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Abstract. This paper proposes a novel method for the estimation of the
wheel circumferences, which have significant effects on a vehicle model
based localization. One of the advantages of the method is that only
cost effective onboard sensors, such as GPS, magnetometer, IMU and
wheel encoders are used. Moreover, the estimation methods based on
pure vehicle models can result in suitable localization, when other solu-
tions are not effective i.e. the GPS signals are not available or other
sensors are inaccurate, such as IMU measurements with low, constant
velocity. The presented off-line algorithm has three main layers connect-
ing the Kalman-filter and Least Squares based estimation processes in
an iterative way. During the procedure the side-slip is estimated, which
has a significant impact on the dynamics of the vehicle and the further
estimations. Since in the method all of the measurements are used at
once and the side-slip is also calculated, a highly accurate identification
with low sensitivity on the noise can be reached. The efficiency of the
vehicle model calibration is presented through CarSim simulations.
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1 Introduction and Motivation Example

Vehicle localization became a widely research topic in the automotive industry
with appearing of the autonomous vehicle functions. Several methods for local-
ization were presented in the recent years using a wide range of sensors, such
as camera, LIDAR, GPS, IMU and wheel encoders. The perception based meth-
ods require prior teaching or well recognizable features, see [1]. The fusion of
GPS and IMU measurements could be precise on higher velocity scenarios, but
is assumes the actual knowledge of the covariances of the signals. Moreover, the
signals of the GPS are not available in parking garages or in several urban areas,
e.g. next to the buildings with high walls. Therefore, in these situations the wheel
encoder based odometry can be an appropriate choice for vehicle localization,
see [2]. However, these localization methods require the model of the vehicle,
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which can contains parameter uncertainties. Thus, the estimation of some vehi-
cle parameters is an important feature of the autonomous vehicle localization,
which is a challenge in the research.

The odometry based on the vehicle model has widely used in mobile robot
applications in the last few years i.e. in parking assist functions [3] and in the
automated navigation part of a fusion algorithm [4]. In the odometry based
navigation systems the well-calibrated vehicle model is required to ensure the
highly accurate pose estimation. Proposed calibration methods can be found
in [5] and [6], but the full automated self-calibration is a novel research area.
The absolute pose measurements are suitable to estimate the real value of the
parameters. A self-adaptive method is presented in [7], which deals with the
estimation of the time delay of the sensor.

The parameter identification problem is handled with the least squares
approximation, while the optimal state estimation at various environmental con-
ditions is guaranteed by Kalman-filters explained in detail in [8]. In the nonlinear
case a possible solution can be the Extended Kalman-filter, see in [6] and [7].

The scope of this paper is to propose a novel iterative parameter estimation
method for optimal calibration of wheel encoder based vehicle models. Parame-
ter identification of wheel circumferences are performed based on an algorithm.
Since the variation of the wheel circumference has a low dynamics, the off-line
estimation can be enough. The advantages of the method is that it is not nec-
essary to find a balance between the computation time and the preciseness of
the estimation due to the off-line computation. In the method an iterative pro-
cedure is proposed to improve the accuracy of the vehicle model setting. The
proposed method can have several other application areas in the autonomous
vehicle control, determination of the IMU signal bias and covariance values or it
can provide a prior information for the perception methods.

In the following examples the impact of the wheel radius on the vehicle
motion is illustrated in Fig. 1, through a parking-garage maneuvering scenario
with various tyre wear values. Figure2 contain the used tyre wear (RL and
RR means rear-left and rear right) and the results, which show that the small
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Fig. 1. Odometry paths Fig. 2. Tyre wear and errors
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difference from the true wheel radius can lead to a significantly different course
of the autonomous vehicle. Thus the wheel circumference is a crucial parameter
in the model of the on-line odometry, therefore the off-line calibration has high
priority.

The paper is organized as follows. In Sect.2 the two-wheel model of the
odometry is presented. Moreover, the iterative parameter identification method
is found in Sect. 3, while the tuning of the algorithm is proposed in Sect. 4.
Simulation results are presented in Sect.5 and finally, the contributions of the
paper and the future challenges are summarized in Sect. 6.

2 Model Based Vehicle Localization

The dead reckoning navigation is based on a model, of which estimated state
vector xj contains the longitudinal and lateral vehicle positions xg, yr and the
heading angle 6. The accuracy of the model highly depends on the calibra-
tion of the kinematic odometry parameters. The planar motion of the vehicle is
calculated from the vehicle velocity v; and the angular rate wy, such as

Tp = Tp—1 + v - At - cos(Op_1 + wi/2 - At + B) (1a)
Yk = Yk—1 + Vg - At - sin(&k_l + Wk/2 - A+ ﬂk) (lb)
0r, = 0p_1 +wy, - At (1c)

where [ is the side-slip angle and At is sampling time. Moreover, vy and wyg
are calculated using the two-wheel vehicle model (2W), where the velocities are
determined by the rear wheel speeds, which are resulted by the product of wheel
rotation measurements n; , and the circumference ¢;, d; = n; 1 - ¢; such as

v = (drrk + drrk)/(2 - At) wp = (drrk — drok)/(tr - At)  (2)

Thus, the accuracy of the model-based localization highly depends on the c¢;.

3 Kalman-Filter Based Iterative Least Square Parameter
Estimation Method

The iterative estimation method is based on the presented vehicle model, and the
measurement of GPS position, magnetic heading, IMU acceleration and yaw rate
and wheel rotation velocity. The process of the iterative solution is illustrated in
Fig.3. The method has three main layers, in which the Kalman-filtering (KF)
and the Least Squares (LS) optimization are connected together in an iterative
way. This approach can also be feasible for identification of Hammerstein and
Wiener models, see in [11].
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3.1 Reference Calculation and Side-Slip Estimation

In the first layer reference pose values rp = [ik,gk,ék]T are calculated using
the GPS and IMU measurements, which are considered as references for the
computation. This fusion method has been investigated already in a wide range
of papers considering the dynamic equation of § = a, where p is the position and
a is the acceleration. The implemented method is similar to [9]. The side-slip
is assumed to be high impact on the precise estimation of the states. Thus, the
measured signals are applied in a KF based side-slip estimation presented in [10].
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Fig. 3. Process of the iterative parameter estimation

3.2 State Estimation with Kalman-Filter and Least Square Based
Parameter Identification

The core of the method is an iterative loop of state estimation of the vehicle and
parameter identification of the wheel circumferences.

First, the state vector containing the vehicle pose as x; = [z, Yk, Ok S
filtered with an Extended Kalman-filter (EKF), which uses the two-wheel vehicle
model as state function, the wheel encoders as inputs (d; g n = nik - ¢in) and
the reference position and orientation values as measurements such as

"

xp = f(Xp—1, k1) W1 = [drLk—1n-1 dRRE-1,m-1]" ve=rr (3)

where the wheel circumferences are the estimated values from the previous step.
The filtering of X, = [Tk, Uk, Ox]T is performed in the following two phase.

— Prediction based on the model The predicted states and covariance
matrix are calculated as follows

i; = f(ﬁk_l,uk_l) Ek_ = szk_ng+P (4)

The method handles the nonlinearity with the calculation of the approximate
derivatives as the first order Taylor linearization, thus the Jacobian is stated
as follows and compute in the previous state as

9f(x,u)

Fe= = (5)

X=Xp—1,U=Uk—1
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— Innovation based on the measurements In the innovation phase the mea-
surements are used to improve the estimation. The state and the covariance
calculated as follows

X=X, +Gr(yr —h(xy)) 2k = - GpHyp)X, (6)

where h(x) is the measurement equation, which is h(x) = [zg, Yk, Ok]T. The
Jacobian is stated as Hy = I. G} is the Kalman-Gain factor, which ensures
the optimal estimation of the states and guarantees the minimum covariance.
The gain equation follows as

Gy = X, Hj (Hy X Hi! + M)~ (7)

The filter design requires the P and M matrixes, which are the model and
measurements covariances. These determine the ratio of input and measurement
in the optimal fused state, therefore need to be adjusted properly. The detailed
tuning method can be found in the next section.

The optimization of the parameters cgy, and crpg is based on the least square
regression method, because linear algebraic equations can be formed between
the results of the previous estimations and the identified values, such as

DRLk .Cos@k_l) ot - cos(B—1)
G = | “ELE . sin(fy 1) BERE . sin(f—1) (8)
__MRLk NRR,k
tr tr
f=Ri]= @9 Do = @TWE) WY (9)
Y D

where ¥ = [crr,crr]? contains the wheel circumferences, Y consist the refer-
ence measurements and the estimated states and & is based on the two-wheel
model. In the equation of the resulted solution of the optimal parameter, W is
a positive weighting matrix with the coefficients of diag([1 1 10]) because of the
compensation of 1m position and 1rad orientation errors.

4 Tuning of the Algorithm

The two main goal of the tuning procedure are the ensuring of the convergence
to the global optimum setting and the guarantee of robustness of the method to
perform the calibration in an automatic way.

The P and M covariance matrices of the EKF symbolize the variance of the
model states predicted from the inputs and the variance of the measurements.
Generally the values are set to the noise of the used sensors. In the most appli-
cation of the filter the covariances are fix and contain prior calculated values.
This results deviation from the optimal, if the actual noise is different from the
precalculated. Nevertheless the determination of actual sensor noises online is a
highly difficult problem. The value of the G Kalman-gain mostly depends on the
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ratio of the matrices not on the exact numeric values. However in our methods
the EKF operates in an iterative loop, where the input is changing, because of
the continuous modification of the wheel circumferences see in the (3). Thus
varying covariance is assumed to be required. Taking into consideration that our
main goal is the optimal calibration of the vehicle model, the 2W model with
the estimated parameters is integrated on the whole track without any fusion in
every steps. The deviation from the calculated reference positions is determined
and the parameter accuracy is evaluated using this error.

Furthermore the changing of error values is used for tuning. Ten different
noise cases are generated and added to the simulated driving scenario mentioned
in the Sect. 5. From the noise-free case optimal values of the vehicle model setting,
parameters and covariance matrices can be calculated. However in real cases
the determination is impossible. To deal with this problem varying covariance
setting is proposed. A pre-calculation is assumed and used as initial value. The
convergence towards the optimal setting is guaranteed through the appropriate
decreasing of P and M matrices with the following schema

M:diag({(lo 10 0.1 D (108)

am) (am)' (am)’

P=diag([10—gqp-i 10—gqp-i 0.1—gp-i]) (10b)

where ¢ is the actual iteration number and ¢ values are variables in the range
of 1 < gy < 1.5 for gpr and 0.2 < gp < 0.7 for ¢p, taking into account that
the covariance values must be positive. The reason of the selection is that in
first steps the model probably inaccurate due to the uncertain parameter values,
therefore relative higher decreasing for the M is suggested.

The efficiency of the proposed selection is presented in Fig. 4, where the same
noise cases are used, but the covariances are 3 times higher and lower than the
optimal. The mentioned position error values of the integrated 2W model with
the estimated parameters without fusion from the calculated reference pose are
determined. The varying method is compared with a fix setting with values of the
initial of the varying. Using the optimal covariance setting the varying leads also
to better results, the mean deviation is 68.6% higher than the error of optimal
model setting for the varying and 80.9% higher for the fix selection. Using the
non-optimal covariance values the mean deviations are increasing with 8.7% and
144.4% in the method of fix and with 17.2% and 6.2% in the method of varying
for the 3P,,; and 1/3P,,; case. The modification of the measurement covariance
is similar with the illustrated cases as 1/3Mopt ~ 3P,pt and 3Mope ~ 1/3Pp.
Therefore the presented varying method can compensate the non-optimal setting
of the covariances.

In the proposed iterative method parameter identification is performed in
every iteration steps and the resulted values are assumed to be the optimal
because of the least square method. However in the presented algorithm the LS
problem is changing in every iteration step, because in the (9) the Y and ¢
depend on the wheel circumferences. This means that in an iteration step the
LS method estimate the optimal parameters of the actual LS problem, but with
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the estimated values an other LS problem is generated, where an other optimal
parameter vector is existed. The deviation between the problems is a crucial
question. To ensure the convergence to the global optimum vehicle setting the
new parameter values are only a ration of the estimated actual optimal such as,

{9\71 = 57;-1 + a(aopt,n - {9\71—1) (11)

where « is in the range of 0 < a < 1. The idea is based on the learning rate appli-
cation in the gradient based optimization methods. The effect of « is illustrated
in the Fig. 5, with using of the previous mentioned varying covariance process.
It can be seen that with lower values than 0.5 the position error is extremely
decreasing, however with too small value as 0.1 the error is increasing again.
Furthermore, with the application of the ratio the deviation from the optimal
vehicle setting is decreased to 22.5% with the optimal covariances and with the
modificated matrices the increase of the errors are only 2.9% and 4.7% using
the varying process. Thus these two developed tuning processes ensure the con-
vergence to the optimal vehicle setting and handle the problem of non-optimal
covariance application, therefore the identification process could be an automatic
method.

5 Simulation Results

The efficiency of the proposed estimation method is demonstrated through var-
ious simulation examples, using the high-fidelity vehicle dynamic software Car-
Sim. It is assumed that the measured signals contain noises, which have Gaus-
sian distribution. The E-class test vehicle was driven on the Michigan Waterford
Course with 60km/h. The initial values of the parameters are 2.2m in every
case. The track and the path of the 2W odometry model with the initial nom-
inal parameters can be found in Fig.7. The length of the route is 2.2km and
contains about a dozen bends. As we can see the calculated path is not fit to the
reference, the position error is more than 30 m. The advantages of the simulation
is that the optimal vehicle model setting is known, this is appeared on the fig-
ures with the legend label of ‘Optimal model’, but this value is unknown in real
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situations. However the calculated position errors are determined using the cal-
culated reference by the Kalman-filters mentioned in Sect. 3.1, and based on the
measured signals only. Thus these errors can be used to manage the estimation
algorithm.

The identification process is performed in 10 scenarios with 9 iteration steps
and the Scenario 5 is presented in the Fig.6. The lower graph shows that the
deviation of the calculated 2W model path with the actual estimated parameters
from the calculated reference is decreasing continuously in the first 4 iteration.
The deviation of the position error with the resulted optimal wheel circumfer-
ences is about 2m from the error of the optimal vehicle model setting. After the
4th step the pose errors are increasing, however the estimation can be stopped
due to the knowledge of the errors. The path using the estimated vehicle model
is illustrated in the Fig.7. The fit is almost perfect considering that a vehicle
model, which uses only the two rear wheel encoders, is integrated over 2 km.
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The characteristics of the estimation is similar to the other cases, only the
place of the optimum can be differed by a few steps. The average error of the
scenarios is 6.7m, which is higher only with 1.2m than the optimal setting.
The robustness of the tuning method is symbolized with the low mean absolute
deviation from the average with the 13 cm value. Figure 8 presents the results of
the wheel circumference estimation using the proposed iterative off-line method.
Since the off-line iteration uses all of the measured signals at once, it has a small
sensitivity on the noise. The mean estimation errors from the reference, which
results the optimal vehicle setting are 3.41 mm and 3.46 mm for the cgy, and cgg,
thus the deviation can be reduced under 0.2%, which results in an outstanding
performance.

Up to this point the side-slip is assumed to be zero B; ~ 0 in the estimation
procedure. Taking into consideration this dynamic variable the result of the men-
tioned method in Sect. 3.1 is included in the algorithm at the model equations.
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The Figs. 8 and 9 also show the identified parameters and the errors. The param-
eter deviation decreased with 0.8 mm, which results 0.5 m closer to the optimal
setting, thus the deviation from it is only 13%, therefore it is evaluated that well
enough vehicle model calibration is attended for autonomous localization from
only a 2.2km long measurement.

6 Conclusions

The paper proposed a parameter identification algorithm for wheel circumfer-
ences of two-wheel vehicle model. The method has three layers. First, reference
signals are calculated, which are fusioned with the 2W odometry model in a
Kalman-filter in the second layer. Thirdly, the core of the process is a least
squares based parameter estimation. The process runs in an iterative loop, where
the convergence to the global optimum vehicle setting is guaranteed by a tuning
method with various covariance matrices and a ratio parameter in the direction
of estimation. Since the off-line methods uses all of the measurements at once,
a highly accurate estimation with low sensitivity on the noise can be reached.
The efficiency of the algorithm is presented through CarSim simulations.

As a future challenge, the applied vehicle odometry model might be improved
through the consideration of tyre radius varying in corners and the variation of
the vertical load can be considered.
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