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ABSTRACT

DETERMINATION OF A GRAPH’S CHROMATIC NUMBER FOR PART
CONSOLIDATION IN AXIOMATIC DESIGN

by Jeffery A. Cavallaro

Mechanical engineering design practices are increasingly moving towards a

framework called axiomatic design (AD). A key tenet of AD is to decrease the

information content of a design in order to increase the chance of manufacturing success.

An important way to decrease information content is to fulfill multiple functional

requirements (FRs) by a single part: a process known as part consolidation. One possible

method for determining the minimum number of required parts is to represent a design by

a graph, where the vertices are the FRs and the edges represent the need to separate their

endpoint FRs into separate parts. The answer is then the chromatic number of such a

graph. This research investigates the suitability of using two existing algorithms and a

new algorithm for finding the chromatic number of a graph in a part consolidation tool

that can be used by designers. The runtime complexities and durations of the algorithms

are compared empirically using the results from a random graph analysis with binomial

edge probability. It was found that even though the algorithms are quite different, they all

execute in the same amount of time and are suitable for use in the desired design tool.
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Fig. 86. The Grötzsch example: vertex b removed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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1 AXIOMATIC DESIGN

The axiomatic design (AD) framework was developed in the late 20th-century by

Professor Nam P. Suh while at MIT and NSF [1]. This was in response to concern in the

engineering community that design was being practiced almost exclusively as an ad hoc

creative endeavor with very little in the way of scientific discipline. In the words of

Professor Suh:

It [design] might have preceded the development of natural sciences by scores
of centuries. Yet, to this day, design is being done intuitively as an art. It is one
of the few technical areas where experience is more important than formal
education [1].

Professor Suh was not making these claims in an educational vacuum, but in the shadow

of several recent major design failures such as the Union Carbide plant disaster in India,

nuclear power plant accidents at Three Mile Island and Chernobyl, and the Challenger

space shuttle O-ring failure. Furthermore, Professor Suh asserts that design-related issues

resulting in production problems and operating failures were increasingly occurring in

everything from consumer products to big-ticket items. As a result, AD has been widely

adopted by companies to promote efficiency and accuracy in the design process, resulting

in more reliable products and reduced manufacturing costs [2].

The following sections provide an overview of axiomatic design as specified in detail

by Professor Suh [1], [3], and summarized by Behdad et al. [4], [5]. Following the

overview is a description of how an algorithm like the algorithm proposed by this

research can be a helpful tool to a designer using the AD framework.

1.1 Design

Design is defined as the process by which it is determined what needs to be achieved

and then how to achieve it. Thus, the decisions on what to do are just as important as the

decisions on how to do it. Creativity is the process by which experience and intuition are

used to generate solutions to perceived needs. This includes pattern matching to and
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adapting existing solutions and synthesizing new solutions. Thus, creativity plays a vital

role in design. Different designers may approach the same problem differently, and their

varying levels of creativity may lead to very different, yet still plausible, solutions.

Therefore, there needs to be a design-agnostic method for comparing different designs

with the goal of selecting the best one.

This discussion will sound familiar to mathematicians, since creativity is a very

important part of solving math problems, particularly in the writing of proofs. Thus, the

field of mathematics has established various tests on what constitutes a good proof. For

example:

• Does every conclusion result by proper implication from existing definitions, axioms,

and previously proved conclusions?

• Is direct proof, contrapositive proof, proof by contradiction, or proof by induction

the best approach for a particular problem?

• Do proofs by induction contain clear basic, assumptive, and inductive steps?

• Are all subset and equality relationships properly proved via membership

implication?

• Are all necessary cases included and stated in a mutually exclusive manner?

• Are degenerate cases sufficiently highlighted?

• Are all equivalences proved in a proper circular fashion?

• Are key and reused conclusions highlighted in lemmas?

In short, Professor Suh was looking for a similar framework for the more general concept

of design.

1.2 The Axiomatic Design Framework

The best design among a set of candidates is the design that exactly satisfies a clearly

defined set of needs and has the greatest probability of success in meeting those needs. In

a desire not to hinder the creative element needed for design, yet provide some
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methodology to distinguish bad designs from good designs from better designs, the

diagram in Fig. 1 establishes the overall framework for axiomatic design.

customer
needs

problem
definition

creative
process

analytical
process

ultimate
check

final
design

FRs
candidate

design

Fig. 1. The axiomatic design framework.

Design starts with the desire to satisfy a set of precisely stated customer needs. The

term customer refers to any entity that expresses needs, and can be as varied as

individuals, organizations, or society. In the problem definition phase, the designer

determines how the customer needs will be met by generating a minimal list of functional

requirements (FRs) that directly and exclusively fulfill the needs. It is this list of FRs that

determines exactly what is to be accomplished.

Once the set of FRs has been determined, the designer begins the creative process by

mapping the FRs into solutions that are embodied in so-called design parameters (DPs).

The DPs contain all of the information concerning how the various FRs are to be satisfied:

parts lists, drawings, specifications, etc. The FRs exist in a design-agnostic functional

space and the DPs exist in a solution-specific physical space. It is the designer’s job to

provide the most efficient mapping between the two spaces. This process is represented

by Fig. 2.
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FR1

FR2

FR3
...

functional

space

DP1

DP2

DP3
...

physical

space

mapping

Fig. 2. Mapping FRs to DPs.

Simple problems may require only one level of FRs; however, more complicated

designs may require a hierarchial structure of FRs from more general to more detailed

requirements. This type of design is often referred to as top-down design. Each individual

FR layer has its own DP mapping. In fact, the mapping process on one level should be

completed prior to determining the FRs for the next level. This is because DP choices on

one level may affect requirements on the next level. For example, consider a FR related to

a moving part in a design. The DP for this FR could specify that the part be moved either

manually or automatically. Each choice would result in different FRs for the actual

mechanism selected by the DP.

The FR/DP mapping at each level in the design hierarchy is described by the design

equation, which is shown in Equation 1.

[FR] = [A][DP] (1)

The design equation is a matrix equation that maps a vector of m FRs to a vector of n DPs

via an m×n design matrix A. As will be shown later in this section, good designs require
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m = n. A full discussion of the design matrix element values is well beyond the scope of

this research. Instead, the following two summary values are used:

Ai j =


X , FRi depends on DP j

0, FRi does not depend on DP j

Since the FR/DP mapping is non-unique, there needs to be a method to compare

different plausible designs so that the best design can be selected as the final design. Thus,

the framework in Fig. 1 includes an analytical process, where designs are judged by a set

of axioms, corollaries, and theorems that specify the properties common to all good

designs. Once the best design, according to this analysis, is selected, it undergoes an

ultimate check to make sure that it exactly meets all of the customer’s needs. If so, then

that design is selected as the final design.

1.3 The Axioms

The analytical process is based on two main axioms: the independence axiom and the

information axiom. This section describes these axioms and their related corollaries and

theorems.

The independence axiom [1] imposes a restriction on the FR/DP mapping:

Axiom 1 (The Independence Axiom). An optimal design always maintains the

independence of the FRs. This means that the FRs and DPs are related in such a way that

a specific DP can be adjusted to satisfy its corresponding FR without affecting other FRs.

The ideal case is when the design matrix is a diagonal matrix and so each FR is

mapped to and is satisfied by exactly one DP. This is referred to as an uncoupled design,

which is demonstrated in Fig. 3. Uncoupled designs completely adhere to the

independence axiom.
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FR1
FR2
FR3

=

X 0 0
0 X 0
0 0 X

DP1
DP2
DP3


Fig. 3. An example of an uncoupled design.

The next best situation is when the design matrix is a lower-triangular matrix. The

idea is to finalize the first DPs before moving on to the later DPs. Thus, DPi can be

adjusted without affected FR1 through FRi−1. This is referred to as a decoupled design,

which is demonstrated in Fig. 4. Although decoupled designs do not completely adhere to

the independence axiom, they may be reasonable compromises in designs that address

complex problems. FR1
FR2
FR3

=

X 0 0
X X 0
X X X

DP1
DP2
DP3


Fig. 4. An example of a decoupled design.

The worst solution is a non-triangular matrix, where every change in a DP affects

multiple FRs in an unconstrained fashion. This is referred to as a coupled design, which is

demonstrated in Fig. 5. Coupled designs are in complete violation of the independence

axiom and generally should be decoupled by reworking the FRs or by adding additional

DPs. FR1
FR2
FR3

=

X X X
X X X
X X X

DP1
DP2
DP3


Fig. 5. An example of a coupled design.

Unfortunately, adding additional DPs runs counter to the second axiom: the

information axiom [1].
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Axiom 2 (The Information Axiom). The best design is an uncoupled design that has the

minimum information content.

The amount of information contained in a particular DP is inversely related to the

probability that the DP can successfully satisfy its corresponding FR(s) by Equation 2.

I = log2

(
1
p

)
(2)

where p is the probability of success and I is measured in bits. This probability must take

into consideration such things as tolerances, ease of manufacture, and failure rates. The

information content of a design is then the sum of the information content of its

individual DPs.

From these two axioms come the following seven corollaries [1]:

Corollary 1. Decouple or separate parts or aspects of a solution if the FRs are coupled

or become interdependent in the designs proposed.

Corollary 2. Minimize the number of FRs.

Corollary 3. Integrate design features in a single physical part if FRs can be

independently satisfied in the proposed solution.

Corollary 4. Use standardized or interchangeable parts if the use of these parts is

consistent with the FRs.

Corollary 5. Use symmetrical shapes and/or arrangements if they are consistent with the

FRs.

Corollary 6. Specify the largest allowable tolerance in stating FRs.

Corollary 7. Seek an uncoupled design that requires less information than coupled

designs in satisfying a set of FRs.
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The theorems that arise from these axioms and corollaries are used to prove that an

optimal design results from a square design matrix. In other words, the number of FRs

should be equal to the number of DPs. First, consider the case where there are more FRs

than DPs. This forces a single DP to be mapped to multiple FRs. Otherwise, some FRs

cannot be satisfied by the DPs. This result is stated in Theorem 1 [1].

Theorem 1. When the number of DPs is less that the number of FRs, either a coupled

design results or the FRs cannot be satisfied.

A possible solution to this problem is given by Theorem 2 [1].

Theorem 2. A coupled design due to more FRs than DPs can be decoupled by adding

new DPs if the additional DPs result in a lower triangular design matrix.

An example is show in Fig. 6. Note that the addition of DP3 results in a decoupled

design. FR1
FR2
FR3

=

X 0
X X
X X

[DP1
DP2

]
=⇒

FR1
FR2
FR3

=

X 0 0
X X 0
X X X

DP1
DP2
DP3


Fig. 6. Decoupling a design by adding DPs.

Next, consider the case where the number of FRs is less than the number of DPs.

Assuming that the design is not coupled, this means that either a DP exists that does not

address any FRs or multiple DPs exist that address a single FR and hence can be

integrated into a single DP. Such a design is called a redundant design. This is addressed

by Theorem 3 [1].

Theorem 3. When there are less FRs than DPs then the design is either coupled or

redundant.

Finally, the previous three theorems lead to the conclusion in Theorem 4 [1].
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Theorem 4. In an ideal design, the number of FRs is equal to the number of DPs.

1.4 Part Consolidation

One particularly important design parameter is the number of parts in a product

design. According to Professor Suh:

Poorly designed products often cost more because they use more materials or
parts than do well-designed products. They are often difficult to manufacture
and maintain [1].

Decreasing the number of parts in a design while maintaining the independence of the

FRs is consistent with Corollary 3 and lowers the information content of the design. In

fact, Tang, et al. [6] describe how part consolidation reduces the weight and complexity of

a final product while boosting reliability and reducing cost.

An informative example of part consolidation is the combination can/bottle opener

shown in Fig. 7. The design of this handy utensil has two FRs that are consolidated into a

single part, yet remain independent as long as there is no desire to open a can and a bottle

simultaneously (although that would be a popular trick around a campfire).

FR1 Open beverage cans
FR2 Open beverage bottles

Fig. 7. A part consolidation example.

1.5 Research Goals

The primary goal of this research is to provide designers with a tool that they can use

to determine the minimum number of parts required to realize a particular design at a

particular level in a FR/DP hierarchy. The designer is required to construct a graph whose

9



vertices are the FRs and whose edges indicate that the endpoint FRs need to be realized

by separate parts due to various design constraints. How these edges are actually

determined is beyond the scope of this research. Nonadjacent FRs are candidates for part

consolidation. The goal is to find the chromatic number of the resulting graph, which

corresponds to the minimum number of parts required for the candidate design.

To be a viable tool, an algorithm running as a computer program must be able to

deliver an answer in a reasonable amount of time. Unfortunately, finding the chromatic

number of a graph is known to be an inherently intractable problem [7]. The nature of

such problems is discussed in Section 4, but for now this is taken to mean that the time

required to find a solution grows exponentially with the number of vertices in the graph.

Furthermore, although not fully proven, it appears likely that there is no way to do any

better than an exponential-time solution. Therefore, it is necessary to apply some solution

parameters:

1) Maximum number of FRs in a design graph.

2) Target edge density in a design graph.

3) Acceptable runtime duration to obtain a solution.

Determining solid requirements for the maximum number of FRs and the target edge

density would require a full case study by a qualified mechanical engineer; however, the

examples submitted by our colleagues at SUNY, Buffalo all have under 20 FRs with low

to average edge density. These values seem reasonable: designs with too many FRs may

become untenable and hence broken up into multiple layers in the design hierarchy and

designs with too many edges may be too coupled. Although acceptable duration time is

subjective, a limit of about one minute will be selected as the goal.

Thus, the primary goal of this research is to provide AD designers with a tool that can

determine the minimum number of parts needed to realize a particular design having

about 20 FRs and less than 50% edge density in less than one minute. Designs with
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different minimum parts requirements can then be compared during the analytical process

phase of the axiomatic design as part of the overall process of selecting the best design.

Of course, this tool will be an algorithm that can be run on a computer.

This research compares the two most well-known existing algorithms for determining

the chromatic number of a graph: the Christofides algorithm [8] with improvements by

Wang [9] and the Zykov algorithm [10]. A new algorithm is then proposed that is a

modification of the Zykov algorithm with the goal of outperforming the existing

algorithms.

11



2 GRAPH THEORY

This section presents the concepts, definitions, and theorems from the field of graph

theory that are needed in the development of the proposed algorithm. This material is

primarily taken from the undergraduate graph theory text by Chartrand and Zhang

(2012) [11] and the graduate graph theory text by West (2001) [12].

2.1 Simple Graphs

The problem of part consolidation is best served by a class of graphs called simple

graphs. A simple graph is a mathematical object represented by an ordered pair

G = (V,E) consisting of a finite and non-empty set of vertices (also called nodes): V (G),

and a finite and possibly empty set of edges: E(G). Each edge is represented by a

two-element subset of V (G) called the endpoints of the edge: E(G)⊆P2 (V (G)). For

the remainder of this work, the use of the term “graph” implies a “simple graph.” Thus, a

part consolidation problem can be represented by a graph whose vertices are the

functional requirements (FRs) of the design and whose edges indicate which endpoint

FRs should never be combined into a single part.

The choice of two-element subsets of V (G) for the edges has certain ramifications that

are indeed characteristics that differentiate a simple graph from other classes of graphs:

1) Every two vertices of a graph are the endpoints of at most one edge; there are no

so-called multiple edges between two vertices.

2) The two endpoint vertices of an edge are always distinct; there are no so-called loop

edges on a single vertex.

3) The two endpoint vertices are unordered, suggesting that an edge provides a

bidirectional connection between its endpoint vertices.

When referring to the edges in a graph, the common notation of juxtaposition of the

vertices will be used instead of the set syntax. Thus, edge {u,v} is simply referred to as

uv or vu.
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Graphs are often portrayed visually using labeled or filled circles for the vertices and

lines for the edges such that each edge line is drawn between its two endpoint vertices.

An example graph is shown in Fig. 8.

e

a b

cd

V (G) = {a,b,c,d,e}

E(G) =
{

ab,ad,ae,be
}

Fig. 8. An example graph (labeled and unlabeled).

When two vertices are the endpoints of the same edge, the vertices are said to be

adjacent or are called neighbors, and the edge is said to join its two endpoint vertices.

Furthermore, an edge is said to be incident to its endpoint vertices. In the example graph

of Fig. 8, vertex a is adjacent to vertices b, d, and e; however, it is not adjacent to vertex c.

As demonstrated by vertex c in Fig. 8, there is no requirement that every vertex in a

graph be an endpoint for some edge. In fact, a vertex that is not incident to any edge is

called an isolated vertex.

We can also speak of adjacent edges, which are edges that share exactly one endpoint.

Note that two edges cannot share both of their endpoints — otherwise they would be

multiple edges, which are not allowed in simple graphs. In the example graph of Fig. 8,

edge ab is adjacent to edges ad and ae via common vertex a, and be via common vertex

b.
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2.2 Order and Size

Two of the most important characteristics of a graph are its order and its size. The

order of a graph G, denoted by n(G) or just n when G is unambiguous, is the number of

vertices in G: n = |V (G)|. The size of a graph G, denoted by m(G) or just m when G is

unambiguous, is the number of edges in G: m = |E(G)|. In the example graph of Fig. 8:

n = 5 and m = 4.

Since every two vertices can have at most one edge between them, the number of

edges has an upper bound:

Theorem 5. Let G be a graph of order n and size m:

m≤ n(n−1)
2

Proof. Since each pair of distinct vertices in V (G) can have zero or one edges joining

them, the maximum number of possible edges is
(n

2

)
, and so:

m≤
(

n
2

)
=

n!
2!(n−2)!

=
n(n−1)

2

Some choices of graph order and size lead to certain degenerate cases that serve as

important termination cases for the the proposed algorithm:

• The null graph is the non-graph with no vertices (n = m = 0).

• The trivial graph is the graph with exactly one vertex and no edges (n = 1,m = 0).

Otherwise (n > 1), a graph is called non-trivial.

• An empty graph is a graph containing no edges (m = 0).

• A complete graph is a graph containing every possible edge
(

m = n(n−1)
2

)
.

Note that both the null and trivial graphs are empty.
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2.3 Graph Relations

In addition to its vertices and edges, a graph may be associated with one or more

relations. Each relation has V (G) or E(G) as its domain and is used to associate vertices

or edges with problem-specific attributes such as labels or colors. Note that there are no

particular limitations on the nature of such relations — everything from a basic relation to

a bijective function are possible. Some authors include these relations and their

codomains as part of the graph tuple; however, since these extra tuple elements do not

affect the structure of a graph, we will not do so.

In practice, when a graph theory problem requires a particular vertex or edge attribute,

the presence of some corresponding relation R is assumed and we say something like,

“vertex v has attribute a,” instead of the more formal, “vertex v has attribute R(v).”

The following sections describe the two relations used by the proposed algorithm.

2.3.1 Labels

One possible relation associated with a graph G is a bijective function ` : V (G)→ L

that assigns to each vertex a unique identifying label. The codomain L is the set of

available labels. When such a function is present, the graph is said to be a labeled graph

and the vertices are considered to be distinct. Otherwise, a graph is said to be unlabeled

and the vertices are considered to be identical (only the structure of the graph matters).

The vertices in a labeled graph are typically drawn as open circles containing the

corresponding labels, whereas the vertices in an unlabeled graph are typically drawn as

filled circles. This is demonstrated in the example graph of Fig. 8: the graph on the left is

labeled and the graph on the right is unlabeled.

Since the labeling function ` is bijective, a vertex v ∈V (G) with label “a” can be

identified by v or `−1(a). In practice, the presence of a labeling function is assumed for a

labeled graph and so a vertex is freely identified by its label. This is important to note

when a proof includes a phrase such as, “let v ∈V (G) . . .” since v may be a reference to
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any vertex in V (G) or may call out a specific vertex by its label; the intention is usually

clear from the context.

The design graphs that act as the inputs to the proposed algorithm are labeled graphs,

where the labels represent the various functional requirements: FR1,FR2,FR3, . . . ,FRn.

2.3.2 Vertex Color

Other graph theory problems require that a graph’s vertices be distributed into some

number of sets based on some problem-specific criteria. Usually, this distribution is a true

partition (no empty sets), but this is not required depending on the problem. One popular

method of performing this distribution on a graph G is by using a coloring function

c : V (G)→C, where C is a set of colors. Vertices with the same color are assigned to the

same set in the distribution. Although the elements of C are usually actual colors (red,

green, blue, etc.), a graph coloring problem is free to select any value type for the color

attribute. Note that there is no assumption that c is surjective, so the codomain C may

contain unused colors, which correspond to empty sets in the distribution.

A coloring c : V (G)→C on a graph G is called proper when no two adjacent vertices

in G are assigned the same color: for all u,v ∈V (G), if uv ∈ E(G) then c(u) 6= c(v).

Otherwise, c is called improper. A proper coloring with |C|= k is called a k-coloring of

G and G is said to be k-colorable, meaning the actual coloring (range of c) uses at most k

colors.

An example of a 4-coloring is shown in Fig. 9.
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e

a b

cd

C = {green,blue, red,orange}

c(a) = green

c(b) = blue

c(c) = green

c(d) = orange

c(e) = red

Fig. 9. A graph with a 4-coloring.

Since there is no requirement that a coloring c be surjective, the codomain C may

contain unused colors. For example, the coloring shown in Fig. 9 is surjective, but we can

add an unused color to C:

C = {green,blue, red,orange,brown}

Now, c is no longer surjective, and according to the definition, G is 5-colorable — the

coloring c uses at most 5 colors (actually only 4), which is the cardinality of the

codomain. This fact is generalized by Theorem 6.

Theorem 6. Let G be a graph and let r ∈ N. If G is k-colorable then G is

(k+ r)-colorable.

Proof. Although this conclusion is fairly intuitive, it is always best to construct a proper

coloring function under the given conditions so that the result is based on the definition.

So start by assuming that G is of order n and is k-colorable. This means that there exists a

coloring function c : V (G)→C that is proper with |C|= k. Let V (G) = {v1, . . . ,vn} and

let C = {c1, · · · ,ck}. Now, let C′ = {c1, · · · ,ck+r} and define c′ : V (G)→C′ by:

c′(v) = c(v)
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Assume that u and v are two adjacent vertices in G: uv ∈ E(G). Since c is proper:

c′(u) = c(u) 6= c(v) = c′(v)

and so c′ is proper with |C′|= k+ r.

Therefore, G is k+ r-colorable.

Furthermore, for a graph G of order n, if n≤ k then we can conclude that G is

k-colorable since there are sufficient colors to assign each vertex its own unique color.

This result is stated in Theorem 7, which will turn out to be an important termination case

for the proposed algorithm.

Theorem 7. Let G be a graph of order n and let k ∈ N. If n≤ k then G is k-colorable.

Proof. Assume n≤ k. Let V (G) = {v1, . . . ,vn} and let C = {c1, . . . ,ck}. Now, define

c : V (G)→C by:

c(vi) = ci

which is possible since, by assumption, n≤ k. Finally, assume that vi and v j are two

adjacent vertices in G: viv j ∈ E(G). Since the ci are distinct:

c(vi) = ci 6= c j = c(v j)

and so c is proper with |C|= k.

Therefore, G is k-colorable.

Since k ∈ N, by the well-ordering principle there exists some minimum k such that a

graph G is k-colorable. This minimum k is called the chromatic number of G, denoted by

χ(G). A k-coloring for a graph G where k = χ(G) is called a k-chromatic coloring of G.

Returning to the example 4-coloring of Fig. 9, note that vertex d can be colored blue

and then orange can be excluded from the codomain, resulting in a 3-coloring. This is
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shown in Fig. 10. Since there is no way to use less than 3 colors to obtain a proper

coloring of the graph, the coloring is 3-chromatic. Note that when a coloring is chromatic,

there are no unused colors (empty sets) and hence the distribution is a true partition.

e

a b

cd

C = {green,blue, red}

c(a) = green

c(b) = blue

c(c) = green

c(d) = blue

c(e) = red

Fig. 10. A Graph with a 3-chromatic coloring.

2.4 Subgraphs

The basic strategy of the proposed algorithm is to arrive at a solution by mutating an

input graph into simpler graphs such that a solution is more easily determined. The

algorithm utilizes three particular mutators: vertex deletion, edge addition, and vertex

contraction. Before describing these mutators, it will be helpful to describe what is meant

by graph equality and a subgraph of a graph.

To say that graph G is equal to graph H, denoted by G = H, means that the exact

same graph is given two names: G and H. It is specifically not a comparison between two

different graphs. Two different graphs that have the same structure, meaning there exists

an adjacency-preserving bijection between the vertices of the two graphs, are referred to

as being isomorphic, denoted by G∼= H, and are not considered to be equal. Of course, if

G = H then G∼= H; however, the converse is usually not true. In fact, G = H if and only

if V (G) =V (H) and E(G) = E(H).
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To say that H is a subgraph of a graph G, denoted by H ⊆ G, means that

V (H)⊆V (G) and E(H)⊆ E(G). Thus, H can be achieved by removing zero or more

vertices and/or edges from G, and G can be achieved by adding zero or more vertices

and/or edges to H. Once again, H is not a different graph. If H is a different graph then

one can say that it is isomorphic to a subgraph of G, but not a subgraph of G itself. By

definition, G⊆ G and the null graph is a subgraph of every graph.

When G and H differ by at least one vertex or edge then H is called a proper

subgraph of G, denoted by H ⊂ G. In fact, H ⊂ G if and only if H ⊆ G but H 6= G,

meaning V (H)⊂V (G) or E(H)⊂ E(G). When H and G differ by edges only:

V (H) =V (G) and E(H)⊆ E(G), then H is called a spanning subgraph of G.

The concept of subgraphs is demonstrated by graphs G, H, and F in Fig. 11. H is a

proper subgraph of G by removing vertices c and d and edges ad and be. F is a proper

spanning subgraph of G because F contains all of the vertices in G but is missing edges

ab and be.

e

a b

cd

G

e

a b

H ⊂ G (proper)

e

a b

cd

F ⊂ G (spanning)

Fig. 11. Subgraph examples.

An induced subgraph is a special type of subgraph. Let G be a graph and let

S⊆V (G). The subgraph of G induced by S, denoted by G[S], is a subgraph H such that

V (H) = S and for every u,v ∈ S, if u and v are adjacent in G then they are also adjacent

in H. Such a subgraph H is called an induced subgraph of G.
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In the examples of Fig. 11, H is not an induced subgraph of G because it is missing

edge be. Likewise, a proper spanning subgraph like F can never be induced due to

missing edges. In fact, the only induced spanning subgraph of a graph is the graph itself.

Fig. 12 adds edge be so that H is now an induced subgraph of G.

e

a b

cd

G

e

a b

H = G[{a,b,e}]

Fig. 12. An induced subgraph example.

2.5 Mutators

The following sections describe the graph mutators used by the proposed algorithm.

2.5.1 Vertex Removal

Let G be a graph and let S⊆V (G). The induced subgraph obtained by removing all

of the vertices in S (and their incident edges) is denoted by:

G−S = G[V (G)−S]

If S 6= /0 then G−S is a proper subgraph of G. If S =V (G) then the result is the null

graph.

Fig. 13 shows an example of vertex removal: vertices c and e are removed, along with

their incident edges ae and be.
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e

a b

cd

G

a b

cd

G−{c,e}

Fig. 13. A vertex removal example.

If S consists of a single vertex v then the alternate syntax G− v is used instead of

G−{v}.

The proposed algorithm uses vertex removal to simplify a graph that is assumed to be

k-colorable into a smaller graph that is also k-colorable.

2.5.2 Edge Addition

Let G be a graph and let u,v ∈V (G) such that uv /∈ E(G). The graph G+uv is the

graph with the same vertices as G and with edge set E(G)∪{uv}. Note that G is a proper

spanning subgraph of G+uv.

Fig. 14 shows an example of edge addition: edge cd is added.

e

a b

cd

G

e

a b

cd

G+ cd

Fig. 14. An edge addition example.

The proposed algorithm uses edge addition to prevent two non-adjacent FRs from

being consolidated into the same part.
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2.5.3 Edge Removal

The proposed algorithm does not use edge removal; however, a number of related

algorithms do rely on this mutator so it is presented here. Let G be a graph and let

X ⊆ E(G). The spanning subgraph obtained by removing all of the edges in X is denoted

by:

G−X = H (V (G),E(G)−X)

Thus, only edges are removed — no vertices are removed. If X 6= /0 then G−X is a

proper subgraph of G. If X = E(G) then the result is an empty graph.

Fig. 15 shows an example of edge removal: edges ae and be are removed.

e

a b

cd

G

e

a b

cd

G−{ae,be}

Fig. 15. An edge removal example.

If X consists of a single edge e then the alternate syntax G− e is used instead of

G−{e}.

2.5.4 Vertex Contraction

Vertex contraction is a bit different because it does not involve subgraphs. Let G be a

graph and let u,v ∈V (G). The graph G ·uv is constructed by identifying u and v as one

vertex (i.e., merging them). Any edge between the two vertices is discarded. Any other

edges that were incident to the two vertices become incident to the new single vertex.

Note that this may require supression of multiple edges to preserve the nature of a simple

graph.
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Fig. 16 shows an example of vertex contraction: vertices a and b are contracted into a

single vertex. Since edges ae and be would result in multiple edges between a and e, one

of the edges is discarded. Edges bc and bd also become incident to the single vertex.

a

b

cd

e

G

ab

cd

e

G ·ab

Fig. 16. A vertex contraction example.

For the operation G ·uv, if uv ∈ E(G) then the operation is also referred to as edge

contraction. If uv /∈ E(G) then the operation is also referred to as vertex identification.

The proposed algorithm uses vertex identification to consolidate two non-adjacent FRs

into the same part.

2.5.5 Graph Complement

One final important graph mutator is the complement of a graph. For a graph G, the

complement of G, denoted by Ḡ, is the graph with the same vertex set as G:

V (G) =V (Ḡ), and with edge set E(Ḡ) = P2 (V (G))−E(G); if u,v ∈V (G) are adjacent

in G (uv ∈ E(G)) then they are not adjacent in Ḡ
(
uv /∈ E(Ḡ)

)
.

An example of a graph complement operation is shown in Fig. 17.
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a b

cd

G

a b

cd

Ḡ

Fig. 17. A graph complement example.

Some important properties of the complement of a graph are stated in Proposition 1.

Proposition 1. Let G be a graph of order n and size m:

1) ¯̄G = G

2) G is empty if and only if Ḡ is complete.

3) n(Ḡ) = n(G)

4) m(Ḡ) = n(n−1)
2 −m(G)

For example, in Fig. 17, since n(G) = 4 and m(G) = 3, it is the case that n(Ḡ) = 4

and:

m(Ḡ) =
4(4−1)

2
−3 = 6−3 = 3

2.6 Independent Sets

The primary purpose of a k-coloring of a graph G is to distribute the vertices of G into

k so-called independent (some possibly empty) sets. For a graph G, an independent set

S⊆V (G), sometimes called a stable set, is a set of pairwise non-adjacent vertices in G:

for all u,v ∈ S, uv /∈ E(G). By definition, the empty set is an independent set of every

graph G. A maximal independent set of a graph G, sometimes referred to as a MIS of G,

is an independent set of G that cannot be extended by an additional vertex in V (G); MISs

of G are never proper subsets of other independent sets in G. The cardinality of the largest

possible MIS in a graph G, denoted by α(G), is called the independence number for G.
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Consider the example in Fig. 18. Although the graph contains independent sets of

sizes 1 and 2, none of these are maximal. All of the maximal independent sets are of sizes

3 and 4, and so α(G) = 4.

a b c d

efg

h
MIS size

{a,b,c,d} 4
{a,b,e} 3
{b,c,d,g} 4
{b,e,g} 3
{e, f ,g,h} 4

α(G) = 4

Fig. 18. The independent sets of an example graph.

Since a k-chromatic coloring of a graph G is surjective, there are no unused colors

(empty sets) and so the coloring partitions the vertices of G into exactly k non-empty

independent sets. The goal of the proposed algorithm is to find a chromatic coloring of a

design graph so that the resulting independent sets indicate how to consolidate the FRs

into a minimum number of parts: one part per independent set.

2.7 Cliques

A clique is a complete subgraph of a graph. A clique of order k in a graph G is called

a k-clique of G. A maximal clique in a graph G is a clique in G that cannot be extended

by an additional vertex in V (G); maximal cliques in G are never proper subgraphs of

other cliques in G. The order of the largest possible maximal clique in a graph G, denoted

by ω(G), is called the clique number for G.

Consider the example in Fig. 19. Although the graph contains cliques of orders 1 and

2, none of these are maximal. All of the maximal cliques are of orders 3 and 4, and so

ω(G) = 4.
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a b

cd

e

f

g

h

G

maximal clique order
G[{a,b,c,d}] 4
G[{a,b,e}] 3

G[{b,c,d,g}] 4
G[{b,e,g}] 3

G[{e, f ,g,h}] 4

ω(G) = 4

Fig. 19. The maximal cliques of an example graph.

Since it is true that two nonadjacent vertices in a graph must be adjacent in the

graph’s complement, there is an important relationship between the independent sets of a

graph and the cliques in the graph’s complement. This relationship is stated in Theorem 8.

Theorem 8. Let G be a graph and let S⊆V (G). S is an independent set in G if and only

if Ḡ[S] is a clique in Ḡ. Furthermore, S is maximal in G if and only if Ḡ[S] is maximal in

Ḡ and so α(G) = ω(Ḡ).

Proof. By definition, for all u,v ∈V (G), u is not adjacent to v in G if and only if u and v

are adjacent in Ḡ, and so G[S] is empty if and only if Ḡ[S] is complete. Therefore, S is an

independent set in G if and only if Ḡ[S] is a clique in Ḡ.

Furthermore, assume that S is maximal in G but assume by way of contradiction that

Ḡ[S] is not maximal. Then there exists v ∈V (Ḡ) such that v /∈ S and Ḡ[S∪{v}] is a clique

in Ḡ, and thus S∪{v} is an independent set in G. But S⊂ S∪{v}, violating the

maximality of S. Therefore Ḡ[S] is maximal in Ḡ.

Similarly, assume that Ḡ[S] is maximal in Ḡ but assume by way of contradiction that

S is not maximal in G. Then there exists v ∈V (G) such that v /∈ S and S∪{v} is an

independent set in G, and thus Ḡ[S∪{v}] is a clique in Ḡ. But Ḡ[S]⊂ Ḡ[S∪{v}],

violating the maximality of Ḡ[S]. Therefore S is maximal in G.

27



Indeed, the graphs in Fig. 18 and Fig. 19 are complements and, as expected, every

MIS in Fig. 18 is a maximal clique in Fig. 19.

Since a k-clique of a graph G needs at least k colors in any proper coloring of G, the

clique number of G provides a nice lower bound for the chromatic number of G.

Unfortunately, the clique number problem is known to be inherently intractable as

well [10]. Thus, there are many attempts in the literature to find a good lower bound for

the clique number of a graph G, usually denoted by ω ′(G). If such a lower bound is

known then the conclusion of Proposition 2 holds:

Proposition 2. Let G be a graph with clique number lower bound ω ′(G):

ω
′(G)≤ ω(G)≤ χ(G)

2.8 Connected Graphs

The edges of a graph suggest the ability to “walk” from one vertex to another along

the edges. A graph where this is possible for any two vertices is called a connected graph.

The concept of connectedness is an important topic in graph theory; however, an ideal

coloring algorithm should work regardless of the connected nature of an input graph. The

concept of connectedness and how it impacts coloring is described in this section.

2.8.1 Walks

The undirected edges in a simple graph suggest bidirectional connectivity between

their endpoint vertices. This leads to the idea of “traveling” between two vertices in a

graph by following the edges joining intermediate adjacent vertices. Such a journey is

referred to as a walk.

A u− v walk W in a graph G is a finite sequence of vertices wi ∈V (G) starting with

u = w0 and ending with v = wk:

W = (u = w0,w1, . . . ,wk = v)
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such that wiwi+1 ∈ E(G) for 0≤ i < k. To say that W is open means that u 6= v. To say

that W is closed means that u = v. The length k of W is the number of edges traversed:

k = |W |. A trivial walk is a walk of zero length — i.e, a single vertex: W = (u).

The bidirectional nature of the edges in a simple graph suggests the following

proposition:

Proposition 3. Let G be a graph and let u− v be a walk of length k in G. G contains a

v−u walk of length k in G by traversing u− v in the opposite direction.

An example of two walks of length 4 is shown in Fig. 20. W1 is an open walk because

it starts and ends on distinct vertices, whereas W2 is a closed walk because it starts and

ends on the same vertex.

a

b

cd

e
W1 = (a,b,e,a,c) is open

W2 = (a,e,b,c,a) is closed

|W1|= |W2|= 4

Fig. 20. Open and closed walks.

Vertices and edges are allowed to be repeated during a walk. Certain special walks

can be defined by restricting such repeats:

trail An open walk with no repeating edges (a,b,c,a,e)

path A trail with no repeating vertices (a,e,b,c)

circuit A closed trail (a,b,e,a,c,d,a)

cycle A closed path (a,e,b,c,a)

The example special walks stated above refer to the graph in Fig. 20.
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2.8.2 Paths

When discussing the connectedness of a graph, the main concern is the existence of

paths between vertices. Let G be a graph and let u,v ∈V (G). To say that u and v are

connected means that G contains a u− v path.

But if there exists a u− v walk in a graph G, does this also mean that there exists a

u− v path in G — i.e., a walk with no repeating edges or vertices? The answer is yes, as

shown by the following theorem:

Theorem 9. Let G be a graph and let u,v ∈V (G). If G contains a u− v walk of length k

then G contains a u− v path of length `≤ k.

Proof. Assume that G contains at least one u− v walk of length k and consider the set of

all possible u− v walks in G; their lengths form a non-empty set of positive integers. By

the well-ordering principle, there exists a u− v walk P of minimum length `≤ k:

P = (u = w0, . . . ,w` = v)

We claim that P is a path.

Assume by way of contradiction that P is not a path, and thus P has at least one

repeating vertex. Let wi = w j for some 0≤ i < j ≤ ` be such a repeating vertex. There are

two possibilities:

Case 1: The walk ends on a repeated vertex ( j = `). This is demonstrated in Fig. 21.
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u = w0 w1 wi = w j = w` = v wi+1 w j−2

w j−1

Fig. 21. Repeated vertex at end case.

Let P′ = (u = w0,w1, . . . ,wi = v) be the walk shown in green in Fig. 21. P′ is a u−v

walk of length i < ` in G.

Case 2: A repeated vertex occurs inside the walk ( j < `). This is demonstrated in Fig. 22.

u = w0 w1 wi = w j

wi+1w j−1

w j+1 w` = v

Fig. 22. Repeated vertex inside case.

Let P′ = (u = w0,w1, . . . ,wi,w j+1, . . . ,w` = v) be the walk shown in green in

Fig. 22. P′ is a u− v walk of length `− ( j− i)< ` in G.

Both cases contradict the minimality of the length of P.

∴ P is a u− v path of length `≤ k in G.

2.8.3 Connectedness

A connected graph G is a graph whose vertices are all connected: for all u,v ∈V (G)

there exists a u− v path. Otherwise, G is said to be disconnected. Examples of connected

and disconnected graphs are shown in figure 23.
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a b

cd

(a,b)
(a,c)
(a,d)
(b,a,c)
(b,a,d)
(c,a,d)

CONNECTED

a

bc

d e

No path from any of a,b,c to any of d,e

DISCONNECTED

Fig. 23. Connected and disconnected graphs.

By definition, the trivial graph is connected since the single vertex is connected to

itself by a trivial path (of length 0).

2.8.4 Components

It would seem that a disconnected graph is composed of some number of connected

subgraphs that partition the graph’s vertex set under a connected equivalence relation.

Each such subgraph is called a component of the graph.

Let G be a graph and let G be the set of all connected subgraphs of G. To say that a

graph H ∈ G is a component of a G means that H is not a subgraph of any other

connected subgraph of G : for every F ∈ G −{H} it is the case that H 6⊂ F . The number

of distinct components in G is denoted by k(G), or just k if G is unambiguous. For a

connected graph: k(G) = 1.

Each component of a graph G is denoted by Gi where 1≤ i≤ k(G). We also use

union notation to denote that G is composed of its component parts:

G =
⋃

0≤i≤k(G)

Gi
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Furthermore the Gi are induced by the vertex equivalence classes of the connectedness

relation:

Theorem 10. Let G be a graph with component Gi. Gi is an induced subgraph of G.

Proof. By definition, Gi is a maximal connected subgraph of G. So assume by way of

contradiction that Gi is not an induced subgraph of G. Thus, Gi is missing some edges

that when added would result in a connected induced subgraph H of G. But then Gi ⊂ H,

contradicting the maximality of Gi.

∴ Gi is an induced subgraph of G.

2.8.5 Impact on Coloring

The impact of disconnectedness on coloring depends on the selected algorithm. One

might assume that the selected algorithm should be run on each component individually

in order to determine each χ(Gi) and then, as pointed out by Zykov (1949) [13], conclude

that the maximum such value is sufficient for χ(G):

χ(G) = max
1≤i≤k(G)

χ(Gi)

For example, consider the disconnected graph in Fig. 23. The graph contains two

components, so number the components from left-to-right:

χ(G1) = 3

χ(G2) = 2

χ(G) = max{3,2}= 3

Using this technique requires application of an initial algorithm to partition the graph

into components. Such an algorithm is well-known and is described by Hopcroft and

Tarjan (1973) [14]. The algorithm is recursive. It starts by pushing a randomly selected
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vertex on the stack and walking the vertex’s incident edges, removing each edge as it is

traversed. As each unmarked vertex is encountered, it is assigned to the current

component. Vertices with incident edges are pushed onto the stack and newly isolated

vertices are popped off the stack. Once the stack is empty, any previously unmarked vertex

is selected to start the next component and the process continues until all vertices are

marked. Given a graph G of order n and size m, this algorithm runs in max(n,m) steps.

Alternatively, a coloring algorithm can be designed to run on an entire graph

regardless of its connectedness. The Christofides, Zykov, and proposed algorithm are all

of this type.

2.9 Vertex Degree

Besides a graph’s order and size, the next most important parameter is the so-called

degree of each vertex. In order to define the degree of a vertex, we need to define what is

meant by a vertex’s neighborhood first. Let G be a graph and let u ∈V (G). If v ∈V (G) is

adjacent to u then u and v are called neighbors. Note that for simple graphs, a vertex is

never a neighbor of itself. The neighborhood of u, denoted by N(u), is the set of all the

neighbors of u in G:

N(u) = {v ∈V (G) |uv ∈ E(G)}

The degree of u, denoted by degG(u) or just deg(u) if G is unambiguous, is then defined

to be the cardinality of its neighborhood: deg(u) = |N(u)|. Thus, the degree of a vertex

can be viewed as the number of neighbor vertices or the number of incident edges.

When considering the degrees of all the vertices in a graph, the following limits are

helpful:

δ (G) = min
v∈V (G)

deg(v)

∆(G) = max
v∈V (G)

deg(v)
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Therefore, we can state the conclusion of Proposition 4:

Proposition 4. Let G be a graph of order n. For every vertex v ∈ G:

0≤ δ (G)≤ deg(v)≤ ∆(G)≤ n−1

Intuitively, as δ (G) increases, a graph becomes denser (more edges) resulting in more

adjacencies, making it harder to find a proper coloring at lower values of k.

Vertices can be classified based on their degree, as shown in Table 1.

Table 1

Classifying Vertex u in Graph G

deg(u) TYPE
0 isolated
1 pendant, end, leaf

n−1 universal
even even
odd odd

Isolated vertices have degree 0; they are not adjacent to any other vertex in G.

Pendant (also called end or leaf) vertices have degree 1; they are adjacent to exactly one

other vertex in G. Universal vertices are adjacent to every other vertex in G. Even vertices

are adjacent to an even number of vertices in G and odd vertices are adjacent to an odd

number of vertices in G. Note that if G has a universal vertex then it cannot have an

isolated vertex, and vice-versa.

The degrees of the vertices in a graph and the number of edges in the graph are

related by the so-called First Theorem of Graph Theory:

Theorem 11 (First Theorem of Graph Theory). Let G be a graph of size m:

∑
v∈V (G)

deg(v) = 2m
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Proof. When summing all the degrees, each edge is counted twice: once for each

endpoint.

These concepts are demonstrated by the graph in Fig. 24.

v2

v3v4

v5

v6 v7

v1

v8

n = 8 m = 15 = 30
2

δ (G) = 1 ∆(G) = 7

vertex degree type
v1 7 universal,odd
v2 4 even
v3 4 even
v4 3 odd
v5 4 even
v6 4 even
v7 3 odd
v8 1 pendant,odd

total 30

Fig. 24. Vertex degrees and the first theorem of graph theory.

2.10 Special Graphs

The following sections described some special classes of graphs that are important to

the execution of the proposed algorithm.

2.10.1 Empty Graphs

An empty graph of order n, denoted by En, is a graph with one or more vertices

(n > 1) and no edges (m = 0). An empty graph is connected if and only if n = 1.

Examples of empty graphs are shown in Fig. 25.

E1 E4

E9

Fig. 25. Empty graphs.
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The null graph (n = 0) is denoted by E0 and is defined to be 0-chromatic. All other

empty graphs are 1-chromatic and thus are important termination conditions for the

proposed algorithm.

2.10.2 Paths

A path graph of order n and length n−1, denoted by Pn, is a connected graph

consisting of a single open path. Examples of path graphs are shown in Fig. 26.

P1 P4

P9

Fig. 26. Path graphs.

Note that P1 = E1 is 1-chromatic, whereas Pn>1 is 2-chromatic.

Paths are not particularly important to the proposed algorithm; however, they are used

in the definition of cycles.

2.10.3 Cycles

A cycle graph of order n and length n for n≥ 3, denoted by Cn, is a connected graph

consisting of a single closed path. When n is odd then Cn is called an odd cycle and when

n is even then Cn is called an even cycle.

Examples of cycle graphs are shown in Fig. 27.

C3 (odd) C4 (even)
C9 (odd)

Fig. 27. Cycle graphs.
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Note that even cycles are 2-chromatic; however, odd cycles are 3-chromatic.

Cycles are not particularly important to the proposed algorithm; however, they are

used in the definition of trees, which are important to the later analysis of coloring

algorithms.

2.10.4 Complete Graphs

A complete graph of order n and size n(n−1)
2 , denoted by Kn, is a connected graph that

contains every possible edge: E(G) = P2(V (G)). Thus, all of the vertices in a complete

graph are universal.

Examples of complete graphs are shown in Fig. 28.

K1

K4
K9

Fig. 28. Complete graphs.

Note that K1 = P1 = E1.

Since all of the vertices in a complete graph are adjacent to each other, each vertex

requires a separate color in order to achieve a proper coloring. Thus, Kn is n-chromatic

and is also an important termination condition for the proposed algorithm.

2.10.5 Trees

A tree is a connected graph that contains no cycles as subgraphs. Typically, one vertex

of the tree is selected as the root vertex and then the tree is depicted in layers that contain

vertices that are equidistant from the root vertex. Thus, the bottom layer is composed

entirely of pendant vertices, but pendant vertices can exist in the other layers as well.

Such pendant vertices are usually referred to as leaves in this context.
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An example tree is shown in Fig. 29. The root vertex r is shown in red and the leaf

vertices b,e,g,h, i, j,k are shown in green.

r

a b c

d e f g h

i j k

Fig. 29. A tree organized from root to leaves.

Trees are important because they can be used to track so-called “branch-and-bound”

algorithms; each vertex represents a branch choice of the algorithm and thus a particular

state of the problem. All such states can be visited using a so-called depth-first walk. In

the example in Fig. 29, such a depth-first walk would be:

(r,a,d, i,d,a,e,a, f , j, f ,k, f ,a,r,b,r,c,g,c,h,c,r)

Note that this walk guarantees that each vertex is visited at least once.

When such a tree is applied to the problem of exhaustively finding the chromatic

number of a graph via a sequence of vertex contraction and edge addition choices, the tree

is called a Zykov tree and the algorithm is called a Zykov algorithm [15]. Zykov

algorithms are described in detail in Section 5.5. In fact, the proposed algorithm is a

variation of the standard Zykov algorithm.
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2.11 The Adjacency Matrix

For a graph G of order n, the adjacency matrix A for G is the n×n matrix such that:

ai j =


0, viv j /∈ E(G)

1, viv j ∈ E(G)

In the case of a simple graph:

1) The ai j values are limited to 0 and 1 in order to avoid multiple edges.

2) The diagonal values aii are always 0 in order to avoid loops.

3) A is symmetric due to the bidirectional nature of the edges.

An example graph and its adjacency matrix are shown in Fig. 30.

1 2
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0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Fig. 30. A graph and its adjacency matrix.

The degree of vertex vi can be calculated by summing the ith row or the jth column:

deg(vi) =
n

∑
k=1

aik =
n

∑
k=1

ak j

The minimum (δ (G)) and maximum (∆(G)) degree values can then be calculated by

selecting the minimum and maximum calculated degree values.

The adjacency matrix is extremely important to graph algorithms since it provides an

instant report of vertex adjacency. Furthermore, as the adjacency matrix is being

constructed for a graph, it is easy to calculate each vertex degree as well as the minimum

and maximum degree and cache these values for later use.
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3 TOASTER DESIGN CASE STUDY

This section contains a simplistic case study of how a chromatic number part

consolidation tool would be used by an AD designer: the FR graphs for two slightly

different designs of a basic kitchen toaster similar to that shown in Fig. 31 are compared.

It is assumed that the design is either uncoupled or decoupled and hence the

independence of the FRs is as strong as possible.

FR1 Body contains all parts
FR2 Can be safely moved while hot
FR3 Can hold two slices of bread
FR4 Heats each slice of bread on both sides
FR5 Toasting is manually started
FR6 Toasting is automatically or can be manually stopped
FR7 Heat level can be controlled

Fig. 31. An example toaster.
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The graph G1 for the first candidate design with n = 7 and m = 13 is shown in Fig. 32.

FR1

FR2

FR3

FR4

FR5

FR6

FR7

G1

Fig. 32. First candidate design.

When the design tool is run on this first design graph, the graph is found to be

4-chromatic with the example chromatic coloring shown in Fig. 33.
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FR1

FR2

FR3

FR4

FR5

FR6

FR7

G1

Fig. 33. First design chromatic coloring.

Notice in the design that FR5 (start toasting) and FR6 (stop toasting) have been forced

into separate parts, conceivably to accommodate the separate “cancel” button shown in

Fig. 31. But what if the designer decides to eliminate the cancel button and allow manual

cancellation via the lever? Thus, FR5 and FR6 no longer need to be separated, so the edge

between their vertices can be eliminated. The result is shown in Fig. 34.

43



FR1

FR2

FR3

FR4

FR5

FR6

FR7

G2

Fig. 34. Second candidate design.

Now, running the tool indicates that the second design graph is 3-chromatic with the

example coloring shown in Fig. 35.
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FR1

FR2

FR3

FR4

FR5

FR6

FR7

G2

Fig. 35. Second design chromatic coloring.

This process gives the designer the feedback that the second design requires only

three parts instead of four, and thus has less information content and hence a higher

chance of success than the first design. It will be up to the designer to weigh this result

against other aspects of the design.
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4 PROBLEMS AND ALGORITHMS

The chromatic number problem is inherently intractable. Informally, this means that

finding a solution for a given input graph, regardless of the means, can take a very, very

long time in the worst cases. Thus, trying to find an efficient and exact method of solution

that satisfies all cases is a fool’s errand; about the best that can be done is to perform

better than other well-known methods in most cases.

Computation theory is the branch of computer science that is concerned with

determining and comparing the runtime performance of algorithms. The history and

specifics of computation theory, although interesting, are beyond the scope of this

research. Instead, this section presents a brief overview of what is needed from the field of

computation theory in order to characterize the chromatic number problem. Most of this

material is based on the early yet still very influential text by Garey and Johnson

(1979) [7] with some help from Spiser (2013) [16]. The material on incremental

algorithm development is highly influenced by Johnston (1976) [17].

4.1 Problems

A problem consists of three parts:

1) A specific question to be answered.

2) A description of zero or more input parameters.

3) A statement of the properties that the solution is required to satisfy.

An instance of a problem is constructed by specifying particular values for each input

parameter. The step-by-step procedure that translates the input parameters to a

corresponding well-defined solution is called an algorithm. To say that an algorithm

solves a problem means that the algorithm produces a valid solution for every possible

instance of the problem.

The chromatic number problem accepts a graph G and uses an algorithm to obtain a

number k ∈ N where k is the minimum value such that G is k-colorable. The proposed
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algorithm is one such algorithm that can be used to solve the chromatic number problem,

as are the well-known Christofides and Zykov algorithms.

4.2 Comparing Algorithms

Algorithms are compared using three parameters:

1) Runtime complexity

2) Space complexity

3) Runtime duration

These parameters are discussed in the following sections.

4.2.1 Runtime Complexity

Runtime complexity measures the number of steps required to obtain a solution for

the worst possible input parameter and is a function of some length parameter of the

problem. For graph algorithms, the length parameter is usually the order of the graph,

although size and structure can also contribute to the worst case.

The runtime complexity of an algorithm is stated using the so-called big-O notation:

to say that an algorithm has O( f (n)) runtime complexity means that the maximum

number of steps N required to obtain a solution for a given length parameter n has an

upper bound of c f (n) for some real number c > 0; N is asymptotic to f (n) as n→ ∞.

Roughly speaking, tractable problems are those problems with polynomial O(nc) or better

runtime complexity for some real number constant c≥ 0, and intractable problems are

those problems with exponential O(cn) or worse runtime complexity for some real

number constant c > 1.

What constitutes a step in an algorithm is relative to the length parameter and the

overall runtime complexity of the algorithm. One of the problems with big-O notation is

that it is geared towards very large n where the effects of smaller steps are diminished.
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Consider an algorithm that has an exponential number of steps 2an and for each of those

steps it must execute a step with nc steps. The total number of steps would then be:

nc2an = 2log(nc)2an = 2an+c log(n)

For the types of algorithms examined in this research, a typical value for c would be no

more than 3 and a typical value for a would be no more than 1. Table 2 lists results for

various values of n. Note that for higher values of n the effect of the polynomial time

steps diminishes; however, for low to moderate values of n the effect is significant. To put

it bluntly, AD designers don’t give a hoot about the runtime complexity at very large n;

they only care about how long it takes to get an answer for values of n in the stated range

of the tool. Therefore, for the selected range of about 20 FRs, the effects of these steps

can be significant.

Table 2

Comparing Runtime Complexity for an Exponential/Polynomial Mix

n n+3log(n)

10 20

15 27

20 33

25 39

30 45

100 120

1000 1030

10000 10040

Runtime complexity is used in two different ways to compare algorithms:

1) Finding a solution to a problem given a particular input parameter.

2) Verifying that a given solution is in fact a solution for a given input parameter.
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These two comparisons can be very different. For example, finding a k-clique in a

graph G for a particular value of k has exponential runtime complexity; however,

verifying whether or not a given subgraph of a graph is a k-clique has polynomial runtime

complexity. Because of these differences, algorithms are categorized into the computation

classes shown in Table 3.

Table 3

Runtime Complexity Classes for Algorithms

CLASS DESCRIPTION

P
Algorithms with polynomial or better runtime complexity to

find or verify a solution.

NP

A superset of P with varying runtime complexity to find

a solution but polynomial runtime complexity to verify a

solution. It is an open question as to whether P = NP; however,

it is conjectured that they are not equal.

NP-complete
A subset of NP problems that have been proven to have the

same runtime complexity to find a solution.

NP-hard

Algorithms that have been proved to have the same runtime

complexity as the NP-complete problems to find a solution

but varying runtime complexity to verify a solution.

The relationships between these runtime complexity classes, assuming P 6=NP, is

shown in Fig. 36.
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NP

P

NP-complete

NP-hard

Fig. 36. The runtime complexity classes.

For the purposes of this research, the NP-complete problems are assumed to have

exponential runtime complexity to find a solution and polynomial runtime complexity to

verify a solution, and the NP-hard problems are assumed to have exponential runtime for

both finding and verifying solutions.

The chromatic number problem is NP-hard [15]: it requires exponential time to

exhaustively generate and check all possible independent set partitions to find a partition

with the smallest number of independent sets k, and the same basic procedure must be

used to verify that given a supposed k-chromatic coloring, there does not exist a proper

coloring for smaller k.

4.2.2 Space Complexity

Space complexity measures the maximum amount of memory required at any point in

time when an algorithm is run on a computer. The limited memory and CPU power in

early computers forced algorithm designers and programmers to make careful tradeoffs

between CPU cycles and the storage of intermediate results. With today’s fast CPUs and

practically unlimited virtual memory systems, such concerns are not as important. Thus,
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space complexity will not be considered when comparing the three algorithms, except in a

few limited cases where it may be an issue.

4.2.3 Runtime Duration

Runtime duration is an empirical measurement of how long an algorithm runs on a

given computer, usually on best, average, and worst-case input parameter values.

Determining the runtime complexity for some algorithms can be very complicated when

the number of possible steps is dependent on the peculiarities of the input parameters. In

the case of graph algorithms, such things as order, size, and edge density can all affect the

number of steps. Furthermore, runtime complexity is geared towards theoretical

comparisons between algorithms at very large n, not actual runtime of an algorithm

implementation on a given computer for a particular range of n. A comparison of runtime

durations for the existing and new algorithms for the selected parameter ranges is

presented in Section 7.

4.3 Branch-and-Bound Algorithms

Exponential problems are usually associated with so-called brute-force algorithms that

must examine all possibilities from an exponentially increasing set of candidate solutions

in order to find the desired solution. The states of a brute-force algorithm can be

represented by nodes in a tree. Each leaf node of the tree represents a candidate solution.

Each non-leaf node represents a partial solution and serves as the root node of a subtree

leading to a set of related candidate solutions. Such an algorithm is called a branching

algorithm because each candidate solution can be found by walking a unique path through

the tree starting at the root node and ending at the candidate solution leaf node.

For example, consider the problem of finding all maximal cliques in the graph shown

in Fig.37.
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1 2 3

Fig. 37. Finding maximal cliques example graph.

First, consider the rather naı̈ve solution of examining every subgraph in the graph.

The resulting tree is shown in Fig.38. Each node has two branches: include the next vertex

and exclude the next vertex. The results are summarized in the last row: green marks the

desired maximal cliques, blue marks non-maximal cliques, and red marks non-cliques.

1 1̄

12 12̄ 1̄2 1̄2̄

123 123̄ 12̄3 12̄3̄ 1̄23 1̄23̄ 1̄2̄3 1̄2̄3̄

123 12 13 1 23 2 3

Fig. 38. Finding maximal cliques exhaustive tree example.

Exponential algorithms can walk their state trees in either depth-first or breadth-first

fashion. Breadth-first walks require that entire levels be maintained in memory, whereas

depth-first walks only require that the current branch be maintained in memory. Since
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state trees are generally much wider than they are deep, depth-first walks are almost

always more desirable.

When the state tree is binary and balanced like this example, it is easy to calculate

that the number of required steps (branches) is 2n+1−2. Thus, there are 14 required steps

to generate all of the subgraphs for this example. But that is not the entire story. Once all

of the subgraphs have been generated, each one needs to be evaluated to see if it is a

maximal clique. This requires an extra 11 steps as follows:

1) Eliminate 123 due to nonadjacent nodes.

2) Verify that 12 has all adjacent nodes.

3) Eliminate 13 due to nonadjacent nodes.

4) Verify that 1 has all adjacent nodes.

5) Eliminate 1 as a subset of 12.

6) Eliminate 23 due to nonadjacent nodes.

7) Verify that 2 has all adjacent nodes.

8) Eliminate 2 as a subset of 12.

9) Verify that 3 has all adjacent nodes.

10) Verify that 3 is not a subset of 12.

11) Eliminate the null graph.

In fact, each of the subset checks will take an addition number of steps, so the actual

number of steps is greater than the 25 already mentioned.

It would be better to terminate subtrees as soon as a nonadjacent vertex is added to a

subset of adjacent vertices. Such a test is called a bounding condition and subtrees that

are terminated due to bounding conditions are said to be pruned. Branching algorithms

that have bounding conditions are called branch-and-bound algorithms. The goal of any

branch-and-bound algorithm is to prune as many subtrees as possible using bounding

conditions. The new tree with the nonadjacent bounding condition applied is shown in
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Fig. 39. Note that any subtree that attempts to combine vertex 3 with either vertex 1 or

vertex 2 is pruned.

1 1̄

12 12̄ 1̄2 1̄2̄

123̄ 12̄3̄ 1̄23̄ 1̄2̄3 1̄2̄3̄

12 1 2 3

Fig. 39. Finding maximal cliques using nonadjacent bounding.

There is still the problem of eliminating non-maximal cliques and the null subgraph.

This can be accomplished by maintaining a list of “used” vertices for each branch edge.

When transitioning to the right from an “include vertex” branch to an “exclude vertex”

branch, the excluded vertex is added to the branch’s used list. When transitioning down an

“include vertex” branch, used vertices that are not adjacent to the newly included vertex

are removed from the branch’s used list. Thus, a leaf node resulting from a branch with a

non-empty used list is a subset of some previously found clique and hence is not maximal.

The new tree with the non-maximal bounding condition applied is shown in Fig. 40.
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1 1̄

12 12̄ 1̄2 1̄2̄

123̄ 12̄3̄ 1̄23̄ 1̄2̄3 1̄2̄3̄

12 3

1

2 1 12

2
1

123

Fig. 40. Finding maximal cliques using non-maximal bounding.

Note that leaf node 12̄3̄ is not maximal because vertex 2 remains on the used list.

Also note that the branch from 1̄2̄ to 1̄2̄3 eliminates vertices 1 and 2 from the used list

because they are not adjacent to vertex 3. Thus, 1̄2̄3 is a desired maximal clique. The null

subgraph is eliminated because all of the vertices are on the used list.

Since bounding conditions are often very dependent on graph structure, it can be very

hard to determine the theoretical runtime complexity for a specific branch-and-bound

algorithm. This is especially true when multiple bounding conditions interact such that it

is unclear what constitutes a worst case for the algorithm. In the previous maximal clique

example, it is clear that the worst case has an upper bound of O(2n); however, this bound

is not very tight. In these cases, runtime complexity values gleaned from empirical data

are convenient substitutes for truly theoretical answers. In fact, it will be shown in

Section 5 using empirical data that the actual runtime complexity of this maximal clique

algorithm is about O(1.25n).
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Furthermore, runtime complexities for exponential algorithms tend to address large n

cases where the exponential nature of the whole algorithm far exceeds the effect of any

P-time steps. As was shown in Section 4.2.1, these P-time steps are more significant at

moderate values of n. Thus, worst case runtime complexity values for large n may be of

little use if a problem domain is adequately addressed by lower values of n. For these

cases, runtime duration of algorithms applied to real problems may be much more useful.
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5 THE CHROMATIC NUMBER PROBLEM

This section investigates the various well-known methods to either estimate or find the

exact chromatic number for a graph. Since the chromatic number problem is NP-hard, an

alternative to finding an exact answer is finding lower and upper bounds for the actual

value. If these bounds happen to match then they provide the actual chromatic number.

Algorithms that find the exact chromatic number are of the branch-and-bound variety. The

two most well-known algorithms are one proposed by Christofides 1971 [8] with

modifications by Wang (1974) [9] and the so-called Zykov algorithms, with a particular

implementation by Corneil and Graham (1973) [10].

The specifics of the random graph analysis used throughout this research are described

in detail in Section 7. In short, a binomial edge probabity model was used. Trials were run

for edge probabilities from p = 10% to p = 90% in steps of 10%. For P-time algorithms,

1000 trials were run for each edge probability and for each order from n = 5 to n = 50.

For non-P-time algorithms, due to increased runtime duration, the maximum order was

reduced to 30 and the number of trials was reduced to 100 for n≥ 20.

5.1 Finding a Lower Bound

The most popular strategy for estimating a lower bound for the chromatic number of a

graph is based on the statement of Proposition 2. For a graph G:

ω
′(G)≤ ω(G)≤ χ(G)

where ω ′(G) is a lower bound estimate for the clique number of G. Another less popular

bound is given by Theorem 12 [11].

Theorem 12. Let G be a graph of order n. χ(G)≥ n
α(G)

.
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Proof. Assume that G is k-chromatic. This means that V (G) can be partitioned into k

non-empty independent sets A1, . . . ,Ak, where each |Ai| ≤ α(G).

n =

∣∣∣∣∣ ⋃
1≤i≤k

Ai

∣∣∣∣∣= k

∑
i=1
|Ai| ≤

k

∑
i=1

α(G) = kα(G)

Therefore, k ≥ n
α(G)

.

Note that both of the above lower bounds are tight when G is empty or complete and

are related by the statement of Theorem 8:

ω(G) = α(Ḡ)

5.1.1 The Mycielski Construction

It is well-known that certain triangle-free graphs with ω(G) = 2 can have arbitrarily

high χ(G). Examples are the graphs created using the so-called Mycielski

construction [12]:

1) Start with G = P2 (χ(G) = 2).

2) For the vertices in v ∈V (G), create new vertices U = {u1, . . . ,un} such that

N(ui) = N(vi). The new vertices form what is referred to as a shadow graph.

3) Add an additional vertex w such that N(w) =U and call this new graph G′, which

has χ(G′) = χ(G)+1.

4) Let G = G′ and go to step 2.

The first three graphs resulting from the Mycielski construction are shown in Fig. 41.
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v1

v2

k = 2

v1

v2

u1w

u2

k = 3

v1

v2

v3v4

v5

u1

u2

u3u4

u5

w

k = 4

Fig. 41. The first three graphs from the Mycielski construction.

The third graph in Fig. 41 is called the Grötzsch graph. For another example of

triangle free graphs with arbitrarily high chromatic number, see Zhang [18]. Nevertheless,

for the general case the clique number is a suitable lower bound for the chromatic number.

5.1.2 The Edwards Elphick Algorithm

Unfortunately, the clique number problem for a graph G is also NP-hard, so the next

best step is to use a P-time calculation for a ω ′(G) that is as tight as possible to the actual

ω(G). Edwards and Elphick (1982) [19] investigated several such methods and concluded

that the best method was a simple calculation based on the adjacency matrix of G:

1) Select (either lowest index or at random) a vertex v ∈V (G) of maximum degree in G

(deg(v) = ∆(G)) and let S = {v}.

2) Select the vertex vi ∈V (G) such that vi /∈ S and with the minimum index value i that

is adjacent to all of the vertices in S. If no such vertex exists then go to step 4.

3) Add vi to S and go to step 2.

4) G[S] is a complete subgraph of G so conclude that ω ′(G) = |S| ≤ ω(G).

The results of a random graph analysis of the Edwards Elphick algorithm measuring

the mean of ω(G)−ω ′(G) are shown in Fig. 42. The error generally increases with both

edge probability and order; however, there appears to be a small hitch in the curves
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between p = 80% and p = 90% for orders n≤ 40. This may be because of the increased

probability that the next selected vertex is in fact universal.

Fig. 42. Edwards Elphick algorithm mean error.

The mean number of steps is shown in Fig. 43. The number of steps increases with

both edge probability and order, so the worst case for each order is assumed to be at

P = 90%.
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Fig. 43. Edwards Elphick algorithm mean number of steps.

A graph of the P = 90% values for each order is shown in Fig. 44. Note that the

runtime complexity is O(n2). Thus, the Edwards Elphick algorithm would be suitable for

use as a lower bound approximator step in a branch-and-bound algorithm.

Fig. 44. Edwards Elphick algorithm runtime complexity.
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Step 2 of the Edwards Elphick algorithm selects the next vertex of lowest index that is

adjacent to all previously selected vertices. An improvement would be to select a vertex

with the highest degree that is adjacent to all previously selected vertices. This would of

course increase the average runtime complexity to the worst case of the unimproved

algorithm, but it should still be P-time. The results of this improved algorithm are shown

in Fig. 45. Note that the improved algorithm cuts the mean error in half. Also note that

the hitch at p = 80% remains and is more pronounced, probably due to the increased

probability of finding a high degree vertex that is more likely to be part of a clique.

Fig. 45. Improved Edwards Elphick algorithm mean error.

The increase in the number of steps is demonstrated in Fig. 46.
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Fig. 46. Improved Edwards Elphick algorithm mean number of steps.

And the new runtime complexity approximation is shown in Fig. 47. The improved

algorithm is still O(n2).

Fig. 47. Improved Edwards Elphick algorithm runtime complexity.
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5.1.3 The Bron Kerbosch Algorithm

Although an estimate of the clique number is nice, an exact value is better.

Unfortunately, the clique number problem is also NP-hard. A nice summary of

well-known exact clique number algorithms is given by Xiao and

Nagamouchi (2017) [20]. They claim that the known algorithms tend to converge on a

runtime complexity of O(1.2n). These algorithms tend be somewhat complex and geared

towards larger n.

A simpler yet efficient alternative to these exact algorithms for more modest values of

n is the Bron Kerbosch (BK) algorithm (1973) [21]. In fact, the algorithm that was

incrementally developed in Section 4.3 is essentially the BK algorithm. The advantage of

BK is that it finds all possible maximal cliques in a graph, and hence can be used to find

α(G) = ω(Ḡ). Moon and Moser (1965) [22] show that every graph G of order n has at

most 3
n
3 maximal cliques, so the runtime complexity of the Bron Kerbosch algorithm is

expected to be about O(1.44n).

The heart of BK is a recursive subroutine called extend that implements the breadth of

a level in the corresponding state tree, and recursively calls itself in order to implement the

branches in the state tree. At each node in the state tree, three vertex lists are maintained:

compsub The current maximal clique accumulator.

candidates A set of vertices that can be added to compsub.

used A set of vertices that already have been used in previous branches.

The initial call is seeded with an empty compsub and all of the graph’s vertices in

candidates. Each call to extend performs the following steps:

1) If used contains a vertex that is adjacent to everything in candidates then any

generated cliques in the current subtree will never be maximal, so return. This

implements the non-maximal bounding condition.
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2) The next vertex is selected from candidates and is added to compsub. This

implements the “include vertex” subtree.

3) New versions of candidates and used are created by removing vertices from the old

lists that are not adjacent to the selected vertex. This bounding condition prunes

branches that might mix adjacent and nonadjacent vertices.

4) A recursive call with the new candidates and used lists is made to continue the

current subtree.

5) The selected vertex is removed from compsub and is added to used. This implements

the “exclude vertex” subtree.

6) If candidates is not empty then go to step 1.

7) If used is empty then compsub contains the vertices for a maximal clique.

8) Return to the previous level in the state tree.

A small improvement added to BK by this research is to abandon the current branch

when the desire is to only find α(G) (and hence ω(Ḡ)) and the number of vertices in

compsub and candidates are not enough to build a maximal clique larger than all

previously found maximal cliques.

Bron and Kerbosch actually proposed two versions of their algorithm that differ by

how the next vertex is selected from the candidates list in step 2. In the basic mode, the

first (or any) vertex in the list is selected. Fig. 48 shows the average number of calls to the

extend method. The number of calls increases with both graph order and edge probability,

except for the appearance of the mysterious hitch again at p = 80%. The worst case for

each order is thus assumed to occur at 90% edge probability.
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Fig. 48. Basic Bron Kerbosch algorithm calls to extend.

A graph of the P = 90% values for each order is shown in Fig. 49. This time, the

graph appears to have a log effect and indeed the best curve fit is a mix of n and log(n).

This is expected based on the discussion in Section 4.2.1. The fit indicates that the

runtime complexity is about O(20.2259n)≈O(1.17n).

Fig. 49. Basic Bron Kerbosch algorithm runtime complexity.
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In smart mode, a particular vertex in the used list with the smallest number of

nonadjacencies to vertices in the candidates list is identified. The next selected vertex is

then a vertex that is not adjacent to the identified vertex. This causes the non-maximal

bounding condition to occur as soon as possible. Fig. 50 shows the average number of

calls to the extend method for the smart version of the algorithm.

Fig. 50. Smart Bron Kerbosch algorithm calls to extend.

The runtime complexity estimate for the smart version of the algorithm is shown in

Fig. 51. Note that the runtime complexity is improved to O(20.1867n)≈ O(1.14n).
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Fig. 51. Smart Bron Kerbosch algorithm runtime complexity.

Therefore, BK in smart mode decreases the runtime complexity over the target range

from O(1.17n) to O(1.14n) and so the improved bounding condition is effective.

5.2 Finding an Upper Bound

The most popular technique for finding an upper bound for the chromatic number of a

graph is to construct a proper coloring for the graph using a so-called sequential

algorithm, often referred to as a greedy algorithm. The algorithms are sequential because

the vertices are ordered in some fashion and are then colored according to that order. The

algorithms are greedy because a new color is selected whenever one is needed. The result

is that too many colors may be used; however, such algorithms are P-time and the number

of colors used is suitable as an upper bound for the chromatic number since the graph is

at least colorable using that many colors.

The specific steps of a greedy algorithm for a graph G of order n are as follows:

1) Order the vertices in some fashion: V = {v1, . . . ,vn}.

2) Start with C = /0 and assume some coloring function: c : V →C.

3) Let i = 1.
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4) Let k = |C|.

5) If i = n then done and k is an upper bound for the chromatic number.

6) Determine all of the already colored vertices that are adjacent to vi:

S =
{

v j ∈V
∣∣ j < i and viv j ∈ E(G)

}
7) Determine all of the colors used by the vertices in S: c[S].

8) If c[S] =C then an additional color is needed for vi, so add ck+1 to C, let c j = ck+1,

and go to step 10.

9) Otherwise, an existing color can be reused for vi so select c j from C− c[S] with the

smallest j.

10) Color vi with c j by extending c: c(vi) = c j.

11) Let i = i+1.

12) Go to step 4.

The two most popular theorems used to quickly estimate the chromatic number upper

bound of a graph follow from the worst case results from the greedy algorithm. The first

is based on a random ordering of the vertices [11].

Theorem 13. Let G be a graph. χ(G)≤ 1+∆(G)

The second, from Welsh and Powell (1967), is based on ordering by non-increasing

vertex degree [23].

Theorem 14. Let G be a graph:

χ(G)≤max
i

min{1+deg(vi), i}

But does there exist an ordering of the vertices such that the greedy algorithm gives

the correct exact answer? This question is answered by Theorem 15.
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Theorem 15. Let G be a graph. There exists an ordering of the vertices in G such that

the greedy algorithm produces an exact result for χ(G).

Proof. Assume that χ(G) = k. This means that V (G) can be partitions into k independent

sets {A1, . . . ,Ak}. Order the vertices starting with the vertices in A1, and then A2 and so

on, finishing with the vertices in Ak. Use this ordering as an input to the greedy algorithm.

Consider the following proof by induction on 1≤ i≤ n(G) where i selects the ith

vertex in the ordered list. Color v1 using color c1, which is trivially proper using one color.

Assume that the coloring of the first vi is proper and uses at most k colors. Now consider

vi+1. Assume that vi+1 ∈ A j for 1≤ j ≤ k. If there exists some 1≤ r < j such that vi+1 is

not adjacent to any of the vertices in Ar then color vi+1 with color cr using the smallest

such r. Otherwise, since vi+1 is not adjacent to any of the vertices in A j, color vi+1 with

color c j. In both cases the coloring is proper using at most k colors. Therefore, the greedy

coloring algorithm produces an exact result.

It will be shown in Section 6.3 that one of the outputs of the proposed algorithm is

such an ordering. In fact, the final step of the proposed algorithm uses this fact to

construct a final chromatic coloring.

Matula, et al. (1967) [24] performed a study on the various well-known chromatic

number greedy algorithms and concluded that ordering the vertices by non-increasing

degree order, as in the Welsh Powell bound, worked best. Matula referred to this algorithm

as the last-first algorithm. The results of a random graph analysis of the last-first greedy

algorithm are shown in Fig. 52. The graph shows the mean difference between the value

found by the greedy algorithm and the actual chromatic number. Note that the former is

always greater than or equal to the latter. Due to runtime duration considerations, only

100 trials were run per edge probability and order was limited to 20, which is the target

range. The algorithm is exact for an empty or complete graphs and indeed Fig. 52

indicates that the algorithm performs better at lower and higher edge probabilities.
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Fig. 52. Last-first greedy algorithm error.

The mean number of steps is shown in Fig. 53. The number of steps increases with

both edge probability and order, so the worst case for each order is assumed to be at

P = 90%.

Fig. 53. Last-first greedy algorithm steps.
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A graph of the P = 90% values for each order is shown in Fig. 54. Note that the

runtime complexity is O(n2) as expected.

Fig. 54. Last-first greedy algorithm runtime complexity.

Matula proposed an improvement to greedy algorithms known as color interchange.

Color interchange is based on the situation summarized by the example in Fig. 55. When

it is time to color v4, the normal greedy algorithm is forced to select a new color.

However, vertices v1 and v3 can swap colors and thus v4 can use an existing color.

v4

v1

v2

v3

Before Swap

v4

v1

v2

v3

After Swap

Fig. 55. An example that allows color interchange.

The specific steps for color interchange when attempting to color vertex vi are as

follows:
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1) Determine all of the colors that are used for already colored vertices that are adjacent

to vi.

2) Select those colors that occur only once in the neighborhood of vi.

3) Select all vertices that are already colored with the used-once colors.

4) Construct a subgraph using the selected vertices.

5) Partition the subgraph into components.

6) Find a component that includes one vertex and excludes one vertex that is adjacent

to vi in the original graph. If no such component is found then interchange is not

possible and a new color must be used for vi.

7) Let c1 be the color of the included vertex and let c2 be the color of the excluded

vertex.

8) Interchange colors c1 and c2 for all such colored vertices in the selected component.

9) Color c1 is now available for vi.

The mean error when color interchange is added to the last-first greedy algorithm is

shown in Fig. 56. The Hopcroft Tarjan algorithm [14] introduced in Section 2.8.5 was

used to partition the subgraph in step 5. The algorithm still tends to do better at lower and

higher edge densities. It appears that color interchange has a slight advantage at higher

orders.
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Fig. 56. Last-first greedy algorithm with color interchange error.

The mean number of steps with interchange is shown in Fig. 57. Once again, the

number of steps increases with both edge probability and order, so the worst case for each

order is assumed to be at P = 90%.

Fig. 57. Last-first greedy algorithm with color interchange steps.
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A graph of the P = 90% values for each order is shown in Fig. 58. Note that color

interchange is a bit expensive; however, the runtime complexity is stillO(n2).

Fig. 58. Last-first greedy algorithm with color interchange runtime complexity.

5.3 The Christofides Algorithm

The first exhaustive algorithm that will be examined was proposed by Cypriot

mathematician Nicos Christofides (1971) [8]. The Christofides algorithm is a breadth-first

algorithm that assembles maximal independent sets from a graph until the first

combination that uses all of the vertices is found. Thus, the Bron Kerbosch algorithm is a

vital part of the Christofides algorithm.

The algorithm starts by decomposing a graph G into all of its maximal independent

sets. This constitutes the first level of the state tree. Then, for each maximal independent

set with vertices S, the subgraph G−S is constructed and all of its maximal independent

sets are found. Each of these sets is combined with the previous maximal independent

sets to form the next layer of the state tree. This process continues until the first time that

all of the vertices in G are used. The number of maximal independent sets used to form

the final combination is the chromatic number.
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The Christofides algorithm does have bounding conditions. If the vertices in any new

combination of maximal independent sets is a subset of a previous combination then the

new subtree is pruned. If the new is a superset of a previous then the previous is pruned

by replacing it with the new.

For example, consider the graph in Fig. 59.

1

2

34

5

Fig. 59. A Christofides algorithm example.

The Bron Kerbosch algorithm is used to decompose Fig. 59 into the maximal

independent sets {1}, {2,4}, {2,5}, and {3,5}. This first level is shown in Fig. 60, along

with the resulting subgraphs.

(1)

2

34

5

(2,4)

1

3

5

(2,5)

1

34

(3,5)

1

2

4

Fig. 60. Level 1 of a Christofides algorithm example.

The next level starts with the leftmost subgraph in Fig. 60. It has the maximal

independent sets {2,4} and {3,5}. These are combined with the parent state to form the

next states {{1},{2,4}} and {{1},{3,5}}. Likewise, the second graph in Fig. 60

76



contains maximal independent sets {1} and {3,5}. This yields the next states

{{2,4},{1}} and {{2,4},{3,5}}; however, the vertices in {{2,4},{1}} are a subset of

the previous state {{1},{2,4}} and so the new subtree is pruned. This process continues

for the third and fourth subgraph in Fig. 60. The second level results are as follows:

(1|24) (1|35) ����(24|1) (24|35) (25|1) ����(25|3) ����(25|4) ����(35|1) ����(35|24)

Next, the first state in the second level contains a single maximal independent set

{3,5}, which when combined with the parent state uses all of the vertices. The final

coloring is thus (1|24|35) and the graph is 3-chromatic as shown in Fig. 61.

1

2

34

5

Fig. 61. Christofides algorithm example results.

Fig. 62 shows the results of a random graph analysis of the Christofides algorithm. It

measures the mean number of calls to the routine that processes each found MIS and

applies the bounding conditions. Thus, the number of calls is essentially the number of

states in the state tree.
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Fig. 62. Christofides algorithm mean number of calls.

The number of calls increases with both graph order and edge probability. The worst

case for each order is thus assumed to occur at 90% edge probability. A log (base 2) plot

of the maximum number of calls for each order at 90% edge probability is shown in

Fig. 63. Note that due to excessive runtime duration, the test had to be stopped at n = 20.

A linear curve fit indicates that the runtime complexity for the Christofides algorithm is

about O(20.7607n)≈ O(1.69n).
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Fig. 63. Christofides algorithm runtime complexity.

5.4 Wang Improvements to Christofides

One drawback of the Christofides algorithm is the fact that each level must be

maintained entirely in memory before moving on to the next level. As has been show, the

breadth of state graphs grows exponentially, so depth-first algorithms are generally

preferred. Wang (1974) [9] proposes two improvements to the Christofides algorithm to

combat this memory usage. The first improvement prunes a large number of subtrees and

the second improvement converts the algorithm to a depth-first search.

Wang’s first proposal is based on Lemma 1

Lemma 1. Let G be a graph, let v ∈V (G), and let {M1, . . . ,Mr} be all of the maximal

independent sets in G containing v. There exists a chromatic coloring of G containing one

of the Mi.

Proof. Assume that G is k-chromatic and let {A1, . . . ,Ak} be the independent sets of a

chromatic coloring of G. Assume without loss of generality that v ∈ A1. It must be the

case that A1 ⊆Mi for some 1≤ i≤ r, since all of the Mi are maximal. Now, let
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X = Mi−A1 and let X j = A j−X for 2≤ j ≤ k. Next, construct the coloring

{Mi,X2, . . . ,Xk}. This is a k-chromatic coloring of G containing Mi.

Basically, Lemma 1 says that any independent set in a chromatic coloring of a graph

G containing a vertex v can be extended to a maximal independent set containing v by

snatching vertices from the other independent sets in the coloring.

Next consider the fact that each state in the Christofides algorithm state tree represents

a subgraph and the goal is to (recursively) find a chromatic coloring for that subgraph.

Therefore, a particular vertex can be selected and only MISs containing that vertex need

be considered for the next level. So, at each state, select the vertex that appears in the

fewest MISs of the subgraph; the subtrees corresponding to the MISs that do not contain

the selected vertex are pruned.

Referring back to the example in Fig. 59, recall that the first level MISs were: {1},

{2,4}, {2,5}, and {3,5}. Vertices 1, 3, and 4 occur in only one MIS each. So if 1 is

selected, only the leftmost subgraph in Fig. 60 need be considered.

Wang’s second improvement is to convert the search to a depth-first search, keeping

track of the minimum length branch from the root state to a leaf state. Branches that equal

or exceed the current minimum are pruned. Branches that are smaller than the current

minimum become the new current minimum. Although this does require that the entire

pruned tree be traversed, the hope is that the first improvement has pruned enough

subtrees so that the depth-first search is now economical.

The results of a random graph analysis of Wang’s improvements to the Christofides

algorithm are shown in Fig. 64.
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Fig. 64. Christofides algorithm with Wang improvements mean number of calls.

The results are quite surprising. Not only is there a dramatic improvement, it now

appears that the worst case occurs at moderate edge density. Intuition suggests that lower

edge density graphs will have fewer and larger MISs. For the high density case, it may be

that each vertex is in fewer MISs. The worst case for each order is thus assumed to occur

at 50% edge probability. The runtime complexity calculation is shown in Fig. 65. This

time, a polynomial curve fit is required, resulting in a runtime complexity of about

O(20.0065n2
)≈ O(1.0045n2

).
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Fig. 65. Christofides algorithm with Wang improvements runtime complexity.

A comparison of the Christofides and Wang runtime complexities demonstrates some

of the pitfalls of big-O notation and improvements to exhaustive algorithms. The Wang

improvements clearly have an advantage; however, the big-O analysis indicates that plain

Christofides is O(an) and Wang is O(bn2
). The difference is due to the fact that

a = 1.69 > 1.0045 = b and so for lower values of n, Wang wins. In fact, the runtime

complexity analysis predicts that Wang loses its advantage at about n = 43. Unfortunately,

the runtime durations at that value of n are too long to test the threshold.

5.5 Zykov Algorithms

The second exhaustive algorithm that will be examined is based on a branching

technique attributed to Ukranian mathematician Alexandre A. Zykov. In his 1949 paper

(translated by the AMS in 1952) [13], Zykov addresses the question: given a graph G and

a number k ∈ N, how many ways are there to properly color G using at most k colors? In

fact, he is not particularly concerned about the chromatic number, which he calls the rank

of a graph.

To solve this problem, Zykov notes that in any proper coloring of a graph:
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1) Nonadjacent vertices have either the same color or different colors.

2) Adjacent vertices always have different colors.

If nonadjacent vertices have the same color then they can be contracted and the resulting

graph retains the same k-coloring as the original graph. This is demonstrated in Fig. 66.

d c

ba

G

bd c

a

G ·bd

Fig. 66. Same colors with vertex contraction.

If nonadjacent vertices have different colors then they can be joined by an edge and

the resulting graph retains the same k-coloring as the original graph. This is demonstrated

in Fig. 67.

d c

ba

G

d c

ba

G+bc

Fig. 67. Different colors with edge addition.

By applying these steps recursively, all of the possible partitions of the nonadjacent

vertices to independent sets are generated. The termination condition for each recursive

path is a complete graph of some varying order k. Each node in the complete graph

represents an independent set of nonadjacent nodes in the original graph that have been

combined via vertex contraction. Thus, each complete graph of order k represents a
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possible k-coloring of the original graph. The complete graphs of smallest order represent

chromatic colorings and their order is the chromatic number of the original graph.

Zykov uses a graph equation syntax to record the recursive processing of a graph,

where each line in the equation represents the next recursive layer. Isomorphic graphs are

combined with a frequency multiplier at each layer. This is demonstrated in Fig. 68.

= +

= + +

= 2 +

= 2K3 +K4

Fig. 68. A Zykov graph equation example.

Determining whether two graphs are isomorphic is hard, so combining isomorphic

graphs in all but the very simple cases should be skipped; the complete graphs resulting

from the further processing of two isomorphic graphs will eventually be combined

anyway by the end.

Zykov was trying to determine the number of k-colorings of a graph without color

indifference: each permutation of colors for a particular distribution is considered unique.

Thus, Zykov multiplied each complete graph coefficient in the final line of a graph

equation by the number of permutations resulting from selecting the order n of the
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particular complete graph from k colors:

k(n) = k(k−1)(k−2) · · ·(k−n+1)

So the total number of unique colorings for the example shown in Fig. 68 using k colors

would be:

M(G,k) = 2k(3)+ k(4) (3)

Equation 3 is known as the factorial form of the chromatic polynomial for the graph. The

corresponding expanded form is shown in Equation 4.

M(G,k) = k4−4k3 +5k2−2k (4)

Read (1968) [25] expands on the construction of the factorial form of the chromatic

polynomial for a graph and proves several theorems regarding the expanded form. Some

examples are:

1) M(G,k) = M(G ·uv)+M(G+uv), where u and v are any two nonadjacent vertices

in the current recursive step.

2) The degree of M(G,k) is the order of G.

3) The highest order coefficient is 1.

4) There is no constant term.

5) The terms alternate in sign.

In fact, Read shows that the expanded form is actually an inclusion-exclusion equation

resulting from starting with all possible proper and improper colorings kn and then

subtracting the improper colorings.

Corneil and Graham (1973) extend Zykov’s work with Theorem 16 [10]:
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Theorem 16. Let G be a graph and let u and v be two nonadjacent vertices in G:

χ(G) = min{χ(G ·uv),χ(G+uv)}

Zykov’s method combined with Theorem 16 can be used to construct a depth-first

branching algorithm for finding the chromatic number and a chromatic coloring for a

graph G. Each state in the state tree for such an algorithm is represented by a graph

whose nodes are sets of contracted vertices from G and hence represent independent sets

in a candidate coloring, and whose edges are the edges remaining after the vertex

contractions. The leaves of the state tree are complete graphs that represent proper

colorings. The leaf state graphs with the smallest order are chromatic colorings. Such a

state tree is called a Zykov tree and a branch (and bound) algorithm that uses such trees is

called a Zykov algorithm [10].

The Zykov tree for the example in Fig. 68 is shown in Fig. 69. Note that the three leaf

states are complete graphs of order 3 or 4. Therefore, the example in Fig. 68 is

3-chromatic and the two K3 leaves represent chromatic colorings.
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Fig. 69. A Zykov tree example.

The worst case for a Zykov algorithm with no bounding is an empty graph, where the

number of leaf nodes is equivalent to the number of partitions of the set of vertices. This

is known to be the so-called Bell number [26]:

Bn =
n

∑
k=1

Sn,k

where the Sn,k are the so-called Stirling numbers of the second kind:

Sn,k =
1
k!

k

∑
i=0

(−1)i
(

k
i

)
(k− i)n

The first 20 Bell numbers are provided in Fig. 70 [27]. The best case is a complete graph,

which terminates immediately.

87



1
1
2
5
15
52
203
877
4,140
21,147
115,975
678,570
4,213,597
27,644,437
190,899,322
1,382,958,545
10,480,142,147
82,864,869,804
682,076,806,159
5,832,742,205,057

Fig. 70. The first 20 Bell numbers.

Branch-and-bound Zykov algorithms require the following components:

1) A main routine that establishes G as the root of the state tree.

2) A global variable X that records the state corresponding to the current smallest

k-coloring.

3) A global variable b that records the current upper bound for the chromatic number of

G.

4) A method to determine a lower bound for the chromatic number of a graph.

5) A method to determine an upper bound k for the chromatic number of a graph G and

a corresponding k-coloring of G.

6) A recursive subroutine that performs the depth-first search of the state tree and

updates X and b as necessary.
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The lower bound method is typically one of the clique number lower bound

algorithms (e.g. Edwards Elphick). The upper bound method is typically a greedy

coloring algorithm (e.g., last-first).

The steps of the main routine are as follows:

1) Construct a graph G′ that is isomorphic to G and where each vertex in G′ is a set of

contracted vertices initialized to a one element set containing the corresponding

vertex in G.

2) Run the greedy algorithm and set X and b based on the results.

3) Call the recursive subroutine with G′.

4) Return b or n(X) as the found chromatic number for G and X representing a

chromatic coloring of G.

The recursive subroutine is called with a graph H and has access to X and b. The

steps are as follows:

1) If n(H)< b then b = n(H).

2) If H is not complete then go to step 6.

3) If n(H)< n(X) then X = H.

4) Go to step 11.

5) Determine the chromatic number lower bound for H. If it is greater than or equal to

the current upper bound then go to step 11.

6) Select any two nonadjacent vertices u and v in H.

7) Construct H ′ = H ·uv, where the vertex set for the new contracted vertex is the union

of the vertex sets for u and v.

8) Recursively call this subroutine with H ′.

9) Construct H ′′ = H +uv.

10) Recursively call this subroutine with H ′′.

11) Return.
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McDiarmid (1978) [15] used a binomial edge probability model to predict that even

with bounding, Zykov algorithms have a runtime complexity of O(cn
√

log(n)) for some

real number constant c > 1, which is worse than exponential. If this is true, then Zykov

algorithms will generally perform worse than Christofides-type algorithms.

Corneil and Graham (1973) [10] described and tested a Zykov algorithm that uses a

custom lower bound estimation technique for step 5 that they referred to as α-clusters.

The full algorithm can be found in Graham (1972) [26]. This technique is rather complex

and it is not clear that it performs any better than the Edwards Elphick algorithm, so

Edwards Elphick is used for this research.

A random graph analysis for the a Zykov algorithm using Edwards Elphick is shown

in Fig. 71. It measures the mean number of calls to the recursive routine that processes

each state and applies the bounding conditions. Thus, the number of calls is essentially

the number of states in the state tree.

Fig. 71. Zykov algorithm mean number of calls.

The number of calls increases with both graph order but decreases with probability.

This is consistent with the facts that the worst case is an empty graph and the best case is
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a complete graph. The worst case for each order is assumed to occur at 30% edge

probability. A log (base 2) plot of the maximum number of calls for each order at 30%

edge probability is shown in Fig. 72. Note that due to excessive runtime duration, the test

had to be stopped at n = 24. A linear curve fit indicates that the runtime complexity for

the Zykov algorithm is about O(21.7244n)≈O(3.3n).

Fig. 72. Zykov algorithm runtime complexity.

The results seem to be contradictory: the Christofides/Wang algorithm has

O(1.0045n2
) runtime complexity and the Zykov algorithm has O(3.3n) runtime

complexity; however, Christofides/Wang visits fewer states and runs much faster than

Zykov in the target range. This can be explained by the fact that Christofides/Wang runs

the exponential BK algorithm for each MIS state, whereas the Zykov algorithm

processing is much lighter at each branch state. For small-to-medium values of n, the BK

algorithm is very fast and the Christofides/Wang algorithm is better at pruning the number

of required states.

Based on the empirical values, it is expected that the two algorithms’ state counts will

become equal at n = 112. Since the Zykov per-state processing is much lighter, it is
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expected that the Zykov algorithm will run faster than Christofides/Wang sooner than that.

However, these values far exceed the target range for the required design tool.
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6 THE PROPOSED ALGORITHM

It was shown in Section 5 that the Christofides algorithm with the Wang

improvements outperforms the Zykov algorithm. But can some additional bounding

conditions be added to the Zykov algorithm to close the performance gap? This section

proposes a new Zykov-like algorithm that attempts to do just that. An early version of this

new algorithm was first introduced by the author and his advisor in collaboration with a

team of mechanical engineering researchers from SUNY Buffalo [4].

The major advantages of the Christofides and the Zykov algorithms are that they do

not depend on the connectedness of a graph, an example of a chromatic coloring is readily

available, and the fact that the algorithms can be coded rather easily to run on a computer.

Their major disadvantage is their high runtime complexity, which is inherent to the

chromatic number problem.

Thus, the goals of the proposed algorithm are as follows:

1) It should not depend on whether the graph is connected or not.

2) An example of a chromatic coloring should be readily available.

3) It can be easily coded for execution on a computer.

4) It has better runtime performance than the well-known algorithms over the target

range of less than 20 nodes with less than 50% edge density.

To accomplish these goals, the proposed algorithm loops on successively higher

values of k. For each candidate k value, a graph G is assumed to be k-colorable and a

modified version of a Zykov algorithm is executed on G to either prove or disprove this

assumption. Since a candidate k value is known, certain reversible steps can be applied to

mutate G into simpler graphs with equivalent colorability and test for early termination of

the Zykov tree. The first k for which G (or one of its simplifications) is found to be

k-colorable is the chromatic number of G.
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One slight disadvantage of the proposed algorithm is that whereas the other

algorithms readily provide examples of actual chromatic colorings, the proposed

algorithm requires an additional step to construct a chromatic coloring: a greedy

algorithm with a particular sorting of the vertices. The coloring step is discussed in detail

in Section 6.3. Albeit additional work, this extra coloring step is P-time so it does not

have a significant impact on the performance of the proposed algorithm.

The proposed algorithm accepts a graph G as input and provides χ(G) and a

chromatic coloring as output and is composed of the following components:

1) A main routine that loops on increasing values of k.

2) The Bron Kerbosch algorithm used by the main routine to determine a lower bound

kmin for the chromatic number of G (Section 5.1.3).

3) The last-first with color interchange greedy coloring algorithm used by the main

routine to determine an upper bound kmax for the chromatic number of G and a

corresponding kmax-coloring of G (Section 5.2).

4) A recursive subroutine that runs a modified Zykov algorithm with additional pruning

to determine if G is k-colorable.

5) The Edwards Elphick algorithm used by the recursive subroutine to determine a

lower bound for the chromatic number of a graph (Section 5.1.2);

6) A coloring routine called by the main routine to construct a chromatic coloring of G

based on the results of the algorithm.

The main routine, recursive subroutine, and coloring routine are summarized in the

following sections. A complete description of the theorems that support the various steps

in the algorithm and the application of the algorithm to a sample graph then follow.

6.1 The Main Routine

The main routine accepts a graph G as input and returns χ(G) and a chromatic

coloring for G. It initially computes a chromatic number lower bound using Bron

94



Kerbosch and a chromatic number upper bound using greedy last-first with color

interchange. The latter also provides a default coloring. If the lower and upper bounds

match then the default coloring is accepted. If not, then the main routine loops on

increasing values of k, starting with the lower bound and going no further than the upper

bound. For each value of k, the recursive subroutine is called to execute a modified Zykov

algorithm in order to determine if G is k-colorable. If k reaches the upper bound then the

default coloring is accepted as chromatic.

Instead of walking a single Zykov tree for the whole graph G, the Wang technique

(see Section 5.4) is used to mutate G into smaller graphs Gi by selecting a vertex that

occurs in the least number of MISs in G. Each of these MISs implies a set of vertex

contractions and edge additions that are applied to G to construct the corresponding Gi.

Thus, the modified Zykov algorithm is applied in sequence to these separate Gi for each k

value. The first successful return identifies χ(G) and then the coloring routine is called to

construct the final coloring based on the information from the successful tree.

The steps of the main routine are as follows:

1) Use the Bron Kerbosch algorithm to compute a chromatic lower bound kmin for the

input G.

2) Use the greedy last-first with color interchange algorithm to compute a chromatic

number upper bound kmax and a default kmax-coloring for G.

3) Initialize k to kmin.

4) If kmin = kmax then accept the default coloring found in step 2 and go to step 10.

5) Use the Bron algorithm on Ḡ to find all the MISs in G. Select a vertex that occurs in

the smallest number of MISs and then use those MISs to construct n graphs that are

the roots of n Zykov trees. Each tree is constructed from G by contracting the

vertices in the MIS and adding edges between the contracted vertex and all vertices

not in the MIS. Each tree is also associated with an initially empty list of removed
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vertices S. The trees are sorted by decreasing MIS length since graphs resulting from

larger MISs have fewer choices for branching and thus can be walked more

expediently.

6) If k = kmax then accept the default coloring found in step 2 and go to step 10.

7) Call the recursive subroutine on each tree to determine if its G is k-colorable. The

recursive subroutine accepts the current tree’s graph G and removed vertex list S as

input and returns a Boolean result R. The called routine may simplify G and may

append removed vertices to S. If a tree results in a solution (R =true) then go to

step 9.

8) Increment k and go to step 6.

9) Call the coloring routine to construct the final coloring based on the successful tree’s

final state of G and S.

10) Return the current k as the chromatic number and the found chromatic coloring.

A flowchart of these steps is shown in Fig. 73.
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START

BRON G
GREEDY G

k = kmin

kmin = kmax?

TREES G

k = kmax?c = cde f

RETURN k,c

i = 1

i≤ n? k = k+1

G = G[i]
S = S[i]

ZYKOV G,S,k

R?

i = i+1

COLOR G,S

RETURN k,c

G

kmin,kmax,cde f

NO

G[1 : n],S[1 : n]

YES

YES

NO

NO

YES

G,S,R

NO

YES

c

Fig. 73. The proposed algorithm main routine.
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Note that in the case of the null or an empty graph, the upper and lower bounds for k

will match and the main routine will terminate immediately with the default greedy

coloring. Thus, the recursive subroutine is always called with k ≥ 2. Also note that the

main routine is guaranteed to terminate because k will eventually reach kmax or the

recursive subroutine will return true when a simplification occurs such that n(G)≤ k.

6.2 The Recursive Subroutine

The recursive subroutine executes a modified version of the Zykov algorithm to

determine whether a graph is k-colorable. It accepts a graph G of order n and size m, a list

of already removed vertices S (in removed order), and the target value of k ≥ 2 as inputs.

It returns a possibly simplified version of G, a possibly extended list of removed vertices

S, and a boolean value R indicating whether or not G is k-colorable. Internally, various

tests are applied to prune the corresponding Zykov tree or abandon it all together based

on the current value of k.

The steps of the recursive subroutine and references to their associated theorems are

as follows:

1) If n≤ k set R to true and go to step 17 (Theorem 7).

2) Calculate a maximum edge threshold:

a =
n2(k−1)

2k

3) If m > a then set R to false and go to step 17 (Corollary 8).

4) Construct the set X of all vertices with degree less than k:

X = {v ∈V (G) |deg(v)< k}

5) If X 6= /0 then replace G with G−X , append X to S, and go to step 1 (Corollary 9).

6) Calculate the common number of neighbors between each pair of vertices in G,

stopping if one vertex’s neighborhood is found to be a subset of another.
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7) If G has vertices u and v such that N(u)⊆ N(v) then replace G with G ·uv and go to

step 1 (Theorem 10).

8) Let b be the smallest number of common neighbors between any pair of vertices in

G based on the calculations in step 6:

b = min
u,v∈V (G)

|N(u)∩N(v)|

9) Calculate an upper bound for the minimum number of common neighbors between

any pair of vertices in G:

c = n−2− n−2
k−1

10) If b > c then set R to false and go to step 17. (Corollary 11).

11) Use the Edwards Elphick algorithm to calculate a chromatic number lower bound `

for the current state of G.

12) If ` > k then set R to false and go to step 17.

13) Select two non-adjacent vertices u,v ∈V (G) with the smallest number of common

neighbors based on the calculations in step 6. It will be shown below that such a pair

of vertices is guaranteed to exist.

14) Assume that u and v are assigned the same color by letting G′ = G ·uv. Also make a

copy of the removed vertices list R′ = R. Recursively call this routine using G′, S′,

and k as inputs to see if G′ is k-colorable. Note that G′ and S′ may be modified. If G′

is k-colorable then replace G = G′ and S = S′, set R to true, and go to step 17

(Theorem 21).

15) Assume that u and v are assigned different colors by letting G′ = G+uv. Also make

a copy of the removed vertices list R′ = R. Recursively call this routine using G′, S′,

and k as inputs to see if G′ is k-colorable. Note that G′ and S′ may be modified. If G′
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is k-colorable then replace G = G′ and S = S′, set R to true, and go to step 17

(Theorem 21).

16) Conclude that G is not k-colorable and set R to false.

17) Return the determine result R, the possibly simplified G, and the possibly extended

list of removed vertices S.

A flowchart of these steps is shown in Fig. 74.
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START

n≤ k? R =TRUE

RETURN R,G,S

a = n2(k−1)
2k

m≤ a?

X = {v ∈V (G) |deg(v)< k}

X = /0?
G = G−X
S = S+X

|N(u)∩N(v)|

N(u)⊆ N(v)?G = G ·uv

b = min|N(u)∩N(v)|

c = n−2− n−2
k−1

b≤ c?

EDWARDS G

`≤ k? R =FALSE

RETURN R,G,S

G′ = G ·uv
S′ = S

CALL G′,S′,k

R?

G′ = G+uv
S′ = S

CALL G′,S′,k

R?

RETURN R,G,S

G = G′

S = S′

G,S,k

YES

NO

YES

NO

YES

YES

NO

YES

NO

`

NO

NO

YES

R,G′,S′

NO

R,G′,S′

NO

YES

YES

Fig. 74. The proposed algorithm recursive subroutine.
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Step 1 is the success condition. Success occurs when G is simplified by removing or

contracting sufficent vertices (sub steps 4–7) and the main routine has sufficiently

incremented k (main step 8) such that n≤ k.

Steps 4–7 attempt to simplify G using vertex removal and contraction in order to

achieve a simpler graph that is equivalently k-colorable. Each time vertices are removed

or contracted the associated branches in the corresponding Zykov tree are pruned. Since

these same steps would just be repeated for k+1, the subroutine saves the simplified G as

a starting point for the next candidate value of k.

Steps 2–3 and 8–12 apply tests that attempt to disprove that the current state of G is

k-colorable for the current value of k. If so, then the current Zykov tree is abandoned and

the subroutine returns false.

Steps 13–16 constitute the recursive portion of the modified Zykov algorithm. The

recursive calls are guaranteed to terminate because either there will be sufficient vertex

contractions such that n≤ k, resulting in a true return, or sufficient edge additions such

that the graph becomes complete and (as will be shown) is rejected by step 3, resulting in

a false return. Note that in the event of a false return, any modifications to the current

states of G and S resulting from the recursive calls are not returned to the main routine.

6.3 The Coloring Routine

The recursive subroutine will eventually return true when applied to a particular

Zykov tree using a particular value of k. The final state of G, which should be a complete

graph of single and/or contracted vertices, and the final state of S, which is a list of

removed single and/or contracted vertices in the order removed are used to construct the

final chromatic coloring.

According to Theorem 15, there exists some ordering of the vertices such that the

greedy algorithm will produce an exact result for the chromatic number of a graph. The

removed vertices in reverse order is such an ordering. Consider the example shown in
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Fig. 75. If k = 4 and vertex v is to be removed since deg(v) = 3, then in the reverse

direction when v is added the fourth color is available for v. In general, given a graph

G− v such that deg(v)< k in G, there will always be an available color for v regardless

of how N(v) is colored. This result is formalized in Theorem 18.

G− v

N(v)

v

Fig. 75. Coloring a removed vertex example.

The coloring routine accepts a graph G that is k-chromatic, a complete graph Gi of

order k that results from running the modified Zykov algorithm on G, and a removed

vertex list R sorted by the order removed as inputs. It outputs a k-chromatic coloring of G.

The steps of the coloring routine are as follows:

1) Start with k empty color classes {c1, . . . ,ck}.

2) Order the vertices in Gi into a list. Note that these vertices represent single and/or

contracted vertices from G.

3) Append the vertices in S to the list in reverse order. Note that these vertices also

represent single and/or contracted vertices from G.

4) Assign all of the vertices from G that are represented by v j ∈V (Gi) to color c j.

5) Greedy color the remaining vertices in the list. No additional colors should be

required. Note that when determining color use by adjacent vertices, all of the single

and/or contracted vertices from G represented by a vertex in the sorted list must be

checked against all the single and/or contracted vertices from G represented by the

previously colored vertices in the sorted list.
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Consider the example graph G and its reduced form G1 in Fig. 76.

012

345

G

1

043

G1

S
2
5

Fig. 76. A coloring routine example.

Since χ(G) = 3, start with three empty color classes: {c1,c2,c3}. Next, list the

vertices in G1, followed by the removed vertices in reverse order: 04,1,3,5,2. Now,

assign the vertices from G1 to the color classes:

c1 0,4
c2 1
c3 3

Next, color the removed vertices. Since 5 is adjacent to 4 but not to 1, 5 is assigned to

c2. Finally, since 2 is adjacent to 1 but to neither 0 nor 4, 2 is assigned to c1:

c1 0,2,4
c2 1,5
c3 3

6.4 Supporting Theorems

This section contains the theorems that support the steps in the recursive subroutine.

Remember that the success check of step 1 is already supported by Theorem 7.

6.4.1 Maximum Edge Threshold

The maximum edge threshold test of steps 2 and 3 is supported by Theorem 17.

Theorem 17 (Maximum Edge Threshold). Let G be a graph of order n and size m and

let k ∈ N. If G is k-colorable then:

m≤ n2(k−1)
2k
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Proof. Assume that G is k-colorable. This means that V (G) can be distributed into k

independent (some possibly empty) subsets. Call these subsets A1, . . .Ak and let ai = |Ai|.

Thus, each v ∈ Ai can be adjacent to at most n−ai other vertices in G, and hence the

maximum number of edges incident to vertices in Ai is given by: ai(n−ai) = nai−a2
i .

Now, using Theorem 11, the maximum number of edges in G is given by:

m≤ 1
2

k

∑
i=1

(nai−a2
i )

with the constraint:
k

∑
i=1

ai = n

This problem can be solved using the Lagrange multiplier technique. We start by defining:

F(a1, . . . ,ak) = f (a1, . . . ,ak)−λg(a1, . . . ,ak)

=
1
2

k

∑
i=1

(nai−a2
i )−λ

k

∑
i=1

ai

=
k

∑
i=1

(
1
2

nai−
1
2

a2
i −λai

)
Now, optimize by taking the gradient and setting the resulting vector equation equal to the

zero vector:

∇F =
k

∑
i=1

(
n
2
−ai−λ )âi = 0

This results in a system of k equations of the form:

n
2
−ai−λ = 0

And so:

ai =
n
2
−λ
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Plugging this result back into the contraint:

k

∑
i=1

ai =
k

∑
i=1

(n
2
−λ

)
= k
(n

2
−λ

)
= n

Solving for λ yields:

λ =
n
2
− n

k

And finally, to get ai in terms of n and k:

ai =
n
2
−
(n

2
− n

k

)
=

n
k

Therefore:

m≤ 1
2

k

∑
i=1

[
n
(n

k

)
−
(n

k

)2
]
=

k
2

(
n2k−n2

k2

)
=

n2(k−1)
2k

The recursive subroutine actually uses the contrapositive of this result, as stated in

Corollary 8.

Corollary 8. Let G be a graph of order n and size m and let k ∈ N. If:

m >
n2(k−1)

2k

then G is not k-colorable.

Corollary 8 is demonstrated by Fig. 77. The shown graph G has n = 4, m = 5, and

χ(G) = 3. Testing for k = 2:

a =
42(2−1)

2 ·2
= 4

But m = 5 > 4 = a and so we can conclude that G is not 2-colorable. However, testing for

k = 3;

a =
42(3−1)

2 ·3
= 5.3
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So m = 5≯ 5.3 = a and thus G may be 3-colorable, since this test only provides a

necessary and not a sufficient condition.

a b

cd

G

Fig. 77. Corollary 8 example.

In fact, the the test of Corollary 8 will always fail for a complete graph when k < n.

Since k,n > 0:

n(n−1)
2

− n2(k−1)
2k

=
kn(n−1)−n2(k−1)

2k

=
kn2− kn− kn2 +n2

2k

=
n2− kn

2k

=
n(n− k)

2k

> 0 (n > k)

6.4.2 Vertex Removal

Steps 4 and 5 remove vertices with degrees less than k. The idea is that since a vertex’s

neighbors only use less than k colors there will always be an available color for the vertex

without adding a new color, regardless of how the vertex’s neighbors are actually colored.

In order words, these small degree vertices do not affect the overall colorability of their

graph. This fact is demonstrated by Fig. 78; no matter which vertex is removed, the

resulting subgraph is still properly colored using at most four (in fact, three) colors.
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a b

cd

G

b

cd

G−a

a

cd

G−b

a b

d

G− c

a b

c

G−d

Fig. 78. Vertex removal example.

Vertex removal is supported by Theorem 18:

Theorem 18. Let G be a graph and let v ∈V (G) such that deg(v)< k for some k ∈ N. G

is k-colorable if and only if G− v is k-colorable.

Proof. Assume that G is k-colorable. By definition, there exists some coloring function

c : V (G)→C where |C|= k. Consider the restricted coloring function c′ = c|V (G−v)
and

assume uw ∈ E(G− v) and hence u 6= w. Since c is proper:

c′(u) = c(u) 6= c(w) = c′(w)

This means that c′ : V (G− v)→C is a proper coloring of G− v with |C|= k.

Therefore G− v is k-colorable.

For the converse, assume that G− v is k-colorable. By definition, there exists some

coloring function c : V (G−v)→C where |C|= k. By assumption, deg(v)< k, so v has at

most k−1 neighbors in G, using at most k−1 colors. This means that there is an

additional color that can be assigned to v in G such that the coloring remains proper

(see Fig. 75). So let N(v) = {v1, . . . ,vr} ⊆V (G− v) for some r < k, and let

c[N(v)] = {c1, . . . ,cs} ⊂C for some s≤ r < k. Since c[N(v)] is a proper subset of C,
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select ck ∈C− c[N(v)] and define a coloring function c′ : V (G)→C as follows:

c′(u) =


c(u), u 6= v

ck, u = v

Now, assume that uw ∈ E(G) and hence u 6= w.

Case 1: v /∈ uw

So u,w ∈ E(G− v) and since c is proper:

c′(u) = c(u) 6= c(w) = c′(w)

Case 2: v ∈ uw

Assume without loss of generality that v = u. Thus, w ∈V (G− v) and since c is

proper:

c′(v) = ck 6= c(u) = c′(u)

This means that c′ : V (G)→C is a proper coloring of G with |C|= k.

Therefore G− v is k-colorable.

Theorem 18 is demonstrated in Fig. 79 for k = 4 and deg(v) = 3.

a v

bc

d

Fig. 79. Theorem 18 example.
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The recursive subroutine actually removes all such small degree vertices at once,

which is supported by the inductive proof in Corollary 9.

Corollary 9. Let G be a graph of order n and let X = {v ∈V (G) |deg(v)< k} for some

k ∈ N. G is k-colorable if and only if G−X is k-colorable.

Proof. (by induction on |X |)

Base Case: Let |X |= 0.

But G−X = G (trivial case).

Inductive Assumption: Let |X |= r.

Assume that G is k-colorable if and only if G−X is k-colorable.

Inductive Step: Consider |X |= r+1.

Since |X |= r+1 > 0, there exists v ∈ X such that deg(v)< k. Let Y = X−{v} and

note that |Y |= |X |−1 = (r+1)−1 = r. So, G is k-colorable if and only if G− v is

k-colorable (Theorem 18) if and only if (G− v)−Y is k-colorable (inductive

assumption).

Therefore, by the principle of induction, G is k-colorable if and only if G−X is

k-colorable.

Returning to the example in Fig. 79, note that X = {v,b,d} is the set of all vertices

with degree less than 4 and so all three can be removed at once in accordance with

Corollary 9.

6.4.3 Neighborhood Subsets

Step 7 contracts vertices whose neighborhoods are subsets of other vertices. Lemma 2

states that in any k-coloring such vertices can be colored using the same color.

Lemma 2. Let G be a graph such that:

1) n(G)≥ 2

2) u,v ∈V (G) and u 6= v
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3) N(u)⊆ N(v), and hence uv /∈ E(G)

and let k ∈ N. In any k-coloring of G, u and v can be assigned the same color.

Proof. Assume that the coloring function c : V (G)→C is proper where |C|= k. Since

N(u)⊆ N(v), it must be the case that c[N(u)]⊆ c[N(v)]. But c(v) /∈ c[N(v)] and hence

c(v) /∈ N(u). Therefore, c(v) is available for u.

Theorem 19 states that any two vertices using the same color can be contracted

without affecting colorability.

Theorem 19. Let G be a graph such that:

1) n(G)≥ 2

2) u,v ∈V (G) and u 6= v

3) u and v are assigned the same color in any proper coloring of G

and let k ∈ N. G is k-colorable if and only if G ·uv is k-colorable.

Proof. Assume that G is k-colorable. By definition, there exists some coloring function

c : V (G)→C where c(u) = c(v) and |C|= k. Let w ∈V (G ·uv) be the identified vertex

and define a coloring function c′ : V (G ·uv)→C as follows:

c′(z) =


c(z), z 6= w

c(u) = c(v), z = w

Now, assume that xy ∈ E(G ·uv) and hence x 6= y.

Case 1: w /∈ xy

So x,y ∈ E(G) and since c is proper:

c′(x) = c(x) 6= c(y) = c′(y)

Case 2: w ∈ xy
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Assume without loss of generality (AWLOG) that w = x and so w 6= y. Thus,

y ∈V (G), y /∈ {u,v}, and since c is proper:

c′(w) = c(u) 6= c(y) = c′(y)

This means that c′ : V (G ·uv)→C is a proper coloring of G ·uv with |C|= k.

Therefore G · v is k-colorable.

For the converse, assume that G ·uv is k-colorable and let w ∈V (G ·uv be the

identified vertex. By definition, there exists some coloring function c : V (G ·uv)→C

where |C|= k. Define the coloring function c′ : V (G)→C as follows:

c′(z) =


c(z), z /∈ {u,v}

c(w), z ∈ {u,v}

Now, assume that xy ∈ E(G) and hence x 6= y.

Case 1: u,v /∈ xy

So x,y ∈ E(G ·uv) and since c is proper:

c′(x) = c(x) 6= c(y) = c′(y)

Case 2: u ∈ xy and v /∈ xy or u /∈ xy and v ∈ xy

Assume without loss of generality (AWLOG) that u = x and v 6= y. Thus,

y ∈V (G ·uv), y 6= w, and since c is proper:

c′(u) = c(w) 6= c(y) = c′(y)

This means that c′ : V (G)→C is a proper coloring of G with |C|= k.

Therefore G is k-colorable.

Finally, Corollary 10 combines the previous two results.
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Corollary 10. Let G be a graph such that:

1) n(G)≥ 2

2) u,v ∈V (G) and u 6= v

3) N(u)⊆ N(v), and hence uv /∈ E(G)

and let k ∈ N. G is k-colorable if and only if G ·uv is k-colorable.

Proof. By Lemma 2, u and v can be assigned the same color. Therefore, by Theorem 19,

G is k-colorable if and only if G ·uv is k-colorable.

Corollary 10 is demonstrated in Fig. 80.

G

N(u)

N(v)

u v

G ·uv

N(w)

w

Fig. 80. Demonstration of Theorem 10.

In the original version of the proposed algorithm, if N(u)⊂ N(v) then G was replaced

by G−u. Although technically correct, simply removing u loses the important

information that u and v are assigned the same color, which would make the coloring

routine more complicated. Special thanks to Graham [26] for pointing out that contraction

is sufficient.
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6.4.4 Minimum Common Neighbor Upper Bound

Steps 8–10 establish an upper bound for the minimum common neighbor count

between any two vertices in a graph that is assumed to be k-colorable. This limit is

dependent on the following facts that are guaranteed by previous steps:

1) 2≤ k < n

2) There are no u,v ∈V (G) such that N(u)⊆ N(v)

The supporting theorem uses these facts along with Lemma 3 in its proof.

Lemma 3. Let G be a graph and let S be a non-empty independent subset of V (G). If

there exists a vertex v ∈ S such that v is adjacent to all vertices in V (G)−S (i.e.,

N(v) =V (G)−S) then for all vertices u ∈ S it is the case that N(u)⊆ N(v).

Proof. Assume that such a v exists and then assume that u ∈ S. If u = v then (trivially)

N(v) = N(v), so assume u 6= v. Furthermore, since u,v ∈ S and S is independent (by

assumption), it must be the case that u and v are not neighbors.

Case 1: N(u) = /0.

Therefore, by definition, N(u) = /0⊆ N(v).

Case 2: N(u) 6= /0.

Assume that w ∈ N(u). This means that w is adjacent to u and hence w /∈ S, since S

is an independent set. So w ∈V (G)−S and thus, by assumption, v is adjacent to w

and we can conclude that w ∈ N(v). Therefore N(u)⊆ N(v).

Therefore, for all u ∈ S, N(u)⊆ N(v).

Lemma 3 is demonstrated in Fig. 81. Note that since v ∈ S is adjacent to every vertex

in V (G)−S, vertex u ∈ S can’t help but be adjacent to some subset of N(v).
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v

u

S V (G)−S

Fig. 81. Lemma 3 example.

Theorem 20 establishes the desired upper bound.

Theorem 20. Let G be a graph of order n and size m such that there are no u,v ∈V (G)

where N(u)⊆ N(v), and let k ∈ N such that 2≤ k < n. If G is k-colorable then there

exists two vertices w,z ∈V (G) such that:

|N(w)∩N(z)| ≤ n−2− n−2
k−1

Proof. Assume that G is k-colorable. This means that V (G) can be distributed into k

independent (some possibly empty) subsets A1, . . . ,Ak such that ai = |Ai| and

a1 ≥ a2 ≥ ·· · ≥ ak. Since n > k, by the pigeonhole principle, it must be the case that

a1 ≥ 2. Assume that v ∈ A1.

First, assume by way of contradiction (ABC) that v is adjacent to all other vertices in

V (G)−A1. Since a1 ≥ 2, there exists u ∈ A1 such that u 6= v and u is not adjacent to v.

Thus, by Lemma 3, N(u)⊆ N(v), contradicting the assumption. Note that this

contradiction also eliminates the degenerate case where A1 =V (G); however, this case

does not occur here because the graph would be an empty graph and would have been
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eliminated by previous steps. Therefore, there exists some v′ ∈V (G)−A1 such that v is

not adjacent to v′. Assume that v′ ∈ Ai for some i such that 1 < i≤ k:

Case 1: ai = 1

By the pigeonhole principle:

a1 ≥
⌈

n−1
k−1

⌉
≥ n−1

k−1

Now, assume by way of contradiction (ABC) that v′ is adjacent to all vertices in

V (G)−A1−Ai and assume u ∈ N(v). Then it must be the case that

u ∈V (G)−A1−Ai, and so u is adjacent to v′, and thus u ∈ N(v′). Therefore

N(v)⊆ N(v′), which contradicts the assumption. This situation is demonstrated by

Fig. 82.

v v′

A1 V (G)−A1−Ai Ai

Fig. 82. Case ai = 1 contradiction.

So there must exist some u ∈V (G)−A1−Ai such that u is not adjacent to v′. This

results in the upper bound:

|N(v)∩N(v′)| ≤ n−|{u,v′}|−a1 ≤ n−2− n−1
k−1
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Note that since v ∈ A1, it is already counted in a1. Comparing this bound to the

desired bound:(
n−2− n−2

k−1

)
−
(

n−2− n−1
k−1

)
=

(n−1)− (n−2)
k−1

=
1

k−1
> 0

for k ≥ 2. Thus the new bound is tighter and so:

|N(v)∩N(v′)| ≤ n−2− n−1
k−1

≤ n−2− n−2
k−1

Case 2: ai = 2

By the pigeonhole principle:

a1 ≥
⌈

n−2
k−1

⌉
≥ n−2

k−1

This results in the upper bound:

|N(v)∩N(v′)| ≤ n−ai−a1 ≤ n−2− n−2
k−1

Case 3: ai ≥ 3

By the pigeonhole principle:

a1 ≥
⌈

n−ai

k−1

⌉
≥ n−ai

k−1

This results in the upper bound:

|N(v)∩N(v′)| ≤ n−ai−a1 ≤ n−ai−
n−ai

k−1

Comparing this to the desired bound:(
n−2− n−2

k−1

)
−
(

n−ai−
n−ai

k−1

)
= (ai−2)

(
1− 1

k−1

)
≥ 0
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for k ≥ 2 and ai ≥ 3. Thus the new bound is as good or tighter and so:

|N(v)∩N(v′)| ≤ n−2− n−2
k−1

Therefore, there exists w,v ∈V (G) such that:

|N(w)∩N(z)| ≤ n−2− n−2
k−1

The recursive subroutine actually uses the contrapositive of this result, as stated in

Corollary 11.

Corollary 11. Let G be a graph of order n and size m such that there are no u,v ∈V (G)

where N(u)⊆ N(v), and let k ∈ N such that 2≤ k < n. If for all w,z ∈V (G) it is the case

that:

|N(w)∩N(z)|> n−2− n−2
k−1

then G is not k-colorable.

Corollary 11 is demonstrated in Fig. 83. The shown graph has n = 5, is 3-chromatic,

and has:

min
u,v∈V (G)

|N(u)∩N(v)|= 1

Testing for k = 2:

5−2− 5−2
2−1

= 0

But 1 > 0 and so we can conclude that G is not 2-colorable. However, testing for k = 3:

5−2− 5−2
3−1

=
3
2
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So 1≯ 3
2 and thus G may be 3-colorable, since this test only provides a necessary and not

a sufficient condition.

a

b c

d e

G

Fig. 83. Corollary 11 example.

6.4.5 Recursive Steps

If nothing more can be done in the preceding steps then steps 13–16 revert to

branching. Step 13 selects two non-adjacent vertices with the smallest number of common

neighbors. Such a pair must exist. Otherwise, the current state of G is complete, which

would have been eliminated by step 3. The first recursive call (step 14) assumes that the

two selected vertices have the same color, so they are contracted. The second recursive

call (step 15) assumes that the two selected vertices have different colors, so they are

joined by an added edge. Each call starts a new branch of the Zykov tree corresponding to

the current value of k. If either call returns true then it can be concluded that the input

graph was indeed k-colorable. Otherwise, it can be concluded that the input graph is not

k-colorable and the recursive subroutine returns the state of G prior to the recursive calls

to the main routine.

These steps are supported by Theorem 21.

Theorem 21. Let G be a graph of order n≥ 2 and let u,v ∈ G such that u and v are not

adjacent. G is k-colorable if and only if G ·uv or G+uv is k-colorable.
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Proof. Assume that G is k-colorable. By definition, there exists some coloring function

c : V (G)→C where |C|= k. There are two possibilities, corresponding to the two

recursive choices: c(u) = c(v) (same color) or c(u) 6= c(v) (different colors). The case

c(u) = c(v) has already been proven by Theorem 19, so it remains to be proven that G is

k-colorable if and only if G+uv is k-colorable.

Assume c(u) 6= c(v). By adding edge uv, u and v become adjacent and thus must have

different colors. Thus, u and v can retain their same colors, the coloring is unchanged and

remains proper, and therefore G+uv is k-colorable.

For the converse, assume that G+uv is k-colorable. Since u and v are adjacent in

G+uv, they must have different colors. Once uv is removed in G, u and v are no longer

adjacent and so there are no requirements on their colors. Thus, u and v can retain their

same colors, the coloring is unchanged and remains proper, and therefore G is

k-colorable.

6.5 An Example

In this section, the proposed algorithm will be applied to the Grötzsch graph G with

n = 11, m = 20, and χ(M) = 4 (see Section 5.1.1) shown in Fig. 84.

a

b

c

e

d

f

g

h

j

i

k

Fig. 84. The Grötzsch example: input graph.
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The main routine first executes the Bron Kerbosch algorithm and finds that the

chromatic number lower bound is kmin = 2. It then executes the greedy algorithm and finds

that the chromatic number upper bound is kmax = 4 with the following default coloring:

{a,c,k}
{b,e,g, j}
{d, f , i}
{h}

Since the lower and upper bounds do not match, the main routine continues. The Bron

Kerbosch algorithm is executed on the complement of G to discover than G has 16 MISs.

Vertex a is found to occur in the least number of these MISs: 5 times. These 5 selected

MISs, sorted by decreasing length, are as follows:

{a,c, f ,h}
{a,d, f , i}
{a, f ,h, i}
{a,c,k}
{a,d,k}

The main routine creates 5 Zykov trees, one per selected MIS. For brevity, the remainder

of this example will focus on the first tree; assume that the other 4 trees are processed

similarly and that none of them produces a solution. The outer loop initializes k = 2 and

since k = 2 < 4 = kmax, the recursive subroutine is called on the first tree with k = 2.

The starting graph for the first tree is constructed by contracting all of the vertices in

the first MIS and then adding edges between the contracted vertex and all other vertices.

The result is shown in Fig. 85.
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ac f h

be

d

gj

i

k

Fig. 85. The Grötzsch example: first tree initial graph.

Since n = 8≥ 2 = 4, the called routine continues and calculates a maximum edge

threshold of a = 16. Since m = 13 <= 16 = a the called routine continues and finds that

deg(b) = 1 < 2 = k and so vertex b is removed and added to the removed vertex list R.

The resulting graph is shown in Fig. 86.

ac f h

e

d

gj

i

k

Fig. 86. The Grötzsch example: vertex b removed.
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Now, n = 7≥ 2 = k so the called routine continues. The new maximum edge

threshold is a = 12.25 and since m = 12≤ 12.25 = a the called routine continues. There

are no more small degree vertices; however it is found that N(g)⊆ N( j) and so these two

vertices are contracted. The resulting graph is shown in Fig. 87.

ac f h

e

d

g j

i

k

Fig. 87. The Grötzsch example: vertices g and j contracted.

Now, n = 6≥ 2 = k so the called routine continues. The new maximum edge

threshold is a = 9 and since m = 10 > 9 = a the maximum edge check fails. The called

routine returns with false, the current graph, and a removed vertex list of R = (b). The

remaining 4 trees similarly fail, so the main routine increments k = 3 and since

k = 3 < 4 = kmax the recursive subroutine is recalled on the first tree.

Since n = 6 > 3 = k the called routine continues. The new maximum edge threshold

is a = 12 and since m = 10 <= 12 = a the called routine continues. No small degree

vertices or neighborhood subsets are found, so vertices d and e are selected as having the

smallest number of common neighbors: b = 1. The minimum common neighbors upper

bound is calculated to be c = 2 and since b = 1 < 2 = c the called routine continues. The
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Edwards Elphick algorithm is executed to determine that the new chromatic number lower

bound is 3, and since 3 <= 3 = k, the called routine continues.

At this point all bounding efforts have failed so it is time to start branching. Since all

nonadjacent vertices share 2 common neigbors, vertices e and k are selected and are

contracted. The resulting graph is shown in Fig. 88. Copies are made of this graph and the

removed vertex list and a recursive call is made with these values.

ac f h

ek

d

g j

i

Fig. 88. The Grötzsch example: vertices e and k contracted.

Now, n = 5≥ 3 = k so the called routine continues. The new maximum edge

threshold is a = 8.33 and since m = 8≤ 8.33 = a the called routine continues. Since

deg(i) = 2 < 3 = k, vertex i is removed and the removed vertex list is now R = (b, i). The

resulting graph is shown in Fig. 89.
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ac f h

ek

d

g j

Fig. 89. The Grötzsch example: vertex i removed.

The current state is now a leaf node with a complete graph of order 4. Since

n = 4 > 3 = k the called routine continues; however, the new maximum edge threshold is

a = 5.33 and since m = 6 > 5.33 the edge threshold test fails as expected and the

recursive call returns false. Modifications to the graph and removed vertex list resulting

from the contraction are discarded and the graph of Fig. 87 remains the current graph for

the first tree with a removed vertex list of just R = (b).

For the next branch, the edge ek is added. The resulting graph is shown in Fig. 90.

Copies are made of this graph and the removed vertex list and a recursive call is made

with these values.
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ac f h

e

d

g j

i

k

Fig. 90. The Grötzsch example: edge ek added.

Now, n = 6 > 3 = k so the called routine continues and calculates the new maximum

edge threshold a = 12. Since m = 11 < 12 = a the called routine continues. No small

degree vertices are found; however, it is found that N(g j)⊆ N(e), so these vertices are

contracted. The resulting graph is shown in Fig. 91.
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ac f h

eg j

d

i

k

Fig. 91. The Grötzsch example: vertices g j and e contracted.

Now, n = 5 > 3 = k so the called routine continues and calculates the new edge

threshold a = 8.33. Since m = 8 < 8.33 = a the called routine continues and finds that

deg(d) = 2 < 3 = k so vertex d is removed. The resulting graph is shown in Fig. 92 and

the new removed vertex list is now R = (b,d).

ac f h

eg j

i

k

Fig. 92. The Grötzsch example: vertex d removed.
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Once again, a leaf node with a complete graph of order 4 is achieved. Since

n = 4 > 3 = k the called routine continues. The new maximum edge threshold is a = 5.33

and since m = 6 > 5.33 = a the edge threshold test fails as expected. All of the changes

to the graph and removed vertex list applied by this branch are discarded and the

recursive call returns false.

At this point, both branches have failed and so the called routine returns false to the

main routine with the graph shown in Fig. 87 and a removed vertex list of just R = (b).

The remaining 4 trees similarly fail, so the main routine increments k = 4 and since

k = 4 = 4 = kmax the default 4-coloring is accepted as the chromatic coloring for the input

graph.

Table 4 compares the performance of the proposed, Christofides/Wang, and Zykov

algorithms when applied to the Grötzsch graph, which has n = 11 and m = 20. The table

shows the number of calls to the recursive routine and the mean time duration for 100

trials. The proposed algorithm has a slight advantage over Christofides/Wang and a

somewhat larger advantage over Zykov.

Table 4

Grötzsch Graph Algorithm Performance

ALGORITHM CALLS DURATION(s)
proposed 20 0.0013

Christofides/Wang 40 0.0015
Zykov 175 00062

Table 5 compares the performance of the three algorithms when applied to the

5-chromatic Mycielski graph, which has n = 23 and m = 71. The proposed algorithm still

has a very slight advantage over Christofides/Wang; however, the Zykov algorithm

performance is horrible. This is most probably due to the unbalanced nature of the graph:

the proposed algorithm can eliminate the lower-degree vertices; however, the Zykov

algorithm is forced to branch on them.
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Table 5

Mycielski 5-chromatic Graph Algorithm Performance

ALGORITHM CALLS DURATION(s)
proposed 723 0.0999

Christofides/Wang 1420 0.1078
Zykov 2848167 > 250

Section 7.4 contains additional runtime duration comparisons of the three algorithms.
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7 RANDOM GRAPH ANALYSIS

This section describes the random graph analysis used in this research. The testbed,

custom graph software, and the results obtained for the proposed algorithm are discussed.

It finishes with a runtime duration comparison between the Christofides/Wang, the Zykov,

and the proposed algorithm in the target range of 20 vertices and moderate edge density.

7.1 The Testbed

All of the random graph analysis in this research was performed on an Acer Aspire

running 64-bit Ubuntu Linux. The system contains 8 i7-7780 3.6GHz cores and 20Gb of

memory. The graphing software was custom written in C++. Although many present day

researchers may choose Java or Python, the author feels that the interpretive nature of

those languages combined with unpredictable garbage collection leads to overly inflated

and inconsistent results.

The representation of a graph in memory needs to convey the list of vertices, the list

of edges, and the adjacency matrix. Graph mutations that change the number of vertices

are complex because the adjacency matrix must be rebuilt from the altered vertex and

edge lists. Thus, the testbed software assumes that graphs are invariant with respect to

vertex removals and contractions; if vertex removal or contraction is desired then a new

graph instance must be constructed. Edge additions are innocuous: the new edge can be

marked in the adjacency matrix and appended to the edge list.

The general layout of a graph instance in memory is shown in Fig. 93. The vertex and

edge lists are vectors of instances that contain the needed vertex and edge attibutes. In a

particular graph, a vertex or edge is identified by its position in its list, called its number:

vertex numbers are from 0 to n−1 and edge numbers are from 0 to m−1. The adjacency

matrix is a two-dimensional matrix indexed by vertex numbers: entry M[i, j] returns a list

of edge numbers that can be used to index the edge list to locate the edges. If the edge list
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is empty then the two vertices are not adjacent. Note that for simple graphs, each edge list

has at most one entry and the adjacency matrix is symmetric: M[i, j] = M[ j, i].

adjacency
matrix

vertex
list

edge
list

vertex
lookup
table

Fig. 93. Graph layout in memory.

One of the complications of graph mutations is that the vertex and edge numbers

change when a new graph is constructed. This is why graph mutations result in new

instances. In order to be able to identify vertices across graph mutations, each vertex is

assigned a unique vertex ID when a new graph is created. Vertices keep their original IDs

across graph mutations, although their numbers may change. Thus, edges in the edge list

refer to their endpoint vertices by ID and a vertex ID to vertex number lookup table is

included as part of the graph schema.

Contracted vertices are assigned new vertex IDs when created; however, graph

algorithms like the proposed algorithm may need to remember the original vertices that
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were contracted. To support this, each vertex instance includes a list of contracted vertex

IDs. When two non-contracted vertices are contracted, the new contracted vertex has a

contracted vertex ID list consisting of the original two vertex IDs. When contracted

vertices are are contracted, their contracted vertex ID lists are concatenated. Thus,

contracted vertex ID lists contain only vertex IDs from the original graph.

One of the most important parameters used by graph algorithms is vertex degree. As

was explained in Section 2.11, the degree of vertex vi can be calculated by summing the

ith row or column in the adjacency matrix. So that degrees do not have to be recalculated

each time they are used, the adjacency matrix precalculates vertex degrees upon graph

creation: each time an edge is added the degrees of the endpoint vertices are incremented.

The minimum and maximum degrees for a graph still need to be recalculated each time,

so algorithms should cache those values once fetched.

Since new graphs may be created many times during the execution of a graph

algorithm, graph construction must be as efficient as possible. The testbed software

creates a new graph using the following steps:

1) Each of the n vertices are added to the new vertex list and a corresponding entry is

added to the vertex ID to number lookup table.

2) An empty n×n adjacency matrix is allocated with all vertex degrees set to 0.

3) Each edge is added to the edge list. The endpoint vertex IDs are found in the lookup

table and the edge is registered in the adjacency matrix, which increments the

degrees for the endpoint vertices.

The runtime complexity for new graph construction ignoring memory allocation is

determined as follows:

• Appending a vertex onto the vertex list is O(1).

• Since the C++ map type is implemented using red/black self-balancing trees,

inserting a new vertex into the lookup table is O(log(n)).
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• Appending an edge onto the edge list is O(1).

• Finding each edge’s two endpoint vertex numbers in the lookup table is O(log(n)).

• Adding the edge to the adjacency matrix and incrementing the endpoint vertex

degrees is O(1).

The worst case is a complete graph with O(n2) edges. Therefore, the runtime

complexity for constructing a new graph is O(n2 log(n)).

7.2 Runtime Complexity Results

The proposed algorithm was executed on random graphs for binomial edge

probabilities of 10% to 90% in 10% steps and graph orders of 5 to 30. 1000 trials were

performed per edge probability for graph orders less than 20. For 20 or more, the number

of trials was reduced to 100 due to increased runtime duration. The mean number of calls

(log base 2) to the recursive method, and hence the mean number of Zykov tree states

traversed, is shown in Fig. 94.

Fig. 94. Proposed algorithm mean number of calls.

When Fig. 94 is compared to the Christofides/Wang results in Fig. 62, it can be seen

that for both algorithms the number of calls increases with graph order and peaks with
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edge density of 50%. The bounding tests in the proposed algorithms appear to be

effective, resulting in a noticeable decrease in the mean number of states traversed of as

much as 85%.

Fig. 95 shows the maximum number of calls (log base 2) for each order at 50% edge

possibility. A polynomial curve fit to the data indicates a runtime complexity of about

O(20.0148n2
)≈ O(1.0103n2

).

Fig. 95. Proposed algorithm runtime complexity.

When Fig. 95 is compared to the Christofides/Wang results in Fig. 63, it can be seen

that Christofides/Wang runtime complexity is a bit better: O(1.0045n2
) versus

O(1.0103n2
). This means that even though the proposed algorithm processes fewer states

in the target range, it will eventually lose to Christofides/Wang. Based on the equations

for the two curve fits, the break-even point appears to be at about n = 37.

7.3 Bounding Test Results

An examination of the effectiveness of the various bounding tests explains why the

proposed algorithm eventually loses to Christofides/Wang. There are six such bounding

tests:
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1) Chromatic number lower/upper bound comparison

2) Maximum edge threshold

3) Small vertex removal

4) Neighorhood subset contraction

5) Minimum common neighbors upper bound

6) Standard Zykov bounding

The frequency with which the Bron Kerbosch estimated chromatic number lower

bound and the greedy estimated chromatic number upper bound match is shown in

Fig. 96. This test is extremely effective at lower orders but seems to become a non-factor

for n > 25.

Fig. 96. Proposed algorithm lower/upper bound matching test.

The effectiveness of the maximum edge threshold hits, measured as hits/tries, is

shown in Fig. 97. This test rapidly becomes a non-factor at higher orders; however, since

it is a simple O(1) calculation it is still worth doing.

135



Fig. 97. Proposed algorithm maximum edge threshold test.

The effectiveness of removing small degree vertices, measured as hits/tries, is shown

in Fig. 98. This test rapidly becomes a non-factor at higher orders. This is expected

because vertex contraction and edge addition result in degree increases, so no new small

degree vertices are ever exposed once branching begins. Since the test requires an O(n)

scan of the vertices it is still pretty cheap, but is a candidate for elimination outside of the

target range of n < 20.
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Fig. 98. Proposed algorithm small degree vertex test.

The effectiveness of contracting neighborhood subsets, measured as hits/tries, is

shown in Fig. 99. This test appears to maintain a decent level of effectiveness at higher

orders. This is not so surprising because more vertices and edges provide more subset

opportunities.

Fig. 99. Proposed algorithm neighborhood subset test.
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The effectiveness of the minimum common neighbors upper bound test, measured as

hits/tries, is shown in Fig. 100. This test becomes a complete non-factor at higher orders;

however, it is based on the same O(n2) calculation step required for the more effective

neighborhood subset test and only adds an additional O(1) calculation. Thus, this test

should only be retained if the neighborhood subset test is retained.

Fig. 100. Proposed algorithm minimum common neighbors upper bound test.

Finally, the effectiveness of the standard Zykov bounding test, measured as hits/tries,

is shown in Fig. 100. This is the test that uses the Edwards Elphick algorithm to calculate

a new chromatic number lower bound and prune if that value exceeds the current value of

k. This test appears to have increased effectiveness at higher orders.
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Fig. 101. Proposed algorithm bounding test.

7.4 Runtime Duration Results

As was discussed in Section 4.2.1, it is important to determine what is being called a

step in the runtime complexity estimate. In the case of the three chromatic coloring

algorithms considered in this research, a step was defined as a call to the routine that

performs the necessary processing for a state in the branch-and-bound algorithm’s state

tree. Supposedly, the algorithm that processes the fewest states through better bounding

has better runtime performance. However, if we look a little closer at the algorithms, it

becomes clear that the amount of processing in each “step” varies significantly between

the three algorithms:

Christofides/Wang: Executes Bron Kerbosch, scans the MIS result set for the least

occurring vertex, then scans the MIS result set again to extract the MISs containing

the target vertex.

Zykov: Executes the Edwards Elphick algorithm to determine the current lower bound

and compares it to the adjusted kmax to check for bounding.
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Proposed: The maximum edge test, the small subset test, calculates the number of

common neighbors between each pair of vertices, contracts neighborhood subsets,

the minimum common neighbor upper bound test, and the standard Zykov bounding

test.

The most lightweight processing is the plain Zykov algorithm, which uses a single

P-time step. The proposed algorithm uses two P-time steps: the common neighbor

calculation and the Edwards Elphick algorithm, and may run these steps multiple times

per state if vertices are removed or contracted. The Christofides/Wang algorithm uses the

exponential Bron Kerbosch algorithm. All three algorithms require a P-time step to create

the graph for the next branch. In order to determine the relative effectiveness or penalty of

this per-step processing, a better measure of performance is to observe the empirical

runtime durations of the three algorithms on like graphs.

The runtime duration results for the three algorithms at n = 10, n = 15, and n = 20

are shown in Fig. 102, Fig. 103, and Fig. 104, respectively. 100 trials were performed for

each edge probability. To be fair, the initial Bron Kerbosch and greedy steps could be

used in combination with any of the algorithms, so only random graphs where the

chromatic number lower and upper bounds do not match were considered. The results are

rather astounding. In fact, the author didn’t quite believe them at first and made sure that

they were correct and reproducible.
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Fig. 102. Runtime durations at n = 10.

Fig. 103. Runtime durations at n = 15.
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Fig. 104. Runtime durations at n = 20.

The runtime durations for the three algorithms are exactly the same! These results

vary significantly from the results for the Mycielski graphs in Section 6.5, where the

proposed algorithm had an advantage. Although both the random graphs and the

Mycielski graph have rather consistent edge density, the Mycielski graphs have much

more symmetry. It may be that the proposed and Wang/Christofides algorithms are better

suitable to take advantage of that symmetry.

Due to equal performance for most graphs and better performance for some graphs,

the proposed or Christofides/Wang algorithms appear to be better general case solutions.
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8 CONCLUSIONS

The primary goal of this research was to select a chromatic coloring algorithm that

could be used in a part consolidation tool for AD designers. The tool needs to handle

input FR design graphs with up to 20 vertices and moderate (50%) edge density and must

be able to deliver an answer in under one minute.

Three algorithms were considered:

1) The Christofides Algorithm (Section 5.3) with the Wang improvements (Section 5.4)

2) The Zykov algorithm (Section 5.5)

3) A new proposed algorithm (Section 6)

These three algorithms were originally compared using empirical runtime complexity

values obtained from a random graph analysis. For the purposes of this analysis, a step

was defined to be a call to a routine that performs all of the necessary processing for a

state in an algorithms state tree. The results are summarized in Table 6.

Table 6

Runtime Complexity Comparison

ALGORITHM RUNTIME COMPLEXITY
Christofides/Wang O(1.0045n2

)
Zykov O(3.3n)

Proposed O(1.0103n2
)

Assuming that number of states processed translates to runtime duration, tt would

seem that the Christofides/Wang algorithm would have a slight speed advantage over the

proposed algorithm and a large speed advantage over the plain Zykobv algorithm. It was

noted that the initial chromatic number lower and upper bound estimate test that was

presented as part of the new proposed algorithm could be added to the two well-known

algorithms. Thus, a runtime duration test was performed limited to random graphs where

the estimated lower and upper bounds do not match. The results presented in Section 7

143



showed that the three algorithms took exactly the same amount of time to produce a

solution, which was well under the one minute requirement.

However, it was found in Section 6.5 that there are some graphs where the proposed

and the Christofides/Wang algorithms have a performance advantage. Nevertheless, it

must be admitted that Chistofides/Wang is a much simpler algorithm, and that the various

steps in the proposed algorithm do not seem to deliver a decisive performance advantage

over the target range. Thus, the simplicity of Christofides/Wang makes it a better choice

for the desired design tool.

144



Literature Cited

[1] N. P. Suh, The Principles of Design. New York: Oxford University Press, 1990.

[2] R. A. Shirwaiker and G. E. Okudan, “Triz and axiomatic design: A review of
case-studies and a proposed synergistic use,” Journal of Intelligent Manufacturing,
vol. 19, pp. 33–47, February 2008.

[3] N. P. Suh, “Axiomatic design theory for systems,” Research in Engineering Design,
vol. 10, pp. 189–209, 1998.

[4] S. Behdad, J. Cavallaro, P. K. Gopalakrishnan, and S. Jahanbekam, “A graph coloring
technique for identifying the minimum number of parts for physical integration in
product design,” in Proceedings of the ASME 2019 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference,
no. DETC2019-98251 in IDETC/CIE 2019, (Anaheim, CA), Aug 18–21 2019.

[5] S. Behdad, P. K. Gopalakrishnan, S. Jahanbekam, and H. Klein, “Graph partitioning
technique to identify physically integrated design concepts,” in Proceedings of the
ASME 2018 International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference, no. DETC2018-85646 in IDETC/CIE
2018, (Quebec, Canada), Aug 26–29 2018.

[6] Y. Tang, S. Yang, and Y. F. Zhao, “Sustainable design for additive manufacturing
through functionality integration and part consolidation,” in Handbook of
Sustainability in Additive Manufacturing (S. S. Muthu and M. M. Savalani, eds.),
vol. 1, pp. 101–144, Singapore: Springer, 2016.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W.H. Freeman and Company, 1979.

[8] N. Christofides, “An algorithm for the chromatic number of a graph,” The Computer
Journal, vol. 14, pp. 38–39, January 1971.

[9] C. C. Wang, “An algorithm for the chromatic number of a graph,” Journal of the
Association for Computer Machinery, vol. 21, no. 3, pp. 385–391, 1974.

[10] D. G. Corneil and B. Graham, “An algorithm for determining the chromatic number
of a graph,” SIAM Journal on Computing, vol. 2, pp. 311–318, December 1973.

145



[11] G. Chartrand and P. Zhang, A First Course in Graph Theory. Mineola, New York:
Dover Publications, 2012.

[12] D. B. West, Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall,
2nd ed., 2001.

[13] A. A. Zykov, On Some Properties of Linear Complexes, vol. 7 of American
Mathematical Society Translations Series One. American Mathematical Society,
1949 (translated 1952).

[14] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient algorithms for graph
manipulation,” Communications of the ACM, vol. 16, pp. 372–378, June 1973.

[15] C. McDiarmid, “Determining the chromatic number of a graph,” SIAM Journal on
Computing, vol. 8, pp. 1–14, 02 1979.

[16] M. Sipser, Introduction to the Theory of Computation. Boston, MA: Cengage
Learning, 3rd ed., 2013.

[17] H. Johnston, “Cliques of a graph—variations on the bron-kerbosch algorithm,”
International Journal of Computer and Information Sciences, vol. 5, no. 3,
pp. 209–238, 1976.

[18] T. Zhang, “Triangle free graphs and their chromatic number.”
http://www.math.uchicago.edu/∼may/VIGRE/VIGRE2008/REUPapers/Zhang.pdf.
Accessed: 2019-12-01.

[19] C. Edwards and C. Elphick, “Lower bounds for the clique and the chromatic
numbers of a graph,” Discrete Applied Mathematics, vol. 5, no. 1, pp. 51–64, 1983.

[20] M. Xiao and H. Nagamouchi, “Exact algorithms for maximum independent set,”
Information and Computation, vol. 255, pp. 126–146, 2017.

[21] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an undirected
graph,” Communications of the ACM, vol. 16, pp. 575–577, September 1973.

[22] J. Moon and L. Moser, “On cliques in graphs,” Israel Journal of Mathematics,
vol. 3, pp. 23–28, 1965.

146

http://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/REUPapers/Zhang.pdf


[23] D. Welsh and M. Powell, “An upper bound for the chromatic number of a graph and
its application to timetabling problems,” The Computer Journal, vol. 10, no. 1,
pp. 85–86, 1967.

[24] D. W. Matula, G. Marble, and J. D. Isaacson, “Graph coloring algorithms,” in Graph
Theory and Computing (R. C. Read, ed.), pp. 109–122, New York: Academic Press,
1972.

[25] R. C. Read, “An introduction to chromatic polynomials,” Journal of Combinatorial
Theory, vol. 4, pp. 52–71, 1968.

[26] B. Graham, “An algorithm to determine the chromatic number of a graph,” Master’s
thesis, University of Toronto, Ontario, Canada, October 1972.

[27] “The online encyclopedia of integer sequences: A000110.” https://oeis.org/A000110.
Accessed: 2019-12-29.

147

https://oeis.org/A000110

	Determination of a Graph's Chromatic Number for Part Consolidation in Axiomatic Design
	Recommended Citation

	List of Tables
	List of Figures
	Axiomatic Design
	Design
	The Axiomatic Design Framework
	The Axioms
	Part Consolidation
	Research Goals

	Graph Theory
	Simple Graphs
	Order and Size
	Graph Relations
	Labels
	Vertex Color

	Subgraphs
	Mutators
	Vertex Removal
	Edge Addition
	Edge Removal
	Vertex Contraction
	Graph Complement

	Independent Sets
	Cliques
	Connected Graphs
	Walks
	Paths
	Connectedness
	Components
	Impact on Coloring

	Vertex Degree
	Special Graphs
	Empty Graphs
	Paths
	Cycles
	Complete Graphs
	Trees

	The Adjacency Matrix

	Toaster Design Case Study
	Problems and Algorithms
	Problems
	Comparing Algorithms
	Runtime Complexity
	Space Complexity
	Runtime Duration

	Branch-and-Bound Algorithms

	The Chromatic Number Problem
	Finding a Lower Bound
	The Mycielski Construction
	The Edwards Elphick Algorithm
	The Bron Kerbosch Algorithm

	Finding an Upper Bound
	The Christofides Algorithm
	Wang Improvements to Christofides
	Zykov Algorithms

	The Proposed Algorithm
	The Main Routine
	The Recursive Subroutine
	The Coloring Routine
	Supporting Theorems
	Maximum Edge Threshold
	Vertex Removal
	Neighborhood Subsets
	Minimum Common Neighbor Upper Bound
	Recursive Steps

	An Example

	Random Graph Analysis
	The Testbed
	Runtime Complexity Results
	Bounding Test Results
	Runtime Duration Results

	Conclusions
	Literature Cited

