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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

The possible role of stem cells in medical treatments can hardly be overestimated. Today they are produced – almost without exemption – with 
significant human involvement using adaptive protocols that take the growth behavior of the biological material into account. Automated 
production platforms are being developed and tested in a number of research laboratories with the main goals of improving reproducibility, as 
well as increasing quality and throughput. However, automated stem cell production differs from the traditional manufacturing processes in (1) 
the inherent diversity of the products (stem cells), (2) their varying growth rates and process times, (3) the need for their regular observation 
and process adaptation, and, therefore, (4) for mixed-initiative production control. A distinctive feature of the domain is the symbiotic co-
existence and co-evolution of the technical, ICT and biological ingredients in production structures. A challenging way to overcome these 
issues is the use of biologically-inspired control algorithms. In the paper the application of reinforcement learning is proposed for this purpose. 
As a first step, a digital simulation of the stem cell production was performed in order to generate patterns for the training process and to test 
the approach. In addition to the description of the concept, the paper also presents initial research results.
© 2019 The Authors. Published by Elsevier B.V.
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Engineering.
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1. Introduction

Stem cell based therapies hold much promise for the 
medicine of the future [1], [2] by providing new treatment 
modalities for chronic and life-threatening diseases. There is a 
common understanding that they represent a central element 
of regenerative medicine and therapy. For the reasons given in 
the abstract, the automatization of the stem cell production 
represents a real challenge. 

As stated in [3], “increased understanding of the underlying 
biological processes and their interaction with approaches to 
manufacturing technology will be needed to create the step 
change required for the next generation of scalable precision 
production systems capable of more than replicating and 
incrementally improving the performance of the human 
operator”.

As a further step in this process, a biologically inspired 
control approach, i.e. reinforcement learning (RL) is 
introduced in the paper for controlling automated stem cell 
production. 

In Section 2, the problem of fully automatic stem cell 
production is presented and some such systems developed at 
Laboratory for Machine Tools and Production Engineering 
(WZL), RWTH Aachen University and at the Fraunhofer 
Institute for Production Technology, Aachen are highlighted. 
Modelling of the cell growth is introduced and the process and 
results of model fitting are outlined. The following sections
introduce an agent-based simulation of the selected automated 
system and the control concept. The first results of the 
reinforcement learning based controller are described. Finally, 
some conclusions are drawn.
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Stem cell based therapies hold much promise for the 
medicine of the future [1], [2] by providing new treatment 
modalities for chronic and life-threatening diseases. There is a 
common understanding that they represent a central element 
of regenerative medicine and therapy. For the reasons given in 
the abstract, the automatization of the stem cell production 
represents a real challenge. 

As stated in [3], “increased understanding of the underlying 
biological processes and their interaction with approaches to 
manufacturing technology will be needed to create the step 
change required for the next generation of scalable precision 
production systems capable of more than replicating and 
incrementally improving the performance of the human 
operator”.

As a further step in this process, a biologically inspired 
control approach, i.e. reinforcement learning (RL) is 
introduced in the paper for controlling automated stem cell 
production. 

In Section 2, the problem of fully automatic stem cell 
production is presented and some such systems developed at 
Laboratory for Machine Tools and Production Engineering 
(WZL), RWTH Aachen University and at the Fraunhofer 
Institute for Production Technology, Aachen are highlighted. 
Modelling of the cell growth is introduced and the process and 
results of model fitting are outlined. The following sections
introduce an agent-based simulation of the selected automated 
system and the control concept. The first results of the 
reinforcement learning based controller are described. Finally, 
some conclusions are drawn.
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2. Fully automated production of stem cells 

In recent years, automated approaches towards manufacture 
of stem cells have been gaining importance. This includes 
both automation for scaled production of therapeutic cells as 
well as high-throughput generation of cell models for research 
and in vitro testing. In both cases, automation reduces the 
chance for human errors, provides more precision, 
repeatability, robustness and allows close monitoring and 
control of the process. Automation approaches that currently 
find application in the industry differ in the degree of 
automation and connectivity. In this paper, we will only focus 
on fully automated systems where no direct human interaction 
is necessary along the entire process. There are a number of 
examples for such systems: 
• StemCellFactory – The StemCellFactory is an automated 

facility for the standardized and parallelized isolation and 
expansion of induced Pluripotent Stem Cells (iPSC) 
clones. The StemCellFactory is being upgraded by the 
possibility to generate iPSC by reprogramming blood cells 
and the technology for automated genome editing of iPSC 
clones [1].

• StemCellDiscovery – The StemCellDiscovery is a fully 
automated laboratory, which serves as a development 
environment for automating process protocols, new 
devices and novel software and algorithms. 

• AUTOSTEM – In the interdisciplinary H2020-project 
AUTOSTEM, a closed, automated and sterile pipeline was 
developed for large-scale production of therapeutic stromal 
cells [5], [6].

• iCellFactory – The iCellFactory is a highly flexible 
automated research platform, serving as an environment to 
test new devices and approaches to control automated 
cultivation of different cell types and lines and to enable 
easy mechanical reconfiguration of the layout of automated 
cell culture platforms [7], [8], [9]. Current research 
focusses on Human Embryonic Kidney (HEK) 293 and 
induced Pluripotent Stem (iPS) cells.
The automation of these systems follows a service-oriented 

approach with highly modular control software that allows 
adaptive cell processing [10]. The machines represent fully 
automated laboratories, in which different automated 
laboratory devices are interconnected by a robot arm. In the 
following, we will use the StemCellDiscovery as a model 
representatives for those automated systems. Here, adherent 
mesenchymal stem cells (MSC) are grown in 2D on the 
surface of multiwell-plates in parallel. 

The fully automated cultivation of donor- or patient-
derived stem cells, however, bears certain challenges. Since 
the cells differ from batch to batch, they are prone to a high 
variability in quality and growth behavior [11], [12], [13]. 
This introduces the need for adaptive processing, which reacts 
to the cell behavior. For example, stem cell cultures are split 
into several new culture dishes once that the cells have 
covered most of the culture vessels surface. This is typically 
done when the cells reach 80% confluence [14]. Since the cell 
cultures grow differently from batch to batch, the time point 
for the split has to be determined based on the growth and is 
not fixed. The cultivation workflow is presented in Fig. 1.

Fig. 1. The workflow of the process.

In order to realize full automation, the assessment of the 
culture status has to be transferred into the automated 
workflow. In this case, the cell growth (confluence) is 
measured repeatedly via microscopic imaging and the process 
is performed adaptively. Depending on the measurement 
result and culture time, either cells are directly returned to the
incubator, a medium change is performed or if the cells reach 
a high growth density, the culture is split [15], [16], [7].

Though a certain adaptivity towards the cell growth 
behavior is key to the production of these cells, making 
decisions throughout the process introduces uncertainty into 
production planning and control. As the different processes 
such as medium change and splitting of the culture vary 
significantly in duration and utilized resources, bottlenecks 
can arise during high throughput operations. For this reason, 
the optimization of the process and production control 
strategies is a key issue. 

2.1. Description of the cell growth

In order to simulate the production system, a cell growth 
model has to be selected in order to describe the product 
behavior. 

Stem cells proliferate through symmetric division. When 
they grow unhindered, they exhibit exponential growth 
behavior. When grown in culture plates however, the cells are 
in the exponential growth phase only for a limited period of 
the culture. When they are seeded onto a new plate, they need 
to accustom to their surrounding and therefore exhibit a so-
called lag phase. Once they have recovered, they start 
dividing at a maximum growth rate until their environmental 
conditions become limiting. In plate-based cultures where 
nutrients are replenished regularly through medium change, 
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the limiting factor is typically space. Once the cells cover 
most of the plate the growth slows down and cultures enter a 
stationary phase. 

In reality therefore, growth curves typically resemble 
sigmoidal curves. This growth behavior is well-known also 
for other populations in biology and can be described using 
different mathematical models. For this paper, two different 
mathematical models were chosen and implemented into the 
simulation: the unified Gompertz model (1) and the 
Bertalanffy model (2) with confluence W, initial confluence 
W0 at the time of seeding, upper growth limit A and growth
constants kG and kB, respectively [17], [18]:

         (1)

                (2)

In order to determine a parameter set for typical cultivation 
conditions, the functions were fitted to confluence data over 
time from cultivations of mesenchymal stem cells cultivated 
in 6-well plates. Cells were grown in Dulbecco's Modified 
Eagle Medium (DMEM) with 10% fetal bovine serum (FBS)
and 1% penicillin/streptomycin at 37°C in 5 % CO2. A total of 
72 growth curves from twelve plates were used to fit the 
curves. During cultivation, microscopic images were taken 
and the confluence was calculated using an image processing 
algorithm. These data were normalized in order to simulate 
growth as a person in the lab would describe the culture 
(range between 0 – 100% confluence). All data were 
normalized so that the highest confluence value measured was 
100%. The growth functions were fit to the data set in order to 
determine a parameter. While A was fixed at 100%, k and W0

depend on the individual culture. The resulting parameter set 
was rounded and the range extended to allow a simulation 
with a higher variability (as variability naturally occurs and 
the data set used was only from one donor – therefore, greater
variability is expected when cultivating cells from different 
donors). The resulting two parameter sets used for simulation 
are given in Table 1. 

Table 1. Parameter sets for simulation based on historical cell culture data 
(normalized for A = 100%:

Low variability Higher variability

W0 14 % (12 – 16.0%) 20 % (10 – 30%) 

kGompertz (kG) 0.12 (0.09 – 0.15) 0.14 (0.08 – 0.2) 

kBertalanffy (kB) 0.265 (0.2 – 0.33) 0.275 (0.15 – 0.4) 

A 1 (100%) 1 (100%)

Threshold CSplit 0.8 (80%) 0.8 (80%)

3. Agent-based simulation of stem cell production

The simulation model of the stem cell production factory 
has been implemented in the AnyLogic Simulation Software
[19]. An agent-based [20] modeling approach was applied, 
where both the plates and the equipment were modeled as 
agents. Nine pieces of equipment were included in the model: 
the processing equipment (liquid handling unit (LHU),
decapper, plate reader, centrifuge, microscope), the storage 
equipment (incubator, storage, waste), and the transportation 
equipment (robot arm).

The five main processes of the production were
implemented in the simulation system: seeding, quality 
control, confluence measurement, medium exchange and 
splitting of the cells (see Fig.1). Each process contains several 
steps and each step requires an equipment. Some steps are 
conditional, e.g. if a plate is waiting for a busy resource, it 
should be transported to the incubator until the required 
resource becomes available.

The process flows are fixed in the simulation, but their 
parameters can be modified externally. These include the 
duration of the operations, capacity of the factory, the growth 
models for the cell cultures, as well as the uncertainty model 
of the production system. In addition to the process 
parameters, the control of the system can be influenced 
externally. The control of the splitting can be defined by 
setting when, and into how many new plates the contents of a 
plate should be distributed. The processing order of the 
equipment requests are based on their priorities, which can be 
controlled by setting the weights of five components of the 
priority. Furthermore, there is a possibility to set the frequency 
of the medium exchange and the largest acceptable waiting 
time outside the incubator. All of the parameters can be set 
either in an input data file or dynamically from the external 
reinforcement learning program.

The simulation of the stem cell factory can be run in two 
different modes. Firstly, it can be used with the graphical user 
interface (GUI), which includes a 3D animation of the factory, 
see Fig. 2, Fig. 3 and Fig. 4. The GUI provides controls for the 
simulation runs, such as pausing the execution and setting the 
speed of the simulation. The current state of the factory—
including the equipment, their waiting lines and the cell 
cultures—can be monitored, which is also supported with 
several charts and plot diagrams. The total amount of cell 
cultures can be easily observed, even if they are already 
distributed over several plates. In addition, the simulation 
produces detailed process logs that facilitate process tracking. 
The main purpose of the GUI is to support the evaluation of 
the simulation system and to allow manual experimentation 
with the different control settings.
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Fig. 2. Three dimensional animation of the cell.

Fig. 3. The number of plates and total confluence of the cell cultures (up) and 
the expected waiting times in the queues (bottom).

Fig. 4. Growth of the cell culture within a plate.

The second mode of simulation is designed to facilitate the 
optimization of the control policy. In order to do this, a large 
number of simulation runs are required for evaluating different 
policies. In this case, the GUI with animation and full 
monitoring capability of the simulated factory is not 
necessary. Instead, the simulation should run as fast as 
possible and should result only in some aggregated 
performance indicators. Such indicators are the output of the 
system (i.e., the average increase of the cell cultures’ volume 
between entering and leaving the factory), the maximum
waiting time required for the resources, or the quantity of the 
waste produced.

4. Biologically inspired control of stem cell production

One of the main aims of the project was to improve the 
controller of the current platform by bio-inspired computing 
methods. As reinforcement learning (RL) approaches are 
efficient in adaptive resource control [21], [22] such a method 
was chosen.

Reinforcement learning is a biologically-inspired machine 
learning approach to learn from interactions with a stochastic 
dynamic system based on feedbacks like rewards. An 
interpretation is to consider an agent (decision maker) 
interacting with an uncertain system and receiving 
information about the actual state and an immediate cost. The 
aim is to learn an efficient behavior (control policy), such that 
applying this strategy minimizes the expected cumulative 
costs in the long run. Let us quote R. Sutton and A. Barto, two 
prominent RL researchers and pioneers of the field, about the 
biological inspirations of RL: “Of all the forms of machine 
learning, reinforcement learning is the closest to the kind of 
learning that humans and other animals do, and many of the 
core algorithms of reinforcement learning were originally 
inspired by biological learning systems” [23].

4.1. Design concept of the RL based controller

A design concept was proposed for a centralized feedback 
controller which is optimized based on the simulation model, 
to compensate for the limited amount of empirical data. 

The interaction diagram of the feedback controller and the 
simulation is presented in Fig. 5. The system state (vector), 
denoted by xt, contains the properties of individual wells 
(medium, cell health, population, etc.), the states of the 
system resources (robot arm, LHU, microscope, centrifuge, 
incubator, waster, decapper, etc.), other environmental factors 
(temperature, humidity, etc.), any additional relevant 
properties of the automated cell platform.

The control input (vector), denoted by ut, contain such 
parameters which directly influence the system (shaking, 
transportation, measurement, temperature control, etc.). The 
immediate cost (scalar), denoted by ct, is a function describing 
the costs of states and/or actions (e.g., cell growth, cell health, 
etc.). There are some additional noises, denoted by nt, which 
encode the stochastic nature of the process.

Fig. 5. Interaction diagram: The feedback controller and the simulation 
model.
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Function f(xt) provides the available observations, as the 
system state is not fully observed, e.g., the cell growths are 
only measured at certain times. The controller can only take 
actions based on the observations. The simulation describes 
the state transition of the system to the next state (xt+1) based 
on the current state (xt), the control inputs (ut) and an 
additional process noise (nt). Meanwhile, the control policy 
determines the applied control input (ut), typically, based on 
the most relevant features of the current state (xt), in order to 
maximize the performance of the system over a given horizon.

4.2. Structure of the controller

The controller of the stem cell platform applies a priority-
based scheduling mechanism, where the plate with the highest 
priority is served first. The (time-dependent) priority of a 
plate is computed as a linear combination of five features, 
listed below. The controller also depends on two other 
parameters: the confluence threshold for splitting and the time 
between measurements. Hence, the relevant parameters are:
 Priority of the plates: 

To prioritize the plates waiting for a resource, the weighted 
sum of the following parameters are calculated: 
 Process priority
 Falcon tube priority (for the initial cell cultures) 
 Plate waiting time (changes during simulation)
 Plate confluence weight (changes during simulation)
 Time spent outside of the incubator (changes) 

 Confluence threshold for splitting:
If the measured confluence value is above this threshold, 
the cell culture in a plate is divided into two new plates.

 Incubation time between measurements:
time spent in the incubator between confluence checks.

4.3. Optimization of the controller

The controller was optimized with RL to maximize the 
expected throughput (mean cell yield over a given horizon) of 
the system. During optimization, the seven parameters of the 
controller were adaptively tuned using an RL method, 
particularly a policy gradient algorithm, which is a variant of 
the so-called Kiefer-Wolfowitz method. A survey of RL based 
control methods, including policy gradient, can be found in
[24].

The learning process starts with an initial state (x0) and 
initial control policy (w0). In the first step, multiple random 
perturbations (wk,1, wk,2, ..., wk,m) of the control policy are 
generated (based on a parametric model of a policy), then in 
the second step these control policies are fed to the simulation, 
in order to evaluate each policy by multiple rollout 
simulations and estimate their cumulative costs. In the third 
step, these estimated costs (ck,1, ck,2, ..., ck,m) are used to 
perform a gradient estimation and hence to calculate the 
policy modification vector (Δwk). In the fourth, final step the 
policy modification is applied to the control policy, then the 
process repeats from the first step until a terminating condition 
is met. Policy gradient methods are guaranteed to converge (to
a local minimum) under mild statistical assumptions [23].

5. First results of the reinforcement leaning based 
controller in a simulated environment

Numerical experiments were initiated and performed on
the simulated system, to test the efficiency of the suggested 
RL based control method. The primary aim was to measure 
the speedup in the expected throughput (cell yield).

For the experiment setup, three different system sizes and 
four optimization scenarios were studied resulting in 12 
experiments. Additionally, each system size was simulated 
with the currently implemented control mechanism (based on 
process priorities and waiting times) adding 3 further 
experiments for a total number of 15. Each simulation started 
with 18 falcon tubes (with varying cell growth parameters) 
and ran for 20 (virtual) days, the other parameters being the 
same as in the real system. The system sizes (maximum plate 
capacities of the system) were set to 50, 100 and 200 to 
represent different scales of which the largest was able to 
process all plates created by the splitting processes during the 
simulation. This latter variant is the closest approximation to 
the investigated platform for the real automated production of 
stem cells.

Each experiment ran for 100 iterations sufficient to
stabilize the learning process in a small environment of the 
optimal setup, whose environment was determined by the 
noise level. In fact, in the case of the current system, usually 
only 50 iterations were enough for this stabilization. 

A typical learning curve of an experiment is shown in 
Fig. 6. The curve illustrates how the optimization objective 
(throughput) stabilizes as the number of iterations grow. 
The results of the numerical experiments showed that the 
most influential control parameter in this experimental setup 
was the confluence threshold. Optimizing only the five 
parameters of the priority based scheduling did not improve 
the throughput considerably, furthermore, optimizing just the 
incubation time only led to a slight improvement. However, 
optimizing the confluence threshold alone resulted in a 15-
20% increase in throughput, while the full optimization (in 
which all seven parameters were optimized simultaneously) 
achieved up to 30% improvement in the largest system, with 
respect to the non-optimized system. We note that on the 
current experimental stem cell production platform the RL 
method resulted in about 30% average speedup, the smaller 
improvements were observed on smaller, restricted systems.

Fig. 6. Learning curve for a middle-sized system with full optimization.
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6. Conclusions 

The development of Cyber-Physical Production Systems 
(CPPS) presents new challenges to face and opportunities to 
manage – among other issues – the growing complexity of our 
systems by realizing control concepts which were hardly 
realizable before the era of Industry 4.0 [25]. 

One of the novel concepts is the biologicalisation, i.e. the 
biological transformation in manufacturing [26]. According to 
the authors of the referred paper, biologicalisation is “the use 
and integration of biological and bio-inspired principles, 
materials, functions, structures and resources for intelligent 
and sustainable manufacturing technologies and systems with 
the aim of achieving their full potential”. 

The research highlighted in the paper represents a field of
biologicalisation in its own right, i.e. the use of biologically 
inspired algorithms for controlling manufacturing cells 
producing biological material. 

The first results are promising, the adaptive stem cell 
processing on automated production platforms by 
reinforcement learning proved to be a viable alternative both 
for the traditional, manual stem cell processing, and for the 
actual automated solutions usually applying rule-based 
control algorithms realizing the protocols of the manual 
operations. Further works will include the implementation and 
testing of the novel control solution in the real physical 
environment of automated stem cell production, but also, in 
other fields of production, where similar challenges due to
uncertainties appear.
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