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Abstract— Tire pressure has a high impact on the tire-road
contact because it influences the characteristics of the tire
forces. During the maneuvering of the vehicle the pressures of
the tires may decrease over time, which results in performance
degradation or the loss of controllability. This paper proposes
a novel integration of tire pressure estimation and path-
following control design based on machine learning and Linear
Parameter-Varying (LPV) methods. In the estimation process
the vehicle dynamic signals, which are available from the
conventional on-board sensors, are fused. The values of the
estimated tire pressures are incorporated in the LPV control
as scheduling variables. The results of the control system are
the steering and the differential drive interventions on the
vehicle. The effectiveness of the method is illustrated through
comprehensive simulation scenarios through the CarMaker
simulation enviroment.

I. INTRODUCTION AND MOTIVATION

Nowadays, one of the main goals of the automotive
industry is to develop more automated and self-driving,
autonomous vehicles, which are more reliable and provide
safer ride for the passengers. This task includes numerous
challenges which manufacturers must meet. Besides these
challenges, the reduction of vehicle production and operation
costs is expected. This reduction in cost can be achieved
by using fewer sensors, since some of them are expensive,
such as pressure sensors or high-accuracy GPS. Since the
vehicles are already equipped with various low-cost sensors,
e.g. accelerometers, gyroscopes, the fusion of these devices
can be used to provide continuous information about the
vehicle and its environment. An advantage of this technology
is that hidden indirect information about unmeasured vehicle
parameters through appropriate fusions might be revealed.
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Further application possibilities are that redundancy in sen-
sors can be eliminated or they can be used to detect sensor
failures.

The estimation of tire pressure is a promising field of
vehicle control, in which the special tire pressure sensor can
be eliminated through data fusion. Although the special tire
pressure sensors may have good performance in the precise
estimation of the pressure (see e.g. [1]), the solution has
some drawbacks. It increases the cost of the vehicle and in
case of a wheel change it can require a calibration process.
Moreover, some sensors require an external energy source.
Although there are energy-harvesting technologies to avoid
the necessity of the batteries [2], [3], these sensors require
improved production methods. Thus, the fusion of the vehicle
dynamic signals is an alternative solution in the estimation
problem of the tire pressure. Through the increased amount
of information in the automated vehicles big data analysis
provides a new impulse of research.

In the field of tire pressure estimation various methods
have been presented, see e.g. [4], [5]. There are further results
which address tire pressure loss as a controllability problem.
When a tire starts losing its pressure, the maneuverability of
the vehicle deteriorates as well since the maximum value of
the realizable lateral force depends strongly on the pressure.
Paper [6] focuses on this control problem, using a H∞-based
control system. This control algorithm is able to guarantee
the robustness of the motion of the vehicle in the presence of
pressure loss. Another solution is presented in [7], in which
the authors use a flatness-based Model Predictive Controller
to ensure the stability of the vehicle when a tire blow-out
occurs. The results show that tire pressure has a high impact
in the dynamics and control of the vehicle. The improvement
of the control performance requires an appropriate estimation
of tire pressure, which means that the estimation and the
control methods are in strong relationship. However, in
general the papers handle the problem separately.

The contribution of the paper is to propose an intercon-
nection of the tire pressure estimation and the vehicle control
methods. The estimation is based on a machine learning
process, which is based on the collected big data of the
vehicle signals. The result of the estimation is incorporated
in the vehicle control design through the Linear Parameter-
Varying (LPV) control design theory, in which the tire
pressure is addressed as a scheduling variable. The outputs
of the proposed estimator-controller structure are the steering
angles on the front wheel and the torque of the differential
driving. Through the resulting control inputs the motion of
the vehicle at the loss of pressure can be stabilized and a
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good vehicle maneuvering performance can be achieved.
The structure of the paper is as follows: Section II pro-

poses the method of data collection and analysis. It also
presents the applications and the results of the applied deep-
learning algorithm for pressure estimation purposes. The
LPV control design method with the incorporation of the
estimation results is presented in Section III. Moreover,
Section IV shows results of simulation scenarios. Finally,
the contributions of the paper and the further challenges are
summarized in Section V.

II. DESIGN OF VEHICLE PRESSURE ESTIMATOR THROUGH
MACHINE LEARNING

The purpose of this section is to present the design of
the tire pressure estimation method using various measured
signals, which requires the collection of the training data,
training and test processes of the neural network.

A. Acquisition of training data from simulations

Machine learning techniques require large amount of data
to provide reliable estimation models. Therefore, numerous
simulations have been performed using the high-fidelity
car simulation software CarMaker. It contains the built-in
Pacejka Magic Formula tire model [8], which is able to
handle the variation of the tire pressure. In a simulation
scenario the pressure values of the tires are constant, but
they are varied between the scenarios: the maximum value
of the pressure has been set at pmax = 2.5 bar, while the
minimum value of the pressure has been pmin = 1.0 bar.
The step size of the pressure between the limits has been
selected ∆p = 0.3 bar.

During the data acquisition process the pressure values
in the front left and front right tires are varied. The initial
velocity of the vehicle is selected between 11− 15 m/s and
a PI controller is applied as a cruise control. The sampling
time of the simulations is set at Ts = 0.01s.

Several measurements are collected in the simulation
scenarios, such as lateral and longitudinal velocities, steering
angle, yaw rate, accelerations, wheel speeds, forces on the
tires etc. Finally, over 1 million instances have been col-
lected, which can be used for the learning process. After the
data acquisition the data set must be filtered to eliminate the
worthless scenarios. For example, the longitudinal velocity
of the vehicle covers a large range, sometimes the vehicle
is not able to follow the predefined path at high velocities.
These scenarios are caused by the unstable behaviour of the
vehicle, which is out of the region of interest from the aspect
of the estimator design.

B. Brief overview of neural network

The neural network is a member of the machine learning
family. The artificial neural network is modeled after the
human brain in such a manner that it is able to solve
complex, nonlinear problems. The main advantage which
distinguishes this technique from the conventional machine
learning algorithms is its ability to deal with different kinds

of optimization tasks, such as clustering, classification, pre-
diction etc. A neural network contains weights and activation
functions, which are called neurons. They are grouped into
layers. A network has one input and one output layers and,
at least, one hidden layer. The number of the hidden layers
and the type of the activation function can be chosen freely,
and they are the main parameters of the neural network [9].

In this paper the neural network is trained for estimation
purposes. The structure of the network consists of one input,
one output and 3 hidden layers. The hidden layers contain
55-45-55 neurons. The numbers of the hidden layers and
the neurons are selected by using the so-called k-fold cross
validation technique [10]. Initially, this method divides the
dataset into two subsets. The first subset is the training set,
which used for training the network. The other subset is
the test set which is used for evaluating the neural network.
Moreover, another crucial part of the network is the used ac-
tivation functions. Although there exists numerous functions
that can be used in the training process, the rectified linear
unit (ReLU) and the log-sigmoid functions are used in this
estimation problem, because they can be easily adjusted to
nonlinear problems. For training the network, the Levenberg-
Marquardt algorithm is used [11].

C. Evaluation of the neural networks

In the following, the results of the machine learning based
estimation are presented through illustrations. The goal of
the neural network is to estimate the pressures of the front
tires separately. Various neural networks have been created
using different attributes to find the best applicable estimation
model. The effectiveness of the networks are compared
below. During the simulations the pressures of the tires are
set at 1.5bar and 2.0bar, respectively.

In the case of the first neural network all of the collected
attributes are used, see Figure 1(a) for the estimated pres-
sures. Since the measurements can be influenced by noises
and disturbances, a 0.2bar wide interval is determined, in
which the estimation is considered to be acceptable. The
dashed lines illustrate the borders of the interval. The output
of the neural network is rounded to 0.1. Figure 1(a) shows
that the neural network provides an accurate estimation for
the pressures. In the last part of the simulation the vehicle
has high side-slip values, which degrade the estimation
performance.

Although the first neural network has a good estimation
performance, in practice not all of the collected attributes
can be directly measured on the vehicle. Thus, second neural
network has been trained, which has been built up using the
measurements. They are available on the vehicle on-board,
such as wheel speeds, accelerations, longitudinal velocity,
yaw rate and the steering angle. The results of the second
estimator can be seen in Figure 1(b). As the figure shows,
this network provides less accurate estimation compared to
the previous one, but its result is still sufficiently accurate to
be used in the control system.

In order to improve the estimation, the past values of the
measurements are also used in the third neural network. The
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effective incorporation of the past information requires the
selection of the most influential past values. Thus, a spectral
analysis is performed, whose result is shown in Figure 1(c).
The examination shows that the information content of the
signal is below 6Hz, which means that the time interval
between two consecutive points is set at T = 1/6Hz = 0.15
s. In this manner, the most significant values can be selected
and the number of the used past values can be limited.

The third neural network is learning based on the extended
training set. The result of the network is shown in Figure
1(d). Although it can be seen that this network provides
more fluctuating output, the peak value of error signal has
decreased significantly.

0 10 20 30 40 50 60 70 80

Time (s)

0

0.5

1

1.5

2

2.5

P
re

s
s
u

re
 (

b
a
r)

Front left tire

Front right tire

(a) Estimation with the first neural
network (all data)

0 10 20 30 40 50 60 70 80

Time (s)

0

0.5

1

1.5

2

2.5

3

P
re

s
s
u

re
 (

b
a
r)

Front left tire

Front right tire

(b) Estimation with the second neu-
ral network (reduced data)

(c) Result of the spectral analysis
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Fig. 1. Results of the tire pressure estimation with various neural networks

In Table I, the presented neural networks are compared
based on statistical values. The average error is related to

TABLE I
STATISTICAL COMPARISON OF THE NEURAL NETWORKS

Tire (L/R) All data Past data Accuracy Av. error
Left 3 7 100% 0.00
Right 3 7 96.1% 0.0072
Left 7 3 90.3% 0.01522
Right 7 3 94.4% 0.00552
Left 7 7 83.3% 0.0554
Right 7 7 92.2% 0.01

the error of the pressure estimation, while the accuracy
represents the ratio, when the estimated signal is inside of the
predefined interval. As the figures have shown, the best result
is given by the first network, which uses all of the attributes
(100% and 96.1%). However, it cannot be used in practice
due to the lack of several signals in the measurement. An
accurate estimation is provided by the third network, which
uses the available variables and their past values. Although
the accuracy of this network is lower (90.3% and 94.4%),
its average error is small (0.0055 and 0.0554), which means
that the output of this network is sufficiently close to the

actual pressures of the tires. Thus, the third type of neural
network is used in the control design.

III. LPV-BASED CONTROL USING THE ESTIMATED TIRE
PRESSURES

In this section, the lateral control design based on a LPV
method is presented for autonomous vehicles. As a novelty
of the application, the results of the tire pressure estimation
are used in the control system as scheduling parameters. The
control system has two control inputs, such as the steering
angle and the differential driving, which compensates for the
loss of lateral force when the pressure of the tire decreases.
In the following, a lateral vehicle model is presented, which
is the base of the LPV control design [12].

A. Modeling of the vehicle dynamics

In this paper, the single-track lateral vehicle model is used,
which consists of the following equations [13]:

Iψ̈ = Ff,y(αf )l1 − Fr,y(αr)l2 +Md (1a)

mvx(ψ̇ + β̇) = Ff,y(αf ) + Fr,y(αr) (1b)

v̇y = vx(ψ̇ + β̇) (1c)

where I denotes the yaw inertia, Fi,y are the lateral forces at
the front and the rear axles, lx are the distances between the
COG and the axles, αx, x ∈ {f, r} are the side-slip angles of
the front and rear wheels αf = δ−β− ψ̇l1

vx
and αr = β− ψ̇l2

vx
,

respectively, Md is the generated torque from the differential
drive, ψ̇ is the yaw-rate, β is the side-slip of the vehicle and
vx and vy are the velocities of the vehicle and δ denotes the
steering angle.

The pressures appear in the motion of the vehicle indi-
rectly because they highly correlate to the cornering stiffness
values. It can be expressed as a function of the pressures in
the front left/right tires p1,l, p1,r, see [8]:

Ff,y(p1,l, p1,r) = Ff,y,l(p1,l) + Ff,y,r(p1,r)

= Cf,y(p1,l)α+ Cf,y(p1,r)α, (2)

where Ff,y,l(p1,l), Ff,y,r(p1,r) are the forces on the left/right
wheels. The relationship between the pressure and the cor-
nering stiffness can be assumed to be linear based, as it is
illustrated in Figure 2. In the example the maximum value
of the Cf,y in CarMaker is considered to be 57000N/rad,
while the minimum is 39000N/rad. Thus, the relationship
(2) is transformed as

Ff,y(p1,l, p1,r) =
(
2Cf,y,0 + Cf,y,1p1,l + Cf,y,1p1,r

)
α

= 2
(
Cf,y,0 + Cf,y,1p1

)
α, (3)

where p1 is the average pressure of the wheels on the front
axle.

The lateral vehicle model (1a) together with (3) are
transformed into a state-space representation, such as:

ẋv = Av(vx, p1)xv +Bv(vx, p1)uv. (4)

The state vector xv consists of the signals xv =
[ψ̇ β vy y]T . The control inputs of the system are uv =
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Fig. 2. Relationship between pressure and cornering stiffness

[δ Md], where δ denotes the front-wheel steering angle. The
signals vx, p1 are selected as the scheduling variables of the
system.

B. Modeling of the steering system
The dynamics of the steering system has a significant

impact on the performances of the lateral control system.
Therefore, in the control design the model of the steering
mechanism is also incorporated. It is formed as a second-
order system, such as

Gs(s) =
b2s

2 + b1s+ b0
s2 + a1s+ a0

(5)

where bi and ai are the parameters, which must be deter-
mined through an identification process.

In this paper the ARX identification structure is used
for the determination of the system parameters. The ARX
structure is formed as [14]:

y(t) + a1y(t− 1) + ...+ anay(t− na) = (6)
= b1u(t− 1) + ...+ bnbu(t− nb) + e(t)

where y denotes the output of the system, which is the
steering angle of the front wheels. Moreover, u denotes the
input of the system, which is the angle of the steering wheel
and e(t) represents the error function. The parameters can
be written into a parameter vector:

σ = [a1 ... ana b1 ... bnb ]
T . (7)

By using shift operator q−1, two expressions are introduced:
A(q) = 1+a1q

−1 + ...+anaq
−na and B(q) = b1q

−1 + ...+
bnbq

−nb . The transfer function of the identified system can
be formed as:

G(q, σ) =
B(q)

A(q)
(8)

The resulting transfer function is a discrete-time system,
which means that the resulting system must be transformed
into a continuous form. For the transformation Ts = 0.01s
sampling time and a zero-order hold element are used. The
transformed continuous state-space representation can be
formed using the continuous transfer function:

ẋs = Asxs +Bsus, (9)

ys = cTs xs (10)

where us is the angle of the steering wheel, ys is the steering
angle of the front wheels, As, Bs and cTs are matrices. The
state vector xs contains the states of the steering system.

C. Design of the LPV control

The presented two state-space representations (4) and
(9) are combined and written into an extended state-space
representation:

ẋe = Ae(vx, p1)xe +Be(vx, p1)ue, (11)

where ue=[us Md]
T and xe = [xs xv]

T , the matrices are

Ae(vx, p1) =

[
As 02x4

Bv,1(vx, p1)CTs Av(vx, p1)

]
, (12a)

Be(vx, p1) =

[
Bs 02x1

04x1 Bv,2(vx, p1)

]
, (12b)

where Bv,i(vx, p1) denotes the ith column of Bv(vx, p1).
The control system is responsible for the tracking of the

predefined trajectory and for the minimization of the control
interventions. Therefore, the following four performances are
defined.
1. Minimization of the yaw-rate error: The tracking of the
road requires the reduction of the error between reference
ψ̇ref and the measured yaw rate ψ̇ in order to achieve
accurate and smooth tracking:

z1 = ψ̇ref − ψ̇, |z1| → min, (13)

where yref is considered to be given.
2. Minimization of the lateral error: In order to achieve good
tracking performance, the control system must minimize the
lateral error between the road yref and the lateral position
of the vehicle y :

z2 = yref − y, |z2| → min. (14)

3. Minimization of the steering angle: The control system
must minimize the steering interventions to reduce energy
consumption and to address the physical limits of the steering
actuator, which means the minimization of the steering angle
is formed as a performance

z3 = δ, |z3| → min. (15)

4. Minimization of the differential drive: Similarly to the third
performance, the controller must minimize the differential
torque as well as the steering angle

z4 = Md, |z4| → min. (16)

The performances are summarized in the vector z =[
z1 z2 z3 z4

]T
, which leads to the performance equa-

tion

z = C1xe +D11r +D12ue, (17)

where C1, D11, D12 are matrices and r contains the signal
yref .

In the LPV control design, the presented extended state-
space model (11) together with z are used. The measured
signals of the system are the errors, such as the lateral
error and the yaw-rate error and the lateral velocity. In the
control design several transfer functions are used to scale
the measured signals and to reach the specific performances.
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In this manner, the required behaviour of the system can be
induced. The weighting functions and the augmented plant
are illustrated in Figure 3.
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Fig. 3. Structure of LPV controller

In the design of the LPV control the following weighting
functions are applied. Wref,1 and Wref,2 are applied to scale
the reference signals yref and ψ̇ref in first order proportional
forms. Wω,1,Wω,2 and Wω,3 are applied to scale the sensor
noises together with the frequency characteristics of the
signals. Wz,1 and Wz,2 are applied to guarantee the accurate
trajectory tracking of the vehicle, which incorporates the
performance specifications, such as the expected maximum
values of the errors.

The weighting functions Wz,3,Wz,4 are applied to reduce
the control signals and provide their balances. When the pres-
sures on the front wheels decrease, the steering actuation may
have a reduced impact in the maneuvering of the vehicle.
It is caused by the reduced lateral force. The reduction of
steering efficiency is compensated for through the differential
driving on the rear wheels. Thus, the weighting functions are
defined in a parameter-dependent form Wz,3(p1),Wz,4(p1),
depending on the average pressure p1.

The quadratic LPV performance problem is to choose
the parameter-varying controller K(vx, p1) in such a way
that the resulting closed-loop system is quadratically stable
and the induced L2 norm from the disturbance and the
performances is less than the value γ. The minimization task
is the following:

inf
K(vx,p1)

sup
vx,p1∈Fρ

sup
‖w‖2 6=0,w∈L2

‖z‖2
‖w‖2

, (18)

where Fρ bounds the scheduling variables. The yielded
controller K(vx, p1) is formed as

ẋK = AK(vx, p1)xK +BK(vx, p1)yK , (19a)
u = CK(vx, p1)xK +DK(vx, p1)yK , (19b)

where AK(vx, p1), BK(vx, p1) and CK(vx, p1), DK(vx, p1)
are scheduling variable dependent matrices, yK contains the
measured signals.

IV. SIMULATION RESULTS

In this section, a comprehensive simulation is presented
to show the effectiveness of the proposed control system. In

the simulation, the vehicle is driven along a section of the
Melbourne Formula 1 racing track. Since in the CarMaker
environment the pressure of the tire cannot be modified
during the simulation, several runs are performed using
different tire pressures. The nominal pressures of the tires
are 2.5 bar, the reduced pressures in the front tires are set
at 1 bar. In the simulation three scenarios are compared to
each other. There are two scenarios, in which the steering
control is performed by the CarMaker built-in driver model:
the cruising is performed with nominal pressures in all tires
and with reduced pressures in the front tires. Moreover, in
the third scenario the vehicle with low pressures in the front
tires is maneuvered by the proposed LPV control.

In the design of the LPV control the following weighting
functions are applied. Wref,1 = 0.1

100s+1 and Wref,2 =
0.01

100s+1 are applied to scale the reference signals, Wω,1 =
0.002, Wω,2 = 0.001, Wω,3 = 0.05 are applied to scale
the sensor noises. Wz,1 = s+1

s2+2s+1 and Wz,2 = 1
s+1

are applied to guarantee accurate tracking, while Wz,3 =(
pmax
p1

)2
5s+5
0.1s+110−2, Wz,4 =

(
p1
pmax

)6
1s

2s+110−1 are ap-
plied to reduce the control signal.

The application of the controller requires the calculation
of the reference signal, in which the delay and the tracking
properties of the designed controller can be taken into
account. Therefore, not only the actual errors (position and
yaw rate) are used, but also the predictions of the errors are
involved in the reference signal. The prediction of the vehicle
motion is based on the following simplified model

x(t+ T ) = x(t) + vx · T, (20a)
y(t+ T ) = y(t) + vy · T, (20b)

ψ̇(t+ T ) = ψ̇(t), (20c)

where x and y are the coordinates of the vehicle. In the
generation of the reference signal the prediction is calculated
for three time steps: T0 = 0.0, T1 = 0.5 and T2 = 0.75. The
summed error signals are formed as:

eψ̇,p(t) = 0.5eψ̇(t) + 0.3eψ̇(t+ T1) + 0.2eψ̇(t+ T2),

(21a)
ey,p(t) = 0.5ey(t) + 0.3ey(t+ T1) + 0.2ey(t+ T2).

(21b)

The path of the vehicle is illustrated in Figure 4(a). It
can be seen that the built-in CarMaker driver model is able
to follow the track when the tire pressures have nominal
values. In most of the simulation the driver model is also
able to follow the track with low pressures in the front tires,
except for the sharp bend, which is highlighted in Figure
4(b). It means that the tire pressures have significant impact
on the maneuverability of the vehicle and the reduction of the
pressures can lead to the degradation of the performances.
However, using the designed LPV control, the vehicle can
be held on the road track with a significantly reduced lateral
error between 45−50s, see Figure 4(c). It can be seen that the
LPV controller provides smaller error throughout the entire
simulation, even if the longitudinal velocity is significantly
varied, see Figure 4(d).
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Fig. 4. Positions of the vehicles during the simulations

Figure 5 shows the estimation results of the neural net-
work. The illustration shows that the estimation is close
to the real pressure 1 bar. However, due to the increased
longitudinal and lateral slips in some corners of the track,
the estimated pressure may be inaccurate for short time
segments. It means that it is necessary to define the vehicle
dynamic regions where the results of the estimation are
accurate. Experience shows that the estimation is executed
if the following criterion is satisfied:

|β| < 0.075 rad and |ψ̇| < 0.5 rad. (22)

When the conditions are not satisfied, the last acceptable
value is considered in the LPV design. Generally, when
the pressures of the tires change slowly, the assumption is
acceptable. The blue solid line shows the cases when the
conditions are satisfied, while the red dashed line represents
the further cases. In the region of the acceptable region the
the estimation is accurate, its mean error is below < 0.03.
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Fig. 5. Result of the pressure estimation

Using the actual value of the tire pressure and the ve-
locity information, the LPV control computes the steering
angle and the differential torque. The steering angles of the
CarMaker Driver and the LPV control scenarios are shown
in Figure 6(a). It can been seen that the LPV system provides
slightly lower values than the CarMaker Driver, with which
the stable motion of the vehicle is reached. Furthermore, the

impacts of the lower steering values are increased with the
torque of the differential drive on the rear axle, as it is shown
in Figure 6(b).
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Fig. 6. Control inputs of the system

V. CONCLUSIONS

The paper has proposed a novel integration of tire pres-
sure estimation and path-following control design based on
machine learning and LPV methods. The effectiveness of
the tire pressure estimator has been examined at various
types of measured signals. It has been concluded that the
neural network can be effective at the consideration of the
measured signals with their past values. Moreover, an LPV
based control design method has been introduced, in which
the impact of the tire pressure through a scheduling variable
has been considered. The results of the comprehensive sim-
ulation studies have demonstrated that the integration of the
estimator and the LPV controller has been able to handle the
critical situations at varied tire pressures.
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