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A B S T R A C T   

Colorectal cancer has a great incidence rate worldwide, but its early detection significantly increases the survival 
rate. Colonoscopy is the gold standard procedure for diagnosis and removal of colorectal lesions with potential to 
evolve into cancer and computer-aided detection systems can help gastroenterologists to increase the adenoma 
detection rate, one of the main indicators for colonoscopy quality and predictor for colorectal cancer prevention. 
The recent success of deep learning approaches in computer vision has also reached this field and has boosted the 
number of proposed methods for polyp detection, localization and segmentation. Through a systematic search, 
35 works have been retrieved. The current systematic review provides an analysis of these methods, stating 
advantages and disadvantages for the different categories used; comments seven publicly available datasets of 
colonoscopy images; analyses the metrics used for reporting and identifies future challenges and re
commendations. Convolutional neural networks are the most used architecture together with an important 
presence of data augmentation strategies, mainly based on image transformations and the use of patches. End-to- 
end methods are preferred over hybrid methods, with a rising tendency. As for detection and localization tasks, 
the most used metric for reporting is the recall, while Intersection over Union is highly used in segmentation. 
One of the major concerns is the difficulty for a fair comparison and reproducibility of methods. Even despite the 
organization of challenges, there is still a need for a common validation framework based on a large, annotated 
and publicly available database, which also includes the most convenient metrics to report results. Finally, it is 
also important to highlight that efforts should be focused in the future on proving the clinical value of the deep 
learning based methods, by increasing the adenoma detection rate.   

1. Introduction 

Colorectal cancer (CRC) is defined as a carcinoma, usually an ade
nocarcinoma, in the colon or rectum. Colorectal cancer is considered 
primarily as a “lifestyle” disease; its incidence is higher in countries 
with a diet high in calories and animal fat and with a largely sedentary 
population [1]. CRC accounts for a 10% of overall new cancer cases 
worldwide, with a higher incidence rate in developed countries [2]. 
Only in the United States, it has increased from over 132,000 estimated 
new cases and nearly 50,000 estimated deaths in 2015 [3] to over 

145,000 estimated new cases and 51,000 estimated deaths in 2019 [4]. 
In Europe, CRC represents the second most common cancer and also the 
second cause of death from cancer [5]. 

Nevertheless, an early detection of the CRC increases the 5-year 
survival rate from 18% when CRC is detected in the highest grade to 
88.5% when it is detected in an initial grade due to symptoms. 
Furthermore, screening programs achieve a significant increase of the 
survival rate as they allow to start treatment even before the appear
ance of those symptoms, so up to 222 deaths out of 1000 patients de
tected with symptomatic CRC could be avoided [6]. 
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Colonoscopy is a standard technique for visual exploration of the 
colon and rectum by inserting a flexible endoscope through the patient 
anus [7] and is considered the gold standard for detection and removal 
of colorectal lesions, associated with important reduction of CRC 
mortality [8]. The European Society of Gastrointestinal Endoscopy re
commends the use of high definition white light endoscopes for de
tection of colorectal neoplasms in middle risk population [9], as it is 
estimated that 70–80% of CRC has a sporadic origin [10]. Therefore, it 
is clear the need for increasing the adenoma detection rate (ADR), 
defined as the proportion of patients with at least one colorectal ade
noma detected among all patients examined by the gastroenterologist, 
which is both a colonoscopy quality measure and a validated predictor 
for CRC prevention, having an inverse relationship [11]. 

Recently, the success of deep learning [12] has also boosted the 
applications on medical imaging analysis [13], achieving expert per
formance in several cases [14–16]. Deep learning approaches rely on 
the ability of networks with several layers to automatically learn hier
archical features characterizing the input data through the application 
of non-linear operations together with backpropagation for training. 
Deep learning architectures stack blocks of different types of layers 
(fully connected, convolutional, pooling or activation layers) to si
multaneously be sensitive to minute details and insensitive to large ir
relevant details. 

Computer-aided detection (CAD) systems have the potential to re
volutionize the endoscopic practice by (1) improving the adequacy of 
inspection technique; (2) providing automatic detection of precursor 
lesions of CRC; and (3) facilitating real-time diagnosis with optical 
biopsy [17]. In this review, we focus on the second topic. Traditionally, 
CAD systems for polyp detection have been based on the manual ex
traction of polyp features, or so called hand-crafted methods: shape- 
based [18], texture-based [19,20], depth of valleys-based [21,22] or 
combined-based [23] methods. Nevertheless, results of the MICCAI 
2015 Automatic Polyp Detection in Colonoscopy Videos challenge 
proved that convolutional neural networks (CNNs) are the state-of-the- 
art regarding polyp detection methods [24]. 

Within the scope of this systematic review, three main tasks are 
considered:  

1. Detection: identifying whether a polyp is shown or not in the frame, 
but information on the polyp location is not given.  

2. Localization: identifying the position of the polyp within a given 
frame, but exact shape of the polyp is not relevant.  

3. Segmentation: marking the exact polyp area in a given frame. 

Polyp classification (benign vs malign, Paris classification, NICE 
classification, etc.) is out of the scope of the current systematic review. 
Besides, classification in this case is done once the presence of the polyp 
is confirmed and in this review we place the focus on the prior stage 
(identifying the presence of the polyp in the frame). Therefore, we 
analyze the published methods for detection, localization and seg
mentation of colorectal polyps based on deep learning approaches. In 
this sense, methods are classified according to their main aim, the used 
database, their approach and the reported metrics. The state-of-art 
approaches are compared, showing advantages and disadvantages of 
the different categories, to identify the most auspicious trends. 

There are several surveys on deep learning for medical imaging 
analysis [13,25–31], where at most methods for colorectal polyps 
identification are roughly analyzed. A more specific review was done by 
Prasath [32] but the focus was placed on video capsule endoscopy ra
ther than on colonoscopy images. More recently, Ahmad et al. [33] 
summarized the evidence for clinical applications of computer-aided 
diagnosis and artificial intelligence in colonoscopy of key studies in a 
narrative manner. Therefore, to the authors’ knowledge, there is no 
previous systematic review on the proposed topic with a comparative 
analysis of retrieved works. 

Nevertheless, the lack of a common framework makes difficult to 

provide a reliable comparison of the state-of-art methodologies. The 
main limitation comes from the different datasets and/or testing set 
used for reporting results as well as selected metrics. Ideally, all 
methods should be applied on a common database [34]. Regretfully, 
this ideal situation is not real in many of the published works, where 
authors use different datasets, in a different manner, and reporting on 
different test sets with different metrics. Therefore, in the current re
view, methods are compared accordingly to their reported results, 
identifying characteristics that might influence on them. To overcome 
this heterogeneous situation, efforts have been lately performed by the 
organization of challenges under the hosting of international congresses 
in order to unify criteria. It is of special relevance the Endoscopic Vision 
Challenge [35], which has organized a subchallenge focused on de
tection, localization and segmentation of polyps in 2015 [24], 2017 and 
2018. In these cases, methods are easily and reliably compared. Besides, 
Vázquez et al. [36] also propose a benchmark for endoluminal scene 
segmentation of colonoscopy images, with the aim of boostering com
parative research. 

The main contributions of this systematic review are:  

1. We analyze publicly available datasets of colonoscopy images. 
2. We provide a comprehensive analysis of polyp detection, localiza

tion and segmentation methods based on deep learning, discussing 
advantages and disadvantages of the different categories.  

3. We analyze and discuss the reporting metrics used.  
4. We identify future challenges and recommendations based on the 

findings of the review to be addressed by the scientific community 
to advance the field. 

This review is organized as follows. In Section 2 we present the 
material and methods to carry out the systematic literature review, 
including search strategy, study selection and data extraction and 
management. In Section 3 we show the results of the search and sum
marize the works found. Then, datasets of colonoscopy images and how 
they are used are described in Section 4. In Section 5 and its corre
sponding subsections, we present and discuss the methods for detection 
(Section 5.1), localization (Section 5.2) and segmentation (Section 5.3) 
of colorectal polyps using deep learning approaches. We conclude this 
section with the advantages and disadvantages of each category (Sec
tion 5.4). After this, metrics are analyzed in Section 6, to conclude the 
paper with an analysis from a clinical perspective (Section 7), future 
challenges and recommendations (Section 8) and final conclusions 
(Section 9). 

2. Material and methods 

2.1. Search strategy 

The Preferred Reporting Items for Systematic Reviews and Meta- 
Analysis (PRISMA) [37] has been followed to perform this systematic 
review. The basic search string was (“colon” OR “colorectal”) AND 
(“cancer” OR “polyp”) AND (“deep learning”) AND (“detection” OR 
“localization” OR “segmentation”) and searches were performed on 
February 2nd 2019 using ACM Digital Library, IEEE Digital Library, 
Web of Science, PubMed, Science@Direct, Scopus and Springer Link 
databases. The search string syntax was adapted when necessary, de
pending on the database requirements. Search was performed on title, 
abstract and keywords. Previously identified articles were also included 
in the process. 

2.2. Study selection 

Studies included in the analysis were full text articles or full-length 
proceedings published in English. The exclusion criteria were papers 
published before 2015; in other languages; about a different topic; 
applying deep learning in a field other than CRC; pure clinical studies; 
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use of endoscopic capsules as imaging source; not using white light 
imaging; not using deep learning techniques; short proceedings; and 
meta-analyses or reviews. Retrieved abstracts were read by two authors 
(LBC and LFSP), searching for the full text when information in the 
abstract was not enough to determine its inclusion or exclusion. Full 
texts of selected abstracts were retrieved (LFSP) and independently 
revised (AP, LBC, JBP and LFSP) for final agreement on inclusion cri
teria. The reference list of selected works was also scrutinized for po
tential interesting articles (LFSP). 

2.3. Data extraction 

Information from papers selected for analysis was extracted for 
comparison (JBP, AP and LFSP). Papers were initially categorized ac
cording to their main objective (detection, localization or segmenta
tion). For each work, we also identified findings related to the used 
dataset, the data augmentation approach, the proposed method, the 
reporting metrics and reproducibility aspects (Table 1). 

2.4. Review and data management 

Parsif.al1 was used for abstract review and data management. 
Search results from each database were imported into the platform. 
Authors, title, year and journal were automatically extracted, facil
itating the selection procedure and the creation of the PRISMA flow 
diagram. A custom data extraction form was developed in the platform 
and used for the data extraction process. 

3. Results of the systematic search 

In all, 1,332 abstracts were found (Table 2 and Fig. 1). 35 papers 
were previously identified and used to select the search string based on 
their keywords, while 1,297 were retrieved from searches in the dif
ferent databases. After removing duplicates, 1,123 abstracts were 
screened. 1,071 were excluded based on the exclusion criteria and 52 
were revised in full text. From those, 33 were included in this review 
analysis. From manual inspection of references lists, 2 more works were 
added. 

During the revision process, detection was also considered as clas
sification between healthy tissue and polyp classes or polyp and non- 
polyp classes, but we excluded papers aiming at multi-class classifica
tion (polyp among other classes) (such as Pogorelov et al. [38] or Park 
and Sargent [39]) or polyp classification (neoplastic/non-neoplastic) 
(such as Ribeiro et al. [40]). 

Full text documents were carefully read, and data included in  
Table 1 were extracted for each work when available in the document. 
Authors were contacted when deemed necessary for clarification.  
Table 3 summarizes the 35 articles included in the analysis, together 
with some relevant aspects. Some works address more than one task, so 
they appear once per task in the table, resulting in 39 cases. There are 5 
book sections (usually proceedings of major conferences), 18 con
ference proceedings, 11 journal articles and one preprint. To unify 
criteria for results reporting in Table 1, metrics reported as percentages 
by authors have been expressed in the normalized range [0, 1]. 

As it might be expected, there is an overall increasing trend since 
2016 in the application of deep learning techniques for polyp detection, 
localization and segmentation (Fig. 2). 

Fig. 3 summarizes the networks used by the different authors. Ar
chitectures have been grouped into 4 clusters: (1) CNNs, such as 
AlexNet [75], VGG16 and VGG19 [76] or GoogLeNet [77], including 
also residual networks such as ResNet50 [78]; (2) fully convolutional 
networks (FCNs), based on any CNN architecture, including also the 
encoder-decoder architectures, such as SegNet [79] or U-Net [80]; (3) 

generative adversarial networks (GANs), and (4) recurrent neural net
works (RNNs), including long short term memory (LSTM). It can be 
clearly seen that the use of CNNs surpasses the rest of networks in the 
three analyzed tasks. 

A baseline comparison is needed to assess whether the proposed 
method actually improves the results of the state-of-art. Out of the 35 
analyzed works, only 10 of them present a baseline against which the 
proposed method is compared. The baseline is usually the network on 
which the proposed method is based, or hand-crafted methods. In other 
12 cases, authors provide a comparison of their method against other 
similar works. The most repeated comparison is against the methods 
participating in the MICCAI 2015 Automatic Polyp Detection in 
Colonoscopy Videos challenge [24]. The remaining 13 works only 
present their work, without any type of comparison. 

As for reproducibility, we considered two aspects: the use of public 
datasets and the availability of the code. Most works (29) use only 
public datasets, while 3 use only private datasets and other 3 use both 
public and private ones. The use of proprietary datasets hampers the 
reproducibility and fair comparison of methods. The code of only three 
works have been found [36,70,72]. Therefore, Vázquez et al. [36] and 
Wickstrøm et al. [70] outstand in terms of reproducibility, as the code is 
available, and they use CVC-EndoSceneStill, which, as it will be ex
plained in the following section, provides a division into training, va
lidation and test sets. 

4. Datasets of colonoscopy images 

4.1. Currently available public datasets 

The creation of large, annotated datasets has also contributed to the 
tremendous growth of deep learning for the last years. Although they 
are easily accessible for natural images with different ground truths (i.e. 
ImageNet [81,82], MSCoco [83,84] or Pascal VOC [85,86]), the limited 
size of medical imaging datasets is a well-known problem, especially for 
supervised learning [26]. This situation also applies to colonoscopy 
images datasets. The type of ground truth highly influences the size of 
the dataset, since manual annotation of frames is a cumbersome, time- 
consuming task [87]. Table 4 shows a summary of the currently pub
licly available datasets of colonoscopy images for polyp detection, lo
calization and segmentation, although prior registration might be re
quired by the dataset owner to grant access to the content. All datasets 
are mentioned in at least one of the analyzed papers. Although these 
datasets are widely used in the retrieved papers in this systematic re
view, some authors also use proprietary datasetss, which compromises 
a fair comparison of methods and raise concerns about reproducibility, 
as mentioned in the previous section. Datasets of natural images have 
been also included in Table 4 for scale comparison between computer 
vision and biomedical image datasets. Works retrieved in this review 
only employ these larger datasets to initialize the weights of the net
work before training. 

The organization of challenges under the umbrella of major con
ferences has meant a great step towards the establishment of a common 
framework. As a result, most of the currently used datasets were pro
vided within a challenge. The Gastrointestinal Image ANAlysis (GIANA) 
sub-challenge [91], as part of the EndoVis challenge [35], was last 
hosted at MICCAI2017 and MICCAI2018. CVC-VideoClinicDB [87,89] 
was provided as training dataset for the polyp detection task, while 
CVC-ColonDB, CVC-ClinicDB and CVC-ClinicHDSegment datasets  
[21,22,36] were provided for the polyp segmentation task. During 
MICCAI 2015 Automatic Polyp Detection in Colonoscopy Videos chal
lenge [24], two more datasets were released. On one side, ETIS-LARIB 
was provided as test set for detection on still frames. On the other hand, 
the ASU-Mayo Clinic [88] was intended for exploring detection on vi
deos. In all cases, the provided ground truth is a binary mask indicating 
the polyp area. This segmentation is a precise manual delineation ex
cept for the CVC-VideoClinicDB dataset, where the polyp area has been 1 https://parsif.al/ 
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approximated to the most convenient elliptical shape. CVC-En
doSceneStill [36] has not been used in any challenge, but it is publicly 
available. It compiles CVC-ColonDB [22] and CVC-ClinicDB [21] 
adding ground truth masks for other classes, establishing the distribu
tion of images into training, validation and test sets and indicating the 
metrics for reporting. Lastly, and not used as much as the previously 
reported datasets, Kvasir [90] is a multi-class image dataset containing 
the polyp class among other labels for anatomical landmarks and pa
thological findings. 

There are as well other public datasets used by authors in the cur
rent review. The Nerthus database [92], used by Pogorelov et al. [54], 

Table 1 
Data extraction.     

Category Item Description  

General information Type of publication Journal article, conference proceeding, book section (usually proceedings of a major conference), preprint  
Published in Title of the journal, conference or preprint repository  
Country Country of the first author affiliation 

Objective Task Aim of the work: detection, localization and/or segmentation 
Data information Dataset Name of the public dataset and reference (if available) or proprietary  

Training set Description of the samples used for training, indicating the number (with and without data augmentation, if applied)  
Validation set Description of the samples used for validation, indicating the number  
Test set Description of the samples used for testing, indicating the number 

Data augmentation Approach Data augmentation approach to generate new training samples: creation of images, on the flow, patch-based or none  
Transformations If data augmentation is applied, description of the transformations and ranges used 

Model Approach Type of approach used: feature extractor, classification, patch-based, bounding-box or semantic segmentation  
Architecture Type of the network (AlexNet, VGG, fully convolutional network, GAN, etc.)  
Loss function Loss function used for optimization  
Training Use of pre-trained models or training from scratch 

Reporting Reporting test Samples used for reporting  
Metrics Metrics used for reporting (accuracy, Dice, Intersection over Union, etc.)  
Baseline Whether the authors establish an initial baseline model or compare their results to other works 

Reproducibility Dataset Whether the dataset is proprietary or publicly available  
Code Whether the code is publicly available or not 

Table 2 
Number of abstracts retrieved.    

Database # abstracts  

ACM Digital Library 2 
IEEE Digital Library 17 
Web of Science 43 
PubMed 14 
Science@Direct 208 
Scopus 772 
Springer 241 
Previously identified 35 

Fig. 1. Literature flow diagram.  
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provides a classified set of videos depending on the Boston bowel 
preparation scale, therefore not providing any polyp information and 
being excluded from Table 4. Mesejo et al. [93] also provide a labelled 
dataset of 76 videos of different lesions (serrated adenomas, hyper
plastic lesions and adenomas), which is used by Billah et al. [64]. Since 
optical biopsy for polyp classification is out of the scope of the current 
review, the dataset has not been included in Table 4. 

Regarding clinical variability, few datasets indicate the type of 
polyps included. The Paris classification [94,95] is a general framework 
for the endoscopic classification of superficial lesions of the oeso
phagus, stomach, and colon. Fig. 4 shows the different types of polyps, 
both in schematic view and actual endoscopic images. Pedunculated 
and sessile polyps are easier to detect than flat polyps and CAD systems 
to assist their detection would be more useful for gastroenterologists, 
but regretfully they are underrepresented in the public datasets [96]. 

4.2. Use of the datasets and data augmentation 

Authors do not follow a standard methodology to distribute the 
dataset into training, validation and test sets, except for those using 
CVC-EndoSceneStill, because the distribution is provided by the dataset 
owner; or those following the rules of the MICCAI 2015 Automatic 
Polyp Detection in Colonoscopy Videos challenge. Works for detection 
use a greater number of images than those for segmentation, which 
might be because labelling frames is easier than manually segmenting 
polyps for ground truth creation (Fig. 5). Test sets are usually one or 
two degrees of magnitude smaller than the training sets. Due to this 
heterogeneity in training, validation and test sets, it is no easy to make a 
fair comparison of the methods and their reported metrics. 

Data augmentation is the process whereby the training dataset is 
artificially increased in size, which in medical imaging is typically done 
with transformations that are applied to only the image in the case of 
detection (as each image only have a label that remains unaffected) or 
to the image and mask in the same way in the case of localization and 
segmentation. Augmentation methods commonly employ transforma
tions such as rotations, reflections, and elastic deformations [97]. Data 
augmentation strategies are used by 24 out of the 35 analyzed papers 
(Table 3). The most common approach (8 works) is to enlarge the 
training set by creating new images through the application of trans
formations to the original images. Other authors (7 works) make data 
augmentation on the flow, i.e. transformations to the original image are 
randomly applied at training time, increasing the variability of the 
training set but without specifically creating new transformed images. 
Lastly, some other authors (8 works) train the models using patches 
extracted from the original images rather than using the full image. 
More recently, Nguyen and Lee [68] proposed a data augmentation 
approach at a pixel level for polyp segmentation. 

To create new images, there is a wide variability on the transfor
mations applied and their ranges (Table 5), as data augmentation is 
typically performed by trial and error and transformations are selected 
based on the imagination, time and experience of the researcher [98]. 
None of the authors justify the selection of neither the transformations 
nor the ranges. Few authors analyze the influence of data augmentation 
in the results. Vázquez et al. [36] compare results with and without 
different transformations, while Shin et al. [60] compare the influence 
of including more or fewer transformations. While the former identified 
that the combination of transformations leads to better results, the 
latter found that more augmentation does not guarantee better per
formance. 

The different methods for data augmentation lead to a wide varia
bility in terms of the actual training samples used (Fig. 5). 

5. Comparison and discussion of methods 

CNN [12,99,100] architectures are a type of neural networks which 
are specialized for data with grid-structured topology. CNNs are Ta
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composed of different hierarchical stages that take advantage of local 
connections, shared weights, pooling layers and the use of many layers. 
The first set of stages may include a certain number of convolutional 
layers (namely two or three) followed by subsequent pooling layers. 
Convolutional layers exploit the local connections and shared weights 
by using the convolution operation instead of matrix multiplication and 
pooling layers subsample the data and merge similar features. Blocks of 
convolutional and pooling layers are then stacked to create a feature 
vector that represents the input data. Fully connected layers are latterly 
connected to this vector for the final object classification. One of the 
simpler and classical implementations of this stackable approach is 
VGG [76], where different stackable layers of 3 × 3 convolutions and 
maximum pooling layers are concatenated. However, this network 
presents a large number of parameters and slow convergence. He et al.  
[78] proposed the so called residual neural networks, which include 
skip connections so learnt filters are applied not to the final transformed 
image but to the residual over the input image instead, allowing deep 
neural networks to go deeper by mitigating the vanishing gradient 
problem and providing the first layers with larger scale gradients during 
backpropagation. Any CNN architecture can be extended into a FCN  
[101] by using a classification network as an encoder that is convolved 
over larger images producing spatially dense prediction tasks. However, 
these FCNs lacked the capability of generating fine shape delineation as 
high resolution reconstruction was calculated by interpolation. These 

capabilities were introduced by the addition of deconvolution layers, 
skip connections [80] and pooling indices [79]. This segmentation ar
chitecture was improved by using the fully convolutional DenseNet for 
image segmentation [102]. 

Based on the aforementioned works, different efforts have been 
followed during the last years for polyp detection, localization and 
segmentation, where deep learning-based approaches have proven to 
excel hand-crafted methods. An initial division of methods has been 
established by Bernal et al. [24]. Two different types of methods are of 
interest in this review: (1) hybrid methods that combine deep learning 
approaches with other hand-crafted methods and (2) end-to-end 
methods that use one single deep learning approach to obtain the result. 
A third type also mentioned by Bernal et al. [24], hand-crafted 
methods, lie out of the scope of this review. As secondary classification, 
we have grouped the approaches into five types, depending on their use 
of the deep learning network (Fig. 6): 

1. Feature extractor. Deep learning architectures are used for auto
matically creating a feature vector, instead of the manual extraction 
of features. The computed vector is afterwards the input to a clas
sical classifier, such as support vector machine (SVM) or distance- 
weighted discrimination (DWD) classifier [103], usually more ro
bust than SVM. These methods are therefore always hybrid, as deep 
learning is combined with classical classifiers.  

2. Classification. A classification network is used to label an image as 
containing a polyp or not, without position information of the polyp. 

3. Patch-based. The method uses image patches or tiles and the pre
sence of polyp is obtained for each patch. Location of the polyp 
might be obtained based on the patch location.  

4. Bounding-box. The method provides the location of the polyp 
through a bounding-box (coordinates of the upper right corner, 
height and width), generally using a regression layer.  

5. Semantic segmentation. Each pixel of the image is labelled as polyp 
or background. Networks based on encoder-decoder blocks are 
usually selected. The first half of the layers encode the image de
scription highlighting the discriminative features for the entrusted 
task, while the second half is responsible for mapping the low-re
solution encoding into full input resolution feature maps. These 
FCNs can be initialized from the weights of a classification network 
(encoder) that acts as a feature extractor. 

All papers have been categorized using these primary and secondary 
classifications. While the primary classification is mutually exclusive, 
some works falls in more than one group of the secondary classification.  
Fig. 7 shows the distribution of papers. Since tasks and primary 

Fig. 2. Literature trends.  

Fig. 3. Networks for each of the tasks. CNNs: Convolutional neural networks; FCNs: fully convolutional networks; GANs: generative adversarial networks; RNNs: 
recurrent neural networks. 
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Fig. 4. Paris classification. Adapted from [24,95].  

Fig. 5. Number of elements used for training and test, categorized by the main task of the work. ‘Elements’ refers to images for training and test sets as well as 
training samples, which might differ from training images if patches are extracted or data augmentation is applied. 
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classification are mutually exclusive, six Venn's diagrams are necessary 
to show the overlap between the categories of the secondary classifi
cation. Venn's diagrams have been created with InteractiVenn [104]. 

End-to-end and hybrid methods have similar proportion in detection 
and localization (close to 50% each), but in segmentation, the end-to- 
end methods vastly surpass hybrid ones (9 vs 1). Regarding the sec
ondary categorization, classification and patch-based ranked equally 
for the detection task; while bounding-box and semantic segmentation 
are the preferred approaches for localization and segmentation, re
spectively. Hybrid, patch-based methods and end-to-end, semantic 
segmentation methods are the most usual combinations. 

Fig. 8 shows how the different types of methods have had presence 
along the years analyzed in this systematic review. In summary, the 
tendency goes towards the use of end-to-end methods over hybrid ones, 
as deep learning is gaining more and more capabilities to address 
complex problems as a whole, rather than being used as a component to 
codify the image into features that are afterwards further analyzed. 
Similarly, semantic segmentation has raised interest over the last two 
years as it comprises a straightforward and seamless method for polyp 
identification. 

The use of data augmentation and pre-trained networks in the re
trieved works have also been analyzed. Fine-tuning is a well-known 
alternative to training a network from scratch when the labelled 
training data is limited. In this case, pre-trained networks on a large 
labelled dataset from a different application is used as starting point  
[45]. Fig. 9 shows the number of training samples after applying data 
augmentation, if any, of each method according to the type of ap
proach. There is no clear trend in the use of data augmentation stra
tegies combined with pre-trained models in the considered approaches. 
It might be expected that using pre-trained models would be linked to a 
lower number of training samples, but findings do not show so. 

Lastly, it is worth mentioning that all retrieved works apply su
pervised learning, relying its training on a labelled set of images. Other 
learning approaches already applied in different medical fields, such as 
unsupervised learning [105] or few-shot learning [106,107] have not 
been applied for polyp detection, localization or segmentation yet. 
Unsupervised learning might be more difficult to apply because the 
polyp area is usually a small portion of the image, while the rest pre
sents a high level of similarity, as there is also healthy mucosa in an 
image labelled as with polyp. 

In the following sections, methods are briefly described, grouped 
accordingly to the primary and secondary classifications. When 
methods fall into two groups of the secondary classification, they are 
each indicated in a different paragraph. 

5.1. Methods for polyp detection 

5.1.1. Hybrid methods 
5.1.1.1. Feature extractor and patch-based. Several authors have 
compared the use of hand-crafted advanced features with simple fine- 
tuned classification CNNs, and in all cases the CNN-based approaches 
overcame the manual feature extraction. Shin et al. [42] demonstrate 
that features obtained with a classification CNN perform much better 
than hand-crafted features even when using state-of-art histogram of 
oriented gradients descriptors. They employ a basic architecture of 
three convolution:max pooling layers followed by a fully connected 
layer with 256 neurons image patches to feed an SVM. 

Similarly, Taha et al. [41] perform a comparative testing of a 
shallow classifier fed either with hand-crafted methods or with features 
extracted using a pre-trained classification CNN. These authors employ 
AlexNet to obtain a 1,000-dimensional feature vector that is the input 
to an SVM. 

In these works, images patches are used, so these methods can also 
be classified as patch-based detection but without localization in
formation, as location of patches is not considered. 

5.1.1.2. Patch-based. In this case, Yuan et al. [44] propose a 2-stage 
method. In first place, candidates are detected by the analysis of edges. 
Patches are then cropped around the polyp candidates and the resulting 
candidate patches are analyzed by a classification network based on 
AlexNet. 

Tajbakhsh et al. in various works [43,45–47] extend this method by 
using a pre-detection stage based on edge maps and voting schemas to 
extract all suitable candidates that are classified by AlexNet, either 
trained from scratch or fine-tuned, depending on the work. Oriented 
patches are extracted based on shape features, conforming the set of 
candidates. 

5.1.1.3. Classification and patch-based. In this case, Axyonov et al. [48] 
combine image contrasting and the K-means-with-connectivity- 
constraint segmentation method to identify regions with similar 
pixels, which are then classified into polyp or non-polyp region using 
AlexNet as classifier. 

5.1.2. End-to-end methods 
5.1.2.1. Classification. Akbari et al. [49] use a CNN made of four 
convolutional and pooling layers plus two fully connected layers. This 
CNN is combined with binarized weights and kernels to reduce the CNN 
size, so it is suitable for implementation in portable medical hardware 
with limited memory. 

On the other hand, Aksenov et al. [50] combine various classifica
tion networks through classifier assembling to get higher accuracies, 
basing the final result on the average result of the three ensembled 
models. Each model presents a different number of layers as well as 
different configurations for the filters. 

Itoh et al. [51] aim at detecting polyps as a prior stage to polyp size 
estimation. In their approach, they use a 3D CNN (C3dNet or C3D)  
[108] that exploits both the spatial structure and the temporal features 
present in colonoscopy videos by using 3D convolutional filters and 3D 
pooling layers. The input is a sequence of 16 consecutive frames for 
which the CAD system provides an output probability of being a se
quence with or without polyp. The same network is used by Misawa 
et al. [52], who focused their effort on a clinical trial to measure the 
sensibility of the C3dNet. 

A different approach is followed by Mo et al. [55], who employ a 
Faster R-CNN with VGG16 as backbone. In this case, they use an ap
proximately joint optimization, which takes a mini-batch as input and 
optimizes both the classification and regression losses at the same time. 
The classification tail allows for detecting polyps in a frame by giving a 
probability level. 

Classification networks have also been proven successful even on 
colon cancer screening programmes [56]. In this case, they test pre- 
trained VGG16, VGG19 and ResNet50 with a final binary classification 
layer, as well as custom, trained-from-scratch CNNs for polyp detection 
without further processing. Images were classified on polyp or non- 
polyp classes. 

Lastly, Murthy et al. [53] introduce a cascaded deep decision net
work (CDDN) for classification. In the first learning stage, samples are 
classified by a pre-trained network. In the second training stage, sam
ples classified with high confidence are discarded to place efforts on the 
most challenging samples. This process is repeated on successive stages, 
using previous stage's features, and obtaining a better separation over 
samples. In this particular case, a 2-stage network is proposed. 

5.1.2.2. Classification and semantic segmentation. Pogorelov et al. [54] 
compare three detection approaches: (1) hand-crafted global features 
and a logistic model tree classifier; (2) fine-tuned well-known 
architectures, such as Xception [109], VGG19 and ResNet50; and (3) 
a pixel-wise segmentation GAN with a threshold on the number of 
positively labelled pixels. They use different training and testing sets for 
the three suggested methods and find that the GAN approach performs 
better. 
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Fig. 6. Schematic representation of the five considered approaches in this review. From top to bottom, (1) feature extractor, (2) classification, (3) patch-based, (4) 
bounding-box, and (5) semantic segmentation. Each type of layer is represented by a different colour: convolutional layer (conv); pooling layer (pool), fully 
connected layer (FC), upsampling layer (upsamp) and deconvolutional layer (deconv). The receptive field is marked with a green square. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Categorization of works per tasks.  
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5.1.2.3. Semantic segmentation. Mohammed et al. [57] design the Y- 
Net, which combines two encoders (both use VGG19 as backbone; pre- 
trained for encoder 1, while trained-from-scratch for encoder 2) and 
one decoder to produce a pixel-wise segmentation. Detection is 
considered when the Intersection over Union of the predicted result 
and the ground truth is greater than 0.90. In contrast, although Brandao 
et al. [58] also base detection on the semantic segmentation performed 
with different FCNs, they consider any degree of overlap between the 
predicted result and the ground truth. Therefore, not setting an overlap 
minimum might lead to better metrics in comparison to Mohammed 
et al. [57], who set their overlap threshold at 0.9. 

5.1.3. Comparison of detection methods 
Although it is difficult to compare results because of the different 

datasets, we focus firstly on accuracy as an important indicator to 
compare between models and approaches (Table 6). With this in mind, 
Mo et al. [55] deliver the best results in detection. These results are 
obtained using three different test sets (CVC-ClinicDB, CVC-ColonDB 
and CVC-EndoSceneStill) and averaging the results obtained for each 
one. Urban et al. [56] also achieve a high accuracy. In this case, the 
accuracy is identical in both cross-validation and independent test set of 
a proprietary dataset. Remarkable results in a test set from ASU-Mayo 
Clinic database are also those presented by Yuan et al. [44], who 
achieve an accuracy of 0.9147, with a recall of 0.9176. Akbari et al.  
[49] also use the same ASU-Mayo Clinic database but with a distinct 
test set. In this work, the accuracy obtained is 0.908, and the recall, 
precision and specificity are 0.6838, 0.7434 and 0.9497, respectively. 
Confidence intervals (CI) are indicated when provided by authors. This 
applies also to Sections 5.2.3 and 5.3.3. 

5.2. Methods for polyp localization 

5.2.1. Hybrid methods 
5.2.1.1. Patch-based. Park et al. [59] use an architecture composed of 
three convolutional layers and three max-pooling layers to obtain a 60- 
dimension feature vector for each patch obtained at three different 
image scales. The resulting 180-dimension feature vector is used to 
classify the centre pixel of the patch either as polyp or non-polyp, 
through a fully connected network with 256 hidden nodes. A 
probability map is created based on these classified pixels. This map 
is smoothed with a 5 × 5 Gaussian filter and 9 × 9 median filter. 
Afterwards, it is thresholded, setting to 0 those pixels with probability 
lower than 0.65. Lastly, connected components of non-zero regions are 

identified, and the polyp centre is obtained by calculating the centre of 
mass of each connected component. 

5.2.1.2. Feature extractor and patch-based. Billah et al. [64] use a 10- 
layer CNN to extract features from the last fully connected layer, which 
are then combined with wavelet features and all of them fed into an 
SVM for classification into polyp or non-polyp. Patches corresponding 
to a sliding window are the input, so location of the polyp is found by 
averaging regions with higher probabilities of being polyp. 

5.2.1.3. Bounding-box. The method of Shin et al. [60] combines a 
region proposal network (RPN), a detector and post-learning 
approach in the so-called Faster R-CNN, using Inception ResNet-v2  
[110] as backbone. Out of an image, the RPN proposes rectangular 
candidate regions that are the input to the detector, which classifies 
them into containing or not containing a polyp. The detection is further 
improved by the post-learning approach, based on false positive 
learning and off-line learning. 

Yu et al. [61] integrate temporal information into the model. Their 
3D-FCN is capable of learning more representative spatio-temporal 
features from colonoscopy videos and hence has more powerful dis
crimination capability. This 3D network consists of a 3D extension of a 
2D fully convolutional segmentation network that uses a 16 frames 
video entrance to extract the temporal features. An offline 3D-FCN is 
firstly trained, which is combined with an online 3D-FCN incrementally 
updated for each input video to remove false positives. Outputs of these 
two 3D-FCNs are combined to obtain the final detection results. 

Moreover, Zhang et al. [62] propose an evolution of a YOLO de
tection network [111], ResYOLO. The previous detection output of the 
network is integrated into the following prediction to assure prediction 
regularization. Besides, temporal information is incorporated as an 
online object tracker. They also analyzed that the inclusion of temporal 
information on the network improves the detection rates. 

5.2.1.4. Bounding-box and semantic segmentation. SegNet is well-known 
for semantic segmentation of natural images, so it is the network 
selected by Wang et al. [63]. Although SegNet provides a pixel-wise 
labelling in the form of a probability map, there is a post-processing 
stage that transforms it into the corresponding bounding-box for the 
polyp class. 

5.2.2. End-to-end methods 
5.2.2.1. Bounding-box. As mentioned before, Mo et al. [55] use a Faster 

Fig. 8. Trends of the different approaches along the years.  
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R-CNN with VGG16 as backbone. In this case, the regression tail 
provides the coordinates of the bounding-box indicating the location 
of the polyp. 

Urban et al. [56] compare models trained from scratch to pre- 
trained models (VGG16 and VGG19 with a final regression layer), ob
taining a higher Dice for the latter when ground truth and predicted 
bounding-boxes are compared. 

On the other hand, YOLO is selected by Zheng et al. [65] as the 
detector network, without further modifications on the network and 
proceeding only with a fine-tuning of a pre-trained model. 

Pogorelov et al. [66] compare two different approaches, TensorBox 
and Darknet-YOLO, both aiming at detecting objects in images. On one 
hand, TensorBox avoids multiple detections of the same object by using 
an RNN with an LSTM. On the other hand, Darknet-YOLO is based on a 
CNN, therefore encoding contextual information about classes as well 
as their appearance. This results in a better generalization of objects’ 
representation. In both cases, the methods return sets of rectangles 

Fig. 9. Training samples per approach and type of data augmentation. Solid items correspond to methods where networks are trained from scratch, while hollow 
items correspond to fine-tuned networks. In the horizontal axis, the different approaches are indicated. The series corresponds to the different strategies for data 
augmentation. 

Table 6 
Summary of detection methods results.        

Work Accuracy Precision Recall AUC Specificity  

Mo et al. [55] 0.985 1.000 0.985   
Urban et al. [56] 0.964   0.974  
Yuan et al. [44] 0.915  0.918   
Akbari et al. [49] 0.908 0.743 0.684  0.950 

AUC:area under the curve  

L.F. Sánchez-Peralta, et al.   Artificial Intelligence In Medicine 108 (2020) 101923

14



marking possible polyp locations together with corresponding location 
confidence values. 

5.2.2.2. Classification and patch-based. Pogorelov et al. [54] use sliding 
windows to feed the classification models (hand-crafted global features, 
fine-tuned networks and GAN approach grounded on V-GAN [112] 
modified by adding an activation layer to generate a per-pixel image 
segmentation, so detection is based on a minimum number of activated 
pixels) and then reconstruct a coarse localization map by grouping-back 
the processed patches. 

5.2.3. Comparison of localization methods 
Out of all localization methods (Table 7), Billah et al. [64] report 

the highest metrics. In this case, colour wavelet features and CNN 
features are combined, so it is not possible to determine which type of 
feature has a greater influence on the result. Besides, they do not report 
the testing data set, neither in terms of number of images nor their 
origin, which makes it more difficult to compare results. On the con
trary, Mo et al. [55] clearly indicate the testing datasets (CVC-ClinicDB, 
CVC-ColonDB and CVC-EndoSceneStill), reporting a mean recall which 
is comparable to the previous work, but providing a more solid evi
dence and reproducibility of results. Nevertheless, no further works use 
the same validation set. In this regard, Yu et al. [61] and Zhang et al.  
[62] do follow the rules of the MICCAI 2015 Automatic Polyp Detection 
in Colonoscopy Videos challenge in terms of testing dataset. This way, 
they provide a fair and straightforward comparison to other methods 
participating in the challenge [24]. Although none of them outperform 
ASU, the winning method, in precision, they do provide better recall, 
F1-score and F2-score, showing a more balanced performance. 

5.3. Methods for polyp segmentation 

5.3.1. Hybrid methods 
5.3.1.1. Patch-based. The focus of Zhang et al. [67] is placed on the use 
of texton-based spatial features for detailed classification that is used to 
remove false positives based on local textural analysis. In this case, 
results of the FCN-8s [101] are used to extract the image region 
proposals. These regions are refined using texton-based patch 
representation, which is followed by a random forest classifier to 
provide the final segmentation. 

5.3.2. End-to-end methods 
5.3.2.1. Semantic segmentation. Nguyen and Lee [68] take an encoder- 
decoder model as basis and then produce the polyp segmentation using 
a model combination by training the encoder-decoder model with three 
different resolutions databases. 

Besides, Wichakam et al. [69] present a compressed FCN that re
duce the number of parameters of the feature vector extracted by the 
network to minimize the computational time showing faster con
vergence and increased performance for polyp segmentation. The 
model is compressed by substituting two 7 × 7 ×4096 con
volutionalized layers by one 7 × 7 ×512 convolutionalized layer, re
ducing the number of trainable weights in a significant manner. 

The proposal of Wickstrøm et al. [70] is to enhance two traditional 
encoder-decoder networks (FCN-8s and SegNet, using both VGG16 as 
encoder) by including batch normalization after each layer and dropout 
after the three central encoders and decoders. They also analyze un
certainty and interpretability of the models. 

On the other hand, Xiao et al. [71] combine LSTM with DeepLab-v3 
in parallel. While the latter learns and extracts polyp features thanks its 
wide field-of-view and higher resolution, the former aims at preserving 
the information of the polyp location using the information stored in 
the memory cells These are regulated through the input, forget and 
output gates. 

The U-Net has been modified into the U-Net++ by Zhou et al. [72]. 
The main difference is the inclusion of nested dense convolutional 

blocks that bridge the semantic gap between the feature maps of the 
encoder and decoder prior to fusion. 

Bardhi et al. [73] directly use SegNet and train it from scratch on 
different datasets, while Brandao et al. [58] transform several tradi
tional classification backbones for the segmentation networks into FCNs 
and prove that VGG16 backbone works better than GoogLeNet and 
AlexNet. 

Similarly, Li et al. [74] propose an FCN and U-Net based segmen
tation network. The encoder is composed of 8 convolution layers, 8 
rectified linear unit (ReLU) layers and 5 pooling layers, while the de
coder includes 5 deconvolution layers, 5 concat layers, 6 convolution 
layers and 6 ReLU layers. Both stages are linked using skipping con
nections. 

Finally, Vázquez et al. [36] provide an exhaustive benchmark 
showing that FCNs outperform previous results. They implement the 
FCN-8s architecture and test the influence of data augmentation and 
number of classes to be segmented on the network performance. 

5.3.3. Comparison of segmentation methods 
Table 8 summarizes the results of the segmentation methods. The 

highest Intersection over Union (IoU) values are obtained by Xiao et al.  
[71], in 345 images from CVC-ClinicDB, and Nguyen and Lee [68], 
reporting on the ETIS-LARIB dataset. In both cases, mean IoU is re
ported, so both polyp and background classes are considered, which 
explains to a great extent those values close to 1. This fact can be clearly 
seen in the work by Wickstrøm et al. [70]. IoU for the polyp class is 
0.587 but mean IoU is equal to 0.767 thanks to the value of IoU for the 
background, as high as 0.946. 

The comparison of methods that use CVC-EndoSceneStill is fair and 
straight-forward, as the dataset owners provide its division into 
training, validation and testing sets. Therefore, Vázquez et al. [36], 
Wichakam et al. [69] and Wickstrøm et al. [70] report results on the 
same 182 images. Regretfully, and although the CVC-EndoSceneStill 
benchmark provides a set of metrics (IoU and accuracy), not all authors 
calculate them. Wichakam et al. [69] follow instead the metrics given 
by the Pascal VOC challenge [85]. Vázquez et al. [36] report slightly 
higher values than Wickstrøm et al. [70] in terms of accuracy but it is 
on the contrary when IoU is considered. In this regard, Wichakam et al.  
[69] report an intermediate value of IoU. 

Bardhi et al. [73] do not clearly state the division into training and 
testing datasets; therefore results, although showing high values, should 
be interpreted carefully. The only hybrid method for segmentation [67] 
obtains comparable results to the rest of end-to-end methods. 

In the segmentation task, it is important to remark the influence of 
including the background class when calculating metrics. Since back
ground usually means the largest area within a frame in comparison to 
the polyp class, background affects the results by increasing the metric 
value even when the segmented result is poor. This issue is further 
discussed in Section 6. 

5.4. Advantages and disadvantages 

Table 9 gathers the main advantages and disadvantages of the ca
tegories on which the works have been classified. 

Table 7 
Summary of localization methods results.       

Work Accuracy Recall F1-score F2-score  

Billah et al. [64] 0.987 0.988   
Mo et al. [55]  0.981   
Yu et al. [61] 0.881 0.710 0.786 0.739 
Zhang et al.  

[62]a 
0.886 0.716 (0.703, 

0.730) 
0.792 (0.780, 
0.804) 

0.744 (0.732, 
0.757) 

ASU [24] 0.935 0.611 0.739 0.657 

a 95% confidence intervals are provided between brackets.  
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5.5. Loss functions 

The final goal against which the network is optimized is completely 
defined by the loss function. While traditional loss functions for clas
sification (such as negative log-likelihood – NLL – or cross entropy), 
regression (i.e. L1-loss or mean squared error – MSE) and distribution 
matching tasks (such as the Kullback-Leibler – KL – divergence) might 
be generalizable enough for most of the problems, the selection of the 
loss function is more relevant for complex problems such as the seg
mentation of unbalanced classes [113]. In these cases, an inappropriate 
formulation of the loss function might cause that the network converges 
into a minima where the task is not achieved because the network does 
not behave as expected. In this review, only 22.86% of the analyzed 
works present an analysis on the selected loss function and less than 
15% of the authors use a custom loss function. These works are briefly 
commented below. 

The loss in the Faster R-CNN used by Mo et al. [55] consist of a 
classification loss and a bounding-box regression loss, using para
meterized coordinates to minimize the influence of scales during 
training. Besides, Zhang et al. [62] employ a loss function comprised of 
loss for grids labelled as object (polyp) and non-object. Furthermore, 
other three works include the Dice coefficient. On one hand, Wichakam 
et al. [69] optimize the network with a custom loss function simply 
computed as 1 − Dice. On the other hand, while Zhou et al. [72] 
combine this coefficient with binary cross-entropy, Mohammed et al.  
[57] use the weight binary entropy instead. 

When deciding the loss function for detection, it is important to 
know beforehand the proportion of polyp and non-polyp images in the 
training set. If it is balanced, traditional loss functions might be enough. 
Otherwise, it would be advisable to use a loss function intended to 
overcome the unbalance towards the positive class, such as the 
weighted binary cross entropy. We also agree on including overlap 
measures such as the Dice coefficient in the loss function for segmen
tation tasks when classes are highly unbalanced, as this type of func
tions have been proved to be more robust [113]. Since segmentation 
can be done as a pixel-wise binary classification of unbalanced classes, 
comments for detection can also be applied here. 

6. Metrics 

There is a wide variety of metrics found in this systematic review. In 
all cases, metrics are intended to compare the prediction of the method, 
either for detection, localization or segmentation, against the ground 
truth, which might be a label, a bounding-box or a binary mask. In this 
regard, many metrics are calculated based on the confusion matrix and 
its four basic elements (Fig. 10):  

• True positives (TP): number of polyp items correctly predicted as 
polyp.  

• True negatives (TN): number of non-polyp items correctly predicted 
as non-polyp. 

• False positives (FP): number of non-polyp items incorrectly pre
dicted as polyp.  

• False negatives (FN): number of polyp items incorrectly predicted as 
non-polyp. 

It is also important to point out that some authors compute the con
fusion matrix at a frame or image level, while others compute it at a 
pixel level. This mainly depends on the main objective of the work, 
being more usual to calculate the confusion matrix at frame level for 
detection and localization, and at pixel level for segmentation. 

Table 10 compiles all metrics found during the analysis, providing 
the mathematical calculation and alternative names. The calculation of 
the Dice coefficient and IoU metrics based on the confusion matrix can 
be used when calculating the confusion matrix at pixel level by com
paring two binary masks. These metrics are also more appropriate as 
they reduce the unbalance due to the large value of true negatives. Two 
definitions for accuracy have been found in this review. On one hand, 
only TP are considered in the numerator. This definition can be inter
preted as class accuracy, as the sum of accuracies for all classes would 
reach 1 in an ideal situation. On the other hand, both TP and TN are 
considered in the numerator. In both cases, the denominator remains 
unchanged, being the total sum of elements (TP+TN+FP+FN). In the 
case where the formula is not explicitly provided, accuracy has been 
considered as correct classified items (TN+TP) divided by the total 
number of elements. 

Table 11 summarizes the metrics employed for the different con
sidered tasks. There is no standard to follow in terms of reporting 
metrics; therefore for one single task authors report different metrics. 
Overall, recall is the most used metric followed by precision, accuracy 
and F1-score in similar proportion. As for each of the analyzed tasks, 
recall at frame level is the predominant metric for detection and loca
lization, while IoU is the most used metric for segmentation, closely 
followed by accuracy at pixel-level. 

For detection and localization, recall stands out. This metrics pe
nalizes a high number of FN but does not consider FP. In a clinical 
setting, both parameters are equally important, as if gastroenterologists 
are warned unnecessarily, the exploration time might be increased 
without benefits and they would eventually pay no attention to the CAD 
system ringing false alarms. Therefore, we consider a more suitable 
metrics the use of the F1-score, where importance of recall and preci
sion is balanced. 

Regarding segmentation metrics, it is important to point out that 
their selection must consider the properties of the segmentation under 
evaluation, so when the segment size is smaller than the background 
(less than 5% of the background in any of the axis, as it is usually the 
case in polyp segmentation), metrics based on the confusion matrix 
elements are not the more suitable and it is recommended to substitute 
them by distance metrics [114]. Therefore, when background is not 
considered in the calculation of the metric, a smaller increment in its 
value might be more significant than the same increment in a metric 
considering the background. Bearing this in mind, reporting accuracy, 
where true negatives corresponding to the background are included, 
does not seem to be the most adequate one, despite being one of the 
most common. 

It is noteworthy to remark that traditional object detection metrics 
have not been found in any of the analyzed works. These metrics, such 
as average precision (AP) or mean average precision (mAP), measure 
the average precision of a model for a specific IoU and are commonly 
used on computer visions challenges [83,115]. This is relevant as these 
metrics provide a single value estimation on the performance of object 
detection models. However, although mAP can be used for computa
tional performance estimation, it does not reflect the clinical perfor
mance due to its sensitivity for small objects and integration of the 
different. Thus, in clinical gastrointestinal works where mAP is used to 
measure the overall performance of the method, this has to be com
plemented with further analysis such as precision/recall curve analysis  
[116]. 

In general terms, metrics are reported for the overall testing set. 
Only few authors report metrics in a detailed manner, considering 
polyps characteristics. Misawa et al. [52] analyze the percentage of the 
video for each of the 50 polyps, for which their Paris classification, size, 

Table 8 
Summary of segmentation methods results.       

Work Accuracy IoU F1-score F2-score  

Xiao et al. [71]  0.932   
Nguyen and Lee [68]  0.889   
Wickstrøm et al. [70] 0.949 0.767 0.786 0.739 
Vázquez et al. [36] 0.968 0.516 0.792 0.744 
Bardhi et al. [73] 0.967    
Wichakam et al. [69]  0.694 0.739 0.657 

L.F. Sánchez-Peralta, et al.   Artificial Intelligence In Medicine 108 (2020) 101923

16



location and pathologic diagnosis are also provided. While most polyps 
present a detected ratio over 80%, only 3 flat polyps (0-IIa in the Paris 
classification) do not achieve that level, proving the difficulty for de
tection of this type of polyps. 

Characteristics of the polyps are also considered for metrics re
porting in the work of Urban et al. [56]. They compare polyp detection 
by gastroenterologists with and without using the CAD system. In their 
first study, they found that 9 sessile polyps were missed (i.e. detected 
with the CAD system and not found without it). Therefore, it might be 
expected that such system could improve the ADR. Nevertheless, in 
both studies flat polyps represent a minority: only 2 out of 45 in the first 
study and 3 out of 73 in the second one. On the other hand, Wang et al.  
[63] select to separately report results for small (< 0.5 cm), flat, iso
chromatic polyps, as they are associated with a higher missing rate, 
finding that the per-image-sensitivity decreased from 0.9438 (95% CI: 
0.9380, 0.9496) in the overall dataset to 0.9165 (95% CI: 0.9021, 
0.9309). Lastly, Mo et al. [55], although not providing detailed metrics, 
found that their method behaved differently for sequences showing 
small polyps, encountering difficulties for their detection. 

7. Clinical perspective 

The American Society for Gastrointestinal Endoscopy has a set of 
publications within the Preservation and Incorporation of Valuable 
endoscopic Innovations (PIVI) initiative to establish thresholds for 

incorporating innovative technologies into the clinical practice. While 
there is a PIVI paper related to the in-vivo real-time assessment of di
minutive polyps, there is so far no statement regarding the application 
of CAD systems which could connect the technical development and 
metrics to clinical performance metrics, such as the ADR. 

In this regard, the ADR is considered one of the main indicators for 
colonoscopy quality, which is influenced both by the endoscopist and 
the technical factors [117]. Despite presenting a wide variability, ran
ging from 12.5% to 68.1% in conventional colonoscopy, it has been 
proven that new technologies such as Endocuff, G-Eye or full-spectrum 
colonoscopy might help to increase this indicator, reaching values 
higher than 80% in some of the works systematically reviewed and 
meta-analyzed by Castaneda et al. [118]. Only two papers in this review  
[56,63] mention this clinical concept in their technical studies. So, 
additional efforts should be taken in future works to connect both 
technical and clinical outcomes to increase the acceptance of CAD 
systems based on deep learning in the daily clinical practice. 

It has been already proven that a second observer, such as an ex
perienced nurse, improves the ADR even in the event of an experienced 
gastroenterologist performing the colonoscopy [119]. Therefore, and as 
already Wang et al. [63] suggest, CAD systems might be used as an 
“extra pair of eyes” to avoid missing subtle lesions. In this regard, they 
have recently analyzed the influence of their method on the ADR [120]. 
They have carried out a non-blinded trial, where patients were pro
spectively randomized into diagnostic colonoscopies with or without 

Table 9 
Advantages and disadvantages of each category of methods.     

Category Advantages Disadvantages  

End-to-end 1. Automatic learning of relevant features 1. Requires a large dataset for training  
2. Superior performance over hand-crafted methods 2. Selection of network, dataset and hyperparameters might highly influence the 

performance  
3. High degree of automation  

Hybrid 1. Combines useful information of well-known hand-crafted 
features 

1. Selection of features based on the researcher experience and knowledge  

2. More convenient with small datasets  
Feature extractor 1. Combine useful information of well-known hand-crafted 

features 
1. Not tune the network to the target dataset, potentially leading to suboptimal or even 
negative transfer results when domain shift is large  

2. Using pre-trained networks without fine-tuning does not 
require any labelled data  

Classification 1. Cheapest label is required (polyp/non-polyp per frame) 1. Requires considerably more data to converge 
Patch-based 1. Increments the size of the training set by obtaining several 

patches from one single image 
1. Slow method in general 

Bounding-box 1. Provides enough information for the clinician, focusing 
their attention on a suspicious area 

1. Does not provide a pixel-level labelling  

2. Better computational speed and inter-patch classification 
coherence 

2. Dense objects might lead to overlapping bouding-boxes  

3. Able to converge without pixel-level labels and still 
predicting location information   
4. Bounding-box annotations are cheaper to label than pixel- 
level ones   
5. Preferred type for localization task  

Semantic segmentation 1. Preferred type for segmentation task 1. Accurate borders might be difficult to obtain 

Fig. 10. Confusion matrix. Left side, confusion matrix calculated at frame level. On the right side, elements of the confusion matrix calculated at pixel level by 
overlapping of two binary masks. 
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CAD assistance. In this trial, the main outcome was the ADR. Despite 
not obtaining the highest metrics for the localization task, they prove a 
significant increment from 20.3% to 29.1% in the ADR, showing the 
clinical potential of their method. Therefore, the final aim of any 
technical development should be to prove the benefit in the clinical 
practice, rather than only raking on the top considering technical me
trics. 

Another relevant aspect for CAD systems based on deep learning is 
matching real time constraints to facilitate clinical application in a live 
procedure. Efforts should therefore be oriented to exploit the use of 
videos, rather than isolated images, minimizing the processing time to 
keep it under the restriction of processing 25 or 30 frames per second. 
Current deep learning algorithms are able to run in nearly real-time 
speed [111,121–123] and have not been fully tested in real clinical 
conditions. As far as the authors know, there is only one commercial 
system for detection assistance based on artificial intelligence [124], 
but no technical information has been found on its algorithms. We 
highly advise for the design of real-time clinical essays to analyze the 
usability and real performance of the algorithms. On the contrary, 
images in the datasets usually show polyps in a clean, well-centred 
state. This is though not the situation in which the CAD system is useful. 
It would be highly interesting to provide “fly-by” explorations as well as 
difficult polyps to locate, such as partially hidden or located in folders, 
to mimic situations with higher clinical value. The difference between 
images available in the dataset and those in the clinical situations might 
lead to the fact that is not possible to guarantee that success in the 
dataset will be reproduced in the clinical environment. 

Lastly, it is also important to recognize the limitation of CAD sys
tems in the identification of polyps, as they might be missing due to two 
main situations: (1) they never appear on the visual field, due to an 
inappropriate bowel preparation, an inappropriate exposure technique 
or more importantly, because it is in the 20% of the colon surface that is 
never surveyed [125]; and (2) missed by the gastroenterologist due to a 
lack of training or short withdrawal time. While CAD systems might 

Table 10 
Definition of metrics used in the retrieved works.    

Metric – alternative names Calculation  

Accuracy = + + +Acc1
TP

TP TN FP FN

= +
+ + +Acc2

TP TN
TP TN FP FN

Precision = +Prec TP
TP FP

Recall – true positive rate, sensitivity, pre-class accuracy = +Rec TP
TP FN

Specificity – pre-class accuracy = +Spec TN
TN FP

F1-score = +F1 2·Prec·Rec
Prec Rec

F2-score = +F2 5·Prec·Rec
4·Prec Rec

Matthew correlation coefficient =
+ + + +

MCC TP·TN FP·FN
(TP FP)(TP FN)(TN FP)(TN FN)

False positive rate = +FPR FP
FP TN

False positive per frame =FP/Frames FP
# frames

Intersection over Union – Jaccard index = = =+ +IoU(PR, GR) |PR GT|
|PR GT|

TP
TP FP FN

Dice
2 Dice

Dice coefficient = = =+ + + +Dice(PR, GR) 2·| PR GT|
|PR | | GT|

2·TP
2·TP FP FN

2·IoU
1 IoU

Receiver operating characteristic (ROC) Curve Plot of TPR against FPR 
Area under the curve (AUC) − area under the ROC curve (AUROC), 

ROS curve 
=AUC 1 FPR FNR

2

Free response receiver operating characteristic curve Plot of TPR against FPR/frame 
Temporal coherence =TC # correctly detected consecutive frame pairs

# consecutive frame pairs
Polyp detection rate =PDR # polyps detected at least in one frame

# polyps in the dataset
Mean processing time per frame Actual detection processing time taken by a method to process a frame and display the detection result 
Reaction time RT = frame of first detection − frame of first appearance 
Mean distance Mean Euclidean distance between polyp centres 

TP: True negatives; TN: true negatives; FP: false positives; FN: false negatives; PR: predicted binary mask; GT: ground truth binary mask.  

Table 11 
Metrics for reporting detection, localization and segmentation tasks.       

Task Metric Level Total of 
works 

References  

Detection Accuracy-2 Frame 7 [42,49,51,53–56]  
Precision Frame 7 [41,42,49,54,55,57,58]  
Recall Frame 9 [41,42,44,49,51,54,55,57,58]  
Specificity Frame 5 [42,44,49,51,54]  
F1-score Frame 3 [54,55,57]  
F2-score Frame 2 [55,57]  
AUC Frame 4 [48,51,52,56]  
FPR Frame 2 [44,49]  
Dice – 1 [49]  
MCC Frame 1 [54]  
FROC Frame 4 [43,45–47]  
ROC Frame 1 [50]  

Localization Accuracy-2 Frame 2 [64,66]  
Accuracy-2 Patch 1 [54]  
Precision Frame 7 [55,59–62,65,66]  
Precision Patch 1 [54]  
Recall Frame 9 [55,59–66]  
Recall Patch 1 [54]  
Specificity Patch 1 [54]  
Specificity Frame 3 [62–64]  
F1-score Frame 7 [55,59–62,65,66]  
F1-score Patch 1 [54]  
F2-score Frame 5 [55,60–62,65]  
Dice Pixel 1 [56]  
MCC Patch 1 [54]  

Segmentation Accuracy-1 Pixel 1 [36]  
Accuracy-2 Pixel 5 [67,68,70,73,74]  
Precision Pixel 3 [58,69,74]  
Recall Pixel 4 [58,67,69,74]  
Specificity Pixel 2 [67,74]  
F1-score Pixel 2 [69,74]  
IoU Pixel 6 [36,68–72]  
Dice Pixel 3 [67–69] 
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help the gastroenterologist to not miss polyps, they will not counteract 
the difficulties of poor bowel preparation or exposure technique. 

8. Recommendations and future challenges 

Polyp detection, localization and segmentation have been boosted 
in the last years by the application of deep learning strategies. In this 
review, we have analyzed the datasets, methods and metrics used up to 
now. Nevertheless, and despite the success of deep learning over hand- 
crafted methods, there are still challenges to be faced by the scientific 
community in the upcoming years. In this section we aim at pointing 
out trends and/or give recommendations on future research lines. 

Lack of reproducibility has been raising concerns lately as a critical 
flaw, especially in the field of health as explained by McDermott et al.  
[126]. In their paper, they pose recommendations for data providers, 
researchers and journals and conferences, bearing in mind technical, 
statistical and conceptual replicability as the three main aspects of re
producibility. Many of our recommendations are aligned with their 
work, particularized to our field of interest. 

8.1. Datasets 

The collection of images to create a large dataset is one of the 
challenges that should be addressed by the clinical community, which 
would eventually help the technical researchers when developing CAD 
systems. In this regard, it would be useful to collaboratively work under 
common guidelines, such as the methodology proposed by Sánchez- 
Peralta et al. [127], that allows for the systematic acquisition and an
notation of colonoscopy videos without modifying the clinical routine. 
This relates to three issues to consider: (1) collecting abnormal cases, 
(2) the quality of annotations and (3) the variability of acquisition 
systems. In the first case, since we are dealing with medical images, 
images from some particular classes might be more difficult to collect, 
since they are less frequent to be found in the clinical practice despite 
having even more relevance for the application of the CAD system than 
other more frequent classes. This is for instance the situation of flat 
polyps (types 0-IIb and 0-IIc in the Paris classification as showed in  
Fig. 4). While gastroenterologists find that CAD systems would be more 
useful to help in their detection, those types are underrepresented in the 
publicly available databases [96]. This fact might hinder the efficacy of 
CAD systems. On the other hand, medical datasets must be annotated 
by clinicians, taking considerable time. Tools such as GTCreator [87] 
have been designed to ease the process of ground truth creation, al
lowing for image and text-based annotations, so it would be advisable 
to use it to share and revise annotations among different clinicians. 
Strictly speaking, ground truth is not available for detection methods in 
colonoscopy as annotated datasets are made by expert calls that re
present the best knowledge that can be extracted by an expert from the 
colonoscopy. For that, agreement with expert's praxis can be analyzed 
by the Cohen's kappa coefficient. In order to minimize this issue, da
tasets should be independently annotated by different clinicians and the 
inconsistencies should be handled by an additional clinician. This will 
allow to create a dataset closer to an actual ground truth. Furthermore, 
inter-observer variability is a well-known problem in manual segmen
tation of medical images [128]. It would be advisable that future da
tasets provide uncertainty maps to reflect the variability of experts 
opinion on the same image. Lastly, a collaborative dataset would in
crease the variability of the acquisition systems, therefore strength
ening the CAD systems to accurately work regardless of the endoscope 
manufacturer. 

When producing a dataset, it is also important to establish a set of 
criteria and guidelines, similarly to the challenge rules, so authors can 
follow them, facilitating the posterior comparison of methods. In this 
regard, the distribution of images into training, validation and test sets 
is a minimum where cross validation performed over the different 
subjects of the dataset or over fixed sets can be employed for deriving 

the statistical metrics and confidence intervals. It is essential to assure 
patient independence of the sets, so all images originated from a patient 
must fall into one of the sets. For testing, it is recommended that the 
dataset owners establish a bootstrapping methodology [129], what has 
been successfully used in other domains [130–132], identifying the 
number of testing images and the corresponding sample size and re
petitions, clearly indicating which images must be considered in each 
iteration. Bootstrapping consists on analyzing different testing subsets 
and measuring the posterior distribution of the results. Authors are 
encouraged to report information on the posterior probability of the 
metrics or, at least, information on their mean and standard deviation, 
giving a more realistic vision of the method performance. 

All currently available datasets exposed in Section 4.1 only contain 
medical images and videos from actual patients. None of the articles 
mentions the use of synthetic image datasets, which could be an al
ternative to increase the number of samples. There are already efforts in 
this direction, as in the work of Shin et al. [133]. They employ a con
ditional GAN to synthetize polyp frames from normal colonoscopy 
images, by using a filtering-based binary image as input, modified to 
include the position and size of the polyp. Even though the generated 
images are qualitatively realistic, they result on deterministic polyps 
without many variations on colour and texture. Hence, the potential of 
synthetic image can be further explored and exploited. 

8.2. Metrics 

Another element to define for fair comparison is the set of metrics to 
be used for reporting. As seen in Section 6, there is a lack of criteria 
among the authors to select the most convenient one. In this choice, 
there are two aspects that play a role. On one side, the type of ground 
truth available and on the other side, the task to be accomplished. 
While the former limits the available information (label per image/ 
frame or binary mask), the latter relates to the information worthy to 
measure. For methods aiming at detecting and locating polyps, it would 
be advisable to calculate the F1-score at frame level, as it gives a ba
lanced measure between missing polyps (or false negatives – FN) and 
false alarms (or false positives – FP) [24]. In order to trace easier par
allels with the literature of computer vision when analyzing results, we 
would also recommend including mAP to perform a global technical 
evaluation of the algorithm, as commented in Section 6. However, mAP 
analysis should be complemented with a more detailed analysis to va
lidate the real clinical performance of the model. As for segmentation 
methods, despite being useful, metrics based on elements of the con
fusion matrix at pixel-level do not detect whether the two masks are 
similar in shape [114], so it would be useful to complement them with 
distance metrics that are valid for small segments (such as Hausdorff 
distance or Mahalanobis distance). In this regard, it is also important to 
mention the recommendation to calculate agreement measurements 
with the experts. Specially in the case of detection methods, it would be 
highly desirable to compute inter-rater measurements, selecting the 
most suitable method depending on the type of variable (categorical or 
continuous) and the number of observers [134]. 

Clinically speaking and agreeing with the concern raised by 
Robinson et al. [135], we are of the opinion that reporting metrics per 
patient or per polyp might be more convenient than averaging results 
all over the test set, as long as the database provides information to 
identify which polyp and/or patient originate each frame. Polyps and/ 
or patients might have an unequal presence in the database, for ex
ample polyp A and B having 8 and 2 frames, respectively, in the test set. 
If a detection method has 80% accuracy, it might be that all detected 
frames corresponds to polyp A. If metrics are averaged all over the test 
set, this situation cannot be identified, but if metrics are provided per 
polyp (and later averaged), accuracy would be 50%. This way, it would 
be possible to identify the cases in which the method presents flaws to 
further work on. 

L.F. Sánchez-Peralta, et al.   Artificial Intelligence In Medicine 108 (2020) 101923

19



8.3. Data augmentation 

In terms of data augmentation, it has been shown that transforma
tions are selected based on subjective criteria upon the researcher ex
perience and that there is no general strategy as the differences in  
Table 5 show. Efforts are therefore now focused on the identification of 
the most convenient transformations and ranges in a more objective 
way. Initiatives to find the most convenient data augmentation policies, 
such as Smart Augmentation [98], AutoAugment [136] or the use of a 
Bayesian data augmentation approach [137] have been mostly devel
oped for classification of natural images. Thus, the application of these 
methodologies to colonoscopy images might boost performance of 
methods and is therefore worth research. 

Besides, it would be also interesting that data augmentation trans
formations would address particularities of the colonoscopy images, 
such as illumination effects (specular lights and lack of uniformity); 
sensor acquisition effects (colour phantoms); image interlacing; shar
pening (to improve the quality of the visualized image but increasing 
the image noise at the same time); information overlay or the presence 
of the black mask [138]. As these effects might negatively affect the 
CAD system performance, their inclusion in the training dataset could 
lead to the model invariance when they are present. 

8.4. Network design 

The utility of CNNs for polyp detection, localization and segmen
tation have been already widely explored using supervised learning. In 
the future, semi-supervised or unsupervised training should be further 
exploited, relying on smaller datasets which would be eventually easier 
to compile. On the other hand, LTSMs or RNNs, with small presence in 
the current review, will be more widely employed in the field of CRC 
detection. The capability of recurrent networks to model temporal re
lationships can help creating models tackling temporal information into 
account for colonoscopy videos. On the other hand, GANs can be em
ployed in the future to generate synthetic data from polyp models to 
increase the variability of the dataset or to be able to over-express 
difficult to detect lesions into existing datasets. 

Besides, networks have to be designed for taking advantage for the 
new very high-resolution colonoscopy devices. This can help detecting 
micro-patterns that can be missed by veteran gastroenterologists, spe
cially from small or flat polyps. This implies challenges on the defini
tion of a network capable of real-time inspection capabilities for very 
high resolution images. 

Reproducibility of deep learning methods comes with associated 
difficulties. It should be clearly stated in the papers the following in
formation:  

• Dataset and distribution of training, validation and test subsets.  
• Data pre-processing, if any.  
• Model training, including learning parameters such as learning rate, 

early stopping or weight initialization. The use of seeds when ap
plicable.  

• Loss function, as it highly impacts the model performance. 
• Hardware and software details, as software packages are con

tinuously updated, and some models might require exceptional 
hardware conditions. 

Randomization of parameters hampers reproducibility, e.g. when 
images are randomly transformed on the flow. Although ideally all 
particular seeds and values should be reported, or the code made 
available, so other researchers could reproduce the experiment, re
leasing at least the trained models could be an intermediate solution. 

Some efforts on reproducibility have also been taken from major 
conferences organizations such as NeurIPS, with the request of a re
producibility checklist [139]. We strongly advise its use in future 
publications related to CAD systems based on deep learning. 

9. Conclusions 

CRC is one of the major causes of death by cancer worldwide. Early 
detection of precursor lesions has been proved to minimize its in
cidence, so screening programs are essential. Colonoscopy is a gold 
standard technique for the detection and treatment of polyps and 
adenomas. CAD systems might help endoscopists to identify lesions and 
minimize the ADR. 

In the current work, we provided a systematic and comprehensive 
review of 35 works for detection, localization and segmentation of 
polyps using deep learning approaches since 2015. We further analyzed 
seven currently available public databases of colonoscopy images as 
well as the most common metrics used for reporting. Retrieved methods 
have been classified according to the approach they follow in a primary 
(end-to-end vs hybrid methods) and secondary (feature extractor, 
classification, patch-based, bounding-box and semantic segmentation) 
classifications. Although there is no common dataset or framework for 
easy and direct comparison of methods, some trends, advantages and 
disadvantages have been identified and discussed. Lastly, re
commendations and future challenges have been identified. 

Despite the great success of deep learning approaches, clinical va
lidation and application is still a must. The creation of larger, more 
assorted, public datasets; new algorithms requesting less training 
samples and the creation of a common validation framework will 
maintain the upwards tendency and will end in the clinical application 
of CAD systems to assist gastroenterologists to increase the ADR and 
early detect CRC. 
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