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Abstract. The Hamiltonian cycle problem (HCP) consists of finding a
cycle of length N in an N-vertices graph. In this investigation, a graph
G is considered with an associated set of matrices, in which each cell in
the matrix corresponds to the weight of an arc. Thus, a multi-objective
variant of the HCP is addressed and a Pareto set of solutions that min-
imizes the weights of the arcs for each objective is computed. To solve
the HCP problem, the Branch-and-Fix algorithm is employed, a spe-
cific branching algorithm that uses the embedding of the problem in a
particular stochastic process. To address the multi-objective HCP, the
Branch-and-Fix algorithm is extended by computing different Hamilto-
nian cycles and fathoming the branches of the tree at earlier stages. The
introduced anytime algorithm can produce a valid solution at any time of
the execution, improving the quality of the Pareto Set as time increases.
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1 Introduction

The Hamiltonian cycle problem (HCP) consists of finding a cycle of length N
in an N-vertices graph [4]. These cycles are called Hamiltonian cycles (HC)s. If
the graph G contains at least one HC, G is said to be a Hamiltonian graph. The
traveling salesman problem (TSP) is the problem of finding the shortest route to
go to N different cities visiting each city once and returning to the city of origin
[3]. The distances between all pairs of cities are known. Let G be a directed graph
of N vertices with a weight ¢;; for each arc (7,7), then a solution of the TSP
corresponds to a HC of minimum total weight [5]. The main difference between
these two problems is that finding a HC in a graph might be complex.

In this investigation, the HCP is considered for a graph G of size N, in which
the Branch-and-Fix (BF) algorithm [1] has been employed to solve the problem.
G has an associated set of matrices W1, ..., W*, where the cell wa represents
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the I*" weight associated to an arc (i, j) for | € {1, ..., k}. Each matrix represents
a different way to evaluate HCs in G. We address a multi-objective variant of
the HCP, considering only graphs that are Hamiltonian. The optimal Pareto
set (PS) will comprise HCs that minimize the sum of weights for the different
matrices. Notice that we simultaneously address the problem of finding a HC
and minimizing the weights associated to the arcs. Our approach consists of
modifying and extending the BF to deal with the multi-objective variant of the
HCP.

The BF algorithm uses the embedding of the HCP in a discounted Markov
Decision Process (MDP), a particular stochastic process that provides a mathe-
matical framework for modeling decision making [2]. The problem addressed in
this investigation consists of finding the set of non-dominated HCs (HCs that
have associated non-dominated objective functions), where HCs will be found
using the BF algorithm. The algorithm is modified in order to stop exploring a
branch of the tree that will lead to a HC that is dominated by other previously
found HC.

2 Branch-and-fix method

The BF was proposed in 2009 by Ejov et al. [1] to solve the HCP in a given
graph. It is based on the idea that the HCP can be embedded in a MDP, and
uses the polytope X g defined by Feinberg [2] in 2000. In that investigation it
was shown that the extreme points of the polytope correspond to HCs, though
in 2009 it was found [6] that the extreme points could also be 1-randomized
policies. The BF avoids arriving to those undesirable extreme points that induce
1-randomized policies. It solves sequences of linear programs (LP)s, two at each
branching point of the logical tree.

1. Initialization. The original LP is solved to find z € Xg. If the feasible
solution xg induces a deterministic policy ¢, the solution is found, if not,
¢o is a 1-randomized policy.

2. Branching. The 1-randomized policy {, serves to identify the splitting node
i where the randomization occurs. If d is the number of arcs {(¢,a1), ..., (¢, aq4)}
that emanate from i, d subgraphs G1, G, ..., G4 are constructed. In each G,
where k =1, ...,d, (4, ax) is fixed. These graphs are identical to G in all other
vertices and arcs.

3. Fixing. In this step some other arcs are fixed, as in some graphs fixing one
arc implies fixing other arcs.

4. Tteration. A second LP is solved to check the feasibility of the current fixed
arcs. If that is the case, the algorithm is called recursively with the updated
graph. If it is not feasible, the algorithm returns to step 2 fixing the following
arc that emanates from i. The algorithm terminates when a HC is found or
after exploring all the branches (in that case the graph is not Hamiltonian).
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3 Multi-objective HCP

Let G = (V,A) be a graph of size N, where V is the set of nodes |V| = N and
A the set of the undirected arcs. We define k asymmetric weight-matrices, W,
le{1,..,k}, where each arc (i,5) € A has associated a weight wﬁj > 0 in each
of the k matrices. At the same time, we denote &/ C as the objective function
associated to a matrix W' and specific HC, defined in Equation (1).

Al
oHC = Z T Zm € {0,1} (1)
m=1

Where z,, = 1 if the m!* arc belongs to the HC and z,, = 0 otherwise.
w!, represents the entry of w! corresponding to arc m. Finally, 8HC is the
multiple-objective function associated to a HC defined in Equation (2).

§H1C = (511 5[} (2)

An important constraint in this framework is that G is not a complete graph,
therefore finding a HC is not trivial. A straightforward approach for finding the
non-dominated HCs is by enumerating all possible solutions and selecting the
optimal ones. However, complete enumeration is not a feasible approach even for
small values of N. BF searches the space of HCs by pruning branches that are
guaranteed not to lead to a valid HC. We extend the same rational but adding
the possible dominance of a point as a new criterion for fathoming.

Ezxample 1. Consider the directed graph of size 6 shown in Figure 1 and two
asymmetric weight-matrices. There are a total of 6 HCs in the graph:

{(4,6,2,3,1,5),(2,6,4,5,1,3),(2,3,6,1,4,5),(4,1,2,5,6,3), (5,3,4,1,6,2)

(5,1,6,3,4,2)}

Fig. 1. An undirected graph of 6 vertices.
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For instance, for the first HCy = (4,6,2,3,1,5), the set of arcs belonging to
the HC is {(1,4), (2,6),(3,2), (4,3), (5,1), (6,5)}. To calculate 677" the wy; of
the first weight matrix W' that corresponds to each arc in the set are summed
up.

HC, _ 1 1 1 1 1 1
07 7 = wiy + Wag + wsg + wyg + Wiy + Wes

In the same way (55 1 is calculated using W2. The bi-objective function
0HC1 s compound by 677" and 6271 The following bi-objective functions are
considered:

0HCL = (5309,613.4) 6HC2 = {6416, 514.3} 612 = {5347,516.98}

0HCa — [4338,516.98) 675 = {5256,613.4} 6HCe = {5422, 514.3}

Based on this, the PS and non-dominated HCs can be calculated. The non-
dominated HCs are HC, and HCjg since the vectors of objectives §#€4 and
6HCe are non-dominated.

PS = {(4338,516.98), (5422, 514.3)}

3.1 Adaptation of the BF to compute a PS

The BF algorithm is extended to deal with the multi-objective HCP computing a
PS of a given graph. In principle, the algorithm allows more than two objectives.
The user may define an objective using the corresponding matrix as input. For
that purpose the following changes were made to the original algorithm:

1. Initialization: Save a HC whenever it is found without stopping the search
and continuing exploring the tree.

2. Initialization: Compute the objective functions for the HCs and calculate
the PS.

3. Iteration: Stop exploring a branch that will return a HC which is dominated
by any solution already in the PS. A branch will be fathomed if the 6% is
dominated by a € being U the set of fixed arcs at the current stage. This
check is performed in the fourth stage of the method, called iteration, after
computing the second LP.

An anytime algorithm is an algorithm whose quality of results enhances pro-
gressively as computation time increases. One of the main properties of these
algorithms is the interruptibility, as the algorithm can be stopped at any time
and provide a solution. Provided that at least one HC has been found, our ap-
proach can be understood as an anytime algorithm, as a PS is returned at any
time and it is improved as computation time increases.
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4 Experiments

The algorithm was implemented in Python (version 3.5.2) and CPLEX (version
12.7.1) was used to solve the LPs. 20 random Hamiltonian graphs of size 20
were generated to perform the experiments, using the following procedure: 1)
Generate random symmetric matrices of 20 x 20 dimension of zeros and ones; 2)
Use a random permutation of length 20 to assure that at least there is one HC,
connecting the vertices indicated by the permutation; 3) Fill the diagonal of the
matrices with zeros.

For each of the graphs, two weight matrices were also generated randomly. To
generate the first matrix, the samples were extracted randomly from a normal
distribution, wilj ~ N(u,0) X ¢, where = 10, 0 = 3 and ¢ = 10. The values
of the second matrix were generated using linear regression wfj =a X wilj + |el,
where a = 0.01 and € ~ N (p,0), p =0 and o = 100.

Table 1. Number of HCs found by the BF and the cardinality of the PS for the 20
Hamiltonian graphs in three time periods.

10 minutes 20 minutes 30 minutes

HCs PS HCs PS HCs PS
G 175 8 347 11 417 11
Gs 337 8 558 7 768 8
Gs 758 15 1468 17 2227 18
G4 983 12 1622 13 2025 13
Gs 487 7 1085 5 1573 7
Gs 830 16 1324 15 1617 16
Gr 397 6 614 6 691 6
Gs 788 6 1430 6 2027 6
Gy 399 13 713 10 974 9
G1o 1073 14 1631 17 2234 18
G 538 7 877 8 1278 8
G2 287 6 604 6 905 12
Gis 501 9 841 9 1277 15
G 767 13 1290 13 1915 11
Gis 622 9 1297 13 1817 11
Gis 606 14 1436 13 1768 14
Gy 443 4 881 7 1188 12
Gis 576 14 898 15 1240 17
Gig 1056 15 1811 11 2592 11
G2o 515 3 862 5 1102 5

Table 1 shows the number of HCs and the cardinality of the PS computed by
the BF in 10 minutes, 20 minutes and 30 minutes of time execution. It can be
observed that the number of HCs increases with the time as expected, though
the size of the increase differs from graph to graph. The reason for this is that the
difficulty of finding a HC depends on the graph, as in some cases the algorithm
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has to explore deeper levels of the tree. However, this phenomenon is not repeated
for the cardinality of the PS since more HCs do not necessarily imply more
elements in the PS.

5 Conclusions

We have introduced an extension of the BF algorithm to solve a multi-objective
variant of the HCP. It was shown that the extended BF algorithm can simul-
taneously find several HCs and compute continuously an improving PS. The
research presented can be improved executing the BF simultaneously by chang-
ing the labels of the graph vertices, as different HCs will be found for each of the
representations. As a consequence, the obtained PSs will also be different and
the algorithm could be considered as a parallel algorithm.
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