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Abstract: KIMERA is a scientific tool for the study of mineral dissolution. It implements a reversible
Kinetic Monte Carlo (KMC) method to study the time evolution of a dissolving system, obtaining the
dissolution rate and information about the atomic scale dissolution mechanisms. KIMERA allows
to define the dissolution process in multiple ways, using a wide diversity of event types to mimic
the dissolution reactions, and define the mineral structure in great detail, including topographic
defects, dislocations, and point defects. Therefore, KIMERA ensures to perform numerous studies
with great versatility. In addition, it offers a good performance thanks to its parallelization and
efficient algorithms within the KMC method. In this manuscript, we present the code features and
show some examples of its capabilities. KIMERA is controllable via user commands, it is written in
object-oriented C++, and it is distributed as open-source software.
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1. Introduction

Mineral dissolution has been widely studied due to its impact in important phenomena like
soil formation [1,2], water and petroleum reservoir stability [3,4] or carbon sequestration [5-8],
among others. The studies performed in the last decades have highlighted the importance of the
nanoscale mechanisms in the dissolution process [9-16]. To verify and complement these experimental
results, atomic scale computational methods like Density Functional Theory (DFT), molecular
dynamics, molecular mechanics, Monte Carlo (MC) and Kinetic Monte Carlo (KMC) have been
used by an increasing number of authors [17-25]. Of special interest is the KMC method which allows
temporal scale studies comparable to experiments. The effect on dissolution of dislocations [26,27],
grain sizes [25] or surface roughness [21], the inherent topographies associated to the dissolution
mechanisms [22,23,26,27], the experimentally observed pulsating frequency at the nanoscale [28],
or more recently the dissolution rate dependence with AG [29] are some of the milestones achieved by
KMC simulations. Unfortunately, while many DFT, molecular dynamics and molecular mechanics
programs are available both commercially and with free license [30-33], this is not the case with KMC.
KMC simulations present the great advantage of being applicable in a multitude of fields, but also the
disadvantage of being too specific to be programmed in a flexible and general package. SPPARKS [34],
MONTECOFEFE [35] and KMOS [36] are some KMC tools that were created to conduct studies in the
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field of materials science. Grain growth in annealed system [37], Mesoscale evolution in electron beam
welding [38], adsorption of methane in zeolites [35] or oxidation of CO over Pt nanoparticles [35] are
some examples of the studies performed with these codes. Nevertheless, this codes are not specific to
the study of mineral dissolution, and performing dissolution simulations could be difficult or even not
possible in certain systems. With that aim, we have developed KIMERA.

KIMERA, the name of which is an acronym for Kinetic Monte Carlo for Mineral Dissolution, seeks
for being a helpful and efficient code which allows to any user with a basic knowledge on geochemistry
to define and simulate the dissolution of a multitude of systems and minerals.

2. The Reversible Kinetic Monte Carlo Model for Mineral Dissolution

The KMC is an stochastic method based on the Markov property of independent processes
happening within a system [39]. If the considered processes are chemical reactions, as it is the
case of mineral dissolution, the Transition State Theory (TST) defines the reaction rate using only
two parameters; the energy barrier of the reaction Eg (J mol~!), and the frequency with which the
system attemps to overcome that energy barrier f (s~!). Both parameters can be obtained from
ab initio simulations. The rate r for a reaction from the initial state o to the final state p follows an
Arrhenius equation:

Top = f - exp (_k]f?T> 1)

where kg is the Boltzmann constant (1.38 - 10723 J K~1) and T the temperature (K).

The reactions, or events as commonly known in KMC method, happen sequentially in time with
a probability proportional to the total rate 7y of all the reactions and a random number generation.
This gives to the overall reaction the characteristic randomness of stochastic processes. The time
increment to complete an event is also chosen randomly within a Poisson distribution of the total

event probability:
1 1
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where 1/ is a random number uniformly distributed u’ € (0,1] and ri is the total rate of every

single event:
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po accounts that each state o can access to different number of states. When an event happens,
the system changes and all the possible transitions from the new state are redefined. Usually the
transition affects only locally to a small part of the whole system, which can save great computational
time [35]. This process is repeated until reaching a desired time or number of events (see Figure 1b).

The implementation on KIMERA is based on the reversible Kinetic Model that we presented
recently [29]. In this model, we take into account microscopic reversibility defining for every possible
dissolution reaction two events, one of dissolution and one of precipitation, with their respective rates

d rp:
rp and rp ED(n)
o= o-ep (520) .
ro = fo-exp (~HL ) 6)

where f; are the fundamental frequencies of each event, Ep(n) and Ep(n) the event energy barrier,
and AG* the local free energy difference between the solid and the solution. Note that the precipitation
expression includes the free energy difference between the solid and the solution. At far from
equilibrium conditions, the AG* is large, and the precipitation term becomes negligible. Close to
equilibrium AG* tends to zero, and the interplay between precipitation and dissolution reactions
allows to mimic the dissolution rate decrease as the system reaches equilibrium.
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3. The KIMERA Code

KIMERA aims to be broadly used either in big computer clusters or in personal computers.
Therefore, we payed special attention to the implementation of user-friendly commands, a good
performance and portability. It is written in the standard C++11, which ensures its portability.
The program recognizes as input data a wide list of commands that can be found online https:
/ /mgp9999@bitbucket.org/mgp9999 /kimera-publico.git. Thanks to these commands, the user can
define the simulated system and obtain output files for visualization and analysis as well as restarting
files. The program is based on the N-fold-way algorithm, which ensures a good efficiency [40].
Moreover, to overcome the typical problem of KMC simulations of waste of computer power in fast
and repeating events [41], we have implemented a Poisson approximation to handle opposite effects of
dissolution and precipitation which shows no reduction of performance or biased results [29]. If faster
simulations were needed, KIMERA has been parallelized using openMP library [42], which entails an
easy way to divide the workload of some loops of the program between the number of cores available.

3.1. Operation

The workflow of the program can be differentiated in three parts (see Figure 1a):

a i by —
(@) | system | Unit VR PBC ‘ Event (b) ‘System defined, t = 0‘
shape cell dimensions definition
Physical parameters: deltaG and Topographic Event list
time or steps defects 1
v
System ‘ Array with cumulative function of rates R
definition
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reparation
\d - Seek for event in the array R
Reactive Lineal or binary search
surface
A ‘ Make the event happen.
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files snapshots file file snapshots file 1
1
Layer | | data t=t+—.In(1/u")
files | | file — Ttot

Figure 1. (a) KIMERA (Kinetic Monte Carlo for Mineral Dissolution) workflow. (b) KMC (Kinetic
Monte Carlo) workflow.

3.1.1. System Definition

The user defines the essential parameters of the simulation in an input file. The order in which
commands are given is relevant, as some instructions can overwrite previous ones, totally, or partially.
In these cases KIMERA always takes into account the last command. Some important steps are:

e  The mineral structure. The program can either read it from a standard *.xyz’ file, or can be defined
by commands, or a combination of both. The “.xyz’ file [43] is easily obtained by tools such as
VESTA [44] from downloadable “.cif” files in mineralogical databases [45]. In principle KIMERA is
thought to construct mineral surfaces replicating a small unit cell. Nevertheless, it is also possible
to define a complex system within a ‘.xyz’ file and threat it as the whole system box. Coarse
grained systems can be also simulated.

e  The system dimensions. The program replicates the unit cell in the three spatial directions.
Studies of different planes are possible by unit cell transformations with external programs
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such as VESTA [46]. KIMERA can apply periodic boundary conditions (PBC) in the three
spatial directions.

e  System shape. The program has commands to create different crystalline shapes of the system
into complex surfaces or particles. For the moment the available geometries are cubic, spherical,
parallelepiped, ellipsoidal, tick planes, or a combination of them.

o Topographic defects can be defined in the system, such as insoluble regions, dislocations,
impurities and vacancies. There are two ways of defining impurities; it is possible to define
them in the unit cell indicating their occupancy, or introducing them ex post once the system has
been defined.

e  Event definition. The KMC algorithm simulates the time evolution of a system as a set of possible
events. These events take place at a rate that follows an Arrhenius equation (Equation (1)).
A recent study demonstrates that the net dissolution of a mineral can be characterized using
decoupled reactions of dissolution and precipitation [29]. Hence, we use that KMC scheme,
so the fundamental frequency of the Arrhenius equation, f, splits into fp or fp, and Ep into Ep
or Ep depending if considering a dissolution or a precipitation event respectively. The energy
barrier is characteristic of each chemical reaction and its neighbourhood, and can be obtained
from the bibliography and/or ab initio calculations [22,23]. Supposing n neighbours of an atom,
KIMERA can set Ep and Ep as a linear (Equation (6)) or a specific (Equation (7)) function of each
neighbour j [23,47] (see Figure 2):

EDk:Ed'n Epk:Ep'Vl (6)
EDk:f(j) EPk:g(j) (7)

Note that Equation (6) is a specific case of Equation (7). Moreover, since the contribution to
the energy barrier can be determined for several types of neighbours, k represents each set of
contributors with the same characteristics and Ep, and Ep, its contribution for dissolution and
precipitation energy barrier respectively.

m m
Eb=) Ep, Ep=) Ep, (8)
k=1 k=1

) ; ! - Lineal contribution
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Ep  contribution to the energy barrier k  Type of contributor

Figure 2. Example of lineal or specific definition of energy barrier available in KIMERA. The orange
sphere i represents the particle under consideration, the blue and red particles j represent particles
bonded to the i of two different types. The sub-indexes of these j particles indicate their type kj and k»,
and their number, 4 and 2 for kj and kj respectively.

With these two ways of defining the energy barrier, two different approaches can be considered to
describe the dissolution events:
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1  Abond by bond description: Each linking bond breaks sequentially so that when an atom
has no bonds left, it is released from the mineral.

2 Asite by site description: All bonds reactions are unified in only one event, and each site
dissolves with joint probability.

As an additional element, KIMERA supports conditional event definition. Furthermore, it is
possible to define the events based on ghost positions in the unit cell without physical meaning
and to make a differentiation between atoms of the same type, for example it is possible to split
the atoms of silica into Sil, Si2, etc. in the unit cell and then define events for each sub-element.
o  Target time (s). Predicting the time scale beforehand in a complex system can be tough. There are
two options for the simulation to finish. The simplest option is to indicate the number of
simulation steps, that is, the number of events to accomplish. The other option is to specify the
target time (s) until the simulation is going to run. The user can request the program to do an
estimation of it by considering the initial possible events. Given s initial sorted groups of rates
corresponding to atom removals with different coordination r; < r, < -+ < 15, the program
approximates the total time for the system to dissolve as if all atoms N, had the same rate value;
the previous to the middle one.
tapprox = & (9)
r 5-1
This approximation arises from considering as limiting step the removal of the atom which leads
to a kink atom, always with half of the mineral coordination [29,48].
e  Optional parameters related with the output files. As we will see, output files contain information
of the system time evolution like snapshots for visualization or the quantity of dissolved atoms.

3.1.2. System Preparation

Once KIMERA has read the input commands, taking into account the event definition and the
PBC, it elaborates a list with all the neighbours for each atom. This step consumes a relatively large
computational time, and KIMERA can use the output file from previous simulations as starting point
to improve the performance. If restarting files are used, some previous commands have necessarily to
be the same, but some commands can be changed to modify the simulation conditions. Most common
changes are the values of AG or the energy barriers.

From the neighbour data, the program elaborates a list with the reactive initial surface.
Nevertheless, the surface can be modified ad-hoc by the user via commands.

3.1.3. Simulation Process

A key step of the KMC algorithm is to find a random event from the list of possible events looking
at its rate [39] (see Figure 1b). This step is the most time consuming. KIMERA has two possible ways
to do the search. By default, the binary search method [49] is done. Briefly, it consists of successively
dividing the search range in two and discarding the one without the wanted value (see Figure 3b).
The other method is the common lineal search, which compares one by one all the values of the
list. The relation between the computing time and the number of elements to compute N is named
computational complexity O. The complexity of binary search is O(log(N)). The complexity of lineal
search is higher, O(N), but it can be parallelized. Later we will discus the performance of both search
methods in Section 3.2 and Figure 3a.
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Figure 3. (a) Normalized simulation time of the examples with the number of cores. The A-B Kossel
crystal example in blue and green (‘configuration 1’ explained below) presents with both search
algorithms a simulation time with 1 core of 18885 s in our computer. The total simulation time for the
quartz grain in red 2255 s with 1 core, and its preparation phase in orange 902 s. (b) Binary search
working scheme. The target value is successively limited if it is not found.

During the simulation, the output files generated by KIMERA are:

e Initial KIMERA file of the system in its own format (‘.initialkimerabox’). It is designed to save
time in calculating neighbourhood, linked and affected atoms. A later simulation which reads
this file will not need to do the preparation step.

e  Final KIMERA file of the system (‘.finalkimerabox’). When the simulation has finished, or has
encountered an error, the system is printed in KIMERA format.

o  File with system snapshots (".box’) in LAMMPS format [33] for visualization. As this file can
contain a lot of data, it may be better to handle the surface file unless for checking reasons.

o  File with surface snapshots (*.surface’) in LAMMPS format. Instead of the whole system, only the
atoms on the surface are printed in this file.

e  Data file with the time evolution of the following parameters (“.data’): The total number of atoms
dissolved of each type, its fraction, the surface dispersion, the gyradius (in no PBC systems) as
well as all their derivatives.

e  Coordination file with the mean coordination to each type of atom along the dissolution process
(“.meandiscoord’). This data is key to calculate correctly AG value as explained below.

e Layer atom files with the amount of atoms in each layer and each spatial direction
(“.alayer’, “blayer’, “.clayer’). For example, the “.clayer’ file contains the total number of atoms of
the cells in plane ab, layer by layer in c direction.

3.2. Parallelization Level

The parallelization level of a program is defined as the maximum speedup that a program can
have. The speedup of a program from parallelization is limited by how much of the program can be
parallelized [50]. For example, if 90% of the program can be parallelized, the theoretical maximum
speedup using parallel computing would be 10 times no matter how many processors are used.

We have used the openMP library [42] to parallelize our code. As we have seen, the program
presents three different parts: The system definition, the system preparation by KIMERA, and the
simulation itself. The last two are the more time consuming and thus, they define the total simulation
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parallelization level. In Figure 3 the performance of the two first examples studied afterwards in
Section 5 is plotted.

The preparation phase of the Kossel crystal example is very quick and hardly influences the total
simulation time. Therefore it is a good example to get the parallelization level of the simulation phase.
A decrease of 5% by increasing the number of cores from 1 to 8 is obtained when using binary search.
With lineal search the decrease is higher, 16%. Such difference is due to the former search method
cannot be parallelized. While lineal search seems to be more efficient, the roles are expected to be
swapped in simulations with bigger systems and low number of cores.

On the other hand, the quartz grain example needs a long system preparation time, which has
been tracked separately. While the total time presents a reduction of 14% with 8 cores, the system
preparation phase shows a good parallelization level with a reduction of 61%. Therefore, best strategy
to reduce the simulation time in a study with the same system is to use several cores to print only the
initial Kimera file, to later used it in a set of subsequent simulations with only one processor and the
default binary search.

4. Gibbs Free Energy Difference, AG

The Gibbs free energy difference AG is the driving force of a hydrolysis reaction in a mineral and
it is related to the concentration of the chemical species of the mineral in the solvent. It is possible to
obtain the dependence of the dissolution rate with Gibbs free energy in KMC simulations. The origin of
this dependence has been demonstrated to reside at atomic scale and can be modeled by the interplay
between dissolution and precipitation reactions, i.e., the microscopic reversibility [29]. The Gibbs
free energy difference AG is related to the ion activity product, I1, of the dissolved material in water,
divided by the solubility product Ki:

AG=R-T-In(I1/K,)=R-T-In(B) (10)

R is the ideal gas constant (8.3145 ] mol~! K=1) and T the temperature (K). The term I1/K;
is more commonly known as saturation index § and sets the distance to equilibrium, where no
dissolution happens.

Due to concentration gradients, and accumulation of anions and cations in the Stern layer [51],
there is a difference between macroscopic concentrations in solution and that close the surface.
Therefore, we can define a “local” or microscopic free energy difference AG*:

AG* =R-T-In(B*) (11)

In principle, the dissolution will be driven by this microscopic free energy difference. The local
and macroscopic AG can then be related by:

AG:AG*—R-T-ln<’B*> (12)
p

Numerically, we cannot establish a direct relationship between both quantities, because we do
not know the microscopic saturation index *. However, we can relate them using the thermodynamic
equilibrium condition and the dissolution and precipitation reaction rates. The thermodynamic
equilibrium condition is define as the state when AG = 0. In that state, the net reaction rate must be
also equal to zero, and therefore rp = rp. Using these conditions, together with Equations (4) and (5),
we can obtain the following relationship for a monocomponent mineral:

AG = AG* + (EDj - Epi) - lnch (13)
P

In Equation (13) we assume that the total dissolution and precipitation rates correspond to those
of the reaction step that limits the dissolution close to equilibrium, usually a kink site. In addition, if a
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multicomponent mineral is considered, the macroscopic AG is given by coupling the concentration
of each constituent element [48]. The difference between the macroscopic and local free energies
is implicitly taken into account in the Ep and Ep values. Supposing a mineral with [ atoms types,
m sets of contributor, and n; neighbours for each contributor set, the Gibbs free energy difference, AG,
is related with local AG* by considering that the net dissolution rate of the kink atoms of each type
(i for all k) is 0 when AG = 0 (kgT units):

1 m
AG =) xi-N;- (AG* + (2 Ep, (i) — Ep, (nk)> —In ?) (14)
i=1 k=1 P

where y; is the fraction of atoms of type i, N; is its average amount of broken bonds to dissolve, 7 is
the average number of neighbours of each contributor set to the atom type i in a bond breakage or
formation, and Ep(7;) and Ep(71) are their respective energy barrier values. Both yx; and 7 can be
obtained from the output data of KIMERA, from the ‘.data’ and ‘.meandiscoord’ files respectively.
Since these values can change with the considered AG* value, the relation between AG* and AG may
not be constant. Nevertheless, in practice the deviation is not high and can be considered as constant
by calculating them from simulation at far from equilibrium conditions, when AG* — —oo0 and no
precipitation events take place. The user must identify the value of N; by recognising the number of
broken bonds during a dissolution process. This differentiation arises for example if we want to group
several bond breaking events in only one event of different f and Eg, such as a coarse grain simulation.
In the examples of the following section the AG calculus is explicitly highlighted.

5. Examples of KIMERA Capabilities

5.1. Model A-B Kossel Crystals

In this section the dissolution with AG of two different configurations of a Kossel crystal consisting
of two elements is described. A Kossel crystal, or Terrace Ledge Kink system (TLK), is a simple mineral
structure consisting of a cubic lattice with six first neighbours [52]. Despite the simplicity of this
system, it ensures enough topographic details so as to reproduce the mechanisms attributed to the
dissolution process.

The systems in this model have two elements, A and B. In one of them, named ‘configuration 1’,
the atoms are distributed alternately along x and y axes (not in z) within a box of 120 x 120 x 30 atoms
(see Figure 4a). In the other one, named ‘configuration 2’ groups of 2 x 2 x 2 atoms of the same
element are distributed alternately along x, y and z axes (see Figure 4b). In both cases one dislocation
of 2 x 2 atoms wide and 20 atoms depth is set in the center of the system. The dissolution study is
done in the {001} plane using PBC.
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Figure 4. A-B Kossel Crystal studies with AG. (a) Initial ‘configuration 1’ system. (b) Initial
‘configuration 2’ system. (c) Topography of ‘configuration 1" at the beginning of the onset (red square).
(d) Topography of ‘configuration 1” at far from equilibrium conditions (blue point). (e) Topography of
‘configuration 2” at far from equilibrium conditions (green point). (f) Dissolution rate versus AG for
‘configuration 1'. (g) Dissolution rate versus AG for ‘configuration 2’. The visual representation is done
using OVITO program [53].

Both cases are similarly defined. The simulation parameters for the ‘configuration 2’ are first

described, and then the minor changes for the other case are indicated.

The system dimensions are indicated; 60 x 60 x 15 unit cells.

The unit cell parameters. We useda = b = ¢ = 5 A and « = B = 7 = 90°. Inside the cell,
we define the 8 positions of the atoms in the unit cell that later on is repeated along the
system. The positions are: (0,0,0), (2.5,0,0), (0,0,2.5), (2.5,0,2.5), (0,2.5,0), (2.5,2.5,0), (0,2.5,2.5)
and (2.5,2.5,2.5) A. All the positions are initially define as A atoms, and we later will redefine half
of them as B type. Note that although the unit cell has 5.0 A the distance between atoms is 2.5 A,
which is a typical distance reported for minerals [54].

In “‘configuration 1’, the positions are the same, but half of them are of type B. Specifically, atoms in
(0,0,0), (0,0,2.5), (2.5,2.5,0) and (2.5,2.5,2.5) are B type. Since the alternating disposition of the
atoms is already taken into account with this definition, no additional commands to modify the
system are needed.

We set periodic boundary conditions along x and y axes.

Physical parameters for the simulation. The target time ftarget = 4.0 - 102 s and the local
AG* = —100 kpT units, which ensures far from equilibrium conditions. In ‘configuration 1’
the time scale is different due to its faster dissolution and ttarget = 4.0 - 10~ ts.

Event definition. We have chosen for this example an energy barrier for A-A atoms of
Ep, , = 12 kgT units, for B-B Ep,, = 4 kgT units, which are respectively the higher and lower
limit value for most minerals [27]. For the AB interaction the energy barrier is obtained from the
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Lorentz—Berthelot rule [55], Ep, ; = \/Ep,., - EDy = 6.92 kT units. The precipitation energy
barrier for all the cases is Ep, , = Ep, , = Ep,, = 1 kT units.

For the frequency fp = fp = 4 - 103 s~ s which lies in the range of values for atomic vibration in
a mineral (1019-10"3 s~ at 300 K) [56].

Lastly, KIMERA requires the number of neighbours that a bulk atom has to later define the initial
reactive surface. For both for A and B atoms, a bulk atom has 3 A type neighbours and 3 B type
neighbours. In ‘configuration 1’ the event definition is similar, but the number which defines
a bulk atom changes. A bulk A atom has 2 A and 4 B neighbours. A bulk B atom has 4 A and
2 B neighbours.

o  Topographic defects. We define the last plane z = 0 as insoluble and we include one partial
dislocation in the center with one third of the system depth. Since there are atoms within the
dislocation that have a lower coordination than a bulk atom, the program recognised them as
initial reactive surface. Therefore, we remove such condition because it is physically meaningless.

With those instructions KIMERA can start the simulations. Once the simulations are finished,
we can relate AG* and AG with Equation (14). The ‘.meandiscoord’ file reports the average bond
breakage of each atom type during all the simulation. The final steady values are collected in
Table 1. Besides, the “.data’ files report the same dissolution rate for A and B atoms in both
cases, thus x4 = xg = 0.5. The relation between AG* and AG is calculated from these values and
Equation (14), and it is shown in Table 1. By changing the AG* value, the dissolution rate versus AG is
obtained in the Figure 4f,g from the slope of the number of atoms removed versus time normalized to
the surface area ((60 - 5.0 - 1071°)2 = 9. 107! m?) and moles. Note that the rate may not be constant
during the system dissolution. In ‘configuration 2’ the dissolution rate is constant with time since
the dislocation has no effect. In contrast, in ‘configuration 1’ the dislocation opening provokes a
progressive increase of the dissolution rate until dislocation coalescence. Thus we have taken the
dissolution rate when it reaches the steady value after coalescence.

Table 1. Average bond breakage for each type of atom in the A-B Kossel crystal configurations and AG
and AG* relation.

A-A A-B B-B B-A AG
Configurationl 1.0 133 1.0 266 3-(AG*+18.76)
Configuration2 15 0423 15 2576 3-(AG*+19.52)

In ‘configuration 1’ the dislocation is not opened until enough energy is reached at
AG = —9 kcal mol~!. The shape of the pit at this point is square (Figure 4c) but turns into a circular
one (Figure 4d) with a small energy deviation. Besides, once the AG = —16.5 kcal mol ! is reached,
the spontaneous pit opening or mechanism III [29] is produced.

Regarding ‘configuration 2’, at close to equilibrium conditions only the very first B exposed
atoms on the surface dissolve until only A atoms are exposed. The dissolution rate in this first zone is
close to 0. Once the AG is negative enough at —27 kcal mol~! the release of A atoms starts and the
dissolution rate increases drastically. It presents a random dissolution pattern over all the surface
without any influence of the dislocation (see Figure 4e). The onset is only due to the beginning of the
dissolution of the limiting A atoms. Note that, as expected, with the same Ep and Ep energies the
dissolution rate is much lower in ‘configuration 2’ since groups of A atoms restrict it. Moreover the
energy needed to activate its dissolution is much higher; the onset is at much lower AG.

This type of theoretical examples on a Kossel crystal are very useful to study a general behaviour
valid as a first approach for most minerals. However, as detailed below, more specific studies are
possible in KIMERA.
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5.2. Quartz Model I: Dissolution of an Ellipsoidal Grain

KIMERA is able to simulate the dissolution of real minerals with full atomistic structure resolution.
As example, we simulate the dissolution of an ellipsoid grain of quartz with AG using the SCS-L1 model
described by Kurganskaya and Luttge [23]. Briefly, the SCS-L1 model proposed in [23] considers that
the energy barrier for a silicon atom dissolution depends linearly with the amount of first surrounding
silicon atoms 77 and, to a lesser extend, with the second surrounding silicon atoms 7, and hydroxils
groups n3 bonded to the surface.

EB =ny- EBSi_Sﬂ + (”2 + 713) : EBSi-SiZ (15)

Note that 1y + n3 = 12 in quartz. The specific energies are those proposed by [23]. Herein,
we describe the instructions to run the simulation:

e System dimensions. A box in which we will define the ellipsoid is created with 50 x 40 x 30
unit cells.

e  The unit cell parameters. For a-quartza = b = 5.01, c = 547, « = B = 90° and ¢y = 120°.
Inside the cell, we load a “.xyz’ file containing the positions, which has been converted from a *.cif’
file downloaded from The American Mineralogist crystal structure database [45]. Oxygen atoms
can be removed for performance purposes since they are not explicitly taken into account for the
quartz dissolution reaction in this case. The dissolution of a SiO; is considered in a single step
with a joint probability (Equation (6)). This can be interpreted as a coarse grain of a SiO, unit in
each Si site.

e  Physical parameters. The target time ftarget = 2.0 - 1020 s and the local AG* = —100 kg T units.

e Topographic defects. An ellipsoid with radius in the three axes, r, = 65 A, ry =85 Aandr, =75 A
is defined as the simulation system. A dislocation along the x axis is placed in the middle.

e Event definition. The energy barrier with first neighboring silicon atom is Ep, o, = 28 kgT units
and with second Ep,, = 4 kgT. Precipitation energies of Epy, ,, = 10 kgT and Epg,,, = 1 kgT are
used. All the four first silicon neighbours are at 3.09832 A. If an atom is surrounded by the four
first neighbours, it is considered to be in bulk. 12 second silicon neighbours are at 5.01 A. Finally,
the fundamental frequencies values are fp = fp = 1.0 - 1012 51 [57].

The relation between AG* and AG is calculated using Equation (14) looking at the “.meandiscoord’
file to get the average breakage of atoms (see Table 2).

Table 2. Average breakage value for each bond for the quartz grain example and AG* and AG relation.

Si-Si-3.09832  Si-Si-5.0100 Si-Si-5.66774  Si-Si-4.42416 AG
1.95 1.92 1.92 1.95 1.95- (AG* +5247)

Figure 5 reports the dissolution rate versus AG and the time evolution of the grain, which is
similar for all AG values. The grain dissolves maintaining an ellipsoidal shape with an irregular
surface until its complete dissolution. The dissolution rate changes constantly as the exposed surface
decreases. Therefore, we report the values when half of the forming atoms remains. The surface value
is taken as a geometrical approximation in this point (see Figure 5b), A/, = 41070 m2.

The results show little influence of the dislocation in the dissolution rate. The local coordination
at the dislocation does not decrease with respect to other grain regions, so it is not a preferential spot
for dissolution. In this case the dissolution rate decreased gradually while getting close to equilibrium
following a typical TST curve [56].
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Figure 5. Quartz grain dissolution study with AG. (a) Initial grain. (b) Grain after half of the forming
atoms have dissolved. (c) 10% of the atoms remain. (d) Dissolution rate versus AG curve. Blue point
corresponds to the simulation of the topographies in (a—c), though similar topographies are obtained in
any other point. The visual representation is done using OVITO program.

5.3. Quartz Model 1I: Dissolution of a Wulff Shape Particle

The previous quartz dissolution model is not able to reproduced jointly the experimental
dissolution rate and activation energy [58]. If the dissolution parameters are fitted to reproduce
the macroscopic activation energy, the dissolution rate is overestimated by several orders of magnitude,
and vice versa. In this section we describe an example based on an alternative model proposed in [58].
In that work, in contrast to the previous site-by-site dissolution model, a bond-by-bond scheme is
used, which is able to obtain both quantities along with the experimental topographies. The system
is a wulff shape particle, the geometry with minimum surface energy of a mineral. For quartz it is a
prism with hexagonal section and pyramidal tips [59] (see Figure 6a).

Instead of considering a coarse grain approximation where the quartz dissolves site by site,
each oxygen bond breakage is explicitly considered. The energy barrier to break or reform the bond
depends on its connectivity. We consider the connectivity by evaluating the number of unreacted
oxygen atoms around the oxygen atom of interest. All of them are in a cutoff distance of 2.58 + 0.01 A.
If one hydrolysis reaction occurs in one of this neighbouring linking oxygen atoms, the bond breaks
reducing the connectivity and, consequently, the energy barrier for the hydrolysis of the oxygen
atom of interest. This way it can be defined the energy barrier for a hydrolysis as a function of the
surrounding oxygen atoms in bridging sites (see Table 3).

Table 3. Model energy barrier values with the bond surroundings in kJ mol 1.

Bond Ep Ep Surrounding Oxygen Atoms
Q1-Q1 - - 0

Q1-Q2 75 60
Q1-Q3 8 70
Q1-Q4 95 80
Q2-Q2 8 70
Q2-Q3 95 80
Q2-Q4 105 105
Q3-Q3 105 105
Q3-Q4 135 135
Q-Q4 - -

c|lu|we|w|w|N|w|N]|R~
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e  System dimensions. A box in which the wulff shape fit in is created with 16 x 16 x 47 units cells

e  Same unit cell parameters as the previous example. 4 = b = 5.01,c = 547, « = § = 90° and
v = 120°. The “.xyz’ file is also called, but this time the oxygen atoms do play an important role
and they cannot be removed.

e This time instead of target time, we define a target step Starget = 62,700 steps, which is
approximately the total amount of silicon and oxygen atoms forming the particle.

e  Topographic defects. The wulff shape is sculpted from the system by defining planes in which the
atoms are removed. The equations of these planes are taken from GEODEBRA3D tool [60] which
was used to visualise the system beforehand. Besides, two dislocations are defined and inner
atoms removed from the initial surface. One dislocation is placed transversally in the center of the
{100} plane, and another one perpendicular to the previous and longitudinally to the wulff shape

e Event definition. The Ep(n) and Ep(n) for the linking oxygen bond is directly related with
the number of oxygen atoms within 2.585 A. 6 surrounding oxygen atoms indicates that
the considered one is in a bulk position and therefore it is not reactive. Besides, the silicon
atom must be automatically released if all of its four surrounding oxygen atoms have reacted.
Finally, the fundamental frequency values fp = fp = 24510 s7! are indicated [61].
The AG* = —200 kgT value sets very far from equilibrium conditions.

The next step is to determine the relation between AG* and AG. From the ‘.meandiscoord’ file,
most oxygen atoms react when three oxygen atoms are around (7 = 3). That means that the reference
position to determine the AG value is a Q1-Q4 with Ep = 24.1 and Ep = 20.3 kgT units at 473 K
(see Table 3). The relation between AG* and AG is AG = AG* + 3.8.

It is important to highlight that in this process the number of broken bonds is N; = 1, not like the
previous model where the broken bonds corresponded to the number of surrounding silicon atoms.

Results of dissolution rate with AG is shown in Figure 6. They follow a typical TST curve. For all
the simulations with AG, initial wulff shape is distorted into an elongated grain which reduces its size
until the complete extinction. Same as the previous model, dislocations do not represent a preferential
spot for dissolution. The surface area and the dissolution rate values are calculated at the time when

the grain has lost half of its atoms (see Figure 6b). The estimated surface area is A1/, = 3.3 10716 m2.

—~
o
=

(@)

~ O
n i d
= I ]

(b) g

B £ 6| f

2 g
:L L i

B : v
© i . . )
(C) . R D: '12 - 1 |. 1 | 1l
-12 -8 -4 0

AG (kcal mol?)

Figure 6. Quartz wulff shape dissolution study with AG. (a) Initial state. (b) Wulff shape after half of
the forming atoms have dissolved. (c) 25% of the atoms remain. (d) Dissolution rate versus AG curve.
Blue point corresponds to the simulation of the topographies in (a—c), though similar topographies are
obtained in any other point. The visual representation is done using OVITO program.
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6. Conclusions

In this paper we have introduced KIMERA, an open source KMC code to study mineral dissolution.
The code offers portability thanks to its implementation in C++11 language and a good performance
thanks to efficient algorithms and its parallelization feature. KIMERA is a versatile code thanks to
the multiple ways to define reaction events, and the possibility of performing studies with specific
atomistic structures, coarse grained systems, periodic systems or particles.

To illustrate it, three different models in four different systems are studied. First, a lineal
dependence of the energy barrier of dissolution with the number of first neighbours is considered to
study two different Kossel crystal systems. Second, a lineal dependence of the energy barrier with
the number of first and second neighbours is considered to study the dissolution of an ellipsoidal
grain of quartz. Finally, a specific dependence of the energy barrier with surroundings to represent the
sequential breakage of bridging oxygen bonds is used to study the quartz wulff shape dissolution.

Future enhancements of KIMERA will include: (1) An improvement and widening of the event
definition, to even consider a differentiation of AG*, fp and fp with positions, (2) an extension of the
code to consider growth and (3) the development of a tool, webpage or IDE to create and display the
system of study.

KIMERA is available as open-source software under the GNU General Public License. Thus,
KIMERA can be used free of charge, everyone can contribute to the software, extend it to his own needs
and share newly developed plug-ins with other users. The C++ source code of KIMERA, all input file
examples, as well as the “.xyz’ needed for the quartz examples can be downloaded from the bitbucket
repository https://mgp9999@bitbucket.org/mgp9999/kimera-publico.git.

Author Contributions: Conceptualization, PM., ].J.G., ].5.D. and H.M.; software, PM.; validation, PM., J.J.G.,
J.S.D. and H.M.; writing—original draft preparation, P.M.; writing-review and editing, PM., J.].G., J.S.D. and H.M.
All authors have read and agreed to the published version of the manuscript.

Funding: ].S.D. acknowledges the funding from the Spanish Ministry of Economy, Industry and
Competitiveness (project Ref-2018601057) and the Spanish Ministry of Science, Innovation and Universities
(project Ref RTI2018-098554-B-100). P. Martin acknowledges support from the PhD scholarship Tecnalia Research
& Innovation’s grant.

Acknowledgments: All the simulations have been carried out at the high performance computing service of
Basque Country i2basque and the UPV/EHU cluster. The authors thank for technical and human support
provided by SGlIker - UPV/EHU.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Van Breemen, N.; Buurman, P. Soil Formation; Springer: Berlin/Heidelberg, Germany, 2002.
Kalbitz, K.; Solinger, S.; Park, ].H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic
matter in soils: A review. Soil Sci. 2000, 165, 277-304. [CrossRef]

3.  Krouse, HR,; Viau, C.A ; Eliuk, L.S.; Ueda, A.; Halas, S. Chemical and isotopic evidence of thermochemical
sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 1988, 333, 415. [CrossRef]

4. Canals, M.; Meunier, ].D. A model for porosity reduction in quartzite reservoirs by quartz cementation.
Geochim. Cosmochim. Acta 1995, 59, 699-709. [CrossRef]

5. Lal, R. Carbon sequestration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 815-830. [CrossRef] [PubMed]

6. Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004,
304, 1623-1627. [CrossRef]

7. Blain, S.; Quéguiner, B.; Armand, L.; Belviso, S.; Bombled, B.; Bopp, L.; Bowie, A.; Brunet, C.; Brussaard, C.;
Carlotti, F; et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature
2007, 446, 1070. [CrossRef]


https://mgp9999@bitbucket.org/mgp9999/kimera-publico.git
http://dx.doi.org/10.1097/00010694-200004000-00001
http://dx.doi.org/10.1038/333415a0
http://dx.doi.org/10.1016/0016-7037(94)00355-P
http://dx.doi.org/10.1098/rstb.2007.2185
http://www.ncbi.nlm.nih.gov/pubmed/17761468
http://dx.doi.org/10.1126/science.1097396
http://dx.doi.org/10.1038/nature05700

Minerals 2020, 10, 825 15 0f 17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Giammar, D.E; Bruant, R.G,, Jr.; Peters, C.A. Forsterite dissolution and magnesite precipitation at conditions
relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chem. Geol. 2005, 217, 257-276.
[CrossRef]

Juilland, P.; Gallucci, E. Morpho-topological investigation of the mechanisms and kinetic regimes of alite
dissolution. Cem. Concr. Res. 2015, 76, 180-191. [CrossRef]

Juilland, P.; Gallucci, E.; Flatt, R.; Scrivener, K. Dissolution theory applied to the induction period in alite
hydration. Cem. Concr. Res. 2010, 40, 831-844. [CrossRef]

Lasaga, A.C.; Blum, A.E. Surface chemistry, etch pits and mineral-water reactions. Geochim. Cosmochim. Acta
1986, 50, 2363-2379. [CrossRef]

Brand, A.S.; Bullard, ].W. Dissolution kinetics of cubic tricalcium aluminate measured by digital holographic
microscopy. Langmuir 2017, 33, 9645-9656. [CrossRef] [PubMed]

Brand, A.S.; Feng, P,; Bullard, J.W. Calcite dissolution rate spectra measured by in situ digital holographic
microscopy. Geochim. Cosmochim. Acta 2017, 213, 317-329. [CrossRef] [PubMed]

Feng, P; Brand, A.S.; Chen, L.; Bullard, ].W. In situ nanoscale observations of gypsum dissolution by digital
holographic microscopy. Chem. Geol. 2017, 460, 25-36. [CrossRef] [PubMed]

Cama, J.; Ganor, J.; Ayora, C.; Lasaga, C.A. Smectite dissolution kinetics at 80 °C and pH 8.8.
Geochim. Cosmochim. Acta 2000, 64, 2701-2717. [CrossRef]

Dove, PM.; Han, N.; De Yoreo, ].]. Mechanisms of classical crystal growth theory explain quartz and silicate
dissolution behavior. Proc. Natl. Acad. Sci. USA 2005, 102, 15357-15362. [CrossRef]

Shvab, I.; Brochard, L.; Manzano, H.; Masoero, E. Precipitation mechanisms of mesoporous nanoparticle
aggregates: off-lattice, coarse-grained, kinetic simulations. Cryst. Growth Des. 2017, 17,1316-1327. [CrossRef]
Wang, Q.; Manzano, H.; Guo, Y.; Lopez-Arbeloa, I; Shen, X. Hydration mechanism of reactive and passive
dicalcium silicate polymorphs from molecular simulations. J. Phys. Chem. C 2015, 119, 19869-19875.
[CrossRef]

Wang, Q.; Manzano, H.; L6pez-Arbeloa, I.; Shen, X. Water adsorption on the S-dicalcium silicate surface
from DFT simulations. Minerals 2018, 8, 386. [CrossRef]

Manzano, H.; Gartzia-Rivero, L.; Bafiuelos, J.; Lopez-Arbeloa, IN. Ultraviolet—visible dual absorption
by single BODIPY dye confined in LTL zeolite nanochannels. ]. Phys. Chem. C 2013, 117, 13331-13336.
[CrossRef]

de Assis, T.A.; Reis, ED.A. Dissolution of minerals with rough surfaces. Geochim. Cosmochim. Acta 2018,
228,27-41. [CrossRef]

Kurganskaya, I.; Luttge, A. Kinetic Monte Carlo approach to study carbonate dissolution. J. Phys. Chem. C
2016, 120, 6482-6492. [CrossRef]

Kurganskaya, I.; Luttge, A. Kinetic Monte Carlo Simulations of Silicate Dissolution: Model Complexity and
Parametrization. |. Phys. Chem. C 2013, 117, 24894-24906. [CrossRef]

Rohlfs, R.D.; Fischer, C.; Kurganskaya, L; Luttge, A. Crystal dissolution kinetics studied by a combination of
Monte Carlo and Voronoi methods. Minerals 2018, 8, 133. [CrossRef]

Briese, L.; Arvidson, R.S.; Luttge, A. The effect of crystal size variation on the rate of dissolution—A kinetic
Monte Carlo study. Geochim. Cosmochim. Acta 2017, 212, 167-175. [CrossRef]

Lasaga, A.C.; Luttge, A. Variation of crystal dissolution rate based on a dissolution stepwave model. Science
2001, 291, 2400-2404. [CrossRef]

Meakin, P; Rosso, K.M. Simple kinetic Monte Carlo models for dissolution pitting induced by crystal defects.
J. Chem. Phys. 2008, 129. [CrossRef]

Fischer, C.; Luttge, A. Pulsating dissolution of crystalline matter. Proc. Natl. Acad. Sci. USA 2018, 115,
897-902. [CrossRef]

Martin, P.; Manzano, H.; Dolado, J.S. Mechanisms and Dynamics of Mineral Dissolution: A New Kinetic
Monte Carlo Model. Adv. Theory Simul. 2019, 2, 1900114. [CrossRef]

Artacho, E.; Anglada, E.; Diéguez, O.; Gale, ].D.; Garcia, A.; Junquera, J.; Martin, RM.; Ordején, P;
Pruneda, ] M.; Sdnchez-Portal, D.; et al. The SIESTA method; developments and applicability. ]. Phys.
Condens. Matter 2008, 20, 064208. [CrossRef]

Gale, ].D. GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc.
Faraday Trans. 1997, 93, 629-637. [CrossRef]


http://dx.doi.org/10.1016/j.chemgeo.2004.12.013
http://dx.doi.org/10.1016/j.cemconres.2015.06.001
http://dx.doi.org/10.1016/j.cemconres.2010.01.012
http://dx.doi.org/10.1016/0016-7037(86)90088-8
http://dx.doi.org/10.1021/acs.langmuir.7b02400
http://www.ncbi.nlm.nih.gov/pubmed/28841322
http://dx.doi.org/10.1016/j.gca.2017.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28894326
http://dx.doi.org/10.1016/j.chemgeo.2017.04.008
http://www.ncbi.nlm.nih.gov/pubmed/28827855
http://dx.doi.org/10.1016/S0016-7037(00)00378-1
http://dx.doi.org/10.1073/pnas.0507777102
http://dx.doi.org/10.1021/acs.cgd.6b01712
http://dx.doi.org/10.1021/acs.jpcc.5b05257
http://dx.doi.org/10.3390/min8090386
http://dx.doi.org/10.1021/jp4051676
http://dx.doi.org/10.1016/j.gca.2018.02.026
http://dx.doi.org/10.1021/acs.jpcc.5b10995
http://dx.doi.org/10.1021/jp408845m
http://dx.doi.org/10.3390/min8040133
http://dx.doi.org/10.1016/j.gca.2017.06.010
http://dx.doi.org/10.1126/science.1058173
http://dx.doi.org/10.1063/1.3021478
http://dx.doi.org/10.1073/pnas.1711254115
http://dx.doi.org/10.1002/adts.201900114
http://dx.doi.org/10.1088/0953-8984/20/6/064208
http://dx.doi.org/10.1039/a606455h

Minerals 2020, 10, 825 16 of 17

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.
57.

Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.;
Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO.
J. Phys. Condens. Matter 2017, 29, 465901. [CrossRef] [PubMed]

Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics; Technical Report; Sandia National Labs.:
Albuquerque, NM, USA, 1993.

Plimpton, S.; Thompson, A.; Slepoy, A. Stochastic Parallel PARticle Kinetic Simulator; Technical Report;
Sandia National Laboratories: Albuquerque, NM, USA, 2008.

Jorgensen, M.; Gronbeck, H. MonteCoffee: A programmable kinetic Monte Carlo framework. J. Chem. Phys.
2018, 149, 114101. [CrossRef] [PubMed]

Hoffmann, M.].; Matera, S.; Reuter, K. Kmos: A lattice kinetic Monte Carlo framework. Comput. Phys. Commun.
2014, 185, 2138-2150. [CrossRef]

Holm, E.A.; Hoffmann, T.D.; Rollett, A.D.; Roberts, C.G. Particle-Assisted Abnormal Grain Growth;
IOP Conference Series: Materials Science and Engineering; IOP Publishing: Risg, Denmark, 2015; Volume 89,
p- 012005.

Rodgers, T.M.; Madison, ].D.; Tikare, V.; Maguire, M.C. Predicting mesoscale microstructural evolution in
electron beam welding. JOM 2016, 68, 1419-1426. [CrossRef]

Jansen, A.PJ. An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 856.

Bortz, A.B.; Kalos, M.H.; Lebowitz, ].L. A new algorithm for Monte Carlo simulation of Ising spin systems.
J. Comput. Phys. 1975, 17, 10-18. [CrossRef]

Dybeck, E.C.; Plaisance, C.P.; Neurock, M. Generalized temporal acceleration scheme for kinetic monte carlo
simulations of surface catalytic processes by scaling the rates of fast reactions. |. Chem. Theory Comput. 2017,
13, 1525-1538. [CrossRef]

Tian, X.; Bik, A.; Girkar, M.; Grey, P.; Saito, H.; Su, E. Intel® OpenMP C++/Fortran Compiler for
Hyper-Threading Technology: Implementation and Performance. Intel Technol. J. 2002, 6, 36—46.

Unofficial XYZ File Format Specification. Available online: http://en.wikipedia.org/wiki/XYZ_file_format
(accessed on 1 October 2019).

Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural
analysis. J. Appl. Crystallogr. 2008, 41, 653-658. [CrossRef]

Downs, R.T.; Hall-Wallace, M. The American Mineralogist crystal structure database. Am. Mineral. 2003,
88, 247-250.

Unit Cell Rotation with VESTA. Available online: https://ma.issp.u-tokyo.ac.jp/en/app-post/1788
(accessed on 15 March 2020).

Kohli, C.; Ives, M. Computer simulation of crystal dissolution morphology. J. Cryst. Growth 1972, 16, 123-130.
[CrossRef]

Lasaga, A.C,; Liittge, A. Mineralogical approaches to fundamental crystal dissolution kinetics. Am. Mineral.
2004, 89, 527-540. [CrossRef]

Williams, L.F,, Jr. A modification to the half-interval search (binary search) method. In Proceedings of the
14th Annual Southeast Regional Conference, Birmingham, AL, USA, 22-24 April 1976; pp. 95-101.

Hill, M.D.; Marty, M.R. Amdahl’s law in the multicore era. Computer 2008, 41, 33-38. [CrossRef]

Dukhin, S.S.; Kretzschmar, G.; Miller, R. Dynamics of Adsorption at Liquid Interfaces: Theory, Experiment,
Application; Elsevier: Amsterdam, The Netherlands, 1995.

Oura, K.; Katayama, M.; Saranin, A.; Lifshits, V.; Zotov, A. Surface Science; Springer: Berlin/Heidelberg,
Germany, 2003; Volume 602, pp. 229-233. [CrossRef]

Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization
Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [CrossRef]

Gibbs, G.V.,; Downs, R.T.; Cox, D.E; Ross, N.L.; Prewitt, C.T.; Rosso, KM.; Lippmann, T.; Kirfel, A.
Bonded interactions and the crystal chemistry of minerals: A review. Z. Krist. Cryst. Mater. 2008, 223, 1-40.
[CrossRef]

Berthelot, D. Sur le mélange des gaz. Compt. Rendus 1898, 126, 1703-1855.

Lasaga, A.C. Kinetic Theory in the Earth Sciences; Princeton University Press: Princeton, NJ, USA, 2014.
Pelmenschikov, A.; Leszczynski, J.; Pettersson, L.G. Mechanism of dissolution of neutral silica surfaces:
Including effect of self-healing. J. Phys. Chem. A 2001, 105, 9528-9532. [CrossRef]


http://dx.doi.org/10.1088/1361-648X/aa8f79
http://www.ncbi.nlm.nih.gov/pubmed/29064822
http://dx.doi.org/10.1063/1.5046635
http://www.ncbi.nlm.nih.gov/pubmed/30243278
http://dx.doi.org/10.1016/j.cpc.2014.04.003
http://dx.doi.org/10.1007/s11837-016-1863-8
http://dx.doi.org/10.1016/0021-9991(75)90060-1
http://dx.doi.org/10.1021/acs.jctc.6b00859
http://en.wikipedia.org/wiki/XYZ_file_format
http://dx.doi.org/10.1107/S0021889808012016
https://ma.issp.u-tokyo.ac.jp/en/app-post/1788
http://dx.doi.org/10.1016/0022-0248(72)90103-0
http://dx.doi.org/10.2138/am-2004-0407
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1016/j.susc.2008.07.040
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1524/zkri.2008.0002
http://dx.doi.org/10.1021/jp011820g

Minerals 2020, 10, 825 17 of 17

58. Martin, P,; Gaitero, ].J.; Dolado, J.S.; Manzano, H. A Kinetic Monte Carlo Model for Quartz Dissolution. 2020,
in preparation.

59. Wendler, E; Okamoto, A.; Blum, P. Phase-field modeling of epitaxial growth of polycrystalline quartz veins
in hydrothermal experiments. Geofluids 2016, 16, 211-230. [CrossRef]

60. Geodebra3d. Available online: https://www.geogebra.org/3d?lang=en (accessed on 15 March 2020).

61. Casey, W.H,; Lasaga, A.C.; Gibbs, G. Mechanisms of silica dissolution as inferred from the kinetic isotope
effect. Geochim. Cosmochim. Acta 1990, 54, 3369-3378. [CrossRef]

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1111/gfl.12144
https://www.geogebra.org/3d?lang=en
http://dx.doi.org/10.1016/0016-7037(90)90291-R
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Reversible Kinetic Monte Carlo Model for Mineral Dissolution
	The KIMERA Code
	Operation
	System Definition
	System Preparation
	Simulation Process

	Parallelization Level

	Gibbs Free Energy Difference, G
	Examples of KIMERA Capabilities
	Model A-B Kossel Crystals
	Quartz Model I: Dissolution of an Ellipsoidal Grain
	Quartz Model II: Dissolution of a Wulff Shape Particle

	Conclusions
	References

