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ABSTRACT 
 

LITHOLOGY, STRUCTURE, GEOCHRONOLOGY AND TECTONIC 
 IMPLICATIONS OF THE SPIDER GLACIER UNIT AND HOLDEN ASSEMBLAGE, 

NORTH CASCADES, WASHINGTON 
 

by Colin Phillips 

To understand the effects of deeply emplaced sediments on continental magmatic 

arcs, researchers study crustal cross sections where meta-sediments are exposed at the 

surface, such as in the North Cascades of Washington.  The 8–12 kbar Swakane Biotite 

Gneiss has been considered the deepest meta-sedimentary unit in the section, but my 

mapping shows that the adjacent Spider Glacier unit is structurally lower.  The Spider 

Glacier unit consists of biotite and hornblende gneisses, quartzites and rare meta-

peridotites, all deformed by highly variably oriented folds with a mean moderate west 

plunge.  My U-Pb dating of detrital zircon indicates that the maximum depositional age 

(MDA) of the Spider Glacier unit is ~118–110 Ma, which is older than the 93–81 Ma 

MDA of the Swakane Gneiss. The only rare folding in the Gneiss implies that a tectonic 

contact separates it from the Spider Glacier unit.  Based on rock types and detrital zircon 

age patterns, the Spider Glacier unit was likely deposited outboard of the Cordilleran arc 

at 110 Ma or later, incorporated into the arc and folded and metamorphosed between 

~110–74 Ma, and imbricated with the Swakane Gneiss between 74–65 Ma.  The age data 

indicate the Spider Glacier unit is a Cretaceous component of the Cascade River-Holden 

assemblage. U-Pb ages of zircons in the Holden Village area support recent work 

suggesting that the assemblage includes Late Permian intrusive rocks.  The Late Permian  

rocks are likely separated from the Cretaceous rocks by an unrecognized boundary.   
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INTRODUCTION 

Numerous studies have found that metasedimentary rocks are emplaced deeply in the 

crust of continental magmatic arcs during arc shortening (e.g., Haxel et al., 1978; Grove 

et al., 2003; Chapman, 2016). The presence of supracrustal material at middle- to lower-

crustal levels in arcs is proposed to have broad effects, from fueling periods of 

voluminous arc magmatism (e.g., Ducea and Barton, 2007; DeCelles et al., 2009), to 

creating strength contrasts where strain may be localized (e.g., Miller and Paterson, 

2001), and even making the crust more felsic over time (e.g., Ducea and Barton, 2007; 

Otamendi et al., 2008; Behn et al., 2011).  

To investigate these effects, studies use exhumed crustal sections of continental 

magmatic arcs where deeply (≥25 km) buried metasedimentary rocks are exposed (e.g., 

Haxel et al., 1978; Matzel et al., 2004; Chapman, 2016). One such crustal section is the 

crystalline core of the North Cascades of Washington (Cascades core) and southern 

British Columbia, which exposes 0–40 km of paleodepth through a Cretaceous–Eocene 

continental magmatic arc (Miller and Paterson, 2001). Within the Cascades core, two of 

the most deeply exhumed metasedimentary rock units are the Skagit Gneiss Complex and 

the Swakane Biotite Gneiss (Tabor et al., 1989; Haugerud et al., 1991; Miller and 

Paterson, 2001).  

The most deeply exhumed of the two, the Swakane Biotite Gneiss (hereafter referred 

to as the Swakane Gneiss) is the base of the Cascades core crustal section (Miller and 

Paterson, 2001), and represents fore-arc sediments deposited between 93–81 Ma (Sauer et 

al., 2017a; 2019).  Studies of the Swakane Gneiss support arguments that sediments are 
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emplaced into arcs rapidly by underthrusting (Matzel, 2004; Sauer et al., 2017a; 2019).  

However, other workers have promulgated that sediments are either underplated during 

subduction (e.g. Chapman, 2016), or partially melted during subduction to form buoyant 

material which laminates to the base of the arc crust (e.g. Hacker et al., 2011).  Studies of 

the Swakane Gneiss have failed to support the later arguments.  However, according to 

estimates of mid-Cretaceous crustal thickness (≥60 km) in the Cascades core, at least 15 

km of crust lay beneath the Swakane Gneiss (Miller and Paterson, 2001. Furthermore, 

mapping by early workers in the North Cascades (Cater and Crowder, 1967) shows that a 

<1 km wide, ≥10-km-long body of rocks (referred to herein as the Spider Glacier unit) 

may structurally underlie the Swakane Gneiss.  If so, the Spider Glacier unit potentially 

preserves a record of the processes occurring beneath the Swakane Gneiss, and may 

further elucidate the mechanisms which led to the unit’s deep emplacement within the 

crust.  

Purpose of Study 

The purposes of this study are to: 1) characterize the lithology and structure of the 

Spider Glacier unit;  2) use U-Pb dating of detrital zircon to surmise the age and origin of 

the Spider Glacier unit protolith;  3) compare the Spider Glacier unit lithologies, 

structures, and U-Pb zircon ages with those of the Holden assemblage;  4) determine if 

the contact between the Spider Glacier unit and Swakane Gneiss is a tectonic or non-

tectonic contact; and ultimately, 5) determine if the Spider Glacier unit represents deeper 

levels than the Swakane Gneiss.  These research goals are addressed with field mapping, 

thin section petrography, and U-Pb dating of zircon.   
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Background 

The North Cascades core is located at the southern termination of the Coast Plutonic 

Complex, a belt of plutonic and metamorphic rocks extending from Washington to 

Alaska that represents an exhumed Cretaceous to Eocene continental arc (Figure 1) (e.g., 

Misch, 1966; Tabor et al., 1989; Gehrels et al., 2009). The Cascades core and southern 

Coast Mountains record mid-Cretaceous (~115–80 Ma) crustal shortening, 

metamorphism, and magmatism, Late Cretaceous transpression, and Eocene magmatism 

and transtension (e.g., Tabor et al., 1989; Rubin et al., 1990; McGroder, 1991; Journeay 

and Friedman, 1993; Umhoefer and Miller, 1996). Mid-Cretaceous shortening was linked 

to either an increase in plate coupling or the suturing of the outboard Insular superterrane 

to the continental margin (e.g., Rubin et al., 1990; McGroder, 1991).  In the Cascades 

core, shortening was coeval with middle- to upper-amphibolite-facies metamorphism, 

and was accommodated by folding into generally north-south to northwest-southeast-

trending open folds, fold-associated cleavage development, shearing along top-to-the-

southwest ductile shear zones, and development of a shallow orogen-parallel stretching 

lineation (Miller and Paterson, 2001; Miller et al., 2006).   

Shortening, crustal thickening and metamorphism overlapped with the largest pulse 

of magmatism in the Cascades core at ca. 96–88 Ma (Miller et al., 2009). Plutonism 

resurged between 78–71 Ma, with smaller bodies intruded as late as 60 Ma, followed by a 

magmatic lull (Miller et al., 2009). Magmatism resumed between 50–45 Ma (Haugerud et 

al., 1991; Miller et al., 2016). In the southwestern Cascades core, exhumation shortly 

followed crustal thickening and pluton emplacement (e.g., Tabor et al., 1989), but the  
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Figure 1. Generalized 
geologic map of western 
North America. Major 
tectonic elements, 
sedimentary basins and 
terranes are emphasized.  
Modified from Sauer et al. 
(2017a).  BM–Blue 
Mountains; FB–Foothills 
Belt; KU–Kutcho 
assemblage; RLFZ–Ross 
Lake fault zone; SAFZ–
San Andreas fault zone; 
SCF–Straight Creek-
Fraser fault; WG–
Wineglass assemblage. 
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 northern part of the core remained at depth until ca. 45 Ma and records later plutonism 

and transtension (Haugerud et al., 1991; Miller et al., 2016).  

Between 90 and 55 Ma, during dominantly dextral transpression, several large 

terranes, including the Insular and Intermontane superterranes, were translated northward 

along the arc by strike-slip faulting (e.g., Beck et al., 1981; Umhoefer, 1987). The exact 

faults responsible are not known, and the magnitude of terrane displacement is 

controversial. Paleomagnetic data from sedimentary, volcanic and plutonic rocks in 

Washington and British Columbia suggest the Cascades core was translated northward 

from the latitude of modern-day Baja California (“Baja-BC hypothesis”) (e.g., Umhoefer, 

1987), but geologic data support more moderate displacements (Wyld et al., 2006). By 

restoring estimated offset of known strike-slip faults in Washington, British Columbia 

and Yukon territory, Wyld et al. (2006) restored the ca. 100 Ma location of the Cascades 

core to roughly the latitude of central Oregon. In sum, the exact magnitude of 

displacement for these large terranes remains a subject of debate.   

In the Eocene, changes in plate motions caused a shift from dominantly dextral 

transpression, to transtension (e.g., Miller and Bowring, 1990; Haugerud et al., 1991). By 

45 Ma, exhumation exposed ~40 km of paleodepths within the Cascades core (Miller and 

Paterson, 2001; Paterson et al., 2004).  The presently exposed Cascades core is separated 

from lower-grade rocks to the west and east, and internally divided into two blocks, by 

high-angle dextral strike-slip faults (Figure 2). The Straight Creek-Fraser fault separates 

the core from the northwest Cascades system to the west (Misch, 1966), and between 
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Figure 2.  Simplified map with parts of Washington and British Columbia.  Strike-slip 
faults separate the North Cascades crystalline core from lower-grade rocks to the west 
and east.  A dashed blue box denotes the boundaries of Figure 3.  Modified from Gordon 
et al. (2017).  DDMFZ–Darrington-Devils Mountain fault zone; DD–Dinkelman 
décollement; GPT–Gabriel Peak tectonic belt; HF–Hozameen fault; JMT–Jack Mountain 
thrust; WRSZ–White River shear zone; WPT–Windy Pass thrust. 
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48 Ma and 34 Ma, translated the Cascades core 110–170 km southward from equivalent 

rocks in British Columbia (e.g. Umhoefer and Miller, 1996; Monger and Brown, 2016). 

The Entiat fault divides the core into the Wenatchee and Chelan blocks and is attributed 

to have 30–40 km of Eocene dextral separation and an unknown amount of normal slip 

(Figure 2) (Tabor et al., 1987). The Ross Lake fault zone separates the Chelan block from 

the Methow basin and eastern Cascades fold belt to the east (Misch, 1966). The Ross 

Lake fault zone accommodated dextral slip with Paleocene reverse and Eocene normal 

slip (Miller and Bowring, 1990; Haugerud et al., 1991). 

Exhumation was unequally distributed across the Cascades core (e.g., Paterson et al., 

2004). In the Wenatchee block, it occurred shortly after crustal thickening and early 

magmatism (ca. 96–88 Ma). This block has 96 Ma to 84 Ma plutons (e.g. Walker and 

Brown, 1991), and host rocks with largely Cretaceous K/Ar- and Ar/Ar-biotite cooling 

ages (Tabor et al., 1989; Haugerud et al., 1991). In contrast, part of the Chelan block 

remained at depth until ca. 45 Ma. The block records magmatism from 96 Ma to 45 Ma 

(Tabor et al., 1989; Miller et al., 2009) and it was exhumed rapidly between 50–45 Ma 

(e.g., Wernicke and Getty, 1997; Gordon et al., 2010). Both structural blocks contain 

dominantly amphibolite-facies host rocks and meta-sedimentary rock units that were 

exhumed from great depths (≥40 km) (Figure 2). 

The blocks of the Cascades core have further been divided into multiple 

tectonostratigraphic units. The Napeequa Complex occurs in both the Chelan and 

Wenatchee blocks, is an oceanic accretionary assemblage (Tabor et al., 1989), and is at 

least in part Middle Triassic in age (Sauer et al., 2017a). The dominant rock types are 
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amphibolite, siliceous schist, and biotite schist, with local calc-silicate rock, marble and 

meta-peridotite (Cater and Crowder, 1967; Tabor et al., 1989; Brown et al., 1994; Miller 

et al., 1994).  The 9-11 kbar Napeequa Complex (Valley et al., 2003) was thrust above 

the Swakane Gneiss during Late Cretaceous contraction (Paterson et al., 2004). The 

thrust was reactivated as a detachment fault (Dinkelman décollement) in the Eocene and 

records top-to-the-north and -northeast non-coaxial shear related to exhumation of the 

Swakane Gneiss (Paterson et al., 2004).   

The Holden assemblage occurs mostly in the Chelan block as part of a northwest-

trending belt.  The assemblage extends from the Chelan Migmatite complex in the 

southeast, to the Straight Creek-Fraser fault in the northwest (Figure 2).  In the 

northwestern part of the Chelan block, the Holden assemblage grades into the Cascade 

River Schist (Misch, 1966; Brown et al., 1994; Miller et al., 1994); collectively, they 

constitute the Cascade River-Holden assemblage of Miller et al. (1994).  The Holden 

assemblage is dominated by hornblende-rich schist and gneiss, biotite schist and gneiss, 

and amphibolite, with lesser calc-silicate gneiss, marble, quartzite and metapelite.   

The age of the Cascade River-Holden assemblage is poorly constrained. Early 

workers considered it cogenetic with the Late Triassic Marblemount-Dumbell plutonic 

suite (e.g., Tabor et al., 1989; Brown et al., 1994), but further dating has shown that 

portions of the Cascade River-Holden assemblage were deposited in the Cretaceous 

(Sauer et al., 2017a), and others were intruded by Late Permian orthogneisses (Mattinson, 

1972; Schermer, 2017; this study). Thus, the Cascade River-Holden assemblage clearly 

includes rocks of different ages and uncertain relations to one another.   
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East of the Cascade River-Holden assemblage belt is the Skagit Gneiss Complex 

(hereafter referred to as the Skagit Gneiss), which forms a northwest-southeast trending 

belt from the Cascade River-Holden assemblage in the west to the Ross Lake fault zone 

in the east (Figure 2) (Misch, 1966). The Skagit Gneiss is dominantly orthogneiss, and 

contains some paragneiss with subordinate amphibolite, calc-silicate rock, quartzite, 

meta-peridotite and rare metapelite (Misch, 1966; 1968; Haugerud et al., 1991; Tabor and 

Haugerud, 1999). Metasedimentary rocks in the Skagit Gneiss have maximum deposition 

ages (MDAs) between 130 Ma and 96 Ma (Sauer et al., 2017b).   

The Spider Glacier unit is an informal name for rocks in the northeastern part of the 

Wenatchee block, near the Entiat fault, which are mapped as Holden assemblage by Cater 

and Crowder (1967), Napeequa Complex by Haugerud and Tabor (2009), and migmatitic 

gneiss by Boysun (2004). The Spider Glacier unit contains meta-peridotites, which are 

uncharacteristic of the Holden assemblage, and a meta-sedimentary sample of the unit 

yielded a single MDA of 115–110 Ma (K. Sauer, written communication), which is much 

younger than Napeequa Complex rocks elsewhere.   

The Spider Glacier unit is separated from the Swakane Gneiss to the west by a 

contact mapped as stratigraphic by Cater and Crowder (1967) (Figure 3). Foliation within 

the Spider Glacier unit and the Swakane Gneiss are subparallel (Cater and Crowder, 

1967), suggesting that if the contact is not a fault or overturned, the Spider Glacier unit is  

deeper, stratigraphically. 
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Figure 3.  Map showing locations of field areas.  Modified from Cater and Crowder 
(1967) and Cater and Wright (1967). CP–Cardinal Peak; DH–Duncan Hill; SFJ–Seven-
Fingered Jack.
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The Swakane Gneiss occurs in two bodies. In the Chelan block, the Gneiss forms a 

regional, open, gently plunging antiform in the footwall of a regional detachment, the 

Dinkelman décollement (Figure 2) (Paterson et al., 2004). In the Wenatchee block, a 

northwest-trending belt of Swakane Gneiss lies between the Spider Glacier unit on the 

east, and the Napeequa Complex on the west (Crowder et al., 1966; Cater and Crowder,  

1967). The Gneiss and Napeequa Complex are in contact along strike to the northwest of 

where the Spider Glacier unit terminates (Figure 2). Swakane Gneiss is dominantly 

quartz-plagioclase-biotite-muscovite ± garnet gneiss, with minor hornblende-garnet 

gneiss, and rare amphibolite, meta-peridotite, and quartzite (Cater, 1982).   

The protolith of the Swakane Gneiss was likely deposited in a fore-arc basin at ca. 

93–81 Ma and either underplated or thrust beneath the arc ca. 80 Ma (Sauer et al., 2019).  

The Gneiss was metamorphosed at peak conditions of 640–750 °C at 9–12 kbar (Valley 

et al., 2003; Gatewood and Stowell, 2012) between 75–63 Ma (Gordon et al., 2017).   

Leucotonalite intrusions and partial melt crystallized within the Gneiss between 78–68 

Ma (U-Pb zircon; Matzel et al., 2004; Gordon et al., 2017) and by 48 Ma part of the 

Gneiss served as the basement for the Eocene Chumstick basin (Tabor et al., 1987; 1989; 

Eddy et al., 2016).    
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METHODS 

Geologic mapping occurred in the summers of 2017 and 2018, for 7 weeks and 1 

week, respectively.  Mapping occurred in four field areas: the Spider Glacier area; 

Holden Village area; Rock Creek area; and Carne Mountain area (Figure 3). Field work 

focused on exposures of the Spider Glacier unit in the Spider Glacier area, and exposures 

of Holden assemblage rocks in the three other areas. During the summer of 2017, the 

Holden Village, Rock Creek, and Carne Mountain areas were mapped at 1:24,000 with 

United States Geological Survey (USGS) topographic quadrangles, and the Spider 

Glacier unit was mapped at 1:12,000 with the same quadrangle enlarged by 200%. In the 

summer of 2018, part of the Spider Glacier area was mapped at a 1:5,000 scale with a 

base map constructed in ArcMap 10.  

Fifty-six thin sections were collected and analyzed from the Spider Glacier unit, 

Holden assemblage, and Swakane Gneiss and used to characterize the rock types. Billets 

were cut at San Jose State University; most were cut parallel to lineation and 

perpendicular to foliation.   

In order to quantify quartz deformation, mineral orientations were measured in three 

polished thin sections at University of Nevada, Reno (UNR). A final polish was added to 

the thin sections at UNR using a Buehler Vibromet 2 vibratory polisher at 10% power for 

6 hours. The analyses used an Oxford NordlysMax2 electron backscatter diffraction  

(EBSD) camera in a JSM-7100FT Field Emission Scanning Electron Microscope 

(FESEM). Within the FESEM, the samples were oriented with the X-axis along the long 

edge of the thin section, parallel to lineation, and the Z-axis along the short edge, 
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perpendicular to foliation. Post-processing of the analyses used Channel 5 software 

(Appendix 1). Mineral grain orientation maps and pole figures were generated using the 

Tango and Mambo modules, respectively (Appendix 1). 

Zircon grains were separated from three rock samples in order to date the samples.  

Zircon separation occurred at SJSU and UNR in the spring and summer of 2018; refer to 

Appendices 2 and 3 for respective procedures. Mounting, and imaging of the zircon 

grains occurred at UNR.  Refer to Appendix 4 for mounting procedures. Prior to dating, 

zircon grains were imaged using a Deben panchromatic cathodoluminescence (CL) 

detector in a JSM-7100FT FESEM. The three zircon grain mounts were dated using laser 

ablation with an inductively-coupled plasma mass spectrometer (LA-ICP-MS) in the 

W.M. Keck Collaboratory at Oregon State University. The samples were ablated using a 

Photon Machines Analyte G2 193 nm laser. A He carrier gas transported ablated material 

to a plasma torch, and a Thermo Xseries II Quadrupole mass spectrometer equipped with 

an ion counter was used for ICP-MS analysis. Data were processed with in-house time-

resolved software. A summary of the general analytical procedures is described by 

Loewen and Kent (2012).

LITHOLOGIES 

Holden Assemblage 

Previous workers divided the Holden assemblage into three (Miller et al., 1994) or 

four (Cater and Crowder, 1967) subunits.  I mapped three zones (Figure 4) like the 

subunits of Miller et al. (1994).  The zones I mapped are the heterogeneous zone, the 

calc-silicate gneiss zone and the leucogneiss zone.  The heterogeneous zone covers the 
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largest area and is dominantly biotite schist and gneiss, hornblende-biotite gneiss and 

quartz-bearing amphibolite, but also contains layers of leucogneiss, calc-silicate gneiss, 

quartzite and marble.  The other two zones, the calc-silicate gneiss zone and the 

leucogneiss zone, both commonly include interlayers of biotite schist, biotite gneiss and 

quartz-bearing amphibolite, but layers of leucocratic gneiss and calc-silicate gneiss are 

more abundant, respectively, than in the heterogeneous zone.  The heterogeneous zone 

dominates the western part of the Holden Village area (Figure 4) and the northwestern 

part of the Rock Creek area (Figure 5).  The calc-silicate gneiss zone occurs in the central 

part of the Holden Village area and is absent in the Rock Creek area.  Leucogneiss zones 

occur in the central Holden Village area and in the Rock Creek area.  Field and thin 

section descriptions for the rock types that make up each of these zones are described 

below, in order from most abundant to least abundant. 
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Figure 4. Geologic map of the Holden Village area.  (A) Inset map of Holden Village 
area showing the location of U-Pb zircon ages. Red box highlights the area of Figure 3B.  
(B) Geologic map of the Holden Village field area.   
 



 

 
 
  

16

 
 
 

Figure 5.   Geologic map of the Rock Creek area. 
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Amphibolite 

Quartz-bearing amphibolite consists of diffuse 0.025–0.12-mm-thick layers of 

alternating composition and grain size.  Foliation is continuous and defined by the 

layering, and the elongate hornblende and plagioclase grains.  The color ranges from 

black to dark grey with local ≤1 mm-thick quartz layers.  Hornblende abundance in the 

layers ranges from 50–>90%. In thin section, amphibolite contains hornblende (60%), 

plagioclase (20%), quartz (10%), and minor epidote.  Hornblende is 0.25 mm to 3 mm in 

length and is largest in hornblende-rich layers.  Plagioclase is polygonal or slightly 

elongate and ranges from 0.05–1.5 mm in length; it is largest in plagioclase-dominated 

layers.  Quartz is polygonal, 0.25–3 mm in length, and occurs in elongate aggregates.   

Biotite Gneiss 

Biotite gneiss is fine grained; the mineral grains range from 0.25–0.75 mm in length. 

Foliation is defined by textural and compositional layering, aligned micas and opaque 

minerals, and shape preferred orientation of quartz and plagioclase grains.  Some 

compositional layers are boudinaged and display pinch-and-swell structures.  Freshly 

broken surfaces are grey in color, but weather to black with white laminations.  Based on 

two thin sections, the gneiss is composed of quartz and plagioclase (45–90%), biotite 

(10–40%), muscovite (0–5%), allanite (0–5%), and minor clinozoisite and opaque 

minerals (<5 %).  Biotite and muscovite are 0.1–0.2 mm in length and idioblastic.  Both 

are weakly aligned.  Clinozoisite is xenoblastic, occurs in biotite-rich layers, and has 

allanite and quartz inclusions and resorption textures.    
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Hornblende Gneiss 

Hornblende gneiss consists of 1 mm–15 cm-thick gradational and discreet layers of 

varying grain size and hornblende abundance.  Foliation is defined by compositional 

layering and a strong shape-preferred orientation of mineral grains.  One thin section 

consists of hornblende (60%), plagioclase (35%), quartz (5%), and accessory clinozoisite, 

and titanite.  Hornblende is 0.25–2 mm in length and elongate parallel to foliation. 

Hornblende transitions from subidioblastic to idioblastic with increasing grain size. 

Plagioclase occurs as subequigranular and polygonal grains, and forms symmetrical and 

asymmetrical porphyroclasts.  Plagioclase ranges from 0.025–0.12 mm in length.  Sparse 

interstitial quartz has subgrains.  Quartz also occurs in a 0.25–1 mm-wide and 6.25 mm-

long ribbon with 0.75 mm-long subgrains.  Clinozoisite has two forms, as either ≤ 1.5 

mm-long, acicular to rectangular idioblastic laths, or <l mm-long, irregularly shaped 

grains. 

Calc-silicate Gneiss 

The primary assemblage of the calc-silicate gneiss is quartz, plagioclase, diopside, 

biotite and muscovite with accessory titanite and tourmaline, but it also contains 5 cm-to-

1-m-thick interlayers which range from hornblende-rich and medium-grained, to 

hornblende-poor and fine-grained.  Foliation is defined by compositional layering, 

elongate lenses of quartz, plagioclase and epidote, and aligned mica.  Quartz is 0.25–0.5 

mm in length on average, but grain size varies modally throughout mm-scale layers. 

Plagioclase is generally 0.25–0.5 mm in length, subidioblastic and commonly normally 

zoned.  In some layers, actinolite forms pseudomorphs of diopside.  Biotite and 
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muscovite occur as 0.05–0.5-mm-long, xenoblastic grains oriented parallel to foliation, 

and 0.25–0.35-mm-long idioblastic grains which are not aligned.  Xenoblastic mica 

grains are undulose and strongly bent.  In contrast, idioblastic mica grains are undulose 

but not strongly bent, suggesting they recrystallized after deformation ceased.  

Tourmaline is pale yellow to brown with long axes parallel to foliation. Garnets occur 

locally and are 3–5 mm in diameter. Epidote forms cm-scale lenses and 1–3 mm-thick 

bands.   

Leucogneiss 

In the Holden Village area, cm- to m-scale layers of leucogneiss are intercalated with 

calc-silicate gneiss, hornblende gneiss and amphibolite. The leucogneiss is locally 

difficult to distinguish from light-colored calc-silicate gneiss. In the leucogneiss, foliation 

is defined by quartz ribbons, elongate plagioclase lensoids, and aligned mafic minerals.  

On the basis of four thin sections, the leucogneiss consists of plagioclase (40–50%), 

quartz (40–50%), biotite (5%), hornblende (<5%), and muscovite (0–<1%).  Plagioclase 

is dominantly xenoblastic and 0.25–0.8 mm in length.  Plagioclase is commonly lensoidal 

and displays normal and oscillatory zoning in two of four samples.  Quartz composes 

ribbons and elongate aggregates of 0.25 mm–0.75 mm-long grains.  Biotite occurs in 

elongate (<0.1 mm-wide, >2 mm-long) clusters of deformed grains, and in subidioblastic, 

lensoidal clusters with hornblende.  Garnet occurs as ~2 mm-long clusters, which are 

aligned parallel to foliation.  Epidote is retrogressive. 

Quartzite 

Quartzite comprises <1% of the Holden assemblage, and occurs as <50-cm-thick 
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layers in the Holden Village and Rock Creek areas. In one thin section from the Holden 

Village area, the quartzite contains quartz (85–95%), undetermined amphibole (5%), and 

epidote (2%).  Quartz is seriate and interlobate to subpolygonal.  The largest grains are 3 

mm in length and have ~3:1 aspect ratios.  The smallest grains are <0.05 mm in length 

and mantle larger grains.  Amphibole is subidioblastic and occurs in 0.5–1.5 mm-long 

lensoidal aggregates. Epidote is a secondary phase.   

Marble 

Marble composes <1% of the Holden assemblage, and occurs as cm-scale layers in 

the Holden Village and Rock Creek areas.  At two locations, the fine-grained marble 

forms 1–3-m-thick layers and in the Holden Village area, the layer contains cm-scale 

boudins of amphibolite. 

Spider Glacier Unit 

The Spider Glacier unit is exposed in the Spider Glacier study area and probably 

extends ~9 km to the south and ~1 km to the north of the area.  To the south it is 

terminated by the Entiat fault, and to the north it is truncated by the Cloudy Pass batholith 

(Figures 3 and 6) (Cater and Crowder, 1967).   

Mapping delineated six metamorphic rock types within the Spider Glacier unit 

(Figure 7A).  Hornblende-biotite gneiss is most abundant, and contains cm- to several m-

thick lenses and discontinuous interlayers of the other five rock types (Figure 7A). 

Hornblende gneiss forms at least three 1-to-10s-of-m-thick layers.  Biotite gneiss forms 1 

cm- to 10s-of-m-thick layers and is spatially associated with leucotonalite.  Micaceous 

quartzite is not mapped as a separate unit, but locally composes >40% of the rock in 
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some areas (denoted with “q”) (Figure 7A).  Centimeter-to-m-scale lenses of meta-

peridotite make up <1% of the Spider Glacier unit.   

The metamorphic rock units occur with igneous material as mostly stromatic, and 

rarely netted metatexite migmatite.  Diatexite migmatite occurs at one location.  Though 

migmatite occurs in all the above-mentioned metamorphic rock units, it is most abundant 

in and adjacent to biotite gneiss and is not spatially associated with geologic structures.  

Boysun (2004) used textures in the adjacent Swakane Gneiss to argue that partial melt 

within the Gniess was locally derived.  Boysun (2004), however, examined the Spider 

Glacier unit only briefly as part of her study of the Swakane Gneiss.  She referred to the 

Spider Glacier unit as migmatitic gneiss.  
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Figure 6.  Geologic map of the Spider Glacier area.  Sampling locations for EBSD and 
detrital zircon dating are shown.  Contours are in meters.  Blue line marks the boundary 
of detailed mapping shown in Figure 7A. 
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Figure 7A.  Detailed geologic map of the Spider Glacier area.  
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Figure 7B. Cross sections through the area shown on Figure 7A. 
 
 

Hornblende-biotite Gneiss 

Hornblende-biotite gneiss in the Spider Glacier unit is medium-grained and grey-

brown with mm-scale layers of quartzo-feldspathic material (Figure 8).  Based on six thin 

sections, the hornblende-biotite gneiss consists of plagioclase, quartz, hornblende, biotite, 

and minor titanite, epidote, clinozoisite, apatite, and opaque minerals; garnet occurs in 

some samples.  Foliation is defined by a shape preferred orientation of quartz, 

plagioclase, hornblende, and biotite grains, and mm-scale layering of quartzo-feldspathic 

and mafic layers.  Plagioclase composes 20–40% of the gneiss and ranges from An15–

An45. It is 0.25–1.5 mm-long, forms either subidioblastic grains or foliation-parallel 

lenticular grains.  Plagioclase mosaics are present in one sample, suggesting medium-to-

high-temperature recrystallization.  Quartz composes 10–30% of the gneiss and occurs  
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Figure 8.  Photograph of hornblende-biotite gneiss of the Spider Glacier unit.  
Concordant layers of leucotonalite range from <1–3 cm in thickness.  Three 6–10 cm-
thick interlayers of hornblende gneiss are boudinaged. Notebook is 6 cm long. 
  



 

 
 
  

26

as: subpolygonal and subequigranular grains in elongate, foliation-parallel aggregates or 

ribbons; elongate grains with aspect ratios of 2:1; and as rounded quartz inclusions in 

plagioclase and hornblende. 

Hornblende-biotite gneiss generally contains 15–30% hornblende, though hornblende 

makes up 50–80% of some local layers.  Hornblende grains are 0.1–1.75-mm-long, 

foliation-parallel grains.  They contain rounded quartz or subidioblastic biotite inclusions. 

Some hornblende is heavily altered, mostly to biotite or titanite, and locally to white 

mica.  Biotite abundance varies from 10–35% in the gneissic layers and occurs as two 

textural types.  One type is 0.25–0.75 mm in length and 0.15–0.6 mm in width, is 

commonly lenticular, and occurs in aggregates.  The second type is smaller, 0.1–0.3 mm 

in length and 0.1 mm in width, xenoblastic, and occurs as solitary grains.  Garnet occurs 

in five of six samples, ranges from 1–3 mm across, is weakly elongate, and has quartz, 

epidote, and biotite inclusions.  Inclusions display either no alignment, or a weak 

alignment subparallel to foliation.  Foliation wraps garnets.  Partial retrogression of 

garnet to biotite is common.     

Hornblende Gneiss 

Hornblende gneiss is present throughout the field area interlayered with hornblende-

biotite gneiss, biotite gneiss and micaceous quartzite.  The hornblende gneiss displays 1 

mm–8-cm-thick layering, wherein mineral abundances grade from ~60–80% plagioclase 

to >90% hornblende.  Grain size varies from <1 mm to 3 mm.   

Hornblende gneiss contains hornblende (30–50%), plagioclase (15–30%), and quartz 

(5–15%), with accessory titanite and garnet.  Hornblende has a bimodal grain size, with 
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coarse (1.5–3 mm in length) and fine (0.25–0.75 mm in length) grains.  The coarse grains 

occur with titanite.  The fine grains occur in mosaics with plagioclase.  Plagioclase is 

subidioblastic, and generally 0.25–0.75 mm in length, and interlocks with hornblende or 

other plagioclase grains.  Five out of six samples contain garnet, which is typically 1–3 

mm in diameter, but may be as large as 1 cm.  Foliation wraps garnet.  Retrogression of 

garnet to biotite is common.  Other retrograde phases in the gneiss include: white mica, 

which commonly replaces plagioclase; undetermined colorless amphibole, which is either 

coarse-grained (5–10 mm), or fine-grained (<0.05 mm) and feathery; and chlorite.    

Micaceous Quartzite 

Micaceous quartzite is medium- to dark-bluish grey, or pale-white, and has a 

characteristic vitreous luster.  It commonly forms interlayers in hornblende gneiss in the 

northern half of the Spider Glacier study area (Figure 9) and is interlayered with 

hornblende-biotite gneiss in the southern part of the area.  Foliation is defined by a 

parallel alignment of elongate quartz grains and asymmetric mica grains.  Two thin 

sections of micaceous quartzite contain 80–95% quartz, 5–20% mica, minor, hornblende, 

apatite, and plagioclase (Figure 10).  Mica is dominantly biotite, which locally comprises 

>20% of the rock.  One location contains foliation-wrapped garnet that is up to ~7 mm in 

diameter.  Other garnet is small (<0.1 mm), anhedral, and truncates foliation 
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Figure 9.  Photograph of micaceous quartzite of the Spider Glacier unit. The outcrop 
consists of interlayered micaceous quartzite, biotite gneiss, and hornblende gneiss.  
Handle of the hiking pole is 5 cm.   
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Figure 10.  Photomicrograph of micaceous quartzite. Micaceous quartzite from the Spider 
Glacier unit.  Quartz grains are marked with “q”. Biotite grains are marked with “b”. 
 
 
Biotite Gneiss 

Biotite gneiss occurs in at least five tens-of-meter-thick layers, and as centimeter-

scale-thick layers within hornblende gneiss and hornblende-biotite gneiss.  Centimeter-

scale compositional layering within the gneiss is marked by changes in abundance of 

quartz, plagioclase, and mafic minerals (Figure 11).  Grain size ranges from <1 mm to 5 

mm.   A thin section of biotite gneiss contains plagioclase, quartz, biotite and accessory 

amphibole, clinozoisite, titanite, muscovite and opaque minerals.  Plagioclase composes 

~50% of the gneiss, is 0.5–1.0 mm in length, and is subidioblastic with aspect ratios of 
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1.5–1.3.  Quartz makes up 15–25% of the gneiss and forms 0.5–1.5 mm-long lenses of 

either larger, up to 0.5-mm-long grains, or smaller, <0.05-mm-long grains.  Biotite and 

accessory minerals compose the remaining 10–15%.  Biotite is xenoblastic, elongate 

(aspect ratio of 2:1–5:1), bent, and undulose.   

 

 
 

Figure 11.  Photograph of biotite gneiss of the Spider Glacier unit.  Note the light color 
and the compositional layers defined by different amounts of quartz and plagioclase.  The 
layers are offset by small faults.  Hammer is 40 cm in length.   
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Meta-peridotite 

Meta-peridotite lenses with aspect ratios ranging from 2:1 to >20:1 compose <1% of 

the Spider Glacier unit (Figure 12).  Lenses are generally 5–15 cm in length, but are up to 

1 m in length.  Meta-peridotite varies from very-coarse-grained actinolite schist, to 

phlogopite-bearing tremolite-talc schist.  No thin section was made of the actinolite 

schist. In two thin sections, talc makes up ~60–90% of the meta-peridotite, is <0.05–5-

mm-long, and subidioblastic to idioblastic.  Tremolite makes up 5–40% of the samples, 

occurring as highly elongate grains with aspect ratios of ~7, idioblastic laths and lenses 

surrounded by talc, and as clusters of ~0.1 mm-long grains.  Biotite and chlorite each 

compose up to 5% of the rock.  Chlorite is very-fine grained (<0.05 mm) and feathery. 

Igneous Intrusive Rocks 

Three igneous rock types intrude the Spider Glacier unit at a mappable scale.  They 

are hornblende gabbro, leucocratic granitoid, and andesitic(?) dike rock.  Map-scale 

hornblende gabbro includes one dike and one irregularly shaped body in the northern 

Spider Glacier study area (Figure 7A).  Smaller bodies of gabbro are marked with “G” on 

Figure 7A.   The gabbro also occurs within hornblende-biotite gneiss as ductily deformed 

m-scale to cm-scale lenses.  In thin section, the hornblende gabbro consists of 

hornblende, plagioclase, and quartz, and accessory clinozoisite and opaque minerals.  

Hornblende composes 60–80% of the gabbro, and is <1 to 5 mm in length.   Chlorite and 

titanite are alteration products.   
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Figure 12.  Photograph of meta-peridotite of the Spider Glacier unit. The meta-peridotite 
(m) lenses are elongate parallel to the layering with hornblende-biotite gneiss (hbg) and 
hornblende gneiss (hg).  Brunton compass for scale. 
 

Five generations of leucocratic granitoids intrude the Spider Glacier unit, and only 

leucotonalite occurs at a mappable scale, as a ~50 m2 sill (Figure 7A).  The other 

granitoids occur as dikes and are pegmatitic granitoid, biotite leucogranite, pegmatitic to 

medium-grained leucogranitoid, pegmatitic to medium-grained biotite-hornblende 

granitoid, and hornblende tonalite.  The leucocratic granitoids generally lack foliation, 

but in rare cases had aligned mafic minerals.   

Two andesitic dikes intrude the Spider Glacier unit.  They are 1 m-thick, and 100–200 

m-long (Figure 7A).   The andesitic dikes are undeformed.  
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Swakane Gneiss 

A small portion of the Swakane Gneiss was mapped in the Spider Glacier study area.  

The Gneiss is medium-grained and composed of quartz, plagioclase, and biotite with 

small amounts of chlorite, epidote, clinozoisite, and garnet.  Foliation is defined by a 

shape preferred orientation of quartz, plagioclase and mica grains, and by ~0.25 mm-

thick compositional layers with varying amounts of biotite. 

In thin sections of 8 samples, quartz and plagioclase make up 60–80% of the Gneiss. 

Biotite composes 10–30% of the Gneiss, and muscovite ranges from 0–10%.  Plagioclase 

is idioblastic to subidioblastic, ranges from 0.125–1.5 mm in length, and commonly 

contains small, round quartz inclusions.  Quartz is 0.025–1-mm-long and is typically 

smaller than plagioclase.  Quartz locally forms mosaics of very fine, <0.025-mm-across 

grains.  Biotite occurs as coarse subidioblastic grains in ~0.5 mm-long clusters, which 

wrap quartz and plagioclase grains, and as xenoblastic, commonly bent, acicular grains 

which are generally >1.375 mm in length and <0.075 mm in width, and are commonly 

bent.  Muscovite is in 4 of 8 samples, is idioblastic to subidioblastic, and generally 

0.125–0.5 mm in length, but ranges up to 0.75 mm in length.  Muscovite is typically bent 

and is commonly surrounded by biotite and chlorite.  Sparse xenoblastic clinozoisite is 

commonly twinned and kinked.  Garnet occurs in 3 of the 8 samples, and is wrapped by 

foliation suggesting it is pre- to syn-kinematic.  Garnet ranges from 0.25–0.75 mm in 

diameter and commonly has internal fractures oriented subperpendicular to foliation and 

filled with mica.  Chlorite alteration occurs in 6 of the 8 samples. 
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STRUCTURES   

The goal of mapping geologic structures was to understand the geologic histories of 

the Spider Glacier unit, Swakane Gneiss, and Holden assemblage. In general, the Spider 

Glacier unit and the Holden assemblage at Carne Mountain record a generation of 

moderately to steeply plunging folds that are absent in the Swakane Gneiss and the 

Holden assemblage in the Holden Village area. 

Spider Glacier Area 

In the Spider Glacier study area, a ~4 km-wide belt of Spider Glacier unit is separated 

from the Dumbell Orthogneiss to the northeast by the Entiat fault and the Swakane 

Gneiss to the southwest by the Chiwawa discontinuity (Figures 3 and 6). Deformation 

varies across the discontinuity.  Southwest of the Chiwawa discontinuity, in the Swakane 

Gneiss, foliation is defined by elongate quartz and plagioclase grains, aligned biotite, and 

cm-scale compositional layers with varying amounts of biotite and plagioclase.  The 

foliation is stronger than lineation and consistently strikes southeast (140–160°).  The 

foliation dips mostly 40–60° southwest, and ranges from 25–70° (Figure 13).  The 

average attitude is 152°/49° SW.  Foliation intensity is consistent throughout the area.  

The foliation is axial planar to tight to isoclinal folds of cm-scale-thick felsic sheets in the 

Gneiss.  Biotite defines shallow mineral lineations, most of which plunge 5–25° 

northwest and southeast (Figure 13).   
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Figure 13.  Foliations and mineral lineations in the Swakane Gneiss. Lower-hemisphere 
equal area stereographic projection. Poles to foliation (n = 18) are shown as black dots.  
Mineral lineation orientations (n = 12) are shown as red dots.  
 
 

In the Spider Glacier unit, the foliation varies in orientation due to folding along west 

northwest- to west-southwest-plunging, 100s-of-m-wavelength folds (Figure 14).  

Foliation strikes southeast to southwest and dips to the southwest and northwest.  Most of 

the foliations dip between 25–70°, but dips range from 20–90°.  In some cases, the dip 

changes along strike by as much as 45° over 10 m. Mineral lineations are defined by 

aligned biotite and hornblende.  Lineations most commonly plunge ~30° to the south and 

northeast but have a wide range of orientations, plunging from 5–80° to the northwest, 

west and southwest (Figure 15).  This variability in lineation orientations strongly implies 

that the lineations have been folded. 
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Figure 14.  Poles to foliation and fold axes in the Spider Glacier unit.  Lower-hemisphere 
equal area stereographic projection.  Poles to foliation (n = 77) are shown as black dots.  
Fold axes (n = 85) are shown as red circles.  Foliations define a girdle and an inferred 
fold with an orthogonal plane (OP) oriented 031°/39° SE (solid black line), a fold axis 
(FA) oriented 51°/301° (black triangle), and an axial surface (AS) oriented 278°/71° NE 
(dotted line).  The mean vector of fold axes is oriented 65°/290° (not shown) with error 
shown as a large red circle.  Map-scale folds B1, B2 and B3 are shown by blue triangles.  
 

Foliations in the Spider Glacier unit (n = 77) define a girdle with an axis plunging 51° 

to the west-northwest (301°).  The considerable scatter in points away from the girdle 

indicate non-cylindrical folding.  The orientations of three map-scale folds were 

identified by inputting 4–5 local attitudes into Allmendinger’s Stereonet 10 and 

calculating the orientation of fold axes and axial surfaces.  The folds are referred to, from  
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north to south, as folds B1, B2, and B3 (Figure 16).  B1 is an upright open synform which 

plunges 34° west (273°).  B2 is an upright open antiform with an axis plunging 40° to the 

northwest (325°). B3 is an upright open synform with an axis plunging 45° to the 

southwest. 

 

 
 

Figure 15.  Foliations and mineral lineations in the Spider Glacier unit.  Lower-
hemisphere equal area stereographic projection. Mineral lineations (n = 31) are shown as 
red dots. The fold axis (FA) for the combined foliations is oriented 51°/301° (black  
triangle), determined from a cylindrical best fit calculation of foliation orientations in 
Almendinger’s Stereonet 10. 
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Figure 16. Structural map of the Spider Glacier area. Map-scale folds are defined by form 
lines, which indicate the approximate strike of foliation. Folds labelled B1, B2 and B3 are 
described in text.  
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At least three generations of outcrop-scale folds occur in the Spider Glacier unit.  The 

earliest folds (F1) fold foliation and felsic sheets tightly to isoclinally. F1 folds have 

wavelengths of 1–10 cm and axial planes which are most commonly subparallel to the 

dominant foliation (S1). F1 folds occur less commonly as upright crinkle folds in meta-

peridotite pods and hornblende-rich layers. S1 and F1 are folded by 10-cm- to 2-m-

wavelength, horizontal to steeply plunging, upright to gently inclined, open to tight folds 

(F2). F2 fold styles include chevron and kink folds (Figure 17).  Leucocratic material 

intrudes at least one F2 kink fold (Figure 17).  In at least one area, F2 is refolded by a sub-

perpendicular F3 fold to produce type-I and type-III interference patterns (Figure 18).  

The mean orientation of all outcrop-scale hinge lines (F1 + F2) is 68°, 285° (n = 80), 

which is broadly similar in orientation to the fold axis calculated from all foliations, 

51°/301° (n = 77), leading to the interpretation that at least some outcrop-scale folds are 

parasitic to map-scale folds.  However, the orientations of map-scale folds B1, B2, and 

B3 differ from the average orientation of outcrop-scale folds, B2 and B3 are nearly at 

right angles to each other, and outcrop-scale fold axes have a very wide range of 

orientations that differ from the mean orientation.    
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Figure 17. F2 kink fold in hornblende-biotite gneiss. Trend of fold hinge line is oriented 
parallel to Brunton compass. Note there are two generations of leucotonalite; the first is 
offset by a fault (denoted with arrows labelled “A”). The second intruded along the fault 
plane (denoted with arrows labelled “B”).  Most leucotonalite is concordant to foliation in 
hornblende-biotite gneiss.  
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Figure 18. Type-III fold interference pattern in hornblende-biotite gneiss. Photo taken in 
the Spider Glacier unit, roughly 3 m from Chiwawa discontinuity.  Approximate traces of 
axial surfaces for early and late folds are shown with black lines. Picture is roughly 1 m 
across.  
 

Local faults (10–100 m offset) in the Spider Glacier area have variable orientations 

and displacements, and show no obvious patterns. Separation was measured along offset 

tonalitic and gabbroic sheets near fold B1 in the Spider Glacier area.  Faults that offset 

sheets strike north, northeast, and east-northeast, and have steep dips (75–90°) based on 

their straightness in map view.  Other faults strike east-west and also have steep dips.  

One east-west-striking fault dextrally offsets compositional layers as determined from the 

apparent drag of layers.  Another steep east-west trending (110°/85° southwest) fault 

truncates the Chiwawa discontinuity with apparent sinistral separation (Cater and 

Crowder, 1967).     
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Two sets of smaller, outcrop-scale faults were distinguished.  One set is reverse 

faults, which are spatially associated with outcrop-scale F2 folds.  These faults cut 

foliation at moderate to shallow angles (Figure 19).  The other set has apparent normal 

displacement based on drag of compositional layers (Figure 20).  Separation along faults 

of both sets is <20 cm.  It is unclear whether the faults record two different periods of 

regional deformation, or if they are coeval and record localized deformation due to map-

scale folding.  Both sets of faults appear to be coeval with melt generation, as some 

leucocratic melt intrudes along faults, whereas other leucocratic melt is offset (Figure 

17). 

 

 
 

Figure 19. Outcrop-scale fold in the Spider Glacier area. The outcrop contains layers of 
micaceous quartzite (grey), hornblende gneiss (black) and leucotonalite (white). The fault 
has roughly 16 cm of separation based on the interpretation that layers denoted with black 
lines are equivalent. The field notebook is 16 cm.    
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Figure 20. Zone of top-to-the-south, sinistral-normal shear. Dashed lines denote slip 
surfaces, question marks indicate where inferred. Red lines highlight layers within the 
shear zone and show normal drag. Attitude marker shows foliation dipping away at 60°.  
The foliation strikes ~170°. The pencil is 13.5 cm.   
 

The Chiwawa discontinuity (new name) separates the Spider Glacier unit from the 

Swakane Gneiss and strikes south-southeast based on mapping by Cater and Crowder 

(1967).  The discontinuity extends for ~12 km from the Entiat fault in the south to the 

Cloudy Pass batholith in the north (Figure 3) (Cater and Crowder, 1967).  South of the 

field area the discontinuity dips moderately to shallowly, based on map patterns by Cater 

and Crowder (1967).  The only exposed portion of the discontinuity is immediately west 

of the northern end of Spider Glacier (Figure 21) and has an apparent shallow dip to the 

west. North of this exposure, however, Cater and Crowder (1967) show the trace of the 

discontinuity cutting topographic contours and thus is steeper and dips to the west.  
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Figure 21. Photograph of the Chiwawa discontinuity. The view is looking north near the 
head of Spider Glacier. The peak in the middle of the photo is composed of Swakane 
Gneiss (sbg). The Chiwawa discontinuity, shown as a thin black line (partially dotted), 
separates the Swakane Gneiss (sbg) from the Spider Glacier unit (sgu). Late undated 
felsic dikes (red arrows and labels) crosscut the contact. A fault (bold black line) 
truncates the Chiwawa discontinuity. 
 

Total displacement across the discontinuity is unknown and is large enough to 

juxtapose quartzo-feldspathic gneisses against hornblende-rich gneisses, and extensively 

folded rocks against only locally folded rocks.  Motion on the discontinuity is only 

bracketed between 81 Ma, the youngest MDA of the Swakane Gneiss, and 22 Ma, the age 

of the Cloudy Pass batholith, which truncates the discontinuity.  Ages of southwest-

striking, steeply northwest-dipping leucocratic sheets that cross the discontinuity would 

constrain latest fault movement (Figure 21).  These sheets may be associated with the 

Cloudy Pass batholith, which underlies the area according to Cater and Crowder (1967). 

In the Spider Glacier area, the Entiat fault strikes northwest (Cater and Crowder, 

1967) and is marked by a 2-m-wide zone of fine-grained cataclasite at one location, and 
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hornfelsed fault breccia at another.  The Entiat fault is truncated to the north by the ~22 

Ma Cloudy Pass batholith (Cater and Crowder, 1967).  The straightness of the fault trace 

(Cater and Crowder, 1967) suggests that it is nearly vertical. Dextral offset of 30–40 km 

has been postulated by Tabor et al. (1989), whereas Brown et al. (1994) proposed only 4 

km of dextral slip.   

To further understand deformation in the Spider Glacier unit and Swakane Gneiss, 

quartz grain orientations in three samples from the Spider Glacier area were quantified. 

Experimental studies of quartz in natural rocks (e.g., Lister, 1977; Law et al., 1990) 

reveal that the lattice preferred orientations (LPOs) of quartz c- and a-axes, when plotted 

on stereonets, define points and/or girdles which correlate with movement along specific 

crystallographic planes, deformation rate, temperature, and the shape of the finite strain 

ellipsoid (e.g., Lister, 1977; see review in Passchier and Trouw, 2008) (Figure 22).  

Quartz LPOs can be measured using the electron backscatter diffraction (EBSD) 

technique in a scanning electron microscope (SEM). 

Quartz LPOs were analyzed in three samples from the Spider Glacier area to compare 

microstructures in the Swakane Gneiss and Spider Glacier unit, and to test if deformation 

changes with proximity to the Chiwawa discontinuity.  Samples from the Spider Glacier 

unit were collected ~100 m and < 10 m from the Chiwawa discontinuity.  The sample of 

Swakane Gneiss was also collected <10 m from the Chiwawa discontinuity.  The three 

samples display different quartz LPO patterns.  
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Figure 22.   Schematic of expected c-axis orientations for quartz slip systems.   Modified 
from Hunter et al. (2018).   (A) Schematic diagram of a quartz crystal showing{r}, {m}, 
(c), and {z} slip planes, <a> and <c> slip directions, and the c-axis. (B) Pole-figure 
showing expected quartz c-axis orientations for activation of different slip systems. (C) 
Diagram showing how a type-II cross girdle is affected by temperature and non-coaxial 
shear.    
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The Spider Glacier unit sample collected ~100 m from the Chiwawa discontinuity 

(SG17-235.2) is micaceous quartzite.  It was collected slightly east of the northern 

termination of Spider Glacier (Figure 6).  Quartz LPOs in SG17-235.2 range widely, but 

define three maxima; one is nearly parallel to foliation and normal to lineation (Figure 

23), and two are normal to foliation. Quartz a-axes orientations also vary widely, and do 

not have distinct maxima.  The LPO pattern in SG17-235.2 is interpreted as a weak type-

II crossed girdle with an additional maximum along the z-axis.  This pattern differs from 

the sample collected closer to the Chiwawa discontinuity. Another sample from the 

Spider Glacier unit, SG17-114 was collected from hornblende-biotite gneiss <10 m from 

the Chiwawa discontinuity (Figure 6)  SG17-114 has quartz grain LPOs that trace a great 

circle from the upper left to lower right with a maximum in the upper left (Figure 23). 

This pattern is interpreted as an offset type-I crossed girdle.  Quartz a-axes in SG17-114 

cluster around two weakly defined maxima offset roughly 20° from lineation (Figure 23). 

Directly across the discontinuity from SG17-114 (Figure 6), a sample of Swakane Gneiss 

(SG17-115) has quartz LPOs which cluster in the right hemisphere, and upper and lower 

left hemisphere and seem to define a girdle. SG17-114 also has an LPO maximum within 

the foliation plane, plunging roughly 30-45° up-lineation.  Quartz a-axes orientations are 

scattered, but most are in the left hemisphere.   

In general, the patterns from the three samples tell different stories.  The LPO pattern 

in the sample from Swakane Gneiss, SG17-115, records higher temperature deformation 

than the Spider Glacier unit samples, SG17-235.2 and SG17-114.  In SG17-115, the LPO 

maximum in the right hemisphere is evidence for prismatic {m}<a> slip in quartz grains,  
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Figure 23.  Plots of quartz c-axis orientations from three samples.  Plots are lower-
hemisphere equal-area stereonets.  The circles on the right show the relative orientation 
of lineation (L) and foliation (S).  Plots have 5° half widths, and 5° cluster sizes. Kamb 
contours range from ~0.5 to 1.  
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which occurs at high-temperatures (see review in Passchier and Trouw, 2008).  The 

Spider Glacier unit sample collected farther from the Chiwawa discontinuity, SG17-

235.2, has the same high temperature indicator (shown by the LPO maximum roughly 

perpendicular to lineation) and has a type-II crossed girdle indicative of medium-

temperature coaxial strain (Figure 23).  The Spider Glacier unit sample collected closer to 

the Chiwawa discontinuity has quartz LPOs which trace an offset type-I crossed girdle 

Type-I cross girdles record non-coaxial shear and in the case of SG17-114 the offset 

indicates top-up-lineation shear (Figure 23). In thin section, evidence for this top-up 

lineation shear sense was not conclusive (Figure 24). 
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Figure 24. Photomicrograph of SG17-114.  Red arrows labelled “T” and “L” denote 
direction toward top of thin section, and plunge of lineation, respectively.  Note, biotite 
tends to wrap around plagioclase and hornblende grains without showing a clear 
asymmetry.    
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Holden Village Area 

In the Holden Village study area, a northwest-trending belt of Holden assemblage is 

intruded by the 78–72 Ma Cardinal Peak pluton to the east and is in contact with the 

Dumbell Orthogneiss to the west (Figure 4) (Cater and Crowder, 1967; Cater and Wright, 

1967).  All the Holden assemblage rocks, except for marble and actinolite schist, display 

a strong foliation defined by aligned minerals and compositional layering.  Aligned 

minerals include quartz, plagioclase, biotite, muscovite, and hornblende.  Compositional 

layers vary in relative abundances of mafic and felsic minerals.  Foliation measurements 

from this study agree with more detailed structural mapping of the area by Hurban 

(1991).  Foliation generally strikes southeast with an average orientation of 160°/69° 

southwest, but foliation strike changes from east to west from ~175°, near the contact 

with the Cardinal Peak pluton, to ~105° near the western edge of the map area (Figures 4 

and 25).  Foliations dip steeply southwest near the contacts with the Dumbell Orthogneiss 

and Cardinal Peak pluton, and more shallowly away from the contacts.  The few 

lineations measured are shallow and plunge roughly north and south, and presumably 

correspond to the late north-northwest-trending, subhorizontal stretching lineation 

measured by Hurban (1991).  He also measured early, locally preserved, steep stretching 

lineations (Hurban, 1991). 

Foliation in the Holden Village area is folded into 10- to 100s-of-m wavelength folds.  

The orientations of fold axes were determined by inputting two to four fold limb attitudes 

into Allmendinger’s Stereonet 10.  The calculated axes plunge 3°–6° to the northwest 

(320°) and southeast (140°).  These folds agree with the orientations of regional folding 



 

 
 
  

52

in the North Cascades (Tabor et al., 1989; Miller et al., 2006), but were not recognized by 

Hurban (1991) in the Holden Village area. 

 

 

 

 
 

 
Figure 25.  Poles to foliation and lineations in the Holden Village area.  Lower-
hemisphere equal area stereographic projection.  Poles to foliation (n = 67) are shown 
with black dots and have a maximum at 160°/69°.  Lineations (n = 3) are shown with red 
circles.  Kamb contours calculated on Allmendinger Stereonet 10: spacing interval, 2; 
significance level, 3; number of grid nodes, 20.  
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Microstructures were analyzed in fourteen samples in the Holden Village area with 

the goal of comparing them with microstructures in the Spider Glacier area.  In the 

Holden Village area, five of nine samples have interlobate grains, island grains 

[dissection structure of Urai et al., (1987)], and reticular grain boundaries, all textures 

indicative of grain boundary migration recrystallization.  Four of the samples also have a 

fine-grained mantle texture or slightly bulged grain margins, indicative of relatively low-

temperature grain boundary bulging recrystallization (e.g., Passchier and Trouw, 2008). 

Two samples lack deformation microstructures and have variably oriented, undeformed 

biotite grains suggesting extensive annealing.  The microstructures from the Holden 

assemblage are interpreted to indicate that the rocks experienced medium to high 

temperature recrystallization followed by low temperature deformation.  Some rocks 

were extensively annealed.  The medium- to high-temperature recrystallization is likely 

coeval with foliation formation, whereas lower-temperature deformation was likely more 

localized.  This interpretation agrees with observations by Hurban (1991), who noted 

localized greenschist-facies deformation.

Carne Mountain Area 

In the Carne Mountain area, rocks mapped as Holden assemblage by Cater and 

Crowder (1967) occur on both sides of the Entiat fault.  I interpret the rocks west of the 

fault as part of the Spider Glacier unit.  The fault strikes southeast (~150°) and dips 

steeply, based on map patterns (Cater and Crowder, 1967).   

Foliation in the Spider Glacier unit is defined by compositional layers, elongate 

quartz grains, and aligned biotite grains.  The foliation was only measured at two 
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locations, where it strikes 343° and 012° and dips 62° and 85° eastward, respectively.  No 

outcrop-scale folds were observed.   

In the Holden assemblage, foliation is similarly defined by compositional layering, 

elongate quartz grains, and aligned biotite grains. Folds of foliation in the Holden 

assemblage range from 10-cm to 100s-of-m in wavelength and have a variety of styles.  

At the outcrop-scale, foliation is folded into tight to open, asymmetric disharmonic folds.  

Layer thickness is not consistent in most folds.  Some ptygmatic folds of felsic sheets are 

refolded into open, asymmetric folds, and other ~10s-of-cm-scale folds have cm-scale 

crinkle folds in the hinge.  Outcrop-scale fold hinge lines are variably oriented, and they 

commonly plunge moderately north, but also west and southwest, and one hinge line 

plunges east.  The average orientation of the outcrop-scale hinge lines (n = 21) is 

60°/314°, but only three hinge line orientations fall within error of the mean, and this 

variability in orientations implies that there are multiple fold generations and/or that some 

folds were re-oriented by the Entiat fault.  All foliations (n = 15) in the area define a 

girdle implying map-scale folding with an axis oriented 41°/314° (Figure 26).  Map-scale 

folds have wavelengths of ~100 m based on map patterns. 
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Figure 26. Poles to foliation and fold axes in the Carne Mountain area.  Lower-
hemisphere equal area stereographic projection.  Foliations (n = 15) are shown with black 
dots, and define a fold with an orthogonal plane (OP) oriented 044°/49° (solid black line), 
a fold axis (FA) oriented 42°/342° (black triangle), and an axial surface (AS) oriented 
308°/81° NE (dotted line).  Fold hinge lines (n = 21) are shown with red circles. The 
mean vector of fold axes is oriented 60°/314°, with statistical error shown as a large red 
circle. 
 
 
Rock Creek Area 

In the Rock Creek area, I mapped a ~100-m-wide belt of the Holden assemblage 

along a ridge east of the Entiat fault, and other portions of the Holden assemblage on the 

eastern slopes of Rock Creek where it is in contact with the Eocene Rampart Mountain 

pluton (Figure 5).  The Entiat fault bounds the Holden assemblage on the west and map 

patterns (Cater and Crowder, 1967) suggest a subvertical orientation for the fault.   
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Foliation in the Holden assemblage is defined by aligned quartz, plagioclase, biotite, 

muscovite and hornblende, and compositional layers with varying amounts of mafic and 

felsic minerals. Foliation is folded into a synform plunging 17° to the northwest (342°) 

(Figures 5 and 27), which is intruded at its core by Seven-Fingered Jack granitoid 

(Paterson and Miller, 1998). My map does not illustrate the fold well, but the fold was 

mapped by Cater and Crowder (1967) and Paterson and Miller (1998). The calculated 

axial surface of the fold strikes south-southeast (174°) and dips 57° west (Figure 27).  

Local lineations (n = 4) are defined by hornblende and/or mica. The four measured 

lineations plunge gently to the northwest and southeast, and moderately to the northeast 

and northwest.  

Microstructures in the Rock Creek area were examined in only one sample from the 

east side of Rock Creek.  The sample is hornblende gneiss in which hornblende occurs in 

fine- to medium-grained, foliation-parallel aggregates.  Quartz grain boundaries are 

commonly interlobate, with island grains, reticular grain angles and pinning structures.  

Quartz, hornblende and plagioclase grains display weak undulatory extinction.  Quartz 

grains display deformation banding.  At least three microfaults with <1 mm of separation 

cut across mineral grains.  Quartz grain size is reduced to <0.01 mm along the 

microfaults. The textures indicate grain size reduction in hornblende and grain boundary 

migration recrystallization in quartz.   
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Figure 27.  Poles to foliation and lineations in the Rock Creek area. Lower-hemisphere 
equal area stereographic projection. Poles to foliation (n = 22) are shown as black dots, 
which define a fold with an orthogonal plane oriented 073°/73° (solid black line labelled 
“OP”), an axis oriented 17°/342 (black triangle labelled “FA”), and an axial surface 
oriented 174°/57° (dashed line labelled “AS”).  
 
 
GEOCHRONOLOGY   

The goal of the geochronologic research in this study is to constrain the ages of the 

Holden assemblage and the Spider Glacier unit.  Zircon was separated from two samples 

of Holden assemblage collected ~5 km across strike from one another in the Holden 

Village area (Figure 4), and from one sample of Spider Glacier unit collected near the 

Chiwawa discontinuity (Figure 6). 

The western Holden assemblage sample (SG17-068.2) is a medium- to fine-grained 
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leucogneiss interlayered on a meter-scale with calc-silicate gneiss and amphibolite.  The 

leucogneiss is interpreted as a sheet of igneous material which intruded the layers prior to 

metamorphism.  This interpretation is founded on cross-cutting relationships observed in 

the field, and petrologic characteristics observed in thin section.   The leucogneiss layer is 

more homogeneous than, and truncates adjacent amphibolite and hornblende gneiss 

layers, suggesting the leucogneiss is an orthogneiss.  Furthermore, the leucogneiss has a 

greater amount of plagioclase (~45%) than would be expected in typical sedimentary 

material, and includes several plagioclase grains with oscillatory zoning, which is 

indicative of igneous growth.  These observations support the classification of SG17-

068.2 as an orthogneiss sample.   

Zircons from SG17-068.2 are generally ~100 µm long, and range from ~50–150 µm 

(Figure 28). Aspect ratios range from ~1:1 to 4:1 and are mostly ~2:1. Euhedral grains 

are rare.  Most grains have growth and/or sector zoning, and all the grains are partially 

resorbed and/or contain pockets of melt.  Fractures pervade most grains and tend to occur 

along the margins and parallel to growth zoning. Some grains have <10 μm in diameter 

xenocrystic cores. Metamorphic rims are absent or are very thin (<5 µm). Zircons from 

SG17-068.2 tend to form a coherent grouping of limited age range (280–250 Ma), which 

further supports that the sample is igneous in origin.  
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Figure 28. Cathodoluminescence (CL) imagery of zircons from SG17-068.2.  CL-dark 
pockets occur in many grains.  Most of the grains are sector zoned and the edges of the 
grains appear serrated.  A boundary between zoned sectors in grain #76 is denoted with a 
green arrow.  Metamorphic rims are either absent or very thin (<5 µm). Red circle on 
grain #2 shows relative laser diameter.    
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Th/U ratios distinguish two groups of zircons in SG17-068.2; one group with lower 

Th/U ratios and a broad age range from ~110–290 Ma, and another with higher Th/U 

ratios and a narrower age range from ~250–290 Ma (Figure 29).  The group with lower 

Th/U ratios is interpreted to have been affected by metamorphism because low thorium 

abundance in zircon suggests coeval growth of monazite, which grows during 

metamorphism. Zircon grains in the “low Th/U ratio” group tend to have Th/U < 0.9, and 

therefore Th/U = 0.9 is the threshold value used to separate metamorphic and non-

metamorphic grains (Figure 29).  The metamorphic grains did not display distinct 

morphologies in cathodoluminescence imagery.  The grains with Th/U > 0.9 were used to 

calculate a mean weighted age, interpreted as a crystallization age.  These grains (n = 26) 

yield a crystallization age of 267.0 ± 5 Ma (mean standard weighted deviation [MSWD] 

= 2.2) (Figures 30–31).  The age was calculated using ISOPLOT v4.10.  Concordia plots 

were generated with ED_REDUX. 

Alternatively, the leucogneiss from which SG-17-068.2 was sampled could be 

interpreted as meta-sedimentary.  The meter-scale layering of leucogneiss, amphibolite 

and hornblende gneiss agrees with a sedimentary protolith.  If the leucogneiss is meta-

sedimentary, then zircons in SG17-068.2 would yield a MDA of 133.6 ± 12 Ma (Figure 

32), calculated by averaging the ages of the youngest three grains with overlapping error.  

This alternative cannot be ruled out but is not favored because the leucogneiss truncates 

adjacent layers, has high concentrations of plagioclase, includes plagioclase with 

oscillatory zoning, and has zircons with a relatively narrow range of ages on a concordia 

diagram (Figure 30). 
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Figure 29.  Scatter plot showing Th/U by age fors zircons in SG17-068.2. Each zircon 
grain is shown as a blue dot.  Previous studies used a Th/U ratio of 0.1 (orange line) as 
the cut off below which grains are considered affected by metamorphism. This study used 
a higher value of Th/U = 0.9 (purple line), which better separates the data into distinct 
groupings.     
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Figure 30.  Age distribution of SG17-068.2 zircons with Th/U > 0.9 (n = 26).  Box 
heights are 2σ.  The weighted mean age, shown with a green line, is 267.0 ± 5 Ma.   
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Figure 31.  Concordia plot for zircons from SG17-068.2.  
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Figure 32.  Probability density plots (PDPs) for SG17-068.2 and SK18-05.  The MDAs 
apply if the samples are interpreted as meta-sedimentary rock samples.  Histograms show 
number of zircons. (A) the MDA for SG17-068.2 is 133.6 ± 12 Ma.  The zircon ages 
form a prominent cluster at 270 Ma and a scatter f younger grains  with small peaks at 
~140 and ~230 Ma.  (B) the MDA for SK18-005 is 142.9 ± 7.2 Ma.  Most of the zircon 
ages are in a broad peak ranging from 170–230 Ma with its maximum at ~195 Ma.  
Younger grains form small peaks at 140 and 160 Ma.   The broad peak from 170–230 has 
an MSWD of 5.5 and a probability of fit (POF) of 0.0, and therefore represents a 
composite of populations. SK18-05 was sampled roughly 5 km east of SG17-068.2 
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Another sample (SK18-05) of Holden assemblage was collected ~5 km across strike 

to the east of SG17-068.2 (Figure 4).  SK18-05 is fine-grained biotite gneiss, interpreted 

as intermediate to siliceous meta-volcanic rock because the zircons tend to have growth 

zoning (Figure 33) and, like SG17-068.2, the zircon ages define a relatively narrow age 

range on a concordia diagram (Figure 34).  The zircons (n = 148) in SK18-05 range from 

50–250 µm, and many grains are <100 µm long.  Aspect ratios range from 1:1 to 3:1. The 

grains are mostly growth zoned, and less commonly show sector zoning (Figure 33).  

More than half of the grains have 5–10 μm-thick, unzoned rims, which are interpreted as 

metamorphic.   

Unlike SG17-068.2, Th/U ratios do not distinguish groups of grains (Figure 35).  

Th/U ratios are generally greater than 0.1, the commonly used threshold for 

distinguishing grains which grew coevally with monazite.  The two dated rims, which are 

interpreted to have grown during metamorphism, have Th/U ratios between 0.4–0.8, 

suggesting that the Th/U = 0.1 threshold is not appropriate for SK18-05.  Therefore, it is 

difficult to justify removing younger grains from the weighted mean age calculation.    
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The weighted mean age, interpreted as an approximate crystallization age, of SK18-

05, is 187.8 ± 36 Ma (Figure 36) (n = 146; MSWD = 21).  This age includes all the zircon 

ages with the exception of the rim ages. The high MSWD and the presence of outlier 

grains (94.7 ± 4.5 Ma, and 335 ± 19 Ma) suggest that some of the grains are inherited 

and/or experienced significant lead-loss (Figure 36).  By removing ages interpreted as 

being a result of lead-loss or inheritance, the data yield an alternative age of 193.3  ± 7.3 

Ma  (MSWD = 1.5; POF = 0.003). 

 

Figure 33.  CL imagery of zircons from the Holden assemblage (SK18-05).  The rock is 
fine-grained biotite gneiss.   The zircons range from 50–250 µm, but many are <100 µm 
long.  Growth zoning is common.  More than half of the grains have metamorphic rims.  
Red circles mark the locations of laser pits. 
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Figure 34.  Concordia plot for zircons from SK18-05.  One grey ellipses shows a rim 
analysis which was excluded from the age calculation, the other grey ellipse is obscured 
by data. The uppermost and lowermost ellipses are the two outliers (94.7 ± 4.5 Ma, and 
335 ± 19 Ma). Th/U ratios are represented by ellipse color. The intensity of the blue 
shading correlates with decreasing Th/U ratios.  All Th/U ratios are greater than 0.1.   
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Figure 35. Scatter plot of Th/U by age for all zircon grains for SK18-05. Each grain is 
shown as a blue dot.   
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Figure 36.  Weighted mean age distribution for zircons from SK18-05.  Two 
metamorphic rim ages are excluded.  Box heights are 2σ.  The weighted mean age, shown 
with a grey line, is 187.8 ± 36 Ma (n = 146; MSWD = 21).  By excluding grains 
interpreted as affected by lead-loss or inheritance (shown as grey bars), the data yield an 
alternative age, shown with a red line, of 193.9 ± 7.3 Ma (n = 71; MSWD = 1.5). 
 
 

A sample of hornblende-biotite gneiss was collected from the Spider Glacier unit 

(SG18-025) near the Chiwawa discontinuity. The hornblende-biotite gneiss is interpreted 

as meta-sedimentary, as it is composed of interlayers of different rock types which likely 

formed a diverse package of sedimentary rocks prior to metamorphism.  Unlike the 

zircons in SG17-068.2, the zircon age range in SG18-025  is broad and agrees with a 

sedimentary protolith.  

Zircon (n = 130) from SG18-025 is mostly 75–125 µm and ranges from 50–150 µm-

long, and from ellipsoidal to fragmental. Aspect ratios are generally 2:1 and range from 

1:1 to 3:1. Eighty of 130 zircon grains contain xenocrystic cores and metamorphic rims.  
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Primary growth zoning occurs in most cores.  Moderate to strong resorption occurs either 

around or within the cores. Mosaic textures are common in relatively younger grains.  

Zircons that lack cores and rims have ages in a broad plateau between 160–85 Ma with 

peaks at ~130, ~120, and ~90 Ma (Figure 37).  The plateau drops sharply at 160 Ma.  

Three Paleozoic grains occur between 400–290 Ma.  Th/U ratios decrease gradually from 

118 Ma to 110 Ma, and at 110 Ma, decrease abruptly from non-metamorphic (>0.1) to 

metamorphic (<0.1) (Figures 38–39).  Grains younger than ~110 Ma are interpreted to 

have formed in situ during metamorphism or to have experienced lead loss. These grains 

tend to have mosaic structures, which is indicative of growth during metamorphism 

(Corfu et al., 2003).   

Xenocrystic cores and respective rims were dated separately in 20 zircons (Figure 37) 

to constrain the timing of metamorphic rim growth. The cores from most of these grains 

are interpreted as part of the same population as the grains mentioned above that lack 

cores and rims because the cores do not form a distinct grouping in Figure 37.  

Metamorphic rim ages occur in three populations: the first ranges from 84–77 Ma with a 

peak at 80 Ma (n = 4; MSWD = 0.62; probability of fit (POF) = 0.60); the second, from 

98–91 Ma with a peak at 95 Ma (n = 5; MSWD = 0.39; POF = 0.82); and the third, from 

110–103 Ma with a peak at 110 Ma (n = 6; MSWD = 0.14; POF = 0.98).  Five of the 

cores, which are ca. 95 Ma, are probably metamorphic as they fall in the middle age 

population.  These three youngest populations have metamorphic Th/U ratios (< 0.1).  

The remaining rim ages (n = 5) occur in a broad scatter from 168 to 118 Ma with a peak 

around 140 Ma (MSWD = 5.2; POF = 0.0), and have non-metamorphic Th/U ratios. 
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Figure 37.  Probability density plots (PDP) for zircons from SG18-025.  (A) The PDP for 
zircons (n = 110), excluding cores and rims.  Histogram shows number of zircons.  (B) 
PDP for zircon cores and rims plotted separately.  The blue line represents rims, and the 
red line, cores.  The maximum depositional age is between 118–110 Ma. 
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Figure 38.  Scatter plot showing Th/U for zircon grains, cores and rims in SG18-025. 
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Figure 39. Concordia plot for zircons from SG18-025.  Th/U ratios are represented by 
ellipse color; lower Th/U ratios have a bluer color.  The black box marks the boundaries 
of Figure 35.   
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Figure 40. Concordia plot for <350 Ma zircons from SG18-025.  Th/U ratios are 
represented by ellipse color.  Lower Th/U ratios have a bluer color.  Black line highlights 
110 Ma, the inferred boundary between detrital and metamorphic zircon.  
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DISCUSSION 

Origin of the Spider Glacier Unit 

The mineral assemblages, presence and age of zircons, and rock types provide insight 

into the origin of the Spider Glacier unit.  The most abundant rock type in the Spider 

Glacier unit, hornblende-biotite gneiss, is likely meta-sedimentary, as it contains zircon 

with a broad (>100 Ma) range of ages.  The hornblende-biotite gneiss, in general, 

contains 20–40% plagioclase, 10–35% quartz, 15–30% hornblende and 10–35% biotite, 

which agrees best with a protolith of arkosic to lithic arenite.  

Biotite gneiss is also interpreted as meta-sedimentary as it commonly forms thin (<10 

cm) interlayers within hornblende-biotite gneiss.  Biotite gneiss in one sample has large 

amounts of plagioclase (45%) and quartz (45%), and only minor mafic material (<10%).  

Based on this assemblage, the protolith of the biotite gneiss is likely meta-arkose.   

Micaceous quartzite also occurs as thin layers within hornblende-biotite gneiss and 

biotite gneiss.  Mineral separates obtained from one sample of micaceous quartzite lacked 

zircon.  Based on these observations, the micaceous quartzite is interpreted as meta-chert. 

Micaceous quartzite also tends to interlayer with hornblende gneiss, especially in the 

northern part of the Spider Glacier area (Figure 7A).  The hornblende gneiss is 

interpreted as meta-basalt or meta-gabbro based on a lack of biotite and quartz, and 

dominance of plagioclase and hornblende.  Meta-peridotite may represent oceanic mantle 

associated with the protoliths of the meta-basalt and/or meta-gabbro.  Alternatively, 

meta-peridotite may be mantle incorporated into the Spider Glacier unit by later 

thrusting.   
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Igneous material in the Spider Glacier unit, excluding partial melt associated with 

migmatites, intruded the unit during and after deformation.  Hornblende gabbro is largely 

undeformed, but its occurrence as boudins indicates its intrusion was prior to, or coeval 

with, deformation.  As most of the hornblende gabbro is not deformed, intrusion must 

have outlasted deformation and/or strain was efficiently focused in the host rocks.  

Similarly, all the granitoid dikes are undeformed, except for a few with aligned mafic 

minerals.  The two andesitic dikes are undeformed.  This leads me to infer that the 

hornblende gabbro and a small amount of  leucocratic granitoid were emplaced coeval 

with Cretaceous plutons, such as the Entiat or Seven-Fingered Jack plutons, whereas 

most of the granitic rocks and all of the andesitic dikes was emplaced with younger 

intrusions, such as the Cloudy Pass batholith. 

Based on these interpreted protoliths of the Spider Glacier unit, I propose that the unit 

was deposited offshore of an arc, in a deep-water environment.  This is largely based on 

the association of meta-basalt and/or meta-gabbro and meta-chert, which presumably 

were oceanic basalt/gabbro and pelagic chert, respectively.  The clastic rocks (e.g. meta-

arkose, meta-lithic arenite) were deposited on, or imbricated with, the mafic rocks and 

cherts. 

This interpretation raises the question of whether deposition occurred in a fore-arc or 

back-arc?  Comparing the age range of detrital zircons in the Spider Glacier unit with 

potential zircon sources within the Cordillera does not provide definitive insights (Table 

1).  If the range of zircon ages in the Spider Glacier unit matched that of a Mesozoic 

zircon source, then one might infer that the Spider Glacier unit protolith was deposited 
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adjacent to that source. The closest arc coeval with the MDA of the unit is the Okanogan 

Range batholith ~50 km to the east (Figure 2) (Hurlow and Nelson, 1993), and along 

strike in southern British Columbia, the Eagle Plutonic Complex ranges from ~160–110 

Ma (Greig et al., 1991). Three major strike-slip faults (Entiat, Ross Lake, and Pasayten), 

which likely experienced >200 km of slip [see review in Umhoefer and Miller (1996) and 

Wyld et al., (2006)], lay between the Spider Glacier unit and Okanogan Range batholith 

(Figure 2), and any connection remains speculative.    

 
Table 1.  Zircon age ranges for potential Mesozoic source rocks with ages from 160-110 
Ma within the Cordillera.   
 

Early Cretaceous  Age Range (Ma) References  

Coast Plutonic Complex 118–110 Gehrels et al. (2009), Cecil et al. (2011) 

Okanogan Range Batholith 114–107 Hurlow and Nelson (1993) 

Eagle Plutonic Complex 160–120 Greig (1991) 

Sierra Nevada Batholith 124–105 Lackey et al. (2012) 

Peninsular Range Batholith 126–110 Shaw et al. (2014) 

Jurassic     

Coast Plutonic Complex 177–162, 157–142 Gehrels et al. (2009), Cecil et al. (2011) 

Blue Mountains 170–150 LaMaskin et al. (2015) 

Klamath Mountains 180–140 Harper and Wright (1984) 

Sierra Nevada Batholith 180–150 Chapman et al. (2012) 

Transverse Ranges 180–140 Needy et al. (2009) 

Jurassic to Cretaceous     

Spider Glacier unit ~160–110 This study 
Note: Modified from Sauer et al. (2017a).  
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Rather than matching detrital zircons with potential source rocks, many studies use 

zircon age ranges and distinct age peaks as fingerprints to correlate sedimentary rock 

units, and make inferences about source regions (e.g., Lamaskin, 2012; Sharman et al., 

2015; Sauer et al., 2017a).  I compared the Spider Glacier unit zircon age pattern with 

those in clastic rocks to the east and west of the Cascades core (Table 2).   

A similar range of zircon ages and age peaks as the Spider Glacier unit is found in the 

Winthrop Formation of the Methow basin.  This Formation was deposited in a fore-arc 

basin, but subsequent sinistral shear may have transported the basin into a back-arc 

position during 96–45 Ma magmatism in the North Cascades (e.g. Monger et al., 1994).  

The Winthrop Formation has zircon ages which generally range from 180–100 Ma, 

roughly matching the 165–110 Ma age range of zircons in the Spider Glacier unit.  Age 

peaks in the Winthrop Formation occur at 165, 150 and 120–110 Ma (DeGraaff-Surpless 

et al., 2003).  The age peak of ~130 Ma seen in the Spider Glacier unit is absent. There 

are other significant differences between the protoliths of the Spider Glacier unit and the 

Winthrop Formation, as no meta-peridotites, meta-basalts or meta-cherts directly underlie 

or have been found in the Winthrop Formation. 

Another unit which has a broadly similar range of detrital zircon ages (~180–110 Ma) 

as the Spider Glacier unit is the lithic petrofacies of the western mélange belt, which is 

exposed west of the Cascades core (Figure 2) (Sauer et al., 2017a). This belt has age 

peaks at 180, 160, and 110 Ma (Sauer et al., 2017a).  This qualitative similarity of zircon 

age ranges and peaks between rock units deposited in the fore-arc and the Spider Glacier 

unit at least agrees with deposition of the Spider Glacier unit in a fore-arc setting.  
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Moreover, meta-peridotites, meta-basalts, and meta-cherts are found within, or in tectonic 

contact with the western mélange belt of the fore-arc. 

The lack of Proterozoic zircons in the Spider Glacier unit further supports deposition 

of the Spider Glacier unit protolith in a fore-arc setting, as a barrier must have prevented 

cratonic zircons flowing from the east.  One would expect cratonic zircons to flow readily 

into a back-arc, whereas a high-elevation continental arc would prevent cratonic zircons 

from reaching a fore-arc.  Therefore, as the Spider Glacier unit lacks Proterozoic zircon, 

the protolith was most likely deposited in a fore-arc setting.  

Table 2.  Zircon age data for back-arc, fore-arc and accretionary wedge units in the North 
Cascades.  The MDAs, main age peaks, and number of zircons (n =27–417) for units 
adjacent to the Cascades core are listed.   
 

Note: Modified from Sauer et al. (2017a). 
 

  

Unit Rock Type Number of zircons Main peaks (Ma) MDA (Ma)
Back-arc

Pasayten Group (Winthrop Formation) Arkosic sandstone 417 180, 160, 120–110 105 ± 2
Newby Group (Twisp Formation) Arkosic Sandstone 27 156 152 ± 3
Ladner Group (Boston Bar Formation) Volcaniclastic sandstone 100 170 165 ± 4

Fore-arc 
Nooksack Formation Fine-grained sandstone 114 155 145 ±3

Western Melange Belt Unit
Arkosic Petrofacies Arkosic Sandstone 129 1700, 1400, 190, 165, 90, 74 72 ± 2
Lithic Petrofacies Lithic sandstone 145 180, 160, 110 109 ± 3 

Unknown Setting
Spider Glacier unit Hornblende-biotite gneiss 110 130, 120 118–110
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Burial Mechanism 

Zircon metamorphic rim ages provide some insight into how and at what rate the 

Spider Glacier unit protolith was buried within the arc.  The metamorphic rims occur in 

four populations.  The youngest three populations each span ~7–10 Ma and are 

interpreted to correlate with periods of metamorphism.  The two youngest zircon rim 

populations, 84–77 Ma (n = 4) and 98–91 Ma (n = 5), overlap with known periods of 

high-grade metamorphism in the Cascades crystalline core (e.g., Evans and Berti, 1986; 

Stowell et al., 2007).  In contrast, the population ranging from 110–103 Ma in age (n = 6) 

does not overlap with any known metamorphism in the Cascades core and hints at 

metamorphism initiating before the onset of 96 Ma plutonism.  The oldest zircon rim 

population (n = 5) ranges from 168–118 Ma and is also not a period of well-documented 

metamorphism. These older grains, however, may be inherited or be the result of overlap 

between the core and rim during ablation.   

If the inferred metamorphic rims in the Spider Glacier unit are in situ, then the Spider 

Glacier unit was buried and metamorphosed in <1 Ma to 8 Ma following deposition.  

Preliminary hornblende-garnet thermobarometry suggests the Spider Glacier unit reached 

~30 km of depth (8.7 ± 1.4 kbar, 590–670° C; A. Hansen, written communication), which 

requires burial rates between ~3.5–>30 mm per year.  Though the exact rate is uncertain, 

burial appears to have been rapid.  The faster burial rate would support burial in a 

subduction zone, rather than in a fore-arc or back-arc setting, as vertical movement on 

fold and thrust belts is comparatively slow (3.5 mm/year) (e.g., Mazzoti and Hyndman, 

2002).   
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Anomalous Folds  

Most folds in the Cascades core trend north and northwest, or south and southeast and 

plunge shallowly (see summary in Miller et al., 2006). In contrast, the folds in the Spider 

Glacier unit and Holden assemblage in the Carne Mountain area have moderate to steep 

plunge, and a highly variable, average westward trend.  The origin of these folds is 

uncertain.  They may have formed in a typical Cascades orientation and been rotated by 

Eocene movement on the Entiat fault.  This scenario is not well supported, as the shortest 

rotation of 30–60° would require sinistral slip and counter-clockwise rotation in the 

Entiat fault zone, which conflicts with observations by other workers that support dextral 

slip (e.g., Tabor et al., 1987).  Rotation via dextral slip would need to be >100°, which 

seems unlikely.  

 Alternatively, the anomalously oriented folds could record deformation that is older 

than most of the folds in the core of the Cascades.  Unfortunately, the timing of folding in 

the Spider Glacier unit is not sufficiently constrained to evaluate this hypothesis. Thus, 

the folding in the Spider Glacier unit remains enigmatic. It is, however, helpful in 

investigating the contact between the Spider Glacier unit and the adjacent Swakane 

Gneiss. 

Chiwawa Discontinuity  

A major goal of this study was to investigate the contact between the Spider Glacier 

unit and the Swakane Gneiss.  The results show that the Swakane Gneiss lacks the 

moderately to steeply plunging, variably oriented, overall west-trending folds in the 

Spider Glacier unit.  Thus, the contact separates rock units with different rock types that 
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deformed very differently, and this lack of strain compatibility across the contact implies 

that it is tectonic.   

There is also an apparent age difference across the contact, inferred from MDAs 

calculated from detrital zircons.  The Swakane Gneiss (hanging wall) has MDAs ranging 

from 93–81 Ma (Sauer et al., 2019), and has interpreted in situ zircon metamorphic rim 

populations between 78–68 Ma (Sauer et al., 2017a). The Spider Glacier unit (footwall) 

has an older MDA of ca. 118–110 Ma and has zircon rim populations of ca. 110, 95, 85 

and 80 Ma.  If the rims in the Spider Glacier unit formed in situ, then metamorphism of 

the Spider Glacier unit began prior to deposition of the Swakane Gneiss, and probably 

continued during deposition of the Gneiss.  This requires that the Chiwawa discontinuity 

juxtaposes younger material above older material.  

Quartz LPO patterns provide some insight about the kinematics of movement along 

the Chiwawa discontinuity. The quartz LPOs from the sample collected in the Spider 

Glacier unit <10 m from the Chiwawa discontinuity (SG17-114) define a type-I crossed 

girdle, which is indicative of low- to medium-temperature, non-coaxial strain.  The 

asymmetry of the crossed girdle and orientation of a-axes maxima along the primitive 

circle, combined with foliation and lineation orientation, imply top-to-the-east-southeast 

shear (Bouchez, 1978; see review in Passchier and Trouw, 2008).  This pattern contrasts 

with the sample collected ~100 m from the Chiwawa discontinuity (SG17-235.2), where 

quartz LPOs form a weak type-II crossed girdle indicative of coaxial strain (see review in 

Passchier and Trouw, 2008), and a z-axis maximum indicative of prismatic {m}<a> slip 

in quartz and active only at temperatures greater than ~550 °C (Law et al., 1990).  This 
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sample farther from the Chiwawa discontinuity likely records coaxial strain related to 

foliation formation, rather than movement along the discontinuity.  In summary, the 

Chiwawa discontinuity is probably a shear zone, but it is not associated with well-

developed kinematic indicators in the field.   Based on the quartz LPOs from SG17-114, 

sampled near the discontinuity, and the oblique orientation of the lineation at that 

location, the shear zone likely accommodated top-to-the-east-southeast, sinistral-reverse 

motion.  This movement would thrust Swakane Gneiss on the Spider Glacier unit. 

Original Position of Spider Glacier Unit Relative to the Swakane Gneiss 

A fundamental question of this study is whether the Spider Glacier unit is beneath the 

Swakane Gneiss in the Cascades crustal section.  The Spider Glacier unit, in its present 

position, is below the Gneiss based on my mapping.  As the contact between them (the 

Chiwawa discontinuity) records ductile strain, it was clearly active prior to local brittle 

deformation (Figure 6 and 7) along the Entiat fault. This brackets activity along the 

Chiwawa discontinuity to between 81 Ma, the youngest MDA of the Swakane Gneiss, 

and the Eocene, the earliest documented movement along the Entiat fault.  

As to the original relative position of the two units, quartz LPO patterns near the 

Chiwawa discontinuity allow for speculation.  If quartz LPOs from the sample of Spider 

Glacier unit closest to the Chiwawa discontinuity (SG17-114) accurately record 

displacement along the discontinuity, then it accommodated oblique thrusting of the 

Swakane Gneiss over the Spider Glacier unit.  However, the question remains of when 

did this thrusting occur?  The post-81 Ma age of thrusting indicates that the juxtaposition 

of the two units is too young to be part of the regional Northwest Cascades – San Juan 
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Islands thrust system (e.g., Misch, 1966; Brown, 1987; Brandon et al., 1988; McGroder, 

1991; Brown et al., 2005). The thrusting may be associated with 74–65 Ma 

metamorphism and ductile deformation of the Swakane Gneiss (Gatewood and Stowell, 

2012; Sauer et al., 2017a), which presumably was related to underthrusting of the Gneiss 

into the arc.  I propose that, as the Swakane Gneiss protolith was buried during 

underthrusting, a backthrust placed it above the older Spider Glacier unit, which had 

already been accreted, folded and incorporated deeply into the North Cascades 

continental magmatic arc.  

Spider Glacier Unit: Part of the Holden Assemblage? 

Cater and Crowder (1967) mapped the Spider Glacier unit as Holden assemblage 

whereas Haugerud et al. (2009) show it as Napeequa complex.  As noted above, the 

Napeequa complex is older than the Spider Glacier unit making this correlation unlikely.   

This study and others (e.g., Gordon et al., 2017; Sauer et al., 2017a; Schermer, 2017) 

have shown that the Holden assemblage and correlative Cascade River Schist range from 

Late Permian to mid-Cretaceous in age.  The MDA of the Spider Glacier unit overlaps 

with that of the younger part of the Cascade River-Holden assemblage.  The Spider 

Glacier unit is overall more mafic than the Holden assemblage in the Holden Village 

area, but is relatively like the more mafic rocks of the assemblage in the Carne Mountain 

area. The major difference between the Holden assemblage and the Spider Glacier unit is 

the absence of marble in the Spider Glacier unit and meta-peridotite in the Holden 

assemblage.  The Spider Glacier unit may represent a previously unrecognized unit of 

uncertain relationship to the Holden assemblage.  However, considering the overall 
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heterogeneity of the Holden assemblage, these differences seem inadequate to separate 

the Spider Glacier unit as distinct from the Holden assemblage.  Therefore, I propose that 

the Spider Glacier unit is a more mafic and oceanic part of the Cascade River-Holden 

assemblage. 

Cascade River-Holden Arc 

Recent data show that the Cascade River-Holden assemblage belt ranges in age from 

Late Permian to Late Cretaceous (this study; Gordon et al., 2017; Schermer, 2017), but 

no rocks between 118 Ma and 220 Ma in age have been identified, and the Permo–

Triassic and Cretaceous components of the belt are probably separated by a fault or 

unconformity.  If the Spider Glacier unit is included as part of the Holden assemblage, 

then it supports a fault contact between the older and younger components of the 

assemblage, as it seems unlikely that meta-chert and meta-basalt (Spider Glacier unit) 

would accumulate on probable arc rocks (Holden assemblage in Holden Village), and 

more likely that they would be juxtaposed by faulting. 

The extent of Late Permian Cascade River-Holden arc rocks is partially informed by 

this study and others.  Schermer (2017; written communication) interpreted a Late 

Permian (263.5 ± 2.3 Ma) crystallization age for orthogneiss in the Cascade River Schist 

roughly 33 km to the northwest (320°) of where sample SG17-068.2 was collected in the 

Holden Village area.  This suggests that a belt of Late Permian Cascade River-Holden 

rocks extends at least that distance. 

Other rocks in the Cordillera may be part of the same Permian arc as the Cascade 

River-Holden assemblage. Schermer (2017) interpreted the Wallowa terrane (part of Blue 
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Mountains terrane on Figure 1) of northeastern Oregon and western Idaho as a potential 

correlative to the Late Permian arc rocks found northwest of Holden Village.  The 

Wallowa terrane is dominated by Permian to Triassic volcanic and volcaniclastic rocks of 

the Seven Devils Group, which are underlain by Paleozoic arc basement of the Cougar 

Creek complex (Vallier, 1977; Vallier et al., 2016).  If the Wallowa terrane and Cascade 

River-Holden assemblage are cogenetic, then the older rocks of the Holden assemblage 

would most likely correlate with the Hunsaker Creek Formation of Vallier (1977) of the 

Wallowa terrane, which contains sandstones, argillites, tuffs, intermediate to mafic 

volcanic rocks, and rare limestones.    

The Cascade River-Holden assemblage may also correlate with the Wineglass and 

Kutcho assemblages of British Columbia (Figure 1). The Wineglass and Kutcho 

assemblages, which were correlated by Schiarizza (2013), consist of Permian to Triassic 

granitoid overlain by mafic to felsic volcanic rocks of similar age. The Holden 

assemblage would best correlate with the upper volcanic unit of the Wineglass 

assemblage (Wv2), which consists of rhyolites, basalts and volcanic breccias.   

CONCLUSIONS 

The major conclusions from this study are as follows. 

1. Based on the mineral assemblages and modes of the Spider Glacier unit, the 

protolith was lithic to arkosic arenite, chert, basalt and/or gabbro.  The presence of 

meta-chert and the mafic rocks suggests that the protolith was likely deposited in 

a deep-water environment.   

2.  By comparing the detrital zircon age range and age peaks in the Spider Glacier 
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unit with those of other units in the fore-arc and back-arc, the Spider Glacier unit 

was deposited in a fore-arc setting.   

3. The U-Pb dates of detrital zircons, are interpreted to indicate that the protolith of 

the Spider Glacier unit was deposited between ~118–110 Ma, and was subjected 

to metamorphic conditions capable of producing zircon rim growth perhaps as 

early as ca. 110 Ma.   

4. The Spider Glacier unit and the Holden assemblage in the Carne Mountain area 

are folded by moderately to steeply plunging, highly-variably trending folds that 

have a mean westward trend.  The folds may have originally formed with a 

northwest-southeast trend and later been rotated within the Entiat fault zone, or, 

more likely, they record an early deformation event in the Cascades core. 

5. A tectonic contact, the Chiwawa discontinuity, separates the Spider Glacier unit 

and Swakane Gneiss, based on strain incompatibility and a difference in rock 

types and MDAs across the contact.  According to quartz LPO patterns from one 

location, the discontinuity accommodated top-to-the-east-southeast sinistral-

reverse shear placing the Swakane Gneiss over the Spider Glacier unit.   

6. The Spider Glacier unit was deposited in a fore-arc setting, accreted to the arc, 

folded, and metamorphosed, prior to the Swakane Gneiss being deposited.  The 

Gneiss was thrust over the older Spider Glacier unit along a back thrust. 

7. The Cascade River-Holden assemblage contains rocks of Late Permian age, 

which are part of a belt of Late Permian rocks extending at least 33 km to the 

northwest within the Cascades core.  
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APPENDIX A: EBSD POST-PROCESSING PROCEDURE 

  
1. Open the CHANNEL 5 software package. 

 
2. Create a new file using the EBSD data acquired by the SEM. 

  
3. Open the new file in the module “Tango” 

 
4. Click “reduce wild spikes” once. 

 
5. Apply only one iteration of a “6 neighbor zero solution”. 

 
6. Open the data file in the module “Mambo” by dragging the datafile into the icon. 

 
7. Generate a pole plot of the data file.  
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APPENDIX B:  ZIRCON SEPARATION PROCEDURE (SJSU) 

 
1. Crush rock sample using a rock pulverizer. 
 
2. Mill the sample to sand-sized particles using an industrial disc mill. 

 
3. Remove small low-density particles by running the sample on a Wilfley-table 

density separator set to a ~15° tilt with moderate water flow.   
 

4. Remove low density silicates using heavy liquid separation with Bromoform. 
 

5. Separate out ferromagnesian minerals using a Franz magnetic separator. 
 

6. Isolate zircon, titanite, and garnet using heavy liquids separation with Methyl 
Iodide.  
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APPENDIX C: ZIRCON SEPARATION PROCEDURE (UNR)  

 
1. Break sample into tangerine-sized pieces using a sledgehammer. 
 
2. Mill the sample using a custom-made steel mortar and pestle. 

 
3. Sort milled sample in No. 40 sieve. 

 
4. Place sieved sample in a 1000 mL beaker and wash repeatedly with water, until 

water becomes clear within 5 seconds of agitating sample with pressurized 
stream.   

 
5. Place sample under heat lamp for 3–4 hours until completely dry. 

 
6. Run sample through Frantz magnetic separator at the following settings: 

 
a. 0.35 amperes @ 20°  
b. 0.60 amperes @ 20° 

 
7. Perform heavy liquid separation using methyl iodide solution. 

 
8. Run heavy liquid separate through Frantz magnetic separator at the following 

settings: 
 

a. 1.0 amperes @ 20°  
b. 1.4 amperes @ 20° 
c. 1.4 amperes @ 15° 
d. 1.4 amperes @ 10° 
e. 1.4 amperes @ 8° 
f. 1.4 amperes @ 6° 
g. 1.4 amperes @ 4° 
h. 1.4 amperes @ 2° 

 
9. Place final separate in petri dish and pick individual zircons if necessary.   
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APPENDIX D: PREPARATION OF FESEM MOUNT 

 
1. Apply sticky tape to back of a Pyrex dish. 

 
2. Place a cylinder divided down the center into two half-cylinders on the sticky 

tape. 
 

3. Cover one half of the cylinder with tape. 
 

4. Pour zircons from one sample into the open half of the cylinder. 
 

5. Remove cover from unused half of cylinder. 
 

6. Place tape on the half of the cylinder in which zircons have already been poured. 
 

7. Pour zircons from remaining sample into the open half of the cylinder. 
 

8. Remove the split cylinder. 
 

9. Flatten any upright zircons against the tape using tweezers under a compound 
microscope. 

 
10. Remove unnecessary material, such as garnet or titanite. 

 
11. Prepare epoxy resin. 

 
12. Place plastic mount mold over zircons. 

 
13. Use wooden stick to drip and smear epoxy across zircons, and pour remaining 

epoxy on zircons until the mount mold is filled with ~1 cm of epoxy resin.   
 

14. Wait 12 hours for epoxy resin to dry.  
 

15. Remove dry mount from mold. 
 

16. Make the mount cylindrical by using coarse sandpaper to remove extra epoxy 
around edges. 

 
17. Use gradually finer grit to abrade zircons.  Check periodically with compound 

microscope until a maximum number of zircons are exposed in cross section.   
 

a. 800 grit, silica-diamond paper, 10 minutes 
b. 1000 grit, silica-diamond paper, 10 minutes 
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c. 1200 grit, silica-diamond paper, 10 minutes 
d. 3-micron, silica paste, 1 minute 
e. 1 micron, silica paste, <1 minute 

 
18.  Apply a 5-8 nm carbon coat on the mount using a Hi-Tech Instruments Q300T T 

Triple Target, Large Chamber, Turbo-Pumped Sputter Coater. 
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