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ABSTRACT 
 

USING STABLE ISOTOPES TO DETERMINE FORAGING AREAS OF LEATHERBACK SEA TURTLES: 
LIMITATIONS OF THE ISOTOPE TRACKING TECHNIQUE IN THE WESTERN ATLANTIC OCEAN 

 
by Sharon Hsu 

 
Reproductive output has long been linked to habitat quality and resource availability. 

Individuals foraging in high-quality habitats with high resource availability will have better body 

conditions and higher survival rates, as well as greater reproductive output. Post-nesting, 

Western Caribbean leatherback turtles are known to migrate to at least two foraging regions: 

the western North Atlantic and Gulf of Mexico.  This study had three objectives: [1] measure 

δ13C and δ15N values in bulk skin tissue of females nesting in Parismina, Costa Rica to reveal prior 

foraging region; [2] assess influence of foraging region on female body size and reproductive 

output; and [3] conduct a comprehensive review of existing stable isotope data for various taxa 

(from baseline producers to higher order consumers) and create δ13C and δ15N isoscapes to use 

as a reference for the Gulf of Mexico and western North Atlantic.  It was not possible to infer 

foraging region for skin samples collected in Parismina based on stable isotope values, nor was 

there a relationship between stable carbon values and reproductive output. Synthesized 

isoscapes from published stable isotope data showed substantial variation between taxa and 

sampling regions. Stable carbon values were higher in the Gulf of Mexico than the western 

North Atlantic for leatherbacks, but no other consistent trends were distinguishable. Although I 

was unable to validate it as a primary technique to study leatherback movements between 

nesting and foraging grounds, stable isotope analysis still holds important conservation value for 

leatherbacks in conjunction with satellite tracking. This study highlights the need for more stable 

isotope data and longer-term data collection.
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Introduction 

Intra-population differences in foraging strategies can significantly impact population 

dynamics (Araújo, Bolnick, & Layman, 2011; Bolnick et al., 2002; Bolnick et al., 2011). Selective 

foraging habitat use and consistent individual patterns represent individual specializations 

(Vander Zanden et al., 2014) that may contribute to variation in reproductive output within a 

population. Individuals foraging in high-quality habitats with high resource availability typically 

have better body conditions and greater reproductive output (Balazs & Chaloupka, 2004; Brown, 

Bishop, & Brooks, 1994; Côté & Festa-Bianchet, 2001; Diez & van Dam, 2002), resulting in these 

individuals contributing disproportionately to a population (Annett & Pierotti, 1999; Vander 

Zanden et al., 2014). Therefore, individual specialization and use of selective foraging habitat 

impact population dynamics. Thus, to develop proper species management policies, we must 

first understand patterns of foraging area use and migration patterns (Hobson, 1999; Martin et 

al., 2007; Rubenstein & Hobson, 2004; Runge, Martin, Possingham, Willis, & Fuller, 2014). 

One method of tracing migratory patterns and long-distance movements of vertebrates is 

via satellite-linked telemetry (Block et al., 2011; Godley et al., 2008). Equipping marine animals 

with small transmitters has yielded significant information about their habitat use; however, the 

high cost of transmitters often results in limited sample sizes (Godley et al., 2008; Graham, Koch, 

Newsome, McMahon, & Aurioles, 2010; Hobson, 1999; Seminoff et al., 2012). To study the 

movement of a larger number of individuals in a population, researchers are increasingly using 

stable isotope analysis (SIA), a lower-cost complement to satellite telemetry (Caut, Guirlet, 

Angulo, Das, & Girondot, 2008; Graham et al., 2010; Hobson, 2008; Rubenstein & Hobson, 2004; 

Seminoff et al., 2012). SIA is based on the concept that isotopic compositions of consumer 

tissues integrate information from their local food webs (Graham et al., 2010; Hobson, 1999). 
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Isotopic profiles of local food webs vary based on local biogeochemical processes, and these 

values are passed into consumers feeding in those environments (Hobson, 1999, 2008) such that 

when an animal moves between isotopically distinct habitats, the isotope composition of its 

body tissues can be used as a geo-eco-chemical tracer to track its movements (Graham et al., 

2010). This technique requires spatial variations in the isotopic landscape or “isoscape” and 

prior knowledge of the geographical distribution of isotope values in this isoscape (Graham et 

al., 2010; Hobson & Wassenaar, 2018). Spatial isotopic variations in terrestrial systems are well-

understood, and SIA has been successfully used to differentiate geochemically distinct foraging 

grounds and track movements of numerous highly-migratory terrestrial species (Hobson, 2008; 

Rubenstein & Hobson, 2004).  

In marine systems, distinct biogeochemical processes determine isotopic values of primary 

producers (McMahon, Hamady, & Thorrold, 2013). Broad-scale isoscapes have been described 

for lower trophic level taxa (McMahon et al., 2013). For example, stable carbon (13C/12C, 

denoted δ13C) values are primarily driven by temperature and dissolved organic carbon 

(McMahon et al., 2013). These drivers result in δ13C spatial gradients in nearshore/benthic food 

webs versus offshore/pelagic food webs (Hobson, 1999). Nearshore systems with greater 

nutrient concentrations and productivity are typically higher in 13C than offshore, pelagic 

systems (Graham et al., 2010; McMahon et al., 2013; Rubenstein & Hobson, 2004), and high-

latitude pelagic ecosystems generally have lower δ13C values than low-latitude pelagic 

ecosystems due to seasonally low photosynthetic rates (Graham et al., 2010). These values are 

reflected in particulate organic matter (POM), phytoplankton, and algae at the base of the food 

web (Graham et al., 2010) and predictably integrate into consumer tissues. Using these 
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isoscapes, the origins of nutrient resources are often inferred from δ13C in body tissues of 

higher-order consumers (Hobson, 2008).  

Stable nitrogen (15N/14N, denoted δ15N) compositions are often used to determine diet 

composition and trophic level for a variety of species (DeNiro & Epstein 1981; Michener & 

Kaufman, 2007). In consumers, δ15N values can be used to identify trophic level due to a 

stepwise enrichment of 15N in consumer tissues with each trophic step (DeNiro & Epstein, 1981; 

Hobson, 2008; Wallace, Schumacher, Seminoff, & James, 2014). Despite the more traditional 

use of δ15N to determine diet and trophic level, spatial variations in δ15N are also used to 

identify foraging habitat. In marine systems, local biogeochemical processes and nitrogen 

cycling regimes determine δ15N values of primary producers (Lorrain et al., 2015). Regions of 

greater nitrogen fixation are typically associated with lower δ15N values (McMahon et al., 2013; 

Montoya, 2007), whereas regions of denitrification are associated with elevated δ15N values 

(Montoya, 2007; Pajuelo et al., 2012). Both nitrogen fixation and denitrification result in distinct 

local signatures among zoo- and phytoplankton that are conserved up the food chain within 

their respective areas (Montoya, 2007). Spatial patterns of δ15N values of primary producers are 

reflected in δ15N values in body tissues of higher trophic level species (Lorrain et al., 2015; Popp 

et al., 2007; Seminoff et al., 2012), and δ15N isoscapes also have been used to infer movements 

and foraging regions of highly migratory species (Caut et al., 2008; Lorrain et al., 2015; Seminoff 

et al., 2012).  

Leatherback sea turtles (Dermochelys coriacea) are an ideal species for using SIA to identify 

foraging region because they feed on lower-order prey such as large sea jellies, pyrosomes, and 

other gelatinous organisms whose tissue isotopic values are derived from baseline influences, 

and therefore, are indicative of regional food webs. As a result, isotopic values in leatherback 
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tissue reflect baseline isotopic values of foraging regions (Caut et al., 2008; Lontoh, 2014; 

Seminoff et al., 2012). Differences in tissue stable isotope values among leatherback foraging 

groups are attributed to foraging in different isotopic regimes and not a result of disparate 

trophic levels (Caut et al., 2008; Seminoff et al., 2012; Wallace, Seminoff, Kilham, Spotila, & 

Dutton, 2006). For example, variations in blood δ13C values for leatherbacks nesting in French 

Guiana were attributed to individuals feeding in separate foraging areas. Individuals with lower 

δ13C values foraged in northern/offshore regions of the North Atlantic, while individuals with 

higher values foraged in southern/coastal areas in the Atlantic, along the West African and 

Iberian coasts (Caut et al., 2008). In Western Pacific leatherbacks, a distinct dichotomy in skin 

δ15N values linked leatherbacks with low δ15N to the western Pacific and leatherbacks with high 

δ15N to eastern Pacific foraging regions (Seminoff et al., 2012). The δ15N values in the latter 

group are thought to be a result denitrification in waters along the west coast of North America. 

In an extension of the Pacific leatherback study, Lontoh (2014) studied bulk skin δ15N and δ13C 

values of satellite-tracked Pacific leatherbacks and identified three separate foraging areas: 

Northeast Pacific, North Pacific Transition Zone, and South China Sea. 

Leatherbacks are also ideal for using SIA to identify general foraging regions due to their 

broad ranging movements, fidelity to and residence in discrete foraging areas, and philopatry to 

specific nesting beaches where they can be sampled easily (Lohmann, Lohmann, Brothers, & 

Putnam, 2013; Seminoff et al., 2012). Leatherbacks nest worldwide, with nearly all populations 

declining (Wallace, Tiwari, & Girondot, 2013). In the northwest Atlantic, the leatherback 

subpopulation is divided into seven rookeries: Florida, Northern Caribbean, Western Caribbean, 

Southern Caribbean/Guianas, Brazil, West Africa and South Africa (Northwest Atlantic 

Leatherback Working Group [NWALWG], 2018). This study focuses on females nesting in Costa 
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Rica from the Western Caribbean rookery. Females from this rookery nest from Honduras to 

Colombia, with the Caribbean coast of Costa Rica being a nesting stronghold (NWALWG, 2018; 

Troëng, Chacón, & Dick, 2004; Turtle Expert Working Group [TEWG], 2007). Satellite-tracking 

data indicate that post-nesting, these females forage in at least two regions: the Gulf of Mexico 

and western North Atlantic (Aleksa, Sasso, Nero, & Evans, 2018; Fossette et al., 2010; James, 

Ottensmeyer, & Myers, 2005; TEWG, 2007; Sea Turtle Conservancy [STC], 2019; Wallace et al., 

2014). 

Although the Gulf of Mexico is the least productive foraging region in terms of net primary 

productivity for Western Caribbean leatherbacks (Saba, Spotila, Chavez, & Musick, 2008), 

genetic analyses indicate that up to 43% of leatherbacks nesting in Costa Rica use the Gulf of 

Mexico for foraging (Stewart et al., 2016). Satellite tracking studies provide further evidence 

that the Gulf of Mexico is an important foraging area for this population (Aleksa et al., 2018). 

The proximity to the nesting beaches may provide an energetic advantage over distant, more 

productive regions (Aleksa et al., 2018). For example, a round-trip migration between nesting 

beaches in Costa Rica and foraging areas in the Gulf of Mexico is less than 5,000 km (Aleksa et 

al., 2018) compared with a greater than 10,000 km journey from Costa Rica to the western 

North Atlantic foraging region (James et al., 2005). Additionally, foraging in a warmer, tropical 

climate such as that found in the Gulf of Mexico may reduce metabolic costs associated with 

foraging and local movements (Aleksa et al., 2018).  

Relative to the Gulf of Mexico, the North Atlantic is characterized by colder water, greater 

productivity and more dense food supplies for leatherbacks and other pelagic predators. 

Satellite telemetry studies and data from fishery observer programs identify the waters of the 

western Atlantic north of 38°N− specifically Canadian waters off Nova Scotia− as preferred 
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foraging habitat for leatherbacks that nest throughout the wider Caribbean region (Dodge, 

Galuardi, Miller, & Lutcavage, 2014; Godley et al., 2008; Hays, Houghton, & Myers, 2004; James, 

Sherrill-Mix, Martin, & Myers, 2006; STC, 2019; Wallace et al., 2014). The ability of leatherbacks 

to perform the long migrations to these cold productive waters may be impacted by physical 

traits such as body size. Larger animals may store more energy and typically have a lesser cost of 

transport (i.e. can travel longer distances at lower cost) (Alerstam, Hedenström, & Åkesson, 

2003; Calder, 1996), and perhaps only larger leatherbacks have the thermoregulatory and 

metabolic abilities allowing them to exploit the cooler waters of the North Atlantic (Dodge et al., 

2014; James & Mrosovsky, 2004). In addition to allowing access to productive waters, larger size 

may lead to increased reproductive output. Larger turtles have greater energy stores, allowing 

them to produce larger clutches (Hays & Speakman 1991; Price et al., 2004). Thus, despite the 

greater travel distance, larger animals may benefit from increased reproductive output as a 

result of foraging in the North Atlantic. 

Although satellite tracking of adult female leatherbacks reveals post-nesting migrations to 

the Gulf of Mexico and the western North Atlantic (STC, 2019), little information is known about 

the relative importance of these foraging regions for the western Caribbean subpopulation. In 

the present study, I use SIA to elucidate the extent to which the Gulf of Mexico and western 

North Atlantic are used for foraging by individual leatherbacks nesting at Parismina Beach, Costa 

Rica. I have three main objectives: [1] measure the stable δ13C and δ15N values in bulk skin tissue 

of females nesting at Parismina to reveal prior foraging region; [2] assess the differences of 

foraging region on female body size and reproductive output; and [3] conduct a comprehensive 

review of existing stable isotope data to create δ13C and δ15N isoscapes for various taxa to use as 

a reference for the Gulf of Mexico and western North Atlantic. I hypothesize that stable carbon 
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and nitrogen isotope values will reflect the foraging region used by individual turtles prior to the 

nesting season. If so, SIA will be substantiated as a cost-effective way to track long-distance 

movements of leatherbacks in the western North Atlantic. I also hypothesize that leatherbacks 

migrating longer distances to forage in the colder, highly productive and resource-rich North 

Atlantic will have a greater body size than leatherbacks foraging in the warmer, nutrient-poor 

Gulf of Mexico, and that females foraging in the Atlantic will have increased reproductive output 

as a consequence of greater body size. Furthermore, I hypothesize that spatial variations in POM 

isoscapes will be reflected in higher-order consumers from those regions. In addition, the stable 

isotope data presented in this thesis for leatherbacks nesting in Costa Rica will provide baseline 

data with which to compare in future studies at this and other sites throughout the wider 

Caribbean and Atlantic regions. 
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Methods 

Study Site and Species 

Skin samples were collected from female leatherbacks nesting in Parismina, Costa Rica 

during the 2018 Atlantic leatherback nesting season (March-August). The nesting beach spans 

six km from the mouth of the Parismina River in the north (10°18'53.4"N 83°21'20.0"W) to the 

mouth of the Pacuare River in the south (10°13'22.9"N 83°16'43.5"W) (Figure 1).  

 

Figure 1. Map of Parismina, Costa Rica. Figure inset shows the location of Parismina (yellow 

square) on the Caribbean coast of Costa Rica and map of the nesting beach (bounded by yellow 

line) where leatherback skin samples, body size measurements, and reproductive output data 

were collected during the 2018 nesting season (March-August). (Credit: Joshua Feltham). 

Beach patrols were conducted nightly during the season from 20:00 - 00:00 or 00:00 – 04:00. 

Every turtle observed before or during the nesting trance was sampled. Data were collected in 
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conjunction with Asociación Salvemos las Tortugas de Parismina (ASTOP), a local conservation 

group that has been conducting nightly patrols during the nesting season since 2001. 

Body Size Measurements and Reproductive Output Data Collection 

Sixty individual female leatherbacks were identified during the 2018 nesting season and 

each was marked with uniquely-coded Inconel flipper tags (Style 681, National Band and Tag 

Company of Newport, Kentucky, USA) placed in the proximal fold of both hind flippers. When a 

turtle was encountered, nesting activity (successful or aborted nests) and tag numbers were 

recorded. Of the 60 identified leatherbacks, I was able to sample 31 during their nesting trance, 

the physiological trance-like state starting after oviposition begins, in which they remain 

motionless. For each sampled turtle, I measured: 

1. Body size: Curved carapace length (CCL), the maximum curved length from the tip of the 

first bony ridge alongside the midline to the distal carapace tip, and curved carapace 

width (CCW), the curved distance at the widest part of the carapace from side ridge to 

side ridge were measured to the nearest centimeter with flexible tape measure. 

2. Clutch size: The number of yolked and yolkless eggs were counted, but for the purposes 

of this study, I considered clutch size to be the number of yolked eggs.  

3. Egg mass and diameter: For each of 31 clutches, 15 randomly selected yolked eggs were 

weighed to the nearest gram using a Pesola spring scale (300g, PESOLA 

Präzisionswaagen AG, Schindellegi, Switzerland) and egg diameters were measured with 

digital calipers (±0.01 mm) before relocation. These were used to calculate mean clutch 

egg mass and diameter. 

4. Hatchling mass and body size: For the 19 hatched clutches, between one and 15 

randomly selected hatchlings were weighed to the nearest gram using a Pesola spring 
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scale. Hatchling CCW and CCL were measured with digital calipers (±0.01 mm). These 

measurements were used to calculate mean clutch hatchling mass, CCW, and CCL. 

To prevent poaching, a common occurrence in Parismina, all clutches were relocated within two 

hours of laying to a hatchery or another area of the beach that resembled the original nest site. 

We triangulated relocated nest locations using vegetation, natural landmarks, and numbered 

posts placed at 50-m increments along the vegetation line of the beach. All nests were 

monitored during incubation, which typically lasted 60-70 days, and hatchlings were measured 

both upon emerging from the nest and during nest excavations in which nests were opened to 

record remaining nest contents. All nests were excavated an average of three days after 

emergence. 

Tissue Sampling and Preparation 

Thirty-four epidermis skin samples (<10 x 10 x 1 mm) were collected from 31 turtles (three 

turtles were encountered and sampled during two nesting events). Epidermis was sampled from 

the dorsal axial region of a hind flipper using a single-edged razor blade. Samples were 

immediately preserved in 2mL cryovials with a 70% ethanol solution and frozen until analysis. 

Each turtle was sampled during its first observed nesting attempt. Samples collected on the 

second observation were used to examine changes in stable isotope values during the nesting 

season, but were not included in analyses determining foraging group or relation to body size 

measurements and reproductive output. 

Prior to stable isotope analysis, skin samples were thawed, rinsed with distilled water, dried 

at 60 °C for 36 hours, then diced with a razor blade into small grains. Lipids were removed using 

an accelerated solvent extractor (Dionex ASE 350, ~1500 psi for 3 cycles at 5 minutes per cycle) 

with petroleum ether as the primary solvent. Sub-samples of prepared tissue (0.6 –1.0 mg) were 
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weighed with a microbalance and packed in tin capsules for isotope-ratio mass spectrometric 

analysis. 

Bulk Skin Stable Isotope Analysis 

Prepared samples were sent to the Department of Geosciences Stable Isotope Laboratory at 

University of Florida, Gainesville, Florida USA and analyzed by a continuous-flow isotope-ratio 

mass spectrometer. These analyses used a Costech ECS 4010 elemental combustion system 

interfaced via a ConFlo III device (Finnigan MAT, Bremen, Germany) to a Deltaplus gas isotope-

ratio mass spectrometer (Finnigan MAT, Bremen, Germany). Sample stable isotope ratios are 

expressed in the following conventional delta (δ) notation in parts per thousand (‰): 

δ = ([
Rsample

Rstandard
] − 1) × 1000 

where Rsample and Rstandard are the corresponding ratios of heavy to light isotopes (13C/12C and 

15N/14N) in the sample and standard, respectively. Rstandard for 13C was Baker Acetanilide (C8H9NO; 

δ13C = −10.4‰) calibrated monthly against the Peedee Belemnite (PDB) limestone formation 

international standard; Rstandard for 15N was IAEA N1 Ammonium Sulfate ((NH4)2SO4; δ15N = + 

0.4‰) calibrated against atmospheric N2 and USGS Nitrogen standards. All analytical runs 

included samples of standard materials inserted every 6 to 7 samples to calibrate the system 

and compensate for any drift over time. Replicate assays of standard materials indicated 

measurement errors of 0.05‰ for carbon and 0.095‰ for nitrogen.  Samples were combusted 

in pure oxygen in the elemental analyzer. Resultant CO2 and N2 gases passed through a series of 

thermal conductivity detectors and element traps to determine percent compositions.  

Creating Isoscapes 

I searched for stable isotope data from previously published studies and combined the 

results from these papers to develop a regional-scale understanding of taxon-specific stable 
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carbon and nitrogen isoscapes for the western North Atlantic and Gulf of Mexico. Literature 

searches were performed using various search engines including: Google, Google Scholar, 

Scopus, and MLML/MBARI Research Library Online Catalog. The following keywords and phrases 

(and combinations thereof) were used: sea turtles, leatherback, Dermochelys coriacea, Atlantic, 

North Atlantic, stable isotope, isoscapes, nitrogen, carbon, foraging, location, nesting, tissue, 

skin. 

Of the resulting literature, only five taxa had stable isotope data for both the western North 

Atlantic and Gulf of Mexico: POM, zooplankton, sea jellies, leatherbacks, and loggerhead 

(Caretta caretta) turtles. I found a total of ten published papers on stable isotope values for 

these five taxa and obtained two unpublished data sets from collaborating researchers 

(leatherback turtles, J. Seminoff; jellies, K. Aleksa) (Table 1).  



13 
 

Table 1.  

Regional breakdown of species and isotope values for δ15N (‰) and δ13C (‰) in the Western 
North Atlantic, Gulf of Mexico, and Costa Rica (Atlantic).  
 

  δ15N range δ15N mean δ13C range δ13C mean Reference 

Canada/ Nova Scotia           

leatherback skin 8.3 to 13.3 10.7 (1.1) –18.8 to –13.0 –16.9 (0.7) Wallace et al., 2014 

loggerhead skin 7.4 to 10.1 9.0 (0.49) –18.1 to –15.1 –16.8 (0.49) Ceriani et al., 2014 

Mid Atlantic Bight/NW Atlantic           

POM 0.8 to 17.4 8.1 (3.2) –26.4 to –15.6 –22.8 (2.2) Oczkowski et al., 2016 

loggerhead skin 8.4 to 13.4 11.3 (1.00) –17.3 to –15.4 –16.4 (0.50) Ceriani et al., 2014 

Massachusetts           

zooplankton 7.0 to 7.3 7.1 –22.2 to –21.4 –21.8 Estrada et al., 2003 

jellies  10.90 (1.39)  –20.31 (0.82) Dodge et al., 2011 

leatherback skin   11.13 (1.29)   –17.84 (0.67) Dodge et al., 2011 

South Atlantic Bight            

jellies  9.01 (0.38)  –20.44 (0.92) Dodge et al., 2011 

leatherback skin  11.65 (0.56)  –17.87 (0.45) Dodge et al., 2011 

loggerhead skin 10.0 to 13.6 11.3 (1.10) –17.6 to –13.9 –15.6 (0.99) Ceriani et al., 2014 

Northern Caribbean           

loggerhead skin 4.79 to 9.41  7.26 (1.21) –13.26 to –7.69 –11.38 (1.42) Tucker et al., 2014 

Florida Keys, Bahama, Cuba           

POM –5 to 15 3.64 (3.17) –25 to –15 –20.00 (1.97) Lamb & Swart, 2008 

loggerhead skin 3.27 to 13.99 8.43 (3.28) –19.52 to –10.07 –13.52 (2.8) Tucker et al., 2014 

loggerhead skin 3.4 to 10.0 5.9 (1.60) –14.7 to –5.8 –10.5 (2.05) Ceriani et al., 2014 

Western Florida Shelf           

POM 2.5 to 8.0 5.4 (1.5) –27.5 to –22.0 –23.4 (1.1) Radabaugh et al., 2013 

zooplankton  5.9 (0.7)  –18.4 (1.1) Macko et al., 1984 

loggerhead skin 4.22 to 13.92 9.70 (2.23) –21.16 to –10.00 –16.05 (2.47) Tucker et al., 2014 

Northern Gulf of Mexico           

POM  7.5 (0.8)  –21.0 (1.4) Macko et al., 1984 

zooplankton  8.9 (0.9)  –19.2 (0.7) Macko et al., 1984 

jellies  11.49 (0.6)  –19.72 (0.5) K. Aleksa (unpbl.) 

leatherback skin 10.09 to 11.68 10.91 (0.7) –15.93 to –14.95 –15.61 (0.4) J. Seminoff (unpbl.) 

loggerhead skin 12.82 to 12.94 12.89 (0.06) –16.76 to –15.71 –16.26 (0.53) Tucker et al., 2014 

Western Gulf of Mexico           

zooplankton 1.6 to 2.2 2.0 (0.2) –19.7 to –18.5 –19 Holl et al., 2007 

Yucatan Peninsula           

loggerhead skin 9.08 to 13.51  11.04 (1.29) –18.71 to –11.18 –14.93 (2.41) Tucker et al., 2014 

Costa Rica (Atlantic)           

leatherback skin 9.10 to 13.97  11.66 (1.27) –18.17 to –15.39 –16.66 (0.67) S. Hsu (unpbl.) 
 

Note. Values are reported to accuracy provided in literature with standard deviations in 

parentheses. 
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I chose to use stable isotope values of POM as a proxy for primary producer (phytoplankton) 

values. POM has been collected for stable isotope analysis for decades, therefore, there are 

more data available compared to phytoplankton, allowing for construction of isoscapes with 

higher spatial resolution (Graham et al., 2010; Lorrain et al., 2015). Jelly data included values 

from three species of potential leatherback prey: lion’s mane jellies (Cyanea capillata), 

cannonball jellies (Stomolophus meleagris), and sea nettles (Chrysaora spp.). For leatherback 

and loggerhead isoscapes, I only included data from skin samples for to make the isoscape a 

comparable reference for the skin samples collected in Costa Rica. 

Carbon and nitrogen isoscapes for POM, zooplankton, jellies, leatherbacks, and loggerhead 

turtles were created in PowerPoint. Isotope values were displayed as color-shaded regions 

based on sites of the original studies, with lesser values as shades of green and higher values in 

red.  

Data Analysis 

Relationships between stable carbon isotope values and body size measurements and 

reproductive output were tested using linear correlation. A paired t-test was used to test 

changes in δ15N and δ13C values in the three re-sampled turtles from Parismina. To test for 

differences in δ13C and δ15N values between regions, 95% confidence intervals were calculated 

for δ13C and δ15N means found in the literature, then used as reference values for comparison 

with values from leatherback turtles sampled in Parismina. Regions where confidence intervals 

did not overlap were inferred to have statistically different isotopic values.  
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Results 

Body Size Measurements and Reproductive Output from Parismina  

Mean adult female CCW (± SD) was 111.52 ± 4.19 cm (n = 31), and CCL was 153.16 ± 8.78 cm 

(n = 31). Clutch size was 76 ± 18 yolked eggs (n = 31); mean egg mass per clutch was 81.66 ± 7.96 

g (n = 30); and mean egg diameter per clutch was 5.29 ± 0.17 cm (n = 31) (Table 2). 

Table 2.  

Means for body size measurements and reproductive output parameters of leatherbacks turtles 
sampled in Parismina, Costa Rica. 
 

 Mean (SD) n r - value p - value 

Adult CCW 111.52 (4.19) cm 31 0.1389 > 0.05 

Adult CCL 153.16 (8.78) cm 31 0.0748 > 0.05 

Clutch size 76 (18) eggs 31 0.0200 > 0.05 

Egg mass 81.66 (7.96) g 30 0.1703 > 0.05 

Egg diameter 5.29 (0.17) cm 31 0.0806 > 0.05 

Hatchling mass 47.10 (5.05) g 17 0.0860 > 0.05 

Hatchling CCW 4.05 (0.18) cm 19 0.3559 > 0.05 

Hatchling CCL 5.91 (0.32) cm 19 0.2354 > 0.05 
 

Note. r and p values included are for Pearson’s correlation test with δ13C values. 

Hatchling Size and Mass 

Only 19 of 31 clutches hatched. I weighed and measured 214 hatchlings from these 19 

clutches. Mean hatchling CCW per clutch was 4.05 ± 0.18 cm; and mean hatchling CCL per clutch 

was 5.91 ± 0.32 cm. Mean hatchling mass per clutch was 47.10 ± 5.05 g (Table 2).  

Leatherback Bulk Skin SIA from Parismina 

Leatherback skin samples (n=31) had δ13C values ranging from –18.17 ‰ to –15.39 ‰ and 

δ15N values ranging from 9.1 ‰ to 13.97 ‰ (Figures 2, 3).  
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Figure 2. Frequency distributions of bulk skin stable isotope ratios (δ13C and δ15N) of 31 

leatherback turtles sampled at the Parismina nesting beach in Costa Rica. 

 

Figure 3. δ13C and δ15N  scatterplot of leatherback turtle skin samples from Parismina, Costa Rica 

(n=31).  

Bulk skin δ13C and δ15N values were normally distributed about their respective means (δ13C:      

–16.66 ± 0.67 ‰, δ15N: 11.66 ± 1.27 ‰). I found no relationship between δ13C and body size nor 

between δ13C and reproductive output parameters (Table 2, Figure 4). 
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Figure 4. Scatterplots of bulk skin δ13C values of adult female leatherbacks sampled in Parismina 

and body size measurements (A); hatchling body size (B); average egg mass and hatchling mass 

per clutch (C); average egg diameter per clutch (D); and clutch size (E).
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The δ13C and δ15N values from Parismina also overlapped with δ13C and δ15N values 

measured in other nesting populations (Indonesia, South Africa, Brazil) and foraging areas 

(western North Atlantic, California, Gulf of Mexico)(Table 3, Figure 5).  

Table 3.  

Regional breakdown of isotope values for δ15N (‰) and δ13C (‰) for foraging and nesting 

leatherbacks.  

  δ15N range δ15N mean δ13C range δ13C mean Reference 

Foraging            

Massachusetts  11.13 (1.29)  –17.84(0.67) Dodge et al., 2011 

South Atlantic Bight   11.65 (0.56)  –17.87 (0.45) Dodge et al., 2011 

Canada/ Nova Scotia 9.5 to 12.8 10.7 (1.1) –17.75 to –16 –16.9 (0.7) Wallace et al., 2014 

Monterey Bay, California  13.5 (0.9)   –16.2 (0.8) Hetherington et al., 2018  

Northern Gulf of Mexico 10.09 to 11.68 10.91 (0.7) –15.93 to –14.95 –15.61 (0.4) J. Seminoff (unpubl. data) 

        

Nesting       

Costa Rica (Pacific)*  16.1 (1.2)  –19.0 (0.7) Wallace et al., 2006 

St. Croix*  8.9 (1.5)  –18.3 (0.7) Wallace et al., 2006 

French Guiana* 6.1 to 12.3 9.5 (0.2)  –18.8 (0.1) Caut et al., 2008 

Indonesia 8.71 to 18.6  –19.53 to –15.12  Lontoh, 2014 

South Africa 9.5 to 15.1  –19.1 to –15.2  Robinson et al., 2016 

Brazil 9.6 to 17.3 12.7 (1.8) –19.8 to –14.2 –17.0 (1.3) Colman et al., 2018 

Costa Rica (Atlantic) 9.10 to 13.97 11.66 (1.27) –18.17 to –15.39 –16.66 (0.67) S. Hsu (unpubl. data) 

*Red blood cell values      
 

Note. Values are reported to accuracy provided in literature with standard deviations in 
parentheses. 
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Figure 5. Scatterplot of δ13C and δ15N values for leatherback skin samples from Parismina, Costa 

Rica (n=31) compared to mean skin δ13C and δ15N from foraging leatherbacks sampled in the 

northern Gulf of Mexico (N. GoM; J. Seminoff, unpubl. data), Canada (Wallace et al., 2014), 

Massachusetts, and the South Atlantic Bight (Dodge et al., 2011). 

In the three turtles that were sampled twice, skin δ13C and δ15N values remained constant 

across sampling periods up to 61 days, the maximum recorded temporal difference (Figure 6; 

paired t-test, t = –0.70, p = 0.56, δ13C; t = –0.82, p = 0.50, δ15N). However, to maintain the 

assumption of independence in my data, I only included the first sample collected for primary 

analyses. 
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Figure 6. Bulk skin stable isotope ratios for δ13C (A) and δ15N (B) for three individual female 

leatherbacks on first and second sampling events. The longest at-large duration was 61 days.  

Isoscapes 

Isotope data from the literature showed substantial variation among taxa and sampling 

regions in the Gulf of Mexico and western North Atlantic (Table 1, Figures 6 and 7). There were 

few consistent trends among taxa and sampling regions, i.e. regions with lowest and highest 

stable isotope values varied between taxa. For example: the northern Gulf of Mexico was a 

region of lower δ13C for zooplankton and loggerheads but a region of higher δ13C for jellies and 

leatherbacks (Figure 7), and the South Atlantic Bight was a region of lower δ15N for jellies but 
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higher δ15N for loggerheads and leatherbacks (Figure 8). The northern Gulf of Mexico had the 

greatest δ15N values for three of the five taxa (zooplankton, sea jellies, and loggerheads). The 

western Gulf of Mexico had the lowest values, but data were only available for one taxa: 

zooplankton. There was no consistent trend among all taxa allowing me to determine regions of 

highest and lowest δ13C nor δ15N.  
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Figure 7. Mean δ13C values for POM, zooplankton, jellies, loggerhead turtles, and leatherback 
turtles in the Western North Atlantic and Gulf of Mexico. Values are as reported in published 
literature (± standard deviations) and displayed as color-shaded regions based on original study 
sites. 
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Figure 8. Mean δ15N values for POM, zooplankton, jellies, loggerhead turtles, and leatherback 
turtles in the Western North Atlantic and Gulf of Mexico. Values are as reported in published 
literature (± standard deviations) and displayed as color-shaded regions based on original study 
sites. 
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In lowest trophic level producers (POM), regional δ13C means ranged from –23.4 ‰ in the 

West Florida Shelf region to –20 ‰ in the Florida Keys. Regional δ15N means ranged from 3.64 

‰ in the Florida Keys to 8.1 ‰ in the Northwest Atlantic.  

For zooplankton, regional δ13C means ranged from –21.8 ‰ in the northwest Atlantic 

(Massachusetts) to –18.4 ‰ in the West Florida Shelf. Regional δ15N means ranged from 2.0 ‰ 

in the western Gulf of Mexico to 8.9 ‰ in the northern Gulf of Mexico.  

In sea jellies, regional δ13C means ranged from –20.4 ‰ in the northwest Atlantic (South 

Atlantic Bight) to –19.7 ‰ in the northern Gulf of Mexico. Regional δ15N means ranged from 9.0 

‰ in the northwest Atlantic (South Atlantic Bight) to 11.5 ‰ in the northern Gulf of Mexico.  

In loggerhead turtles, regional δ13C means ranged from –16.8 ‰ in the northwest Atlantic 

(Canada) to –10.5 ‰ in the Bahamas and Cuba. Across all taxa, both the lowest and highest δ15N 

values were found in loggerhead turtles. Regional δ15N means ranged from 5.9 ‰ in the 

Bahamas and Cuba to 12.9 ‰ in the northern Gulf of Mexico.  

For leatherback turtles, regional δ13C means ranged from –17.9 ‰ in the northwest Atlantic 

(South Atlantic Bight) to –15.6 ‰ in the northern Gulf of Mexico, and mean δ13C value was 

significantly greater in the Gulf of Mexico than the northwest Atlantic (Gulf of Mexico: 95% CI   

[–16.03, –15.19]). Regional δ15N means ranged from 10.7 ‰ in the northwest Atlantic (Canada) 

to 11.7 ‰ also in the northwest Atlantic (South Atlantic Bight). Isotope values of leatherbacks 

sampled in Parismina had no clear clustering, and I was unable to use these isoscapes to 

determine foraging region for sampled turtles, although individuals with higher δ13C values may 

be linked to the Gulf of Mexico.
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Discussion 

Parismina Leatherbacks: Stable Isotope Values, Body Size Measurements, and Reproductive 

Output 

Here I report the first carbon and nitrogen stable isotope values for leatherbacks nesting in 

Parismina. The δ13C and δ15N values  from Parismina overlapped with δ13C and δ15N values 

measured in other nesting populations (Indonesia, South Africa, Brazil) and foraging areas 

(western North Atlantic, California, Gulf of Mexico), which made it difficult to infer prior foraging 

areas. I hypothesized that δ13C and δ15N values of female leatherbacks nesting in Parismina 

would cluster by previously identified foraging regions in 1) the western North Atlantic or 2) the 

Gulf of Mexico (STC, 2019), but there was no clear clustering in δ13C or δ15N values. 

δ13C values appear to be a better indicator of prior foraging location for Atlantic 

leatherbacks. The observed range in δ13C [–18.17 to –15.39 ‰] of Parismina turtles is similar to 

δ13C values measured in foraging leatherbacks in the Gulf of Mexico (J. Seminoff, unpubl. data) 

and Canada (Wallace et al., 2014), two regions that leatherbacks from the Western Caribbean 

are known to use. There was less overlap in values between Parismina leatherbacks and 

leatherbacks foraging in the South Atlantic Bight or Massachusetts (Dodge, Logan, & Lutcavage, 

2011) (Figure 5). To improve interpretation of leatherback stable isotope data and distinguish 

differences between regions such as the Gulf of Mexico or Canada, we would need to 

instrument turtles with tracking devices.  

Although δ15N values were indicators of prior foraging region for leatherbacks nesting in the 

Western Pacific (Lontoh, 2014; Seminoff et al., 2012), δ15N was not an indicator of leatherback 

foraging location in this study. The observed range of δ15N [9.10 –13.9 ‰] for Parismina turtles 

would indicate foraging over at least three trophic levels in some species, but considering the 
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leatherback’s generalized feeding strategy on gelatinous zooplankton (Seminoff, Jones, Eguchi, 

Hastings, & Jones, 2009; Wallace et al., 2006), disparate δ15N signatures in leatherbacks are 

unlikely to result from trophic level differences (Wallace et al., 2006). Instead, the differences in 

leatherback δ15N values observed is likely a result of spatial variability in baseline (POM) stable 

isotope values between regions. However, the mean δ15N of turtles sampled in Parismina did 

not differ from mean δ15N values of leatherbacks foraging in the western North Atlantic Ocean 

(Canada, Massachusetts, South Atlantic Bight) or Gulf of Mexico (Figure 5). It is possible that 

these regions have similar or overlapping isotopic signals, making it difficult to identify foraging 

region. 

I did not find support for the hypothesis that foraging region impacts body size and 

reproductive output. This is in contrast to many previous studies that link foraging habitat to 

body size and reproductive output. Both parameters have long been linked to habitat quality 

and resource availability in sea turtles, with sea turtles foraging in high-quality habitats with 

greater resource availability having better body conditions, higher survival rates, and greater 

reproductive output than those foraging in lower-quality areas (Balazs & Chaloupka 2004; Diez 

& van Dam 2002; Lontoh, 2014; Vander Zanden et al., 2014). For example, hawksbill turtles 

(Eretmochelys imbricata) forage in habitats of varying quality, and turtles foraging in regions 

with greater prey abundance exhibit faster growth rates (Diez & van Dam, 2002). Similarly, 

foraging area preference influenced the size, fecundity, and breeding periodicity of adult female 

loggerheads in the western North Atlantic (Vander Zanden et al., 2014) and clutch frequency, 

body size, and remigration interval of adult female leatherbacks in the Western Pacific (Lontoh, 

2014). This study only measured four parameters of body size and reproductive output for one 

nesting season. With an increased sample size, longer-term data collection, and measurements 
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of other parameters of reproductive output such as clutch frequency, hatching success, or 

remigration interval, relationships between foraging region, body size, and reproductive output 

may be detected. 

No Change in Stable Isotope Values over Time 

Change in stable isotope values— particularly increases in δ15N in excreta and tissue— 

have been used to indicate nutritional stress during prolonged bouts of fasting in vertebrates, 

with mixed results (Castillo & Hatch, 2007; Cherel, Hobson, Bailleul, & Groscolas, 2005; Gaye‐

Siessegger, Focken, Abel, & Becker, 2007; Hobson, Alisauskas, & Clark, 1993; McCue & Pollock, 

2008). It was hypothesized that 15N enrichment in avian tissue during fasting was due to energy 

production from endogenous tissue breakdown and resulting excretion of 14N (Hobson et al., 

1993). However, in several species of fasting reptiles (gaboon vipers, Bitis gabonica; ball 

pythons, Python regius; ratsnakes, Elaphe obsoleta; boa constrictors, Boa constrictor; western 

diamondback rattlesnakes, Crotalus atrox, and savannah monitor lizards, Varanus 

exanthematicus), there were no changes in tissue δ 15N values while excreta were enriched in 

15N (McCue & Pollock, 2008).  

Consistent with the previous studies of reptiles, I did not find evidence that fasting 

changed tissue δ15N values. Leatherbacks nesting in Parismina were likely fasting for four to six 

months, and despite this long fast, there was no change in bulk skin δ15N between the sampling 

events. Few studies describe the effects of nutritional stress on stable isotope composition of 

leatherbacks, but Seminoff, Bjorndal, and Bolten (2007) found that turtle skin has an extremely 

slow turnover rate (~ 4-6 months) and reflects marine isoscapes of prior foraging regions 

(Seminoff et al., 2012). I found that skin δ13C and δ15N values for Western Caribbean females 

(n=3) stayed constant over time (Figure 7) indicating that stable isotope compositions in marine 
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turtle skin are conserved over the period of up to 61 days— the longest at large duration among 

the three multi-sampled turtles— despite prolonged fasting. This lack of change over the course 

of a nesting season has also been observed in leatherbacks nesting in Pacific Costa Rica (Parque 

Nacional Las Baulas; C. Williams, unpubl. data). 

Isoscapes 

The ability to determine foraging area in this study depended on distinguishable systematic 

spatial variations in δ13C and δ15N values of primary producers at the base of the food web. I 

created taxon-specific δ13C and δ15N isoscapes as a reference on which to overlay δ13C and δ15N 

values from leatherbacks sampled in Costa Rica. I hypothesized that spatial patterns— regions of 

high and low δ13C and δ15N values— in baseline producers (POM) would be apparent in higher-

order consumers, allowing for identification of foraging regions used by Costa Rican 

leatherbacks. Stable isotope values of sampled prey (jellies) had similar spatial variation to 

leatherback stable isotope values (Caut et al., 2008; Dodge et al., 2011), and leatherback and 

jelly-specific isoscapes appeared to be the most useful for comparison with skin samples 

collected in Costa Rica, but after a comprehensive review of existing stable isotope data for the 

Western North Atlantic and the Gulf of Mexico, there was not enough data to create a reliable 

isoscape. There were no consistent spatial trends among the taxa in the limited data available. 

I was unable to validate using SIA as a primary technique to study leatherback movements 

between nesting and foraging grounds. However, with increased research linking isotope data to 

habitat use data collected from satellite, GPS, or geolocation tags, we may be able to validate 

the trends suggested by δ13C data and link leatherbacks with higher δ13C values to the Gulf of 

Mexico. Additionally, higher spatial and temporal resolution stable isotope data from POM and 

jellies would improve the isoscapes used to interpret higher trophic consumer data.  
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Carbon. δ13C values of marine animal tissues vary with latitude, with higher δ 13C values at 

lower latitudes (Graham et al., 2010), a trend reflected in both lower-trophic level taxa (POM 

and zooplankton) and leatherback-specific stable isotope data. The high δ13C values reflect high 

rates of primary productivity at low latitudes, especially in the Gulf of Mexico. Models identify 

the western Gulf of Mexico as a hotspot for Trichodesmium sp., a colonial cyanobacteria (Holl et 

al., 2007; Hood, Subramaniam, May, Carpenter, & Capone, 2001) considered to be the most 

important primary producer in the tropical North Atlantic (Carpenter & Romans, 1991). 

Trichodesmium blooms, associated with high primary productivity and δ 13C values (Holl et al., 

2007; Tchernov & Lipschultz, 2007) prevail seasonally in the Gulf of Mexico (Holl et al., 2007), 

and organic matter derived from these sources are typically enriched in 13C (Dodge et al., 2011).  

The high δ13C values found in zooplankton and leatherbacks foraging in the area support the 

notion that the Gulf of Mexico is a region of high δ13C. Leatherbacks foraging in the northern 

Gulf of Mexico had higher skin δ13C values relative to leatherbacks sampled off the U.S. east 

coast (Gulf of Mexico: 95% CI [–16.03, –15.19], Table 1). We expect that skin samples collected 

from nesting females reflect isotopic baselines of their prior foraging regions due to slow carbon 

turnover rates that have been reported for hard-shelled turtle species (~1-6 months, Reich, 

Bjorndal, & Del Rio, 2008; Seminoff et al., 2007) and presumably are also present in 

leatherbacks. This suggests that individuals from Parismina with higher δ13C values forage in the 

northern Gulf of Mexico prior to migrating to Costa Rica.  

Moving northward toward the poles, low δ13C values observed at higher latitudes are 

related to high aqueous carbon dioxide (CO2). The North Atlantic is a region of relatively low 

surface water δ13C due to the introduction of isotopically light atmospheric CO2, and δ13C values 

of primary producers are strongly influenced by the value of this local aqueous carbon pool and 
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reflected in δ13C values of zooplankton (McMahon et al., 2013). The low δ13C values observed in 

leatherbacks foraging in the North Atlantic may be driven by the same low δ13C values of 

baseline producers in the region. Individuals from Parismina with lower δ13C values likely forage 

in the western North Atlantic prior to migrating to Costa Rica, although more data are needed to 

substantiate this.  

Nitrogen. In a previous compilation of zooplankton stable isotope data (McMahon et al., 

2013) δ15N values generally increased with latitude, resulting in the highest values found in the 

Arctic and coastal Nova Scotia. Lower latitudes in Atlantic Ocean were generally characterized as 

having low δ15N values, presumably the result of high nitrogen fixation, particularly around the 

Sargasso Sea and the Gulf of Mexico (McMahon et al., 2013). However, other studies (Cole et al., 

2004; Savage, 2005) document enriched δ15N values, especially in primary producers, in the Gulf 

of Mexico as a result of excess nutrient input from sources including runoff from farms, animal 

feedlots, sewage treatment plants, and other industrial sources (Bianchi et al., 2010). For 

example, high volumes of nutrients in Mississippi River discharge result in localized high primary 

productivity and seasonal anoxic zones near the river delta in the northern Gulf of Mexico 

(Baustian, Rabalais, Morrison, & Turner, 2011; Radabaugh, Hollander, & Peebles, 2013), 

significantly increasing coastal δ15N values (Cole et al., 2004). 

In the isoscapes created for this study, the highest δ15N values in zooplankton, sea jellies, 

and loggerhead turtles were found in the northern Gulf of Mexico, supporting the notion that 

the Gulf of Mexico is a region of high δ15N values. However, values for leatherback skin did not 

follow the same spatial trend and did not show any clear patterns regarding prior foraging 

region of nesting females. Nitrogen values from foraging leatherbacks in both the Gulf of Mexico 

(J. Seminoff, unpubl. data) and U.S. east coast into Nova Scotia (Dodge et al., 2011; Wallace et 
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al., 2014) had large ranges and did not differ statistically. Perhaps leatherbacks travel such great 

distances that they are never in any one area long enough to retain the ‘local’ isotopic profile. 

Unlike most hard-shelled sea turtle species, which are known to establish long-term residence in 

distinct foraging areas, leatherbacks are widely known to be more nomadic (Hays, Hobson, 

Metcalfe, Righton, & Sims, 2006; Plotkin, 2003). 

The inconsistent data in both published literature and this study could be due to seasonal 

differences in sampling and patchy sampling regimes that may be better delineated with future 

sampling efforts. These findings highlight the need for more data to characterize regional 

patterns of stable isotope variation at several trophic levels. Existing isoscapes such as those 

presented in McMahon et al. (2013) would benefit from the addition of more data, specifically 

δ15N and δ13C values of baseline producers. An emphasis should also be placed on sampling in 

the western Gulf of Mexico, as there is a lack of information from this region.  

Conclusion  

The large range of isotope values documented in leatherbacks from Parismina indicate 

inherent variability in the environment and suggest that they are likely foraging in more than 

one area, but reference isoscapes lack the spatial or temporal resolution to determine the 

locations. Therefore, I was unable to validate the use of SIA to identify foraging grounds in 

leatherbacks from the Western Caribbean rookery. However, this does not undermine the fact 

that SIA has been successful as a tool to trace origins for migratory or dispersing organisms 

(Hobson, 2008; Hobson & Wassenaar, 2018). This technique is dependent on the principles that: 

(1) consumer stable isotope values reflect those of prior foraging regions; (2) there exists a 

known spatial variability in isotopic values of different foraging regions; and (3) there is an 

understanding of physiological processes such as tissue turnover rate and isotopic 



32 
 

 

discrimination that can influence isotopic inferences (Graham et al., 2010; Hobson, 2008). In 

practice, it is rare that all the principles mentioned above will be met, but depending on the 

study organism, some of the uncertainty can be constrained, and inferences can still be made 

about prior foraging regions based on tissue stable isotope values (Hobson, 2008). SIA as a 

complement to satellite telemetry is effective in distinguishing foraging regions for sea turtles 

(Caut et al., 2008; Ceriani et al., 2014; Lontoh, 2014; Seminoff et al., 2012) and holds important 

conservation value for the species in elucidating intra-population variations in oceanic migration 

routes and foraging areas (Seminoff et al., 2012). Some of the trends in the data from this study 

would be better supported if considered in conjunction with tracking techniques. 

Environmental or human-driven changes to foraging regions can have a cascading impact on 

foraging success and population dynamics, and consequently, conservation status (Bailey et al., 

2012). In the latest stock assessment of North Atlantic leatherbacks, all stocks— including the 

Western Caribbean— showed declines in nesting females (NWALWG, 2018). Long-term harvest 

of eggs and adults by humans and fisheries bycatch are considered the two biggest threats to 

leatherback populations (Benson et al., 2011; Bräutigam & Eckert 2006; Lewison, Freeman, & 

Crowder, 2004). While measures to protect nesting beaches have increased, leatherbacks are 

still largely marine animals, and these measures only protect leatherbacks during the brief 

nesting phase. Leatherbacks spend most of their lives foraging at sea where their migration 

routes or foraging grounds overlap with fishery operations (Hays et al., 2004; Lewison et al., 

2004), and conservation efforts are complicated by this wide-ranging spatial distribution that 

spans international and political boundaries (TEWG, 2007). Assuming the risk of by-catch is 

different in the Atlantic Ocean and the Gulf of Mexico, understanding how frequently or 

intensely these areas are used by nesting populations is crucial to developing proper species 
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management policies SIA and satellite tracking can help identify areas of concern and 

conservation priority for species' conservation and management. 
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