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Abstract: Model-based trajectory tracking has become a widely used technique for automated driving
system applications. A critical design decision is the proper selection of a vehicle model that achieves
the best trade-off between real-time capability and robustness. Blending different types of vehicle
models is a recent practice to increase the operating range of model-based trajectory tracking control
applications. However, current approaches focus on the use of longitudinal speed as the blending
parameter, with a formal procedure to tune and select its parameters still lacking. This work presents
a novel approach based on lateral accelerations, along with a formal procedure and criteria to tune
and select blending parameters, for its use on model-based predictive controllers for autonomous
driving. An electric passenger bus traveling at different speeds over urban routes is proposed as a
case study. Results demonstrate that the lateral acceleration, which is proportional to the lateral forces
that differentiate kinematic and dynamic models, is a more appropriate model-switching enabler
than the currently used longitudinal velocity. Moreover, the advanced procedure to define blending
parameters is shown to be effective. Finally, a smooth blending method offers better tracking results
versus sudden model switching ones and non-blending techniques.

Keywords: vehicle-model blending; trajectory tracking; model predictive control; automated driving;
vehicle control

1. Introduction

Trajectory tracking is a crucial task in high driving automation developments. Thus, proper control
methods must be designed to safely follow the desired reference path and speed. Model Predictive
Control (MPC) is one of the most popular advanced model-based control techniques for this purpose.
MPC approaches use the vehicle and tire models to predict the future behavior of the vehicle and
compute the optimum control sequence to be applied. Moreover, this latter calculation is carried out
considering explicitly the physical constraints of the system and its actuators [1].

A critical design decision in MPC-based methods is the selection of a proper model to predict
the behavior of the vehicle, as the controller performance will depend heavily on its accuracy and
real-time capability. However, this selection is not a trivial task, as covering a broad range of speeds,
even the limits of handling, while maintaining real-time capabilities, represents a current engineering
challenge [2].

In the literature, five vehicle-modeling techniques can be found: point-mass, geometric, kinematic,
dynamic, and multi-body vehicle models [3,4]. The point-mass modeling considers the vehicle as a
particle and it is commonly used in motion planning [5,6]. Even though it considers accelerations,
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it ignores the turning capacity of the vehicle [4]. The geometric modeling considers the basic geometry
of the vehicle and uses its geometric relationships for path tracking [7,8]. Although it offers good
robustness in most low-speed maneuvers, it ignores the velocity and forces on the vehicle, which causes
poor tracking performance at high speeds and transitional maneuvers [9]. The kinematic modeling is a
simplified representation that, besides geometry, considers the orientation, velocity, and acceleration
of the vehicle [10]. It provides appropriate performance at low speed (less than 5 m/s) when tire
deformations are small and slips angles on the wheels can be neglected [11]. Experimental validations
have shown a good performance of model-based controllers at low speeds [12,13]. However, when the
lateral forces on tires increase (e.g., while turning at high speeds), its accuracy is compromised [14,15].
The dynamic modeling is a more complex vehicle representation that, besides geometry and kinematics,
considers the internal forces and the inertia of the vehicle, providing accurate results in high-speed
applications and extreme handling maneuvers [16–18]. Its implementation requires a tire model to
estimate the longitudinal and lateral tire forces. For this purpose, a linear tire model is typically
used, as it represents a good trade-off between computational efficiency and accuracy [19–21].
Finally, multi-body modeling is the most accurate representation of vehicle dynamics which is mainly
employed as a virtual test platform for driving automation developments. Its high complexity and low
computational efficiency make it difficult to implement this method today for real-time applications,
therefore it is barely used for motion planning [22]. A comparison of these models in the context of
this work is summarized in Table 1.

Table 1. Comparison of vehicle models in terms of performance and applications.

Model Strength(s) Weakness(es) Applications

Point-Mass - Simplest model - Ignores minimum turning - Motion planning
- Easiest implementation

Geometric - Considers minimum turn - Ignores internal forces - Motion planning/tracking
- Robust in most maneuvers - Ignores vehicle acceleration - Low speeds

- Not suitable for high speeds - Constant speed/curvature

Kinematic - Simple motion description - No wheel’s slip/skid - Motion planning/tracking
- Considers chassis slip - Speed range is limited - Low speeds (<5 m/s)

- Varying speed/curvature

Dynamic - Accurate motion estimate - Tire forces calculus - Motion planning/tracking
- Handling dynamics - Less numerical efficiency - High speeds (>5 m/s)
- Stability at handling limit - 8 linear tire model (Vx ≈ 0) - Varying speed/curvature

- Chassis slip angles < 5 deg

Multi-body - Best accuracy - Low numerical efficiency - Motion planning
- All suspension forces - Complex implementation - Virtual test platform

In MPC designs, kinematic and dynamic models are commonly used, as they present the best
accuracy vs. computational cost ratio. Linear MPC approaches have been used to modify dynamically
trajectory planners in the case of unexpected situations [23]. However, as seen in Table 1, each model
presents strengths in different driving scenarios. Hence, in order to improve trajectory tracking and
increase the speed range, recent works have proposed to combine these approaches [24]. This way,
some authors have integrated both vehicle models in parallel to estimate more accurately relevant
vehicle dynamics behavior, such as the side-slip angle [25] or the vehicle’s position [26,27]. As the
previous technique requires computing both models in parallel and increasing the computational effort,
in recent years, the so-called model-blending approach has been proposed by some authors [28,29].
In this latter method, a model-switching strategy allows for selecting the most appropriate model
depending on the driving scenario, allowing for increasing the validity range of the MPC-based vehicle
control approach.

In the aforementioned works, to perform the model-blending technique, two aspects are usually
considered: (1) the switching condition and (2) the switching method. The switching condition is the
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criteria used to select the best model for each driving circumstance. This criterion has to be defined
using a variable that allows for optimizing the operative range of each model so that the model-blending
effectively improves trajectory tracking. In [28,29], the longitudinal speed is used as the switching
condition, selecting the kinematic model to compute MPC predictions when the vehicle moves at low
speed while using the dynamic model when moving at high-speed. However, as model validity is
limited by the tire model saturation, it seems more appropriate to use another variable to perform
the switching which is directly related to the tires’ forces, such as lateral acceleration. Regarding the
switching mode, previous works have presented two different methods—firstly, a sudden switch
strategy that instantly changes between kinematic and dynamic models [28]; secondly, a progressive
switching strategy that performs this change more smoothly using a linear approach [29]. Nevertheless,
there is not a recommended procedure to blend models, besides the trial-and-error method.

In this work, a novel vehicle model blending procedure based on lateral acceleration for MPC is
proposed. A coupled longitudinal and lateral vehicle dynamics is considered in the MPC formulations
for trajectory tracking. The cornering stiffness is constantly estimated for a linear tire–road interaction.
Lateral motion is constrained avoiding lane departures. The proposed approach presents three main
contributions: (1) the lateral acceleration is selected as the switching condition instead of the longitudinal
velocity, as the former is directly associated with the lateral forces on the tires and it defines a more
consistent validity application range for each model; (2) a procedure proposal is presented to find the
proper lateral acceleration switching value that allows for getting the best performance in terms of
path tracking error; and (3) a thorough comparison of the proposed approach is carried out with the
kinematic and dynamic vehicle models, as well as the longitudinal velocity as switching condition.

The structure of the paper is as follows: Section 2 presents the vehicle modeling and the
combination method for kinematic and dynamic models; Section 3 defines the proposed model
blending procedure tuning to achieve the best path-tracking in vehicle model blending; Section 4
details the case study and the MPC-based control architecture used to evaluate the model-blending
approaches; Section 5 shows the results of the simulation experiments using a passenger bus in a
realistic urban environment, with a detailed analysis and comparisons between switching methods;
Section 6 closes with the conclusions and future works.

2. Vehicle Modeling

As previously stated, vehicle motion control based on MPC highly relies on accurate models.
In addition, these need to be as simple as possible, so that the proposed trajectory tracking MPCs can
be implemented in real-time platforms.

The single-track vehicle model is a well-known simplification broadly used in vehicle control
approaches [11,30], where the front and rear wheels are defined as single wheels at each axle.
The notation employed is depicted in Figure 1.

Figure 1. Vehicle modeling notation.

Based on this approach, kinematic and dynamic vehicle models are calculated. The equations of
motion required for developing the trajectory-tracking control are detailed in Sections 2.1 and 2.2.
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2.1. Kinematic Vehicle Model

Geometric relationships can be used to describe the motion of a vehicle under the assumption that
lateral forces on tires do not considerably affect this estimation [11]. According to [31], the kinematic
single-track vehicle model is even capable of generating feasible trajectories if the lateral acceleration
(v̇y) does not exceed 0.5 g. The motion equations are given by Equation (1a–c):

v̇x = Fx/m (1a)

v̇y = (Fx tan δ/m + vx∆δ/ cos2 δ)lr/(l f + lr) (1b)

ṙ = (Fx tan δ/m + vx∆δ/ cos2 δ)/(l f + lr) (1c)

where m is the total mass of the vehicle, δ is the front wheel steering angle, ∆δ is the front wheel
steering rate, and l f and lr are the distances from the center of gravity of the vehicle (CG) to the front
and rear axles, respectively. The longitudinal velocity (vx), lateral velocity (vy), and yaw rate (r) are
calculated with respect to the reference system attached to the CG. vy can be approximated to vy = lr r
considering r = vx tan δ/(l f + lr) [29]. The longitudinal force (Fx) acting on the vehicle is described as
in Equation (2):

Fx = TdP/re f f − Rx − Faero (2)

where Td is the maximum acceleration and braking torque, P is the throttle and brake pedals’ positions
and re f f is the effective tire radius. The force due to rolling resistance for radial-ply truck tires (Rx) is
empirically described by [32] as in Equation (3):

Rx = (6e−3 tanh vx + 0.23e−6v2
x)mg (3)

where tanh vx is included to avoid numerical inconsistencies in MPC formulation when vx ≈ 0, g is
the gravity acceleration and vx is defined here in km/h.

Finally, the equivalent longitudinal aerodynamic drag force (Faero) is defined by [11] as in
Equation (4):

Faero = 0.5ρCd A f v2
x (4)

where ρ is the air density, Cd is the drag coefficient, and A f is the frontal area.

2.2. Dynamic Vehicle Model

As the lateral force on the tires increases, the slip angles at the wheels are no longer considered
negligible and a dynamic approach becomes necessary [11]. The motion equations in this approach are
given by Equation (5a–c):

v̇x = (Fx − Fy f sin δ + mvyr)/m (5a)

v̇y = (Fy f cos δ + Fyr −mvxr)/m (5b)

ṙ = (l f Fy f cos δ− lrFyr)/Iz (5c)

where Iz is the yaw axis inertia. The external lateral forces on the front (Fy f ) and rear (Fyr) axles are in
Equation (6a,b):

Fy f = Cα f α f (6a)

Fyr = Cαrαr (6b)



Electronics 2020, 9, 1674 5 of 17

where Cα f and Cαr are the cornering stiffness on the front and rear axles, respectively; and α f and αr

are the slip angles associated with those axles, defined as

α f = δ− tan−1((l f r + vy)/vx) (7a)

αr = tan−1((lrr− vy)/vx) (7b)

The estimation of Cα f and Cαr is a complex task in a real scenario, as these coefficients represent the
interactions between tires and road surface, which may not be linear. Hence, in this work, a procedure
to identify these parameters in real time is described in Section 4.2.

2.3. Blended Model for MPC Control

If the operating range of the MPC-based approach is to be increased, blending the aforementioned
models is required. Thus, when lateral tire forces can be neglected, the kinematic model provides
appropriate and fast results, while the dynamic model is used when tire slip is significant. This way,
the set of nonlinear equations used for the longitudinal and lateral MPC is given by Equation (8a–g):

Ẋ = vx cos ψ− vy sin ψ (8a)

Ẏ = vx sin ψ + vy cos ψ (8b)

ψ̇ = r (8c)

δ̇ = ∆δ (8d)

v̇x = (1− λ)v̇x
kin + λv̇x

dyn (8e)

v̇y = (1− λ)v̇y
kin + λv̇y

dyn (8f)

ṙ = (1− λ)ṙkin + λṙdyn (8g)

where [X, Y, ψ, δ, vx, vy, r]T are the states related to the CG. The positions (X,Y) and orientation angle
(ψ) of the vehicle are considered in global coordinates, while the rest of the variables have been
previously defined.

The control parameters [∆δ, P]T are the front wheel angle rate and pedal positions, respectively.
The use of incremental variables as ∆δ (used in Equation (1b,c)) allows for including an integrative effect
in the MPC controller, which is normalized for actuation stage consistency as detailed in Section 4.6.

The superscripts (.)kin and (.)dyn specify the relation of vx, vy and r with the kinematic and
dynamic models defined in previous subsections. The parameter λ is selected to switch or blend
the two proposed vehicle models. If λ = 0, then a full kinematic model is applied. On the contrary,
if λ = 1, then a fully dynamic model is engaged. An intermediate value of λ defines a model
blended circumstance.

The different strategies selected for model blending are detailed in depth in Section 4.3.

3. Tuning Procedure for Model Blending

As detailed in the Introduction, the blending of vehicle models is based on two aspects:
(1) the switching condition, and (2) the switching method.

The switching condition is based on a physical measure usually available on the vehicle’s
acquisition, vx being the most used [28]. However, this value is typically defined by the designer by
a rule of thumb based on several tests. A clear reference for this value is defined by [11] as 5 m/s,
this being the recommended limit to employ the kinematic vehicle model. Nonetheless, this limit does
not apply to all cases. For instance, in straight-line motion, lateral forces can be neglected, and the
kinematic vehicle model could be considered valid in this condition even after 5 m/s.

The switching method is defined as how the switching condition occurs. As analyzed in Section 1,
two main approaches have been proposed: a sudden or step change and a progressive one, in which a linear
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blending is proposed. According to [29], a progressive transition between models offers a better response
in the vehicle motion control in contrast to sudden switching conditions. However, the obtainment of vx

values for this progressive blending is a complex task, as more than one reference for the switching
condition is necessary and no more than trial-and-error methods are defined to achieve it.

In this work, a novel approach is proposed. The lateral acceleration v̇y is considered as the
switching condition parameter as it can be directly related to the current lateral forces on tires in any
condition. The use of this variable is more consistent with the theoretical assumptions referred by [11]
for the kinematic and dynamic vehicle models.

Based on this switching condition, the procedure proposed in Table 2 selects the best switching
value of v̇y for model blending in step and linear methods. The lateral (ey) and angular (eψ = ψ− ψr)
errors are considered as key metrics.

Table 2. Tuning procedure for model blending.

Steps Procedure

1. Plan a route for trajectory-tracking at constants vre f
x

2. Execute motion control using kinematic vehicle model
3. Execute motion control using dynamic vehicle model
4. Average ekin,dyn

y values in a grid of vre f
x vs v̇y

5. Create surface plots from 4

6. For step switching method:
6.a. Make Linear Regressions (LR) of ekin,dyn

y vs v̇y
6.b. Intersect LRs to find a v̇y
6.c. The step switch is defined by 6b

7. For linear switching method:
7.a. Identify lowest v̇y in surfaces intersection from 5
7.b. Estimate difference between 6b and 7a
7.c. Use 6b as point symmetry distance to 7a
7.d. The linear switch is defined by 7c

This procedure will be applied for the case study proposed in the next section, and the results
will be detailed in Section 5.1.

4. Case Study: An Urban Passenger Bus

In this section, the proposed vehicle model blending procedure is applied to a particular case
study based on a trajectory tracking MPC for a passenger bus in an urban environment. The overall
control architecture of the proposed case study, including the test vehicle and the MPC controller,
is depicted in Figure 2.

Figure 2. Control architecture.
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4.1. Test Vehicle

The vehicle model employed is an electric passenger bus conceived for urban environments as
depicted in Figure 3.

Figure 3. Test vehicle.

The test vehicle has been modeled in Dynacar [33] considering a multi-body formulation.
A steering-knuckle-type suspension at the front axle and a rigid-axle-type suspension at the rear axle
is linked to the chassis. Two wheels on the front and four wheels at the rear are linked to suspensions.
The Pacejka tire model of a standard tire defined in [34] has been employed. Vehicle parameters are
depicted in Table 3. Where Tm, Tb and Tr are the motor, braking, and regenerative brake torques,
Nt and Nδ are the transmission and the front-wheel-angle/steering-wheel-angle ratio, It and Id are the
transmission and drive-line inertia, respectively.

Table 3. Parameters of the Passenger Bus Model.

Parameter Value Unit Parameter Value Unit

l f 3.55 m m 16,600 kg
lr 2.22 m Iz 115,063 kg-m2

A f 7.34 m2 Cd 0.65 -
ρ 1.21 kg/m3 g 9.81 m/s2

Tm 3600 N-m Nt 1:5.93 -
Tb 12,000 N-m Nδ 31:1 -
Tr 35 N-m It 17 kg-m2

re f f 0.45 m Id 100 kg-m2

4.2. Cornering Stiffness Identification

The dynamic model detailed in Section 2.2 requires the knowledge of the cornering stiffness
coefficients that characterize the tire and road interaction. As the identification of these parameters is
complex, an approach based on the direct method described by [35] is proposed.

One advantage of this method is the capacity to use the dynamic vehicle model employed for
trajectory-tracking, as a simplified lateral tire model [11]. The Cα f and Cαr values depend on vehicle
parameters as m, Iz, l f and lr, and real-time measures of δ, vx, vy and r as described in Equation (9).

[
Cα f

Cαr

]
=

[
2α f −2αr

2l f α f 2lrαr

]−1 [
m(v̇y + vxr)

Iz ṙ

]
(9)

where α f and αr are defined previously in Equation (7a,b).
After the estimation of cornering stiffnesses, two separate one-dimensional Kalman filters

reduce peak values from numerical inconsistencies in both Cα f and Cαr. The filters are evaluated
in the discrete-time domain, no control input is considered, and gain matrices related to states and
measurement are constants valued as 1 [35,36]. The process and measurement noise covariances
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are settled to 0.01 N/rad and 1 N/rad, respectively. In this work, the Kalman Filter block from
MATLAB/Simulink was employed for this purpose.

In contrast to [35], the use of a linear Kalman filter avoids the definition of a threshold limit for
α f and αr, as the slip angles would approach to zero when the vehicle is driving straight or during
transient steering maneuvers, affecting the cornering stiffness calculation. These results are explained
in Section 5.3.

4.3. Switching Model

As previously stated, both the kinematic and dynamic models defined in Section 2 will be
implemented in the MPC. Two different types of blending methods based on v̇y are proposed in this
work for comparison purposes. Firstly, a step switch which causes a sudden change between kinematic
and dynamic models. Secondly, a linear switch which executes a progressive change between models.
The switching parameter λ defined in Equation (a–g) is defined by Equation (10):

λ = min[max[
|v̇y| − v̇y

min

v̇y
max − v̇y

min , 0], 1] (10)

where v̇y
min and v̇y

max are the minimum and maximum acceleration thresholds defined by the
switching designer (see Section 5.1 for more details). On the one hand, for the step method,
v̇y

min = v̇y
max is employed, where the change between kin and dyn models is performed when

the sign from the estimation (|v̇y| − v̇y
min)/0 results in −∞ ∨∞, therefore switching λ between 0∨ 1,

respectively. On the other hand, for the linear method, v̇y
min < v̇y

max is applied.
Additionally, a third switching strategy, called speed is considered for comparison purposes.

This strategy, as proposed by [11], suddenly switches between the kinematic and dynamic models at 5
m/s and will be considered as a benchmarking strategy. Therefore, Equation (10) is also employed
using vx as switching condition instead of v̇y.

4.4. Trajectory Planner

The planned trajectory considers a realistic urban scenario with a total travel distance of
approximately 680 m. It contains a couple of roundabouts with maximum curvatures (k) of around
0.08 m−1 connected through an avenue with smoother paths. The motion planner is based on
parametric Bézier curves [37], considering the center-path of the road’s right-lane. The starting
vehicle’s position and orientation, including the curvature segments, are depicted in Figure 4.

Figure 4. Planned trajectory considering the vehicle’s maximum turning.

Considering the MPC’s predictions ([X, Y]), new positions and orientations are estimated
repeatedly at each iteration as new references for trajectory tracking ([X, Y, ψ, vx]). Additionally,
the center-lane path’s border positions are continuously considered ([XL, XR, YL, YR]), using them as
path constraints to avoid lane departures.

As this investigation is focused on the kinematic and dynamic models transitional effects over
vehicle motion control, the round-about on the right side in Figure 4 is planned using non-smooth
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curvatures provoking high lateral accelerations, which will help to analyze the model blending efficacy
in extreme handling maneuvers.

4.5. Model Predictive Control

The developed MPC approach performs the longitudinal and lateral vehicle motion control of the
trajectory defined in Section 4.4. It makes use of the blended model defined in Section 2.3, requiring an
appropriate switching method for model change (i.e., the ones proposed in Section 4.3).

As the vehicle models are nonlinear, the proposed approach is a nonlinear MPC, which also
includes a set of state and control constraints, designed to guarantee a safe execution of the dynamic
driving task. The problem formulation is solved at each time step with a prediction horizon defined as
i, i + 1, ..., i + N is presented in Equation (11a,d):

min
s(·),u(·)

1
2

N−1

∑
i=0
‖si − sre f

i ‖
2

Q + ‖ui‖2
R (11a)

s.t.

si+1 = fd(si, ui, λi), i = 0, ..., N − 1 (11b)

s ≤ si ≤ s, i = 0, ..., N − 1 (11c)

u ≤ ui ≤ u, i = 0, ..., N − 1 (11d)

where the Q = diag(qX, qY, qψ, qvx ) and R = diag(q∆δ, qP) are the weight matrices associated with the
state tracking and control inputs, respectively (Equation (11a)).

The si+1 = fd(si, ui, λi) represents the blended model defined in Section 2.3. The states si
= [X, Y, ψ, vx]Ti are minimized according to the driving route geometry, orientation, and velocity

references (sre f
i ). The control parameters ui = [∆δ, P]Ti are minimized to values as close to zero as

possible to avoid sudden changes in control parameters. The switching parameter (λ) plays an
important role in the formulation (Equation (11b)). The weights are set to qX = qY = qψ = qvx = 1 and
q∆δ = qP = 10.

Constraints (Equation (11c,d)) are defined for both the states si = [X, Y, δ, vx]Ti as [XL,R, YL,R,

±0.68 rad, vre f
x ]; and control parameters ui = [∆δ, P]Ti as ± [0.5 rad/s, 1]. Keeping the vehicle on the

planned path to avoid undesired lane departures is considered through additional soft constraints
[XL,R, YL,R] as depicted in Figure 5. An additional distance (dw = 0.2 m) is taken into account to avoid
unfeasible solutions when results from |XL

i − XR
i | or |YL

i −YR
i | are near to zero.

Figure 5. Path borders as constraints.



Electronics 2020, 9, 1674 10 of 17

The path borders are obtained from the planned trajectory considering a continuous lane-width
along the route, permitting a maximum lateral displacement from the center-lane path of 0.725 m.
The constraint values for path borders are processed in real-time as described in Equation (12a–d):

Xi = min([XL
i , XR

i , Xre f
i − dw]) (12a)

Xi = max([XL
i , XR

i , Xre f
i + dw]) (12b)

Yi = min([YL
i , YR

i , Yre f
i − dw]) (12c)

Yi = max([YL
i , YR

i , Yre f
i + dw]) (12d)

Minimizing Equation 11a allows for calculating the optimum value of u = [∆δ, P]Ti for the current
time step. For that purpose, the nonlinear MPC is solved with the automatic code generator of the
open-source ACADO toolkit [38], using QPOASES as the set solver, the sequential programming
technique, and the direct multiple-shooting method for discretization. The prediction horizon is 5 s of
look-ahead time considering a fixed time step among predictions of 0.5 s.

4.6. Actuation Stage

The control variable ∆δ calculated by the MPC is integrated at this stage to obtain a δ normalized
between [−1, 1] considering a maximum value of δ = 0.68 rad. The control variable P is constrained
between [−1, 1] in the MPC formulation and represents the maximum brake and throttle pedal
positions, respectively. Actuation delays of 150 ms for accelerator and 80 ms for both steering wheel
and brake pedal were approximated by second-order transfer functions. In addition, rate limitations
are applied mimicking a real actuation behavior [13,39].

5. Results and Discussion

The performance evaluation of vehicle models and switching methods employed are detailed in
this section. The elements in the control architecture defined in Figure 2 and detailed in Section 4 are
implemented in a MATLAB/Simulink setup which is used to perform a simulation-based analysis.

Considering the tuning procedure defined in Section 3, the parameters to perform the three
switching methods introduced in Section 4.3 (step, linear and speed) are defined and evaluated first.
In addition, pure kinematic (kin) and dynamic (dyn) methods are considered for comparison.

Three complete laps are simulated in the defined scenario (Figure 4), the results being recorded
and evaluated. Eight values for vre f

x are defined from 1.1 m/s to 8.8 m/s, equally spaced at 1.1 m/s for
each simulation test. This will allow for studying the influence of vx and the lateral acceleration (ay) in
the lateral motion control for the defined route.

5.1. Tuning Procedure for Model Blending

In this section, the procedure defined in Section 3 is applied to select the best switching value for
v̇y for model blending in the step and linear methods. Note that the speed method is based on the vx as
proposed in [11]. In the latter case, a step method is applied, in which a kinematic model is used below
5 m/s, and a dynamic model at higher speeds.

The results of the step-by-step procedure are detailed next.
Steps 1 to 5: Once the planned route for trajectory-tracking of Section 4.4 is defined, the vehicle

motion control is executed using kin and dyn vehicle models at several vre f
x as described previously.

The median is estimated for the absolute values |ey| and |eψ| considering kin (.)kin and dyn (.)dyn

models in a grid of vre f
x vs ay. In practice, the median provides a better estimation in contrast to mean

values for the cut-off definition pointed in Steps 6a–c. Results are processed through a two-dimensional
convolution [40] creating surface plots as depicted in Figure 6.
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Figure 6. (a) ey and (b) eψ for kin and dyn considering vre f
x and ay.

The ekin
y and edyn

y results are depicted in Figure 6a, in blue and red, respectively. The influence of

ay is remarkable along several vre f
x tested, having a clear limit from kin and dyn surface intersections.

These surface intersections help to prove the initial hypothesis which presents ay as a more appropriate
switching condition than vx.

The ekin
ψ and edyn

ψ results are depicted in Figure 6b, in blue and red, respectively. There is no clear
influence of ay or vx on the improvement of the path-tracking performance in terms of eψ, as kin and
dyn models seem to have similar behavior. These findings motivate the idea of selecting ey over eψ as
the basis for a switching strategy.

Steps 6a–c (step blending): A linear regression is calculated from ekin,dyn
y vs ay as showed in

Figure 7a (i.e., considering all the values of ekin,dyn
y , associated with a certain ay and all related vre f

x
values). The intersection of LRkin and LRdyn is approximately in 1.5 m/s2, this being a useful cut-off
value to define the switching condition to ay. This value allows for obtaining the lowest ey values

for kin and dyn models. As stated previously, if the same procedure is applied to ekin,dyn
ψ (Figure 7b),

no relevant results can be extracted, as both models have similar performance.

Figure 7. Linear regression in (a) ey finding the ay “cut-off” and (b) eψ.

Steps 7a–d (linear blending): The ay becomes relevant around 1 m/s2 as depicted in Figure 6a.
This is the lowest ay value that can be extracted from the surface intersection, which is useful for
defining the initial condition of a progressive switching between models. In addition, the step switching
(defined at 1.5 m/s2) is considered as the point of symmetry to this initial condition. Therefore, the linear
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switching is determined from 1 m/s2 to 2 m/s2 being centered around the step switching condition.
The switching methods for model blending based on λ ∈ [0, 1] are presented in Figure 8a.

5.2. Trajectory-Tracking Response Analysis

Results for three-of-eight simulation tests at constant vre f
x have been selected for discussion

simplicity (2.2 m/s, 5.5 m/s, and 8.8 m/s). The linear method has been chosen for Figure 8b–d as it
presents the best performance compared to other methods. The route values (black line) are located
at zero values on z-axis as a reference, and the z-axis limits correspond to minimum and maximum
estimation values of vx, ay, and ey, respectively.

Figure 8b shows the vx of the bus for the linear method. Although the vre f
x is set as constant,

note that the MPC regulates the final speed to avoid lane-departures (e.g., vre f
x = 8.8 m/s) as defined in

Section 4.5. Hence, this is considered as a proper performance.
Figure 8c shows the ay of the bus. Larger values are obtained while turning as the vre f

x increases.
Important transitions are observed mostly on the roundabout at the right-side due to non-smooth
planned curvatures. This transitional behavior is observed in ay results independently of the tested

vre f
x , a phenomenon that is not acquired previously in vx results.

Figure 8d shows the ey of the bus, which is calculated by considering the road’s center-lane and
the current position at each time step. The transitional effects described in ay seem to affect the ey

response, and, therefore, the path tracking.
The former results demonstrate that the MPC with the linear method provides an appropriate

trajectory tracking.

Figure 8. Results for: (a) switching methods for model blending; (b) vx; (c) ay and (d) ey for linear
method; (e) Cα f and (f) Cαr for the dyn method.
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5.3. Cornering Stiffness Estimation Analysis

Results for three-of-eight simulation tests at constant vre f
x have been selected for discussion

simplicity (1.1 m/s, 4.4 m/s and 8.8 m/s). The dyn method has been chosen for Figure 8e–f as it uses
the cornering stiffness estimation in the whole range of vre f

x . The route values (black line) is located
at zero values on z-axis as a reference, and the z-axis limits correspond to minimum and maximum
estimation values of both Cα f and Cα f , respectively.

Results for Cα f and Cα f for the dyn method are presented in Figure 8e–f, respectively. These values
are obtained at continuous turning maneuvers both at the front and rear axles. As expected,
the estimations behave bumpily when steer angles are near zero, since they imply the inverse of
a near-zero matrix (see Section 4.2). In practical terms, this results in larger variations of slip angles
that are later attenuated by the linear Kalman filter. Consequently, the dyn method deteriorates the
path-tracking at straight driving even if the vehicle is driving at high speed. This supports the main
rationale to switch to kin method in this driving condition, even for vx > 5 m/s, which is successfully
achieved by the proposed ay-based blending approach as opposed to the suggestion made by the
existing vy-based approach.

5.4. Lateral and Angular Error Analysis

Figure 9a,b shows the statistical distribution of ey and eψ for five study conditions related to the
five analyzed methods, allowing comparison for their trajectory-tracking performance. The boxes
span (blue boxes) cover from 2% to 98% of the data, the whiskers span (black lines) cover from 1% to
99% of the data, the median (red horizontal lines) and mean (µ, red plus signs) values as statistical
metrics assessment.

Figure 9. Results for: (a) ey, (b) eψ, and (c) solving time statistics; (d) iterations number vs. λ for
different methods.

In Figure 9a, it can be seen that, for this low speed test track, the kinematic model (kin) clearly
outperforms the dynamic model (dyn) as expected. However, blending these two models can produce
better results than either one of them individually. Note that this particular track has the most
low speed turns towards the left, whereas right-hand turns are mostly high speed. This allows for
exemplifying the limitations of the speed method. Its positive ey distribution resembles the kinematic
model behavior, while the negative side is much closer to the dynamic model. Since they can be
correlated to the left and right-hand turns and thus the predominantly high and predominantly low
speeds, it becomes clear that blending based on the speed uses either model in some cases where the
other one behaves better (i.e., on the high speed turns, it uses the dynamic approximation even if the
lateral forces are low and the kinematic model behaves better).
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On the other hand, the hereby introduced switching strategies (linear and step), based on lateral
acceleration, provide better behavior than the use of either kinematic or dynamic models, or even the
aforementioned blending approach based on the speed (speed). This is achieved by actually switching
when the lateral forces are significant, thus properly using the best approach in every condition to
reduce errors (see Figure 6), rather than just avoiding singularities (which is the main motivation
for the speed based blending). Since most of the track has low lateral acceleration, most of the error
distribution for both ay-based methods (linear and step) resembles the kinematic model behavior
(see the blue boxes in Figure 9a, associated with the 2%–98% data interval). However, the black
whiskers do show a significant improvement in reducing the lateral error corresponding to those cases
with either high lateral acceleration and low speed or those of high speed and low lateral acceleration,
thus proving the advantage of introducing the lateral acceleration as the blending parameter in place
of the currently accepted vehicle velocity.

Furthermore, it is noted that the linear blending is slightly better than the step in terms of the
maximum dispersion (black whiskers), though the actual advantage of this technique relates to the
computational cost, as will become evident in the discussion below.

Figure 9b shows that the eψ behaves very similarly regardless of the implementation of either
of the analyzed methods, which fit the results shown in Section 5.1 and endorse the decision of
considering ey surfaces for the blending procedure.

5.5. Computational Cost Analysis

To demonstrate the real-time capability of the presented approach, computational cost analysis
has been carried out. The required time to calculate each control cycle of the proposed MPC controllers
with the different blending methods has been evaluated. All controllers were execute at a 10 ms period
on a LATITUDE E5570 provided with an Intel Core i7-6600U, CPU 2.60GHz (Santa Clara, California,
USA). The results are depicted in Figure 9c, in which the statistical distribution of the solving time is
depicted, following the same representation applied to Figure 9a–b. It can be seen where the worst-case
scenario is for the step and dyn approaches, with mean values of 0.04 ms and maximums of nearly
0.08 ms. On the contrary, the linear method offers the best time efficiency with a mean value of 0.03 ms
and a maximum solving time of 0.07 ms. Hence, results demonstrate that computational cost can be
reduced by the use of blended models.

Note that all the referred approaches are based on a nonlinear MPC. In this case study, the previously
calculated state and input values are used as a seed for the next iteration. Hence, when sudden or abrupt
changes are required, the number of iterations required to solve the MPC problem increases significantly
as depicted in Figure 9d. For instance, this happens when a sudden transition from a kinematic to a
dynamic model is carried out in the step method. In this sense, the linear method reduces the required
computational cost by lowering the number of iterations required to solve the optimization problem in
the blending procedure to even slightly better values than the simple kinematic model.

6. Conclusions

The performance of MPC-based tracking controllers in automated vehicles is highly dependent
on the selection of the model, either kinematic or dynamic. The kinematic enables accuracy at low
ay, e.g., driving straight. However, the dynamic provides better overall results when ay becomes
representative, e.g., turning or steering transient maneuvers. To cover a wide operational range,
switching or blending from one model to the other has been proposed in the literature. In particular,
proposed approaches’ use of the longitudinal velocity as the switching condition, which does not offer
the best performance. Moreover, there is a lack of works related to the proper tuning of model-blending.

In this study, the use of the ay as opposed to the vx is proposed as the switching condition to
blend vehicle models within an MPC-based trajectory tracking control. As tire forces are the critical
factor for the validity of the kinematic/dynamic models, the ay is considered as a variable with direct
relation to these forces, allowing for increasing the overall performance of the blended approach.
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Additionally, a formal step-by-step tuning approach is proposed and detailed for two methods: linear
and step.

The presented method is tested in a case study with an electric passenger bus in a virtual
urban scenario. Results show that the proposed blending approaches based on ay provide a relative
improvement of 15% in terms of ey, in contrast to the method based on vx proposed in the literature.
Additionally, it allows for reducing the maximum computational cost in 12% if a linear blending
approach is used. Moreover, the validity of the tuning procedure is demonstrated.

Future works will assess the concepts presented in this research on both Hardware-in-the-Loop
tests verification and real test platform validations, including the implementation issues related to
parameters and variable estimations.
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