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Abstract
A degree sequence is a list of non-negative integers, D ¼ d1; d2; . . .; dn. It is called

graphical if there exists a simple graph G such that the degree of the ith vertex is di;

G is then said to be a realization of D. A tree degree sequence is one that is realized

by a tree. In this paper we consider the problem of packing tree degree sequences:

given k tree degree sequences, do they have simultaneous (i.e. on the same vertices)

edge-disjoint realizations? We conjecture that this is true for any arbitrary number

of tree degree sequences whenever they share no common leaves (degree-1 ver-

tices). This conjecture is inspired by work of Kundu (SIAM J Appl Math

28:290–302, 1975) that showed it to be true for 2 and 3 tree degree sequences. In

this paper, we give a proof for 4 tree degree sequences and a computer-aided proof

for 5 tree degree sequences. We also make progress towards proving our conjecture

for arbitrary k. We prove that k tree degree sequences without common leaves and at

least 2k � 4 vertices which are not leaves in any of the trees always have edge-

disjoint tree realizations. Additionally, we show that to prove the conjecture, it

suffices to prove it for n� 4k � 2 vertices. The main ingredient in all of the pre-

sented proofs is to find rainbow matchings in certain configurations.
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1 Introduction

The graph realization problem [6] is a classic problem that asks whether a given

degree sequence is graphical. In this paper we will be concerned with the more

general problem of edge-disjoint graph realizations, or packing degree sequences,

which asks whether a collection of degree sequences have simultaneous edge-

disjoint realizations, i.e. a collection of edge-disjoint graphs (on the same vertices)

whose degrees realize the given sequences. Our focus will be on giving sufficient

conditions for the case of tree degree sequences.

This problem has appeared in various forms over the years, including edge

packing [4], edge-disjoint realizations [7], degree constrained edge partitioning [2],

and the colored degree matrix problem [8]. The general problem is known to be NP-

complete [7], but certain special cases are easy. These special cases include the case

when one of the degree sequences is almost regular and there are only two degree

sequences [9], or, equivalently, when the element-wise sum of two degree

sequences is almost regular [5], or when the degrees are sparse [2, 8].

One reason edge-disjoint realizations are of interest is the following simple

observation: if k degree sequences admit edge-disjoint realizations, then their sum

must certainly be graphical (simply take the union of the edge-disjoint realizations).

Kundu proved in fact that two tree degree sequences have edge-disjoint tree

realizations if and only if their sum is graphical [10]. That is, the necessary

condition (the sum being graphical) is also sufficient in the case of two tree degree

sequences. On the other hand, this characterization is not true of three such

sequences: there exist three tree degree sequences such that any two of them have a

sum which is graphical, and the sum of all three is also graphical, yet they do not

have edge-disjoint tree realizations [11]. However, three tree degree sequences do

have edge-disjoint tree realizations when their sum is graphical and the sum of the

degrees of any vertex is at least 5 [11]. This minimal degree condition includes the

case when the degree sequences have no common leaves, that is, when every vertex

has degree 1 in at most one of the degree sequences.

It is easy to see that the sum of two degree sequences of trees is always graphical

if they do not have common leaves [3]. This fact and Kundu’s theorem for three

sequences mean that k tree degree sequences always have edge-disjoint tree

realizations if they do not have common leaves for k ¼ 2; 3. A natural question now

is to ask if this statement is true for arbitrary k. In this paper we conjecture that it is

true, and prove it for k ¼ 4. For k ¼ 5, we prove that the conjecture is true if it is

true up to 18 vertices. Computer-aided search then confirms that it is indeed true up

to 18 vertices. We also prove the conjecture for arbitrary k in a special case, when

there are a prescribed number of vertices which are not leaves in any of the degree

sequences. All the presented proofs are based on induction, and the key point in the

inductive steps is to find rainbow matchings in certain configurations.
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2 Preliminaries

In this section, we give some necessary definitions and notation, as well as state the

conjecture that we prove for some special cases.

Definition 1 A degree sequence D ¼ d1; d2; . . .; dn is a tree degree sequence if all

degrees are positive and
Pn

i¼1 di ¼ 2n � 2. A degree sequence is a path degree

sequence if two of its degrees are 1 and all other degrees are 2. A vertex with degree

1 is called a leaf.

It is easy to see that a tree degree sequence is always graphical and there is a

realization of it that is a tree.

Definition 2 Let D1;D2; . . .;Dk be degree sequences of equal length. We say that

this collection of degree sequences have edge-disjoint realizations if there exists a

collection of edge-disjoint graphs, G1;G2; . . .;Gk such that for each i, Gi is a

realization of the degree sequence Di. Such a collection of graphs is a realization of

D1;D2; . . .;Dk. The degree of vertex v in degree sequence Di is denoted by d
ðiÞ
v .

Alternatively, an edge-colored simple graph is also called a realization of

D1;D2; . . .;Dk if it is colored with k colors and for each color ci, the subgraph

containing the edges with color ci is Gi.

Remark 1 Throughout the paper, degree sequences within any particular collection

are assumed to be on the same set of vertices.

Definition 3 In an edge-colored graph, we say that the c1. . .cm-degree of a vertex

v is the number of edges incident to v whose color is one of c1; . . .; cm. Likewise, we

say an edge is a c1. . .cm-edge if its color is one of c1; . . .; cm.

Definition 4 If two edges e1 and e2 do not share a vertex, we might say that e1 and

e2 are disjoint, or vertex-disjoint. If two edges e3 and e4 share a vertex, then we say

that e3 covers or blocks e4 (and vice versa).

Definition 5 Given a collection of degree sequences D1; . . .;Dk, a common leaf is a

vertex v such that d
ðiÞ
v ¼ d

ðjÞ
v ¼ 1 for some i 6¼ j. If there are no such vertices v, then

we say that the degree sequences have no common leaves.

In this paper, we make the following conjecture.

Conjecture 1 Let D1;D2; . . .;Dk be tree degree sequences without common leaves.

Then they have edge-disjoint tree realizations.

We will provide a constructive proof that this conjecture holds for k ¼ 4. The

constructions use the existence of rainbow matchings, defined below.

Definition 6 A matching is a set of disjoint edges. In an edge-colored graph, a

rainbow matching is a matching in which no two edges have the same color. A

c1. . .cm-rainbow matching is a rainbow matching consisting of an edge of each of

the colors c1; . . .; cm.
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Definition 7 A matching avoids a vertex v if no edge in the matching is incident to

v. (As a special case, an edge avoids a vertex when it is not incident to the vertex.)

As we observed earlier, a trivially necessary condition for a collection of degree

sequences to be graphical is that the sum of the degree sequences is graphical.

Therefore, Conjecture 1 would imply the that sum of tree degree sequences without

common leaves is always graphical. This corollary can in fact be proven in the

general case independent of the conjecture. For the proof we will first need to recall

the Erd}os–Gallai theorem, which provides a characterization of which degree

sequences are graphical.

Theorem 1 [6] A degree sequence f1 � f2 � � � � � fn is graphical if and only if the

sum of the degrees is even and for each 1� s� n the inequality

Xs

i¼1

fi � sðs � 1Þ þ
Xn

j¼sþ1

minfs; fjg ð1Þ

holds.

We will also need the following lemma, which says that only the first few

inequalities (1) in the Erd}os–Gallai theorem have to be checked if the given degree

sequence is the sum of tree degree sequences. This lemma is of some interest on its

own, since it relates to ongoing research on how to characterize graphical degree

sequences (see for example [12, 14]), and on how many Erd}os–Gallai inequalities

have to be checked for a degree sequence to be graphical [13].

Lemma 1 Let F ¼ f1 � f2 � � � � � fn be the sum of k arbitrary tree degree

sequences. Then the Erd}os–Gallai inequalities (1) hold for every s� 2k.

Proof To obtain an upper bound on the left-hand side of (1), we observe that each

fj, being the sum of k degrees, is at least k, and the sum of each sequence is 2n � 2,

so that
P

j fj ¼ kð2n � 2Þ. As a consequence, it holds that

Xs

i¼1

fi � kð2n � 2Þ � ðn � sÞk:

Furthermore, we can give a lower bound on the right-hand side of (1). Indeed, if

s� 2k, then

sðs � 1Þ þ ðn � sÞk� sðs � 1Þ þ
Xn

j¼sþ1

minfs; fjg:

Therefore, it is sufficient to prove that

kð2n � 2Þ � ðn � sÞk � sðs � 1Þ þ ðn � sÞk:

Rearranging this, we get that
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2kðs � 1Þ� sðs � 1Þ;

which is true when s� 1 and 2k� s. h

We use this lemma to prove the following theorem—now on tree degree

sequences without common leaves.

Theorem 2 Let D1;D2; . . .;Dk be tree degree sequences without common leaves.

Then their sum is graphical.

Proof Let F ¼ f1; f2; . . .; fn denote the sum of the degrees in decreasing order. We

use the Erd}os–Gallai theorem presented in Theorem 1. By Lemma 1, it is sufficient

to prove the inequalities for s� 2k � 1.

Since there are no common leaves, each fj is at least 2k � 1, therefore minfs; fjg
is s for any s� 2k � 1. This means inequality (1) simplifies to

Xs

i¼1

fi � sðs � 1Þ þ ðn � sÞs ¼ sðn � 1Þ:

And this is in fact the case since we claim that the sum of the degrees cannot be

more than n � 1 on any vertex. Indeed, d
ðiÞ
v ¼ l means there are at least l leaf

vertices which are not v in tree Ti. This is because any tree with a vertex of degree

d contains at least d leaves and furthermore, any tree contains at least two leaves.

Since there are no common leaves, and there are n � 1 vertices when v is excluded,

fv ¼
Pk

i¼1 d
ðiÞ
v � n � 1. So this inequality holds for s� 2k � 1. h

We now present partial results on Conjecture 1. The results are obtained by

inductive proofs in which larger realizations are constructed from smaller

realizations.

3 The Theorem for 4 Tree Degree Sequences

In this section, we are going to prove that 4 tree degree sequences always have edge-

disjoint realizations if they do not have common leaves. The proof is based on

induction. We will need several lemmas: Lemmas 2 and 3 do the bulk of the work

needed for the inductive step, while Lemmas 4 and 5 provide the base cases.

Lemma 2 Let D1;D2; . . .;Dk be tree degree sequences without common leaves such

that not all of them are degree sequences of paths. Then there exist vertices v, w and

an index i such that d
ðiÞ
v ¼ 1, d

ðjÞ
v ¼ 2 for all j 6¼ i, and d

ðiÞ
w [ 2.

Proof Arrange the sequences into a k � n matrix where the rows are the sequences

and each column corresponds to a vertex. First, observe that the smallest column

sum is 2k � 1, since there are no common leaves. Since the sequences are tree

degree sequences, each row has sum exactly 2n � 2, therefore the total sum of all

degrees is kð2n � 2Þ. Observe that there must be at least 2k columns with column

sum 2k � 1, otherwise the total sum would be at least
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ðn � ð2k � 1ÞÞ2k þ ð2k � 1Þð2k � 1Þ ¼ kð2n � 2Þ þ 1;

a contradiction. However, there are by assumption at most k � 1 path sequences,

therefore at most 2k � 2 of these columns have their degree 1 entry in a path

sequence. It follows that there is a column with sum 2k � 1 whose degree 1 entry is

in a row of a non-path sequence. h

Lemma 3 Let G ¼ ðV;EÞ be an edge-colored graph satisfying the following

conditions:

• jV j � 10

• Each edge is colored exactly one of four colors: say, red, blue, green, or yellow.

• The subgraph corresponding to any one of the four colors is a tree on n vertices,

and these trees have no common leaves.

Let v0 2 V be an arbitrary vertex. Then for any 3 of the 4 colors, G contains a

rainbow matching (of those three colors) that avoids v0.

Proof Fix a vertex v0 2 V ; we will show that there exists an RBG-rainbow

matching in G which avoids v0.

Let v be a vertex with at least one edge of each color (red, blue, and green) going

to a vertex that is not v0; such a vertex can easily be seen to exist. Indeed, just pick

any vertex adjacent to v0 by a yellow edge. Hence, let vertices v; u1; u2; u3 be such

that ðv; u1Þ is blue, ðv; u2Þ is green and ðv; u3Þ is red. We will refer to the set of these

four vertices as ‘‘the complex’’.

Let W ¼ Vnfv0; v; u1; u2; u3g; notice that jW j � 5 since jV j � 10. We make some

important observations.

1. Each vertex w 2 W has c-degree at least 1 for every color c, and because of the

no-common-leaves condition, it can in fact have degree 1 in at most one color.

Therefore, each w 2 W has RBG-degree at least 5. A given vertex may be

adjacent to v0 in some color, so each w 2 W has at least four incident RBG-

edges which avoid v0.

2. By similar reasoning, we see that for any color, each w 2 W is incident to at

least two edges not of this color that avoid v0.

Our proof will have two cases distinguished by the size of the largest RBG-

matching (note: not necessarily rainbow matching) within W: exactly one, or at least

two. But first we will show that we do not need to consider the case in which the

largest matching in W is of size 0 (i.e. there are no edges at all in W), because this is

not possible.

Indeed, suppose for contradiction that there are no edges within W. We will count

RBG-edges to obtain a contradiction. There are three RBG-edges within the

complex. Additionally, each vertex in W has RBG-degree at least 5 (by Observation

1 at the start of this proof), including edges incident to v0. Therefore G has at least

5jW j þ 3 RBG-edges. Then, w.l.o.g., we can assume that G has at least 5
3
jW j þ 1 red

edges. Recall that, by definition of W, G has jW j þ 5 vertices and jW j � 5. But
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notice that 5
3
jW j þ 1[ jW j þ 4 for all jW j � 5, showing that there are too many red

edges for the red subgraph to be a tree. This contradiction shows that there must be

at least one edge within W. We are now ready to examine our two cases.

Case 1: There exists an RBG-matching of size 2 within W. Let two vertex-disjoint

RBG-edges be ðw1;w2Þ and ðw3;w4Þ. We may assume they are the same color

because otherwise we have an RBG-rainbow matching easily by taking an edge

from the complex; say they are red. Now, by Observation 2 from the start of the

proof, w5 is incident to at least 2 BG-edges. And we claim that we may assume that

each of w5’s BG-edges go to the complex because if w5 were incident to a BG-edge

e which did not go to the complex, then since it can only cover at most one of

ðw1;w2Þ and ðw3;w4Þ, we’d have an RBG-rainbow matching consisting of e, either

ðw1;w2Þ or ðw3;w4Þ, and an edge from the complex of the appropriate color.

Thus, we may assume that w5 has 2 BG-edges going to the complex. Clearly at

most one of these goes to v; w.l.o.g., say one which does not go to v is blue—then

we may assume that it is ðw5; u2Þ, as otherwise, we have an RBG-rainbow matching.

We have now identified four pairwise vertex-disjoint edges: blue ðv; u1Þ, blue

ðw5; u2Þ, red ðw1;w2Þ, and red ðw3;w4Þ. We also have the additional red edge ðv; u3Þ.
We claim that any green edge not blocking both of the aforementioned blue edges

can be extended to an RBG-rainbow matching. Indeed, if a green edge blocks both

red edges in W, then that green edge, along with ðv; u3Þ and ðw5; u2Þ, is an RBG-

rainbow matching. If a green edge does not block both red edges in W, and does not

block both blue edges (as we assume), then that green edge, a red edge in W, and

one of the blue edges will make an RBG-rainbow matching.

And only 3 green edges can block both blue edges, as otherwise there would be a

green cycle. If all green edges in G that avoid v0 block both blue edges, then v0 has a

green edge going to all but three of the other vertices in G. This means that the

RBY-degree of v0 is at most 3, in violation of Observation 1. Therefore there is at

least one green edge that avoids v0 and does not block both blue edges, and our

argument for Case 1 is complete.

Case 2: The largest matching within W is of size 1. The edges within W must

form either a star or a triangle, as these are the only configurations which do not

yield a matching of size 2.

Case 2.1: the edges within W form a star. W.l.o.g., say w1 is the center of the star.

We claim that, after possibly re-labeling the colors, we can find w2;w3 2 Wnfw1g
so that ðw1;w2Þ is a red edge and w3 sends two BG-edges to the complex.

First, suppose each w 2 Wnfw1g has an edge going to w1. Then, since jW j � 5,

by the pigeonhole principle, we can find w2;w3 2 Wnfw1g such that ðw1;w2Þ and

ðw1;w3Þ are edges of the same color (say red). Notice then that w3 is incident to at

least two BG-edges, by Observation 2, and each of these must go to the complex

since w1 is the center of the star.

Suppose on the other hand that there exists w3 2 Wnfw1g such that ðw1;w3Þ is

not an edge. Then fix such a w3, and choose w2 so that ðw1;w2Þ is an edge (which is

possible since there’s at least one edge within W, and w1 is the center of our star).

W.l.o.g., let the color of ðw1;w2Þ be red, and notice that w3 must send at least two

BG-edges to the complex, again by Observation 2. Thus the claim is true.
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So now we have that ðw1;w2Þ is a red edge and w3 sends two BG-edges to the

complex. In particular w3 sends a BG-edge to the complex that does not go to v;

w.l.o.g., say it is blue. Then it must be ðw3; u2Þ, or else we have an RBG-rainbow

matching. Now consider w4 and w5 2 Wnfw1;w2;w3g: notice that if either one is

incident to a green edge which avoids v0, we are done. Therefore we may assume

they both have no green edges that avoid v0, meaning that their only green edge

(there must be at least one) goes to v0. Recalling Observation 1, this means that each

of w4 and w5 has one green edge going to v0, and at least two blue and at least two

red edges (which avoid v0).

We will now build an RBG-rainbow matching containing the green edge ðv; u2Þ by

considering where the BG edges leaving w4 and w5 go. At most two edges from each

of w4 and w5 cover the green edge ðv; u2Þ, and since we have no monochromatic

cycles, at most three of either color do. Therefore we can, w.l.o.g., choose a red edge

from w4 and a blue edge from w5 which are both vertex-disjoint from the green ðv; u2Þ.
These edges must have the same endpoint, or else we have an RBG-rainbow matching.

Moreover, this endpoint must be w1 because otherwise we could choose the red

ðw1;w2Þ along with the blue edge from w5 which is vertex-disjoint from the green

ðv; u2Þ, which would give an RBG-rainbow matching. Thus we can assume we have a

red ðw4;w1Þ and a blue ðw5;w1Þ.
Now, w4 is incident to at least 3 additional RB-edges. At least one of these is vertex-

disjoint from both v and u2, and therefore this edge gives an RBG-rainbow matching

along with the green ðv; u2Þ and either ðw1;w2Þ or ðw1;w5Þ. This completes the star

case.

Case 2.2: the edges within W form a triangle. Say the triangle is between w1;w2, and

w3. Then all edges with an endpoint in Wnfw1;w2;w3g have their other endpoint in the

complex. Clearly the edges in the triangle cannot all be the same color because that

would make a cycle. If we have one edge of each color, then we are done easily:

w.l.o.g., say we have red ðw1;w2Þ, blue ðw1;w3Þ, and green ðw2;w3Þ. Then choose any

edge from some w 2 Wnfw1;w2;w3g which does not go to v; w.l.o.g., say this edge is

red. It blocks at most one of the blue ðv; u1Þ and the green ðv; u2Þ, so we can pick one of

these along with our red edge, and then complete our RBG-rainbow matching with an

edge from the triangle.

So we may now assume that the triangle has two edges of one color, and the third

edge is a different color. We assume w.l.o.g. that ðw1;w2Þ and ðw2;w3Þ are red and

ðw1;w3Þ is blue. Fix some w4;w5 2 Wnfw1;w2;w3g and notice that w4 and w5 each

send at least 2 BG-edges to the complex, by Observation 2. If all of these BG-edges

are blue, then at least one is vertex-disjoint from the green ðv; u2Þ (otherwise we’d

have a blue cycle), and we’re done. So, we may assume that at least one of these

BG-edges is green. If this green edge does not go to v, it is disjoint from either the red

ðv; u3Þ or the blue ðv; u1Þ, and we finish the RBG-rainbow matching with an

appropriate edge from the triangle. So we may assume the green edge goes to v:

w.l.o.g., say it is ðw4; vÞ. Now look at any BG-edge from w5 which does not go to v. If

it’s green, we’re done, as argued above. And if it’s blue, then we take it along with

the green ðw4; vÞ and a red edge from the triangle. So in either case, we have an

RBG-rainbow matching, and the triangle case is done. This completes the proof of

the lemma. h
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The following two lemmas establish the base cases of the induction. The first

lemma is stated and proved for an arbitrary number of path degree sequences; later

we use the general version in the proof of our conditional Theorem 6.

Lemma 4 Let D1;D2; . . .Dk be path degree sequences without common leaves.

They have edge-disjoint realizations.

Proof The proof is by construction. This construction is known as the ‘‘Walecki

construction’’; see for example [1]. For clarity, we briefly describe the construction.

It should be clear that n� 2k, since any tree contains at least two leaves. We can say

w.l.o.g. that the leaves in the i path have indexes i and n
2

� �
þ i. Then the ith path

contains the edges ði; n � 1 þ iÞ, ðn � 1 þ i; 1 þ iÞ, ð1 þ i; n � 2 þ iÞ,
ðn � 2 þ i; 2 þ iÞ, . . ., where the indexes are modulo n shifted by 1, that is, between

1 and n. The last edge is n
2

� �
þ i � 1; n

2

� �
þ i

� �
if n is even, and n

2

� �
þ i þ 1; n

2

� �
þ i

� �
if

n is odd. Figure 1 shows an example for 8 vertices. It is easy to see that there are no

parallel edges if such a path is rotated with at most n
2

� �
vertices. h

Lemma 5 Let D1;D2;D3;D4 be tree degree sequences on at most 10 vertices,

without common leaves. They have edge-disjoint realizations.

Proof Up to isomorphism, there are only 14 possible such degree sequence

quartets. The appendix contains a realization for each of them. h

Now we are ready to prove the main theorem.

Theorem 3 Let D1;D2;D3;D4 be tree degree sequences without common leaves.

They have edge-disjoint tree realizations.

Proof The proof is by induction; the base cases are the degree sequences on at most

10 vertices and the path degree sequence quartets. They all have edge-disjoint

realizations, based on Lemmas 4 and 5.

Fig. 1 An example Hamiltonian
path on 8 vertices. See the text
for details
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So assume that D1;D2;D3;D4 are tree degree sequences on more than 10 vertices

and at least one of them is not a path degree sequence. Then there exist vertices v

and w and an index i such that d
ðiÞ
v ¼ 1 for all j 6¼ i, d j

v ¼ 2 and d
ðiÞ
w [ 2, according

to Lemma 2. Consider the degree sequences D0
1;D0

2;D0
3;D0

4 which is obtained by

deleting vertex v and subtracting 1 from d
ðiÞ
w . These are tree degree sequences

without common leaves, and based on the inductive assumption, they have edge-

disjoint realizations. Let G be the colored graph representing these edge-disjoint

realizations and permute the degree sequences (and the colors accordingly) so that

Di is moved to the fourth position.

Let the subgraphs of G corresponding to D0
1;D0

2;D0
3, and D0

4 be colored in red,

blue, green, and yellow respectively. Since G contains at least 10 vertices, it has an

RBG-rainbow matching which avoids w, according to Lemma 3. The realizations of

D1;D2;D3 and D4 are obtained by the following way. Take the realizations

represented by G. Add vertex v. Connect v with w in the first tree, delete the edges of

the RBG-rainbow matching, and connect v to all the vertices incident to the edges of

the RBG-rainbow matching, 2 edges for each tree, according to the color of the

deleted edge. h

4 Some Results in the General Case

We now present some results in the general case, i.e. for an arbitrary number k of

tree degree sequences. First we show that n� 4k � 2 suffices to guarantee a rainbow

matching. However for our original purpose of finding edge-disjoint realizations via

the inductive proof, this is not sufficient to show that the induction step goes through

every time, since our base case is n ¼ 2k. We need something else to bridge the gap

between n ¼ 2k and n ¼ 4k � 2. This is accomplished by adding an extra condition:

we show that if we have at least 2k � 4 vertices that are not leaves in any tree, then

we are indeed guaranteed edge-disjoint realizations. We then use these results to

reduce the k ¼ 5 case to one that is verifiable by a computer search.

4.1 Rainbow Matchings from Matchings: n‡ 4k - 2 Guarantees a Rainbow
Matching of Size k - 1 Avoiding a Given Color and a Given Vertex

We now show that n� 4k � 2 suffices to guarantee a rainbow matching. The broad

line of attack will be to stitch a rainbow matching together from regular (singly-

colored, and large, but not necessarily perfect) matchings. A crucial ingredient in

guaranteeing large matchings will be the fact that a tree with m non-leaves must

contain a matching of size roughly m/2. The idea will be that when n is large

enough, the no-common-leaves condition guarantees a large number of non-leaves

in each color, which then guarantees large matchings in each color, which can then

be stitched together into a rainbow matching. We formalize the main ingredients as

the following lemmas.

Lemma 6 Let G be an edge colored graph such that for each color ci, i ¼ 1; 2; . . .k
there is a matching of size 2i in the subgraph of color ci. Let v be an arbitrary

vertex. Then G has a rainbow matching of size k that avoids v.
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Proof The proof is by induction using the Pigeonhole Principle. Since there are 2

disjoint edges of the first color in G, at least one of them is not incident to v. Take

that edge to be in the rainbow matching.

Assume that we have already found a rainbow matching of size i. There is a

matching of size 2i þ 2 in the subgraph of color ciþ1. At most 2i of these edges are

blocked by the rainbow matching of size i, and at most one of them is incident to v.

Thus, there is an edge of color i þ 1 which is disjoint from the rainbow matching of

size i and not incident to v. Extend the rainbow matching with this edge. h

Lemma 7 A tree with at least one edge and m internal nodes contains a matching

of size at least mþ1
2

� �
.

Proof The proof is by induction. The base cases are the trees with 2 and 3 vertices.

They have 0 and 1 internal nodes (i.e. non-leaves) respectively, and they each have

an edge, which is a matching of size 1.

Now assume that the number of vertices in tree T is more than 3, and the number

of internal nodes in it is m. Take any leaf and its incident edge e. There are two

cases.

1. The non-leaf vertex of e has degree more than 2. Then T 0 ¼ Tnfeg has the same

number of internal nodes as T. By the inductive hypothesis, T 0 has a matching of

size mþ1
2

� �
, so T does also.

2. The non-leaf vertex of e has degree 2. Let its other edge be denoted by f. Then

the internal nodes in T 0 ¼ Tnfe; fg is the internal nodes in T minus at most 2.

Thus T 0 has a matching M of size m�1
2

� �
. M [ feg is a matching in T with size

mþ1
2

� �
.

h

We now show that n� 4k � 2 suffices to guarantee a rainbow matching.

Theorem 4 Let k trees be given on n vertices, k � 5, having no common leaves. Let

w be an arbitrary vertex and let c be an arbitrary color. Then if the number of

vertices are greater or equal than 4k � 2, we can find a rainbow matching of all

colors except c that avoids w.

Proof Arrange the k � 1 trees corresponding to colors other than c in increasing

order of number of internal nodes. We would like to show that the ith tree has a

matching of size 2i. This is sufficient to find a rainbow matching, according to

Lemma 6.

Since internal nodes are exactly the vertices of a tree which are not leaves, we

have also arranged the trees in decreasing order of number of leaves. Each tree has

at least 2 leaves, therefore in the k � 1 � i trees above the ith tree and in the kth tree

there are altogether at least 2ðk � iÞ leaves. Since no vertex is a leaf in more than

one tree, there remain only at most n � 2ðk � iÞ vertices that might still be leaves in

the the ith tree and the i � 1 trees below. And since the number of leaves in the trees

below is no less than in the ith tree, the ith tree contains at most
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n � 2ðk � iÞ
i

� 	

leaves, and thus at least

n � n � 2ðk � iÞ
i

� 	

¼ ði � 1Þn þ 2ðk � iÞ
i


 �

internal nodes. If n� 4k � 2, this means at least

ði � 1Þð4k � 2Þ þ 2ðk � iÞ
i


 �

¼ 4ki � 2k � 4i þ 2

i


 �

¼ 4k � 4 � 2k � 2

i

� 	

internal nodes. Lemma 7 gives a lower-bound for the size of the largest matching in

the ith tree, which, recall, we want to show is at least 2i. That is, we want to show

that:

4k � 4 � 2k�2
i

� �
þ 1

2


 �

� 2i: ð2Þ

When i ¼ k � 1, the left hand side is

4k � 4 � 2 þ 1

2


 �

¼ 2ðk � 1Þ ¼ 2i:

For i\k � 1, it is sufficient to show that

4k � 3 � 2k�2
i

2
� 2i:

After rearranging, we get that

0� 4i2 � ð4k � 3Þi þ 2k � 2

Solving the second order equation, we get that

4k � 3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4k � 7Þ2 � 8

q

8
� i�

4k � 3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4k � 7Þ2 � 8

q

8
:

Rounding the discriminant knowing that k� 5, we get that

4k � 3 � ð4k � 8Þ
8

� i� 4k � 3 þ 4k � 8

8
:

namely,

5

8
� i� k � 11

8

which holds since 1� i� k � 2. Therefore, in the ith tree there is a matching of size

at least 2i, which is sufficient to have the prescribed rainbow matching. h
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4.2 Edge-Disjoint Realizations Under a Condition on the Degree Distribution

Theorem 4 is not strong enough to prove the full conjecture of edge-disjoint

realizations, Conjecture 1, since in our inductive proof we need to find rainbow

matchings at each inductive step, starting from n ¼ 2k. But by adding an extra

condition to the degree distribution, and showing that this condition is maintained

throughout the induction process, we are successfully able to guarantee edge-

disjoint realizations.

Definition 8 Define a never-leaf to be a vertex that is not a leaf in any tree.

Theorem 5 k tree degree sequences without common leaves and with at least

2k � 4 never-leaves always have edge-disjoint realizations.

Proof We will use the same inductive process presented in Theorem 3. The crucial

observation about that proof is that nowhere during the inductive step do we create

any new leaves in any tree. This means the number of never-leaves does not

decrease during the inductive step, and so at each step, we have at least 2k � 4

never-leaves.

It only remains to be shown, then, that whenever we have 2k � 4 never-leaves we

can find a rainbow matching. We claim that in each tree there are at least 4k � 6

internal nodes. Indeed, the 2k � 4 never-leaves are certainly internal nodes in this

tree. And in each of the other k � 1 trees there are at least two leaves, and these

leaves are internal nodes in all other trees because no common leaves, giving an

additional 2k � 2 internal nodes, altogether 4k � 6 internal nodes. By Lemma 7 this

means we have matchings of size at least

4k � 5

2


 �

¼ 2k � 2

in each tree, and by Lemma 6 these guarantee a rainbow matching, and we are

done. h

4.3 A Conditional Theorem and the k = 5 Case

The consequence of Theorem 4 is the following, which says that for any k we only

need to prove Conjecture 1 up to 4k � 2 vertices.

Theorem 6 Fix a k. If all tree degree sequence k-tuples without common leaves on

at most 4k � 2 vertices have edge-disjoint realizations, then any tree degree

sequence k -tuples without common leaves have edge-disjoint realizations.

Proof The proof is by induction. The base cases are the path degree sequences,

which have edge-disjoint realizations, according to Lemma 4, and the degree

sequences on at most 4k � 2 vertices, which have edge-disjoint realizations by

hypothesis.

Let D1;D2; . . .;Dk be tree degree sequences without common leaves on more

than 4k � 2 vertices. By Lemma 2, there are vertices v, w and an index i such that

d
ðiÞ
v ¼ 1, for all j 6¼ i, d

ðjÞ
v ¼ 2 and d

ðiÞ
w [ 2. Construct the degree sequences
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D0
1;D0

2; . . .;D0
k by removing v and subtracting 1 from d

ðiÞ
w . These are tree degree

sequences on at least 4k � 2 vertices, and they have edge-disjoint realizations

T 0
1; T 0

2; . . .; T 0
k by the inductive hypothesis. Let G be the edge-colored graph that is

the union of T 0
1; T 0

2; . . .; T 0
k, in which the edges of T 0

‘ are colored c‘, for each index ‘.

Then there is a rainbow matching consisting of all colors except ci which avoids

vertex w, according to Theorem 4. Construct a realization of D1;D2; . . .;Dk in the

following way. Start with the edge-colored graph G. Add vertex v and connect it to

w in T 0
i . Delete the edges in the rainbow matching and, for each vertex that had been

incident to an edge, say of color c‘, in the rainbow matching, connect it to v by an

edge of color c‘. h

When k ¼ 5, Theorem 6 says the following: if all tree degree sequence quintets

without common leaves and on at most 18 vertices have edge-disjoint realizations,

then all tree degree sequence quintets have edge-disjoint realizations. A computer-

aided search showed that up to permutation of sequences and vertices, there are at

most 592,000 tree degree quintets without common leaves and on at most 18

vertices, and they all have edge-disjoint tree realizations.

5 Discussion

In this paper, we considered the conjecture that any arbitrary number of tree degree

sequences without common leaves have edge-disjoint tree realizations. The

conjecture has been inspired by Kundu’s theorem that 3 tree degree sequences

have edge-disjoint tree realizations if the minimum sum of the degrees is 5 [11]. We

do not know if this theorem can be generalized to arbitrary number of tree degree

sequences, that is, we do not know if k tree degree sequences can always be realized

with k edge disjoint trees if the minimum sum of the degrees is at least 2k � 1.

On the other hand, our conjecture seems to be true for an arbitrary number of tree

degree sequences. It is always true when n ¼ 2k; this is the Walecki construction of

decomposing K2n into paths. Here we would like to mention Kundu’s conjecture

that a collection of tree degree sequences always have edge-disjoint tree realizations

if their sum is the degree sequence of K2n [11].

We also showed the following. If our conjecture is not true, then there must be a

relatively small counterexample, according to Theorem 6. However, it seems hard

to close the gap between n ¼ 2k and n� 4k � 2. On the other hand, in a

forthcoming paper of the third author, we will make the conjecture that edge-

disjoint caterpillar realizations exist for tree degree sequences without common

leaves (recall that a tree is a caterpillar if its non-leaves form a path). Furthermore,

such edge-disjoint realizations always exist unconditionally for large, but still O(k),

number of vertices. That is, if our conjecture is not true then all counterexamples

must be small.
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Appendix

Up to permutations of degree sequences and vertices, there are 14 tree degree

sequence quartets on at most 10 vertices without common leaves, which we

enumerate below. This appendix gives an example realization for all of them.

If the number of vertices is 8, there is only one possible degree sequence quartet,

each degree sequence is a path degree sequence (case 1).

If the number of vertices is 9, there are 2 possible cases: either all degree

squences are path degree sequences (case 2) or there is a degree 3 (case 3).

If the number of vertices is 10, there are 11 possible cases: all degree sequences

are path degree sequences (case 4), there is a degree 3 which might be on a vertex

with a leaf (case 5) or without a leaf (case 6), there is a degree 4 (case 7) or there are

2 degree 3s in the degree sequences (cases 8–14).

The two 3s might be in the same degree sequence, and the leaves on these two

vertices might be in the same degree sequence (case 8) or in different degree

sequences (case 9).

If the two degree 3s are in different degree sequences, they might be on the same

vertex (case 10) or on different vertices.

If the two degree 3s are in different sequences, Di and Dj, and on different

vertices u and v, consider the degrees of u and v in Di and Dj which are not 3. They

might be both 1 (case 11), or else maybe one of them is 1 and the other is 2 (case

12), or else both of them are 2. In this latter case, the degree 1s on u and v might be

in the same degree sequence (case 13) or in different degree sequences (case 14).

The realizations are represented with an adjacency matrix, in which 0 denotes the

absence of edges, and for each degree sequence Di, i denotes the edges in the

realization of Di.
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1.

D1 ¼1; 2; 2; 2; 1; 2; 2; 2

D2 ¼2; 1; 2; 2; 2; 1; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 1; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 1

�

0 1 2 2 3 3 4 4

1 0 2 3 3 4 4 1

2 2 0 3 4 4 1 1

2 3 3 0 4 1 1 2

3 3 4 4 0 1 2 2

3 4 4 1 1 0 2 3

4 4 1 1 2 2 0 3

4 1 1 2 2 3 3 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

2.

D1 ¼1; 2; 2; 2; 2; 1; 2; 2; 2

D2 ¼2; 1; 2; 2; 2; 2; 1; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 2; 1; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 2; 1

�

0 1 2 2 3 3 4 4 0

1 0 2 3 3 4 4 0 1

2 2 0 3 4 4 0 1 1

2 3 3 0 4 0 1 1 2

3 3 4 4 0 1 1 2 2

3 4 4 0 1 0 2 2 3

4 4 0 1 1 2 0 3 3

4 0 1 1 2 2 3 0 4

0 1 1 2 2 3 3 4 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

3.
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D1 ¼1; 3; 2; 2; 1; 2; 2; 2; 1

D2 ¼2; 1; 2; 2; 2; 1; 2; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 1; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2

�

0 1 0 2 3 3 4 4 2

1 0 2 3 3 4 4 1 1

0 2 0 3 4 4 1 1 2

2 3 3 0 0 1 1 2 4

3 3 4 0 0 1 2 2 4

3 4 4 1 1 0 2 0 3

4 4 1 1 2 2 0 3 0

4 1 1 2 2 0 3 0 3

2 1 2 4 4 3 0 3 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

4.

D1 ¼1; 2; 2; 2; 2; 1; 2; 2; 2; 2

D2 ¼2; 1; 2; 2; 2; 2; 1; 2; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 2; 1; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 2; 1; 2

�

0 1 2 2 3 3 4 4 0 0

1 0 2 3 3 4 4 0 0 1

2 2 0 3 4 4 0 0 1 1

2 3 3 0 4 0 0 1 1 2

3 3 4 4 0 0 1 1 2 2

3 4 4 0 0 0 1 2 2 3

4 4 0 0 1 1 0 2 3 3

4 0 0 1 1 2 2 0 3 4

0 0 1 1 2 2 3 3 0 4

0 1 1 2 2 3 3 4 4 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

5.
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D1 ¼1; 3; 2; 2; 2; 1; 2; 2; 2; 1

D2 ¼2; 1; 2; 2; 2; 2; 1; 2; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 2; 1; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 2; 1; 2

�

0 1 0 2 3 3 4 4 0 2

1 0 2 3 3 4 4 0 1 1

0 2 0 3 4 4 0 1 1 2

2 3 3 0 0 0 1 1 2 4

3 3 4 0 0 1 1 2 2 4

3 4 4 0 1 0 2 2 3 0

4 4 0 1 1 2 0 0 3 3

4 0 1 1 2 2 0 0 4 3

0 1 1 2 2 3 3 4 0 0

2 1 2 4 4 0 3 3 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

6.

D1 ¼1; 2; 2; 2; 3; 1; 2; 2; 2; 1

D2 ¼2; 1; 2; 2; 2; 2; 1; 2; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 2; 1; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 2; 1; 2

�

0 1 0 2 3 3 4 4 0 2

1 0 2 0 3 4 4 0 1 3

0 2 0 3 4 4 0 1 1 2

2 0 3 0 4 0 1 1 2 3

3 3 4 4 0 1 1 2 2 1

3 4 4 0 1 0 2 2 3 0

4 4 0 1 1 2 0 3 3 0

4 0 1 1 2 2 3 0 0 4

0 1 1 2 2 3 3 0 0 4

2 3 2 3 1 0 0 4 4 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

7.
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D1 ¼1; 4; 2; 2; 1; 2; 2; 2; 1; 1

D2 ¼2; 1; 2; 2; 2; 1; 2; 2; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 1; 2; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2; 2

�

0 1 0 0 3 3 4 4 2 2

1 0 2 3 3 4 4 1 1 1

0 2 0 3 0 4 1 1 2 4

0 3 3 0 0 1 1 2 4 2

3 3 0 0 0 1 2 2 4 4

3 4 4 1 1 0 2 0 3 0

4 4 1 1 2 2 0 0 0 3

4 1 1 2 2 0 0 0 3 3

2 1 2 4 4 3 0 3 0 0

2 1 4 2 4 0 3 3 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

8.

D1 ¼1; 3; 2; 2; 1; 3; 2; 2; 1; 1

D2 ¼2; 1; 2; 2; 2; 1; 2; 2; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 1; 2; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2; 2

�

0 1 0 2 0 3 4 4 2 3

1 0 0 3 3 4 4 1 1 2

0 0 0 3 4 4 1 1 2 2

2 3 3 0 0 1 1 2 0 4

0 3 4 0 0 1 2 2 4 3

3 4 4 1 1 0 2 0 3 1

4 4 1 1 2 2 0 3 0 0

4 1 1 2 2 0 3 0 3 0

2 1 2 0 4 3 0 3 0 4

3 2 2 4 3 1 0 0 4 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

9.
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D1 ¼1; 3; 3; 2; 1; 2; 2; 2; 1; 1

D2 ¼2; 1; 2; 2; 2; 1; 2; 2; 2; 2

D3 ¼2; 2; 1; 2; 2; 2; 1; 2; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2; 2

�

0 1 0 0 3 3 4 4 2 2

1 0 2 3 3 0 4 1 1 4

0 2 0 3 4 4 1 1 2 1

0 3 3 0 0 1 1 2 4 2

3 3 4 0 0 1 2 2 4 0

3 0 4 1 1 0 2 0 3 4

4 4 1 1 2 2 0 0 0 3

4 1 1 2 2 0 0 0 3 3

2 1 2 4 4 3 0 3 0 0

2 4 1 2 0 4 3 3 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

10.

D1 ¼1; 3; 2; 2; 1; 2; 2; 2; 1; 2

D2 ¼2; 1; 2; 2; 2; 1; 2; 2; 2; 2

D3 ¼2; 3; 1; 2; 2; 2; 1; 2; 2; 1

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2; 2

�

0 1 0 2 3 3 4 0 2 4

1 0 2 3 3 4 4 1 1 3

0 2 0 3 4 4 1 1 2 0

2 3 3 0 0 0 1 2 4 1

3 3 4 0 0 1 0 2 4 2

3 4 4 0 1 0 2 0 3 1

4 4 1 1 0 2 0 3 0 2

0 1 1 2 2 0 3 0 3 4

2 1 2 4 4 3 0 3 0 0

4 3 0 1 2 1 2 4 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

11.
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D1 ¼1; 3; 2; 2; 1; 2; 2; 2; 1; 2

D2 ¼3; 1; 2; 2; 2; 1; 2; 2; 2; 1

D3 ¼2; 2; 1; 2; 2; 2; 1; 2; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2; 2

�

0 1 0 2 3 3 4 4 2 2

1 0 2 3 3 4 4 1 1 0

0 2 0 3 0 4 1 1 2 4

2 3 3 0 0 0 1 2 4 1

3 3 0 0 0 1 2 2 4 4

3 4 4 0 1 0 2 0 3 1

4 4 1 1 2 2 0 0 0 3

4 1 1 2 2 0 0 0 3 3

2 1 2 4 4 3 0 3 0 0

2 0 4 1 4 1 3 3 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

12.

D1 ¼1; 3; 2; 2; 1; 2; 2; 2; 1; 2

D2 ¼2; 1; 3; 2; 2; 1; 2; 2; 2; 1

D3 ¼2; 2; 1; 2; 2; 2; 1; 2; 2; 2

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2; 2

�

0 0 0 2 3 3 4 4 2 1

0 0 2 3 3 4 4 1 1 1

0 2 0 3 4 4 1 1 2 2

2 3 3 0 0 1 1 2 0 4

3 3 4 0 0 1 2 2 4 0

3 4 4 1 1 0 2 0 3 0

4 4 1 1 2 2 0 0 0 3

4 1 1 2 2 0 0 0 3 3

2 1 2 0 4 3 0 3 0 4

1 1 2 4 0 0 3 3 4 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

13.
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D1 ¼1; 3; 2; 2; 1; 2; 2; 2; 1; 2

D2 ¼2; 1; 2; 2; 2; 1; 2; 2; 2; 2

D3 ¼2; 2; 1; 2; 2; 3; 1; 2; 2; 1

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2; 2

�

0 0 0 2 3 3 4 4 2 1

0 0 2 3 3 4 4 1 1 1

0 2 0 3 4 4 1 1 2 0

2 3 3 0 0 1 1 2 0 4

3 3 4 0 0 1 0 2 4 2

3 4 4 1 1 0 2 0 3 3

4 4 1 1 0 2 0 3 0 2

4 1 1 2 2 0 3 0 3 0

2 1 2 0 4 3 0 3 0 4

1 1 0 4 2 3 2 0 4 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

14.

D1 ¼1; 3; 2; 2; 1; 2; 2; 2; 1; 2

D2 ¼2; 1; 2; 2; 2; 1; 2; 2; 2; 2

D3 ¼2; 2; 1; 3; 2; 2; 1; 2; 2; 1

D4 ¼2; 2; 2; 1; 2; 2; 2; 1; 2; 2

�

0 0 0 2 3 3 4 4 2 1

0 0 2 3 3 4 4 1 1 1

0 2 0 3 4 0 1 1 2 4

2 3 3 0 0 1 1 2 4 3

3 3 4 0 0 1 0 2 4 2

3 4 0 1 1 0 2 0 3 4

4 4 1 1 0 2 0 3 0 2

4 1 1 2 2 0 3 0 3 0

2 1 2 4 4 3 0 3 0 0

1 1 4 3 2 4 2 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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7. Guı́ñez, F., Matamala, F.M., Thomassé, S.: Realizing disjoint degree sequences of span at most two:

a tractable discrete tomography problem. Discret. Appl. Math. 159(1), 23–30 (2011)

8. Hillebrand, A., McDiarmid, C.: Colour degree matrices of graphs with at most one cycle. Discret.

Appl. Math. 209, 144–152 (2016)

9. Kundu, S.: The k-factor conjecture is true. Discret. Math. 6(4), 367–376 (1973)

10. Kundu, S.: Disjoint representation of tree realizable sequences. SIAM J. Appl. Math. 26(1), 103–107

(1974)

11. Kundu, S.: Disjoint representation of three tree realizable sequences. SIAM J. Appl. Math. 28,

290–302 (1975)

12. Tripathi, A., Tyagi, H.: A simple criterion on degree sequences of graphs. Discret. Appl. Math. 156,

3503–3517 (2008)

13. Tripathi, A., Vijay, S.: A note on a theorem of Erd}os & Gallai. Discret. Math. 265, 417–420 (2003)
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