at top
level in a cell formula, not in nested expressions. We could enforce this
restriction by introducing an additional syntactic category of cell which
can be an expression e or an array formula component ae[i, j], and
remove the latter from the syntactic category of expressions. This would
also be in better agreement with the implementation of Funcalc.
However, since the excess generality is harmless, and getting rid of it
would lead to additional largely administrative rules without semantic
significance, we stick to the simple but slightly too permissive syntax
in Fig. 6.

3.3. Extended semantics for ordinary sheets

An evaluation judgment in the extended semantics for ordinary
formula evaluation has the form σ, α⊢e⇓v. It says that when σ describes
the calculated values of all cells and α describes the values of all array
expressions underlying array formulas, then formula e may evaluate to
value v, where v may be a number value, an error value, an array value
or a closure value.

The rules defining the judgment σ, α⊢e⇓v are shown in Fig. 11. They
are a smooth extension of those in Fig. 4. The “old” rules (e1) through
(e5v) have been extended to also pass around the α array expression
map. The six new rules (e6), (e7), (e8), (e9), (e10), and (e11) account for
cell area references, array formulas, calls to sheet-defined functions,
closure creation, and closure calls. They correspond exactly to the six
new syntactic constructs in Fig. 6.

In Fig. 11, the new rule (e6) says that a cell area reference ca1: ca2
evaluates to an array value ArrVal(w, h, [[vij]]) with w columns, h rows,
and w · h values vij obtained from the cell value map σ. Here, we assume
we can look up values in σ using indices. The utility function sort(x, y)
returns the pair of the least and greatest of x and y, so that cl and cr are
the leftmost and rightmost column indexes, and rt and rb are the top and
bottom row indexes, of the cell area ca1: ca2. This is necessary because
it is legal to enter a cell area reference such as B1:A2, thereby giving the
cell area’s upper right (B1) and lower left (A2) corners, that should be
“normalized” to A1:B2 which gives the cell area’s upper left and lower
right corners instead, for proper calculation of width and height.

Rule (e7) says that component (i, j) of an array formula is found by
looking up the value =av ae() of the underlying array expression and
then indexing into that value by av[i, j], where such indexing must
produce an error value if av is not an array value or does not have a
component (i, j). Note that in the judgment left-hand side, the indexing
notation is syntactic, and in the right-hand side it is semantic.

Rule (e8) describes how to call a sheet-defined function sdf that has
output cell address out, that has input cell addresses …in in[, ,],n1 and
that is defined using only cells at addresses cells (excluding the input
cells but including the output cell) on a separate function sheet. We
assume that the cells defining sdf are given by

= … +def sdf out in in cells() (, [, ,],),k n1 and that all these cells are in dom
(ϕ) — that is, ϕ describes also the formulas of the function sheet on
which sdf is defined.

The evaluation of a call to a sheet-defined function sdf proceeds as
follows. First evaluate the call’s argument expressions to values …v v, , ,n1
then postulate a fresh environment ρ′ in which the called function’s
input cells …in in[, ,]n1 have these values and all other cells used by the
function have consistent values. Then the function call’s value is the
value ρ′(out) of the function’s output cell. Judgments of the form ρ′,
σ⊢e⇓v are defined in Fig. 12 below. For a discussion of the function call
semantics, and an example, see Section 3.5.1.

It is natural to expect the new ρ′ environment to be defined for all
the sheet-defined function’s cells, as in = …dom in in cells() { , , } ,n1 but
actually it suffices for dom(ρ′) to be the set of cells needed to compute
the value of the output cell out.

The expression language is call-by-value, and a call to a sheet-de-
fined function is strict in the sense that every argument is evaluated
before the function is called, regardless of whether the function’s body
actually refers to the argument’s value.

A call to a sheet-defined function is not error-strict: the function is
called even though some argument ei evaluates to an error value. Hence

Fig. 7. Sets and maps used in the Funcalc extended spreadsheet seman-
tics. There are the following differences relative to Fig. 3: av ∈ ArrVal is an
array value with w× h component values vij and fv ∈ FunVal is a function
value (closure) consisting of a function name sdf and 0 ≤ k ≤ arity(sdf)
given argument values ui. In this extended semantics, v ∈ Value is either a
number or error or array value or function value. Array values are needed
because of cell area expressions ca1: ca2, and function values because of
CLOSURE expressions. There are new semantic maps: α maps an array
expression ae to its value, and ρ maps a function sheet cell address to its
value.

Fig. 8. The consistency requirements on recalculation with array formulas and
sheet-defined functions. The requirement (2) is extended with α to account for
array formulas. The new requirement (3) says that a recalculation must find a
single value α(ae) for each array expression ae underlying an array formula; this
value will be used in all components of the array formula via applications of (2).

Fig. 9. Entering an array formula with target cell
area B2:C4.

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

5

the argument evaluation premises are simpler than in rule (e5v) for
calling built-in functions, and there is no error-case rule (e8e) corre-
sponding to rule (e5e). Naturally, the same holds for constructing or
calling a closure in rules (e9), (e10) and (e11).

Rule (e9) says that to evaluate a closure creation expression, eval-
uate the k given arguments and create a function value consisting of the
function name sdf and the k resulting values, whether errors or proper
values.

Rule (e10) says that to further apply a partially applied closure,
evaluate e0 to a closure containing k already given arguments, then
evaluate the n further arguments, and create a new closure containing
the +k n arity sdf() argument values given so far.

Rule (e11) says that to evaluate a call to closure
…FunVal sdf u u(, [, ,]),k1 evaluate the n given arguments, then proceed to

call the sheet-defined function sdf on its +k n arguments in the same
manner as described in rule (e8).

3.4. Extended semantics for function sheets

An evaluation judgment in the semantics for sheet-defined functions
has the form ρ, σ⊢e⇓v. It says that when ρ describes the calculated va-
lues of all cells on the function sheet defining the function and σ de-
scribes the calculated values of all cells on ordinary sheets, then for-
mula e may evaluate to value v, where v may be a number value, an
error value, an array value or a closure value.

The rules defining the judgment ρ, σ⊢e⇓v are shown in Fig. 12. They
are intentionally very similar to those for evaluation of ordinary (ex-
tended) spreadsheet formulas shown in Fig. 11 — after all, the whole
point of sheet-defined functions is that they should be familiar to
spreadsheet users.

However, there is an additional rule (f2f) for lookup of a cell address
on a function sheet; rule (f6) requires a cell area reference to refer to an
ordinary worksheet, not a function sheet; and there is no rule (f7) for
array formulas, which are not allowed in function sheets.

Fig. 10. The six cells in target cell area B2:C4 each
contain one component of the result of the under-
lying array expression transpose(e2:g3).

Fig. 11. Evaluation rules for Funcalc extended spreadsheet formulas.

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

6

3.5. Discussion

3.5.1. Calling a sheet-defined function
The rules (e8) and (f8) for calls to sheet-defined functions, and the

corresponding closure call rules (e11) and (f11), are some of the more
unusual aspects of this semantics. The core idea in these rules is that a
fresh environment ρ′ is postulated for evaluation of the called function
sdf. Informally, this corresponds to (A) the creation of a fresh copy of
the function sheet on which sdf is defined, and also to (B) the creation of
a new stack frame to hold the function’s arguments and local variables.
Explanation (A) is what a Funcalc spreadsheet user should have in
mind, and (B) is what the Funcalc implementation actually does.
Without loss of generality we can assume that each sheet-defined
function is defined in its own sheet, and only the cells used in the de-
finition of sdf need be recalculated.

There is nothing mysterious or unusual about the “freshness” of ρ′.
Formally, ρ′ is no different from v in rule (e4): it is just a variable re-
presenting some value (here an environment) that must satisfy the
premises.

In explanation (A), the fresh sheet copy ρ′ is used as follows: fill the
input cells …in in[, ,]n1 with the values of the evaluated arguments; re-
calculate the sheet as usual for spreadsheets; return the output cell’s
value as the result of the call; and discard the sheet copy. These steps
are faithfully reflected in rules (e8) and (f8), with the “recalculate as
usual” step expressed by the last premise

…ca dom in in ca ca() { , , }. , () ()n1

This premise is meant to reflect the standard spreadsheet consistency
requirement (2) in Figs. 5 and 8 but for the temporary function sheet’s
cell values in ρ′ instead of an ordinary sheet’s cell values in σ.

Consider the simple sheet-defined function F in Fig. 13, with input
cells B2 and B3, intermediate cell B4 containing the formula =IF(RAND
()<0.5, B2, B3) and output cell B5 containing the formula =B4+B4.

The set cells of cells making up the function’s body is {B4, B5}. To
evaluate a call F(1,5) to this function, the semantics will create a fresh
environment ρ′ that must have =(B2) 1 and =(B3) 5. Now we can
additionally have either =(B4) 1 and so =(B5) 2, or =(B4) 5 and
so =(B5) 10; these are the only two possibilities according to the
semantics. Hence the call F(1,5) must return 2 or 10. It cannot return

+ =1 5 6 because both occurrences of B4 in =B4+B4 must have the
same value ρ′(B4).

Note that the universal quantification …ca dom () in the last
premise of rules (e8), (f8), (e11) and (f11) ranges over a finite set: the
cells used to define function sdf. Hence in any concrete application of
these rules, the quantifier gives rise to only a finite number of proof
subtrees.

A call from a sheet-defined function to another one, or indeed a
recursive call to the function itself, is handled naturally by rules (f8)
and (f11) through postulating a new fresh environment ρ′ for the called
function, distinct from the calling function’s ρ. In terms of explanation

Fig. 11. (continued)

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

7

(A) given above, a fresh copy of the defining function sheet is created
for each recursive call; and in terms of (B), a fresh stack frame is allo-
cated for each recursive call. Also, all these sheet copies, or stack
frames, coexist until the function calls return. (However, as a semantics-
preserving optimization, the actual Funcalc implementation may deal-
locate the old stack frame early in case of a tail call).

Infinite recursion in a sheet-defined function is reflected in the op-
erational semantics by an attempt to build an infinitely deep derivation
tree, through an infinite number of applications of rules (f8) or (f11).
Obviously this is not possible, so no value can be derived for an infinite
recursive call, not even an error value. Note that this is different from
the meaning of a cyclic dependency in an ordinary spreadsheet, for
which an error value could be derived (by the semantics and the im-
plementation): just put =ca() #CYCLE! ∈ Error for all the cells ca
cyclically dependent on each other.

3.5.2. Appropriateness of the semantics
The formal semantics presented here attempts to specify in a precise

manner what results should be expected from recalculation in a
spreadsheet implementation conforming to our semantics, in the pre-
sence of volatile (non-deterministic) functions, and without assuming
anything about the evaluation order or implementation mechanism:
sequential, left-to-right, right-to-left, parallel, speculative, caching, and

so on. Given that major spreadsheet implementations (Microsoft Excel,
LibreOffice Calc, Gnumeric, Google Sheets) do not explicitly describe
their expected behaviour, it is impossible to prove that our semantics is
the one intended by these implementations.

Nevertheless, we believe that our semantics accurately reflects the
general expectation that after a recalculation, and in the absence of
cyclic dependencies, the values exhibited by all cells in a spreadsheet
are consistent with each other. We have then conservatively extra-
polated this expectation to cover also Funcalc’s sheet-defined functions,
requiring that a sheet-defined function must behave as if evaluated on a
fresh copy of the sheet defining it; hence the fresh ρ′ in rules (e8), (e11),
(f8) and (f11) above.

It is also our belief that in most circumstances, and in the absence of
cyclic dependencies, the major spreadsheet implementations agree with
the semantics given here. One known exception is caused by the so-
called Data Table feature in Excel, where table entries are not re-
calculated correctly (that is, are left inconsistent) when the “inputs”
(row or column margins) of one data table depend on a result computed
by another data table [2, Page 145]. Presumably this unusual scenario
was never intended to work, and LibreOffice Calc explicitly forbids it.

In the presence of a cyclic dependency, all known spreadsheet im-
plementations will stop recalculation at some point, leave the spread-
sheet in a possibly inconsistent state (violating the conditions in Figs. 5

Fig. 12. Evaluation rules for Funcalc sheet-defined functions.

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

8

and 8), display an error message, and indicate one or more cells in-
volved in the cyclic dependency. This is somewhat weaker than our
semantics, which would require the implementation to mark all in-
volved cells (and those transitively dependent on them) with an error
value such as #CYCLE!. Arguably, the behaviour of the major spread-
sheet implementations is more than adequate, since knowing one cell
on a cycle allows the user to debug and remove the cyclic dependency.

4. Implementation of the semantics

In this section, we briefly discuss a few aspects of how two im-
plementations of Funcalc ensure that code adheres to the semantics.

Cells in Funcalc are evaluated by an interpreter and so follow the
semantics closely.

Perhaps more interestingly, sheet-defined functions, in the standard
implementation of Funcalc, are automatically compiled to Common
Intermediate Language (CIL) bytecode. The intermediate and output

cells in any sheet-defined function must produce the same value as in
Fig. 13, where specifically the two references to cell B4 in the output
cell B5 must both produce the same value. This is in accordance with
rules (e8) and (f8) for sheet-defined function application and rules (e11)
and (f11) for closure calls, whose bottom-most premise of each rule
states that for each intermediate cell and output cell ca, we must find a
value ρ′(ca) for the expression ϕ(ca) in that cell.

To abide by this semantic criterion, the compiler analyses the de-
pendency graph of the sheet-defined function and records the number
of references to its cells. If there is more than one reference, it emits
code to store the result of the cell in a local variable, thus returning the
same value each time it is used. Otherwise, if the cell is referenced only
once, its formula is inlined at its unique occurrence in the generated
bytecode.

In an extended version of Funcalc, a cost evaluator has been im-
plemented [9]. The cost evaluator extends the interpreter for cell eva-
luation to sheet-defined functions.

The interpreter directly interprets the cells of a sheet-defined
function by evaluating the output cell of a sheet-defined function and
following dependencies back to its input cells. This requires proper
abstraction of ρ: Addr → Value, the local cell environment or stack
frame of a sheet-defined function as described in Section 3.4, in order to
handle both recursive sheet-defined functions and normal function
calls.

To implement ρ, we could directly modify the input cells of the
sheet-defined function on each call. However, this would temporarily
modify cells in the spreadsheet which could easily lead to incon-
sistencies. Instead, we keep track of an internal, local environment lenv:

Fig. 12. (continued)

Fig. 13. Sheet-defined function F with input cells B2 and B3, output cell B5,
and an intermediate cell B4.

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

9

Addr → Value that mimics ρ. When a sheet-defined function is called,
we create and push a new local environment onto an internal stack and
store the sheet-defined function’s parameters in it by mapping the ad-
dresses of the input cells to their respective parameter values. This
mimics the semantic rule for application (see (e8)) where the input
parameters for the current function call are stored in ρ′ i.e.

= … =in v in v() ()n n1 1 . Upon invoking a recursive function call, we
create and push a new local environment with the new parameters.
When the recursive call returns, we pop the top-most local environment
from the stack. Therefore, lenv behaves exactly like a stack frame fol-
lowing the intuition in Section 3.5.1. We still need one last detail for the
local environment to work. Evaluation of a cell reference is modified to
first look in the top-most local environment, if any, before examining
the cells of the actual sheets. Thus when we do computation in re-
cursive sheet-defined functions and need to evaluate an input para-
meter, we first look in the local environment and not in the actual
spreadsheet.

We refer to [2] for the full details of the compiler and to our tech-
nical report [9] for more details on the relationship between the se-
mantics and the implementation.

5. Conclusion and future work

In this paper we have presented a simple but precise operational
semantics for the evaluation of extended spreadsheet formulas, with
array formulas, sheet-defined functions and closures, as found in the
Funcalc spreadsheet platform [2].

The evaluation semantics for simple Funcalc expressions was ela-
borated in Section 2 and semantics for extended spreadsheet expres-
sions was developed in Section 3.

The semantics has served as a guideline for implementations and we
have discussed two very different implementations; one based on run-
time code generation and one based on interpretation. The latter forms
the basis for an implementation of a cost evaluator, which can be used
as a guide for load-balancing parallel computations in spreadsheets, e.g.
via task partitioning for execution on multi-core CPUs [10] or off-
loading work to GPGPUs [11].

Given that major spreadsheet implementations (Microsoft Excel,
LibreOffice Calc, Gnumeric, Google Sheets) do not explicitly describe
their expected behaviour, it is impossible to prove that our semantics is
the one intended by these implementations. It would, however, be an
interesting future direction to experimentally verify if and how the
semantic rules reflect such implementations and perhaps define alter-
native semantic rules for implementations that differ. Such rules could
serve as inspiration for future updates from spreadsheet vendors or
even serve as input for standardization efforts similar to the work on the
C programming language [12]. Clearly for such work it would be ne-
cessary to extend the semantics to other types of values such as char-
acter strings and dates as discussed in Section 3.1.

Finally, one could imagine various tools, based in the formal se-
mantics, for analyzing or verifying various aspects of spreadsheets.
Verifying the correctness of a spreadsheet program may not seem such a
big deal, but according to [13] it is generally accepted that nine out of
every ten spreadsheets suffer some error. Bewig [13] reports on several
cases where huge financial losses have been encountered due to in-
correctness of spreadsheet programs. Thus based on the semantics
presented in this paper, one could imagine a tool that could formally
verify the correctness of the spreadsheet program.

Declaration of Competing Interests

The authors declare the following financial interests/personal

relationships which may be considered as potential competing interests:
Peter Sestoft: Independent consultant at Microsoft Research

Cambridge UK, Sep-Dec 2001.
Alexander Asp Bock: Previous employment as a research intern at

Microsoft Research Cambridge (MSRC) for three months in 2017. The
work conducted there is protected by a non-disclosure agreement.

The other authors declare that they have no known competing fi-
nancial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Alexander Asp Bock: Conceptualization, Software, Writing - ori-
ginal draft, Writing - review & editing, Visualization. Thomas
Bøgholm: Conceptualization, Software, Writing - review & editing.
Peter Sestoft: Conceptualization, Formal analysis, Funding acquisition,
Investigation, Methodology, Project administration, Resources,
Supervision, Validation, Writing - original draft. Bent Thomsen:
Formal analysis, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Supervision, Writing - review &
editing. Lone Leth Thomsen: Formal analysis, Investigation,
Methodology, Supervision, Writing - review & editing.

References

[1] C. Scaffidi, Counts and earnings of end-user developers, 2017, https://www.
linkedin.com/pulse/counts-earnings-end-user-developers-chris-scaffidi?
published=t, (accessed 19 October 2017).

[2] P. Sestoft, Spreadsheet Implementation Technology, The MIT Press, 2014.
[3] S. Peyton-Jones, A. Blackwell, M. Burnett, A user-centred approach to functions in

excel, Proceedings of the Eighth ACM SIGPLAN International Conference on
Functional Program, (2003), pp. 165–176. http://doi.acm.org/10.1145/944705.
944721

[4] F. Nuñez, An extended spreadsheet paradigm for data visualisation systems, and its
implementation, University of Cape Town, 2000 Ph.D. thesis.

[5] D. Wakeling, Spreadsheet functional programming, J. of Functional Program. 17
(2007) 131–143. https://doi.org/10.1017/S0956796806006186

[6] M. McCutchen, J. Borghouts, A. Gordon, S. Peyton-Jones, A. Sarkar, Elastic sheet-
defined functions: generalising spreadsheet functions to variable-size input arrays,
In submission (2019).

[7] G. Kahn, Natural Semantics, in: F.J. Brandenburg, G. Vidal-Naquet, M. Wirsing
(Eds.), Proceedings of the Annul Symposium on Theoretical Aspects of Computer
Science, Springer-Verlag, 1987. 22–39

[8] H.R. Nielson, F. Nielson, Semantics with applications, An Appetizer, Springer-
Verlag, 2007.

[9] A.A. Bock, T. Bøgholm, P. Sestoft, B. Thomsen, L.L. Thomsen, Concrete and abstract
cost semantics for spreadsheets, IT University of Copenhagen and AAlborg
University, Denmark, 2018 Technical report tr-2018-203.

[10] T. Bøgholm, K.G. Larsen, M. Muniz, B. Thomsen, L.L. Thomsen, Analyzing
spreadsheets for parallel execution via model checking, Lect. Notes Comput. Sci.
11200 (2018).

[11] J. Trudeau, Collaboration and open source at AMD: Libreoffice, https://developer.
amd.com/collaboration-and-open-source-at-amd-libreoffice/, 2015 (accessed 31
July 2015).

[12] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R.N.M. Watson,
P. Sewell, Into the depths of c: elaborating the de facto standards, ACM SIGPLAN
Notices 51 (2016) 1–15.

[13] P.L. Bewig, How do you know your spreadsheet is right?, 2013, arXiv:1301.5878.

Alexander Asp Bock started his academic career as a Ph.D. student for Peter Sestoft as
part of the Popular Parallel Programming (P3) project at the IT University of Copenhagen.
His primary focus was on developing parallel evaluation strategies for accelerating
spreadsheet computation for end-users. The work was implemented in the Funcalc re-
search spreadsheet application. Later, he was a Postdoc working on further optimisations
for Funcalc.

Thomas Bøgholm is an associate professor at the department of computer science at
Aalborg University. His research interests include programming languages and program
analysis in the areas of parallel programming and real-time embedded and safety critical
systems, and works with object oriented program analysis and computational thinking.

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

10

https://www.linkedin.com/pulse/counts-earnings-end-user-developers-chris-scaffidi?published=t
https://www.linkedin.com/pulse/counts-earnings-end-user-developers-chris-scaffidi?published=t
https://www.linkedin.com/pulse/counts-earnings-end-user-developers-chris-scaffidi?published=t
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0001
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0002
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0002
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0002
http://doi.acm.org/10.1145/944705.944721
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0003
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0003
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0004
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0004
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0005
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0005
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0005
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0006
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0007
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0008
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0009
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0009
https://developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/
https://developer.amd.com/collaboration-and-open-source-at-amd-libreoffice/
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0010
http://refhub.elsevier.com/S2590-1184(20)30020-4/sbref0010
http://arxiv.org/abs/1301.5878

Thomas has an M.Sc., cum laude, in Software Engineering, and a Ph.D. in computer
science, from Aalborg University, Denmark.

Peter Sestoft is professor and head of the Computer Science Department at the IT
University of Copenhagen. He works mainly with programming language technology,
including functional, object-oriented and parallel programming languages, their use,
implementation and optimization. He is a co-author, with Jones and Gomard, of the
standard reference on partial evaluation (1993), and author of five other books, most
recently Programming Language Concepts 2nd edition, Springer 2017.

Bent Thomsen is a Professor (MSO) in the department of computer science at Aalborg
University, Denmark. His research is in programming languages and programming
technology with applications in parallel, concurrent, distributed, mobile, embedded and
data processing systems. He was Principal Researcher at ICL, UK and team-leader for the

Facile Programming Language team at ECRC in Munich, Germany. Bent is a Chartered
Engineer and a European Engineer (Eur Ing). He is a fellow of the British Computer
Society. Bent has an M.Sc. in computer science from Aalborg University, Denmark, a
Ph.D. and DIC from Imperial College, London University, UK.

Lone Leth Thomsen is an Associate Professor and study board chairman in the depart-
ment of computer science at Aalborg University, Denmark. Her research interests include
functional concurrent programming, web and IoT, parallelization of spreadsheets and
future programming technology. She was Principal Researcher at ICL, UK and team-
member in the Facile Programming Language team at ECRC, Germany. Lone is a
Chartered Engineer and European Engineer (Eur Ing). She is a fellow of the British
Computer Society. Lone has an M.Sc. in Software Engineering and Computing Systems
from Aalborg University, Denmark, a Ph.D. and DIC from Imperial College, London
University, UK.

A.A. Bock, et al. Journal of Computer Languages 57 (2020) 100960

11

	On the semantics for spreadsheets with sheet-defined functions
	Introduction
	Simple spreadsheet semantics
	Semantics of formula evaluation
	Semantics of simple recalculation

	Funcalc semantics
	Extended expressions and semantic sets
	Modelling array formulas
	Extended semantics for ordinary sheets
	Extended semantics for function sheets
	Discussion
	Calling a sheet-defined function
	Appropriateness of the semantics

	Implementation of the semantics
	Conclusion and future work
	Declaration of Competing Interests
	CRediT authorship contribution statement
	References

