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Abstract: The growth and development of optical components and, in particular, the miniaturization
of micro-electro-mechanical systems (MEMSs), has motivated and enabled researchers to design
smaller and smaller endoscopes. The overarching goal of this work has been to image smaller
previously inaccessible luminal organs in real time, at high resolution, in a minimally invasive manner
that does not compromise the comfort of the subject, nor introduce additional risk. Thus, an initial
diagnosis can be made, or a small precancerous lesion may be detected, in a small-diameter luminal
organ that would not have otherwise been possible. Continuous advancement in the field has
enabled a wide range of optical scanners. Different scanning techniques, working principles, and the
applications of endoscopic scanners are summarized in this review.

Keywords: optical scanners; medical imaging; MEMS actuators; OCT; confocal; non-linear;
photoacoustic; endoscopy

1. Introduction

The use of optical devices in medical applications has increased in the last few decades. The main
purpose of optical imaging techniques is the direct localization of lesions and malignancies in the
organs to inform and assist with surgical procedures. The imaging of internal organs can either be
structure-based or surface-based. The former among these is a non-invasive technique used to scan a
larger area and quickly localize the abnormality using an X-ray, ultrasound, computed tomography,
or magnetic resonance imaging technique. These techniques are characterized by high penetration
depths; but, the spatial resolution is limited (~50 µm to 2 mm), which hides the finer structure
details. Thus, to accurately detect a malignant surface, follow-up imaging using surface-based imaging
is performed. Even though these imaging modalities like endoscopy are invasive in some cases,
they provide live and high-resolution imaging (in the micrometer range).

In surface-based imaging, the lesion area can be directly monitored by inserting an endoscopic device
to observe the desired area. The size of the endoscopic probe determines the accessibility to the body
area of interest. Traditional endoscopic devices have a rigid structure where the rigidity and difficulty of
maneuvering it inside the body limits the accessible area. Miniaturization of micro-electro-mechanical
systems (MEMSs) in conjunction with the evolution of optics permits the fabrication of small-sized and
flexible endoscopes. Thus, the evolution in these fields allows medical users to image smaller areas of the
body that were inaccessible in the past. The early detection of lesions, tumors, etc. permits more accurate
diagnoses, which can enhance life expectancy in the case of cancerous tumors. The diagnostic procedure
based on endoscopic imaging is a multi- step process where the lesion is first detected using an imaging
device, characterized using advanced techniques, and confirmed using histological procedures [1].
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Tissue imaging can be either performed using a backscattered or fluorescence light configuration [2].
In the former case, the image is provided by the light diffusely reflected (or backscattered) from the
superficial layers of the tissue and contrast is provided by the differences in the scattered light
from different tissue structures. In the latter case, the incoming light from the laser is absorbed by
fluorophores in the tissue and re-emitted at a longer wavelength. In this case, the image contrast is
provided by the fluorescence signatures of the different structures. The image contrast in fluorescence
imaging can be reduced by background fluorescence. To increase the contrast, the tissue is often stained
using a fluorophore material.

A large number of optical devices have been researched and developed for imaging purposes.
Among these, optical coherence tomography (OCT), confocal microscopy (CM), and photoacoustic
(PA) imaging are the predominant ones. The performance of an endoscopic device depends on the
choice of the actuation method and the optical components used in its fabrication. Early flexible
endoscopes were developed using coherent optical fiber bundles (CFBs) relying on multiple optical
fibers to deliver the light to the imaging target surface, which subsequently receive the reflected light
using a charge-coupled device (CCD), video chips, or optical fibers. The resolution of these devices
is limited by the discrete fiber pixilation, which avoids the miniaturization of such devices below
3 mm [3,4]. Most of the current endoscopes use a complementary metal oxide semiconductor (CMOS)
chip at the tip of the endoscopes due to its low fabrication cost, ability to withstand in magnetic fields,
and the possibility of miniaturization [5].

The limited resolution in such cases can be improved using laser light scanning at the proximal
end of the fiber. In this case, the resolution of the image is obtained in a temporal basis instead of a
spatial one as a single pixel is detected at a time. The resolution in this case is still based on the number
of fibers present in the bundle and can be increased using specific optical lenses that will be discussed
later in the paper. The light beam can be scanned either by actuating an optical fiber at a resonance or
non-resonance frequency, actuating a micromirror surface to deviate the light shining on it, or using a
galvanometer scanner at the proximal end. The actuation of these components can be either performed
using electrostatic, electrothermal, piezoelectric, electromagnetic, or shape memory alloy actuators.
The size of an endoscopic device is highly limited by the size of the actuator used [3,6].

In addition to the actuation methods, the actuation frequency is an important parameter affecting
the performance of the scanner. The scanning of the light in an endoscopic device must have a frame
rate of over 5 Hz to overcome motion artifacts caused by the motion of the organs during respiration,
peristalsis, and beating of the heart. The scanning of the target surface can be performed using a raster,
spiral, Lissajous, circular, or a propeller pattern. In the raster scan, the fiber is scanned along one axis
using a sinusoidal or triangular waveform and a step-sized increasing triangular wave in the other
direction. In the spiral scan, the two axes are actuated with increasing sinusoidal waves with a 90◦

phase shift to sweep the area inside the spiral. In a Lissajous pattern, two axes are driven by two
sinusoidal waveforms with different frequencies and phase shifts. Circular and propeller patterns are
less frequently used in optical scanning devices [2].

This paper aims to describe the technology behind optical imaging devices used in medical
applications. The paper is structured as follows: Section 2 describes some of the most used medical
imaging technologies, including OCT, CM, nonlinear microscopy, and the PA imaging techniques.
Section 3 discusses two different kinds of the optical scanners that are distinguished based on the
imaging direction with respect to the axis of the device. Resonant, non-resonant, and semi-resonant
scanning principles are reported in Section 4. Section 5 illustrates the different actuation methods along
with their applications in optical imaging devices. Section 6 outlines the different scanning patterns
followed during beam scanning. Section 7 reports some discussions and comparisons about different
scanners available to date, along with some of their potential applications based on the literature study.
Section 8 contains conclusions.
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2. Medical Imaging Applications

The different techniques used for tissue and structural imaging are described below and include
OCT, CM, nonlinear microscopy, and PA image acquisition.

2.1. Optical Coherence Tomography

The working principle of OCT is analogous to that of an ultrasound, with the difference that
low coherent light is used instead of sound. Laser light is transmitted to the semi-transparent tissue
surface using an optical fiber or other means discussed later in the paper. The light backscattered from
the tissue is monitored to reconstruct a cross-sectional image of the targeted tissue. The differential
backscattered intensity from different tissue interfaces (refractive index changes) provides the contrast
in OCT [7].

The speed of light in tissue (225 m/µs) is about five orders of magnitude larger than the speed of
sound in tissue (150 × 10−5 m/µs). The resolution of an image is directly proportional to the wavelength of
the used signal. Smaller wavelength light provides a finer resolution (10 to 100 times) image as compared
to that of ultrasound [8]. On the other hand, the time delay between the source signal and the reflected
signal is much smaller and cannot be measured directly. Thus, an interference pattern must be measured
either using a Michelson or a Mach–Zehnder interferometer [9]. The light coming from the laser source is
split into two paths: one going towards the sample (called sample arm), and the other going towards
a mirror (reference arm). The backscattered light from the tissue is compared with the light from the
reference arm to form an interference pattern if the two light components are within the coherence length
of the light source [10]. A schematic diagram of an OCT scanner is shown in Figure 1.
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Figure 1. The schematic diagram of an optical coherence tomography (OCT) scanner.

Scanning can be performed in a time domain (TD) or in a Fourier domain (FD). In TD-OCT,
a low-coherence broadband light source provides light to the two arms through an optical splitter.
The path length of the reference arm is changed in time by moving the reference mirror in the
axial direction. The interference pattern between the reflected light from the reference arm mirror
(with distance travelled variable in time) and the backscattered light from sample provides a depth
profile of the sample tissue. The two-or three-dimensional structure image is obtained by transversally
scanning the light beam along the sample arm [10,11].

In FD-OCT, the reference arm is static. Axial scanning can be performed in time using a frequency
sweep of the light source to cover the broad bandwidth (swept-source OCT, or SS-OCT), or in space
using a spectrometer to separate the different wavelengths on the detection side (spectral domain OCT
or SD-OCT). Depth information of the sample is obtained using the inverse Fourier transformation.
In SS-OCT, the light source is a rapidly tunable laser, and the detector is a simple photodiode. In SD-OCT,
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the light source is a low-coherence laser, and the detector is a line scan camera. The elimination of the
mechanically moving mirror in FD-OCT allows the sample to image with higher acquisition speeds,
which is the main reason that most of the current OCT systems are FD-OCT [10,11].

Analogous to ultrasound, it is also possible to use a doppler OCT (DOCT) to measure the velocity
of the scattering materials flowing through a channel, such as a blood vessel [10].

In OCT, the lateral resolution depends on the lens system as:

(δx, δy) = 0.56
λ

NA
, (1)

with λ being the central wavelength of the light spectrum, and NA is the numerical aperture. The lateral
field of view (FOV) is given by:

FOVx,y =
f tanθ

2
, (2)

where f is the focal length of the lens, and θ is twice the scanning angle [10].
The axial resolution depends on the light source used by:

δz =
2ln2
π

λ2

∆λ
, (3)

where ∆λ is the full width half maximum of the light spectrum.
The axial FOV or depth of field in the possible image zone is given by:

FOVz = 0.9
nλ

NA2 , (4)

with n being the index of refraction in the medium [9,10].
OCT has gone through enormous development since its first appearance in the early 1990s.

These improvements comprise the higher imaging resolution (axial resolution in the range of 1–15 µm,
lateral resolution in 2–25µm range), acquisition rate, deep tissue penetration (up to 3 mm), and methods
of light transmitted to the target area [2,10].

OCT is largely used in ophthalmology to image the retina [12,13]. The cross-sectional OCT image
allows the identification of different structure layers in the eye, which can be used as a biomarker in
diagnosis. Kim et al. imaged the thickness of the retinal layer using an SD-OCT device and correlated
the thickness to the mini-mental state [12]. Cunha et al. determined that patients with Alzheimer’s
disease (AD) have a thickness reduction of the peripapillary retinal nerve fiber layer (pRNFL) and
the internal macular layer. An OCT image of the human retina is shown in Figure 2 along with
the nine sector Early Treatment Diabetic Retinopathy Study (ETDRS) grid of the macular area with
the average thickness values [14]. Recent development in the optical field utilizes and facilitates
miniaturization of the OCT scanners at microscopic ranges enabling in vivo imaging of the blood
vessels and hollow cavities in the body, such as the colon, esophagus, urinary tracts, and lungs [8,15,16].
Various instruments used to transmit and scan illuminating light on the target tissue sample and collect
the backscattered light are discussed later in the paper.
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Alzheimer’s disease (AD), and patient with AD (taken with the permission of [14]).

2.2. Confocal Microscopy

In a conventional epi-reflectance microscope, the object (specimen) is uniformly illuminated
using a light source, and the image is obtained from the reflected light. Biological tissue is a highly
light-scattering media. Thus, the scattered photons generated from the out of focus refractive index
differences represent noise causing blur in the image. In confocal microscopy (discovered in 1957),
the sample is illuminated using a point illumination system, where out-of-focus light is rejected by a
pinhole placed at a plane optically conjugate to the object. As a single point of the sample is illuminated
at a time, scanning methods are required to generate 2-D or 3-D images using a confocal microscope.
For beam scanning, it is possible to use either a single beam for scanning using micro mirrors or other
fiber optic techniques discussed later in the paper, or multiple beam scanning using the spinning
Nipkow disks or spectral encoding. The imaging of thick sections is accomplished using optical
sectioning by imaging virtual slices of the sample. The depth of imaging can be changed by refocusing
the light [10,17].

The originally proposed trans-illumination confocal microscope used two objective lenses for
illumination and detection of the light passed through a pair of pinholes placed at the light source to
create a point source and at the detector to avoid the out-of-focus noise light signal. Thus, the pinholes
act as a filter that pass information carrying ballistic photons and reject the scattered out-of-focus
photons. Consequently, this configuration generates higher resolution images. The contrast in
reflectance-based confocal microscopy is based on the scattering properties of the tissue sample;
whereas, the contrast in fluorescence-based confocal microscopy is given by the fluorescent properties
of the sample. In the latter case, the resolution is increased by staining the sample with fluorophores
that increase the contrast and sensitivity of the image [10,18].

The size of the pinholes affects the lateral and axial resolution of the obtained image and can
be measured by placing the point object at the focal point of the objective lens. The resolution can
also be described in terms of the Airy pattern, which is the light intensity distribution near the focal
point. The Airy pattern in confocal microscopy has a narrower central lobe and attenuated side lobes,
providing for high resolution. The transverse resolution is given by Equation (1), while the axial
resolution can be described as [10]:

δz =
0.89λ

n(1− cosθ)
, (5)

where θ is the angular aperture (half angle of the marginal ray).
The lateral resolution in confocal microscopy is less than 1 µm, and the axial resolution is about

1 µm. In a fluorescence-based system, the resolution depends on the point spread functions of the
illumination and detection signals, which differ from each other due to the Stokes shift. In fiber optic
confocal microscopy, the fibers used for illumination and detection act as pinholes [10].

Dickensheets and Kino fabricated one of the early fiber optic confocal microscopes, where the
single mode fiber illuminates the beam on the target sample, and the beam is scanned along the sample
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using torsional scanning mirrors [19]. The continuous development in the MEMS field facilitates the
miniaturization of devices and achieving better imaging with higher resolution. Liu et al. developed a
3-D scanning fiber optic confocal microscope, which is able to scan with a depth of field of over 400 µm.
An optical fiber carrying the illuminating light is excited at resonance by an electrothermally actuated
MEMS mirror. The scanner is able to image the tissue surface with a lateral resolution of 1 µm, and an
axial resolution of 7 µm [18]. A large number of different confocal microscopes are reported in the
literature and are based on different scanning methods to image different sections of the body organs,
which are described later in the paper [20,21].

In case of confocal endoscopy, the illumination and collection system are aligned on a single focal
plane. The laser light is transported to the distal lens using an optical fiber bundle focused at the
tissue sample. The reflected light is refocused through the same lens with a pinhole, which excludes
the out-of-focus scattered light, increasing the resolution. Usually, the scanning is made possible by
placing the scanning mirrors at the proximal end of the fiber bundle. The systematic design of a
confocal endoscope is shown in Figure 3.Appl. Sci. 2020, 10, x 6 of 35 
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Cell-viZio developed by Mauna Kea Technologies is one of the most widely used technologies
for clinical applications that uses a variety of confocal miniprobes to provide high-quality in vivo
tissue imaging [22]. The newly developed Cell-viZio device provides confocal fluorescence microscopy
imaging using optical fibers. This technology is named fibered confocal fluorescence microscopy
(FCFM). Laemmel et al. tested three different FCFM probes for microvascular observations and
compared the results with intravital fluorescence imaging proving the flexibility, micro-invasiveness,
and in vivo imaging of the deep areas over the conventional microscopy. The probe with the smallest
cross-sectional area has a diameter of 650 µm, and provides images with lateral and axial resolutions
of 5 and 15 µm, respectively, with a frame rate of 12 Hz [23]. Recently, Wang et al. developed an
ultra-small sized confocal endomicroscope. The 2.4-mm-diameter probe (compatible with the 2.8-mm
working channels of clinical endoscopes) used by Wang et al. to image the colon of a mouse provides
images with a lateral and axial resolution of 1.5 and 12 µm, respectively. The rigid length of the head
of an imaging probe is one of the key parameters that dictates the body part that can be imaged.
The optical path of the light beam at the fiber tip is folded on-axis using reflecting mirrors to reduce its
distal rigid length. The large field of view of 350 µm × 350 µm, the small working distance of 50 µm,
and the small diameter make this device compatible in future clinical applications [24]. Figure 4a shows
an in vivo confocal reflectance image of the tissue phantom containing cervical cells and collagen [20],
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and Figure 4b,c show confocal images of an adenoma [24], and the normal mucosal surface of the colon
of a mouse in fluorescence [24].
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Figure 4. In vivo confocal images: (a) reflectance image of tissue phantom with cervical cells and
collagen (taken with permission of [20]© The Optical Society); (b) fluorescence image of an adenoma
mucosa (taken with the permission of [24]); (c) fluorescence image of a normal mucosa (taken with the
permission of [24]).

2.3. Nonlinear Microscopy

Nonlinear microscopy is an alternative to conventional confocal microscopy and relies on the
use of nonlinear optics, where the relation between the polarization and electric fields is non-linear.
In confocal microscopy, a pinhole is used to exclude the out-of-focus light coming from the sample,
but the illumination light still achieves a large excitation volume. The absorption of the illuminating
energy by the tissue surface can cause damage to the tissue surface, denoted as phototoxicity.
In nonlinear microscopy, high-energy pulses are emitted by a laser source with a low average energy
provided to the sample, which reduces the chances of phototoxicity. In this process, the laser light
excites the molecule, and its relaxation to ground state produces the fluorescence emission of light [25].

Different technologies using nonlinear optics relying on multiphoton processes, higher harmonic
generation, and Raman scattering are briefly discussed below. By scanning a light beam using different
technologies, it is possible to generate 2-D or 3-D images, as discussed further in this paper. Analogous
to a microscopic device, it is possible to design a flexible endoscopic probe. The schematic design of
such an endoscopic probe with the scanning mechanism at the distal end is shown in Figure 5.
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2.3.1. Multiphoton Microscopy

Multiphoton microscopy is based on the use of two or more photons to simultaneously excite a
tissue surface. The contributing photons excite the molecules of the sample to its transitional state,
which is unstable. The molecule comes to its stable ground state by releasing energy in the form of
a fluorescent wave. In two-photon excitation, two photons are simultaneously absorbed in a single
event; while in three-photon excitation, three photons are absorbed at the same time. Since the process
requires the simultaneous absorption of more than one photon, absorption is most likely to occur in
the focus where the photons’ flux is maximized [10].

To excite a molecule with multiple photons, very short (femtosecond to hundreds of femtoseconds)
high-energy laser pulses are focused on the sample at a repetition rate of up to 80 MHz [10].
Usually, the excitation of a tissue surface requires an ultraviolet radiation to produce fluorescence.
Consequently, near-infrared (NIR) light can be used for two-photon microscopy, and infrared (IR) light
can be used for three-photon absorption. The longer wavelength light penetrates deeper in the tissue,
permitting the possibility of imaging thick sections. Moreover, infrared light causes less scattering
compared to employing UV laser light in a single-photon excitation. This characteristic, with no
scattering from the out-of-focus zone, gives high contrast in the image without using a pinhole [26].

The resolution of multiphoton microscopy is of the same order as confocal microscopy, but the
possibility of a greater penetration depth makes it a popular method for medical imaging. Huang et al.
presented a two-photon exciting fluorescence (TPEF) microscope for detection of ovarian cancer [27].
In this case, β-Galactosidase (β-gal) enzyme is used as a biomarker to detect the ovarian cancer cells
(Figure 6 [27]). Similarly, two-photon microscopes are used for investigating the biological functions
and disorders in tumor cells [28] and to image the neural tissues of the brain [29]. Some of the
multiphoton-based microscopes presented in the literature are listed by Li et al. in [25].
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2.3.2. Higher Harmonic Generation Microscopy

Another kind of nonlinear microscopy method is based on the use of nonlinear scattering from
the tissue molecules. The laser light interacts with the tissue and causes an electromagnetic field to
interact with the tissue’s electric cloud, generating oscillating electric dipoles. In non-centro symmetric
molecules, the output light beam generated by moving from the transition state to the ground state
is a distorted version of the exciting light beam, which creates the harmonics. Analogous to the
multiphoton microscopy, the higher energy density required to excite the molecule is possible at the
focal point. The harmonic generation is a coherent process, and the electric field radiated by the
different molecules interfere with each other. Thus, it requires an ordered tissue structure where the
aligned molecules can construct interference [10].

Similar to the multiphoton process, the harmonic generation comprises second, third, and higher
harmonic generation depending on the number of photons exciting the molecules. The energy of
the output light beam is given by sum of the energies of the incoming light beams hitting the tissue
surface. In second harmonic generation (SHG), the output photon has a wavelength that is double
that of the two hitting photons. In other words, the incoming light from the laser induces a nonlinear
polarization in the structure, which then generates a coherent wave with a frequency double that of
incoming light. In third harmonic generation (THG), the output wave frequency is three times that of
the exciting light beam [10]. The microscopic probe for the harmonic generation process is similar to
that of a multiphoton microscopy. The only difference is the presence of a narrow band-pass filter,
in front of the detector and centered at the SHG wavelength to block the residual excitation light [30].

This kind of microscopy is mainly used to image collagen fibers, myosin in muscle fibers,
and microtubules in axons because of their ordered tissue structures [25]. Due to the similarity of SHG
and TPEF, these techniques are often used together. A large number of SHG-based nonlinear
microscopic devices are presented in the literature for imaging different tissue structures and
diagnosis [31,32]. Campagnola et al. imaged living neuroblastoma cells using both SHG and TPEF
techniques. Both techniques provide images with very fine resolution as can be seen in Figure 7 [31].
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2.3.3. Raman Scattering Microscopy

The Raman effect arises when the incident photon on a molecule interacts with its electric dipole,
causing a perturbation and moving it to a virtual state. The virtual vibrational state is unstable and is
followed by a de-excitation state generating a scattered photon. When the initial state of the molecule
is at ground level and the final state is characterized by a slightly higher energy, it is referred to as the
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Stokes scatter. The scattered photon in this case has less energy than the exciting photon (also called
the red-shifted photon). When the initial state of the molecule is already in an excited virtual state,
the incoming photon’s interaction with the molecule generates a scattered photon with higher energy
than that of the incoming beam. It is called the anti-Stokes or blue-shifted photon [10].

Coherent anti-Stokes Raman scattering (CARS) microscopy is a nonlinear microscopy where a
molecule is first excited from the ground state to an intermediate virtual state with a pump beam at an
intermediate wavelength. Using a simultaneous illumination by a second Stokes beam, the molecule
is excited into a higher vibrational level. The molecule is unstable at that state and returns to its
ground level with higher energy given by the sum of energies of the two beams. In CARS microscopy,
this scattered photon is used for imaging the tissue structure [25].

Stimulated Raman scattering (SRS) is another variation of Raman microscopy. It is similar to the
Stokes-shifted Raman process, with the difference being that two lasers are coherently used to stimulate
the scattering. The scattered signal is higher than that of the spontaneous Stokes shift [10]. A large
number of CARS microscopy probes have been designed to image cancer cells [33,34], as well as SRS
microscopy systems to image the distribution of molecules, intracellular particles, proteins, and tumor
cells [35,36]. A list of CARS and SRS microscopy devices is included in. Romeike et al. combined the
CARS and TPEF technologies to obtain detailed histo-morphological details of the tumor area from a
squamous cell carcinoma metastasis, as shown in Figure 8 [33].
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Figure 8. Images of brain metastasis of squamous cell carcinoma: (A) Hematoxylin and eosin-stained
sample; (B) TPEF image; (C) Coherent anti-Stokes Raman scattering (CARS) image; (D) combining
CARS and TPEF (used with the permission of [33]).

2.4. Photoacoustic Imaging

Photoacoustic (PA) imaging is a hybrid technology that uses light, which generates sound waves
to image a tissue surface. In this technique, a tissue surface to be imaged absorbs the short pulsed
high-intensity laser light, causing the heating of the local surface, which then emits a high-frequency
acoustic wave due to the pressure rise. The emitted ultrasonic signal is very poor as compared to
signals from other technologies, and thus requires the use of an acoustic transducer without blocking
the optical signal. The PA microscopy provides an absorption contrast with a resolution at a subcellular
level and has a capability to image anatomical, functional, and molecular structures at the same
time [37,38]. A schematic of a photoacoustic system is reported in Figure 9 [39].
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PA microscopy can be classified into optical resolution PA microscopy (OR-PAM) and acoustic
resolution PA microscopy (AR-PAM) on the basis of the resolution technique used for imaging. In an
OR-PAM device, the optical beam is focused inside the acoustic focus point. On the other hand, in an
AR-PAM device, laser light is focused on a tissue surface through an optical system at a tight acoustic
focus point. The lateral resolution of the PA microscopic device depends on the size of the focal spot.
Since the wavelength of the optical wave is smaller than that of an acoustical wave, a small spot size
can be obtained in the former case. Consequently, an OR-PAM system provides a finer resolution
(ranges from submicrometer to submillimeter) compared to that of an AR-PAM (~45 µm). Conversely,
a greater illumination area in AR-PAM allows higher numbers of photons to penetrate deep into the
tissue, giving a higher penetration depth [37,38,40].

Another imaging technique based on the use of optical and acoustical wave interaction is PA
computed tomography (PACT) [39]. It is based on a similar working principle as PA microscopy,
with the difference in the fact that a reconstruction-based image is formed instead of a focused-based one.

Two-dimensional or three-dimensional tissue imaging is possible by scanning the optical and
acoustical foci along a tissue surface using appropriate scanning methods. The penetration depth of
imaging in this case ranges from a few micrometers to a few millimeters.

PA-based microscope catheters are largely used to image the bladder [41] and neurovascular
systems [42], characterize microvascular parameters [39], and detect breast cancer [43]. A large number
of devices based on PA microscopy are described in [2]. OR-PAM devices can achieve lateral and axial
resolution as small as ~0.5 and 10 µm, respectively [44]. Maslov et al. imaged a large FOV image of
the mouse ear using this technique. They are able to image the ear capillaries with finer resolution
even at a depth of 150 µm as can be seen in Figure 10 [44]. It is possible to get an even finer resolution
image using a high-frequency signal, but the higher attenuation of the acoustical wave limits the
penetration depth at this point. Thus, there is a trade-off between the resolution and imaging depth,
with the penetration depth:resolution ratio being about 200 [45]. The penetration depth also depends
on the PA modality used for imaging and on the nature of the transducer used for signal detection [46].
Using NIR light, the penetration depth can reach up to 7 cm [45].
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Figure 10. Photoacoustic image of a mouse ear: (a) maximum amplitude image of 1 mm × 1 mm;
(b) image of a small fragment of image a (taken with the permission of [44]).

It is possible to use more than one technology to image the surface under consideration as every
modality shows different aspects of the surface. The performance of different imaging techniques is
compared in Table 1.

Table 1. Performance of different imaging applications.

OCT CM

Nonlinear Microscopy Photoacoustic Imaging

Multiphoton Harmonic
Generation

Raman
Scattering OR-PAM AR-PAM PAT

Lateral
resolution 2–25 µm [2,10] 1 µm [10,18] ≈0.2 µm [47] 4.9 µm [48] 300 nm [49] ~0.5–10 µm

[44,45] 45 µm [41,45] 70–720 µm
[41,45]

Axial
resolution 1–15 µm [2,10] 7 µm [18] ≈0.6 µm [47] 3.1 µm [48] 1.6 µm [49] 10 µm [44] 15 µm [41,45] 25–640 µm

[41,45]
Penetration

depth
1–3 mm
[2,3,10] >400 µm [18] >200 µm [47] 100–300 µm

[50] ~130 µm [51] ~1 mm [45] ~3–5 mm [45] 70 mm [45]

FOV 2–5 mm [2] 0.25–1 mm [2] 200–500 µm
[2] 170 µm [50] 205 µm ×

205 µm [36] 1–2 mm [2] upto 36 mm ×
80 mm [52] ~40 mm [52]

Orientation Cross-section
[10] en face [10] en face [10] Cross-section [41]

wavelength Near IR Visible or Near
IR Near IR Near IR or IR

Source Low coherence
[10]

Continuous
wave or

pulsed [10]
Pulsed [10] Pulsed [41]

Frame rate >60 Hz [2] >15 Hz [2] >5 Hz [2] ~10 Hz (depends on scanning area) [2]

Advantages

High
sensitivity,
high imaging
speed, deep
tissue
penetration,
independent
of source
spectrum

High contrast
due to
rejection of
out-of-focus
scattered
photons,
isotropic and
fine resolution,
ability to
control depth
of field, ability
to change
magnification
by changing
the scanned
area

Label free technology, High spatial resolution,
less phototoxicity, and photobleaching due to
exciting event taking place at focus point

High spatial resolution, High contrast, High
imaging speed, and deep tissue penetration

Disadvantages

Expensive
detector, depth
resolution
dependent on
NA, small
dynamic range

Two or more
nearby
fluorescence
signals can
overlap

Expensive laser source, needs dispersion
compensation

Expensive transducers required to detect the poor
acoustic signal, Signal to noise ratio decreases with
the tissue penetration

3. Scanning Directions

Considering the basis of the scanning mode and the light illumination direction, optical scanner
probes can be divided into two groups: side-view imaging and forward-view imaging. Side imaging
probes generate circumferential images by scanning the target area from the side of the probe. By moving
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the probe linearly along the axis while scanning, the beam will generate a cylindrical 2-D image
area [53]. In the case of distal scanning, such devices can be as small as 1.65 mm [54]. On the other
hand, forward imaging probes provide the target tissue surface image from the front. By scanning the
light beam, 2-D images are generated. By moving the probe along the axis, it is possible to get 3-D
images. Such devices are characterized by a high scan speed and can be used as a guide for medical
devices used during surgery and other endoscopic procedures. However, these devices have a much
larger size as their miniaturization is limited by the scanning elements. The smallest forward view
imaging probe with the distal scanning method has a diameter of 2.4 mm [55]. It is possible to get
more compact-sized probes using the proximal scanning. The diameter of the probe can be reduced up
to 250 µm [56]. Further details about these devices are described below in the paper.

3.1. Side View Imaging

In side view transverse scanning, the light beam coming from an optical fiber is deflected at a
certain angle by the presence of a prism, mirror, or a reflecting surface. The deflected light passes
through a transparent optical window on the side of the probe. The optical fiber with the optics
components attached to its distal end is rotated to scan the light beam in a circumferential pattern.
In the first side-viewing OCT probe [15], a graded-index (GRIN) lens was attached to a single mode
fiber (SMF) with a core diameter of 9 µm. A right-angle microprism was attached to the GRIN lens,
which deviated the light beam perpendicularly to the catheter axis. The distal end can be rotated using
a drive motor [15,57,58] or a rotational stage [53] and scans the beam circumferentially. It is possible to
deflect the light beam avoiding the prism by polishing the optical fiber at certain angle, and coating
the surface with a reflecting material like aluminum or gold [58]. Even though such a design is easier
to fabricate, it has a poor resolution. This limitation can be surpassed by splicing the GRIN lens and
having no core fiber (NCF) at the tip of the SMF. NCF polished at a certain angle and coated with a
reflecting metal layer gives a deflected beam with a Gaussian-shaped beam profile [59]. Yang et al.
used a polished ball-lens at the distal tip of an SMF to deflect and focus the light beam through an
optical window. The rotation of the fiber is performed using a linear scanner [60].

Some of the image artifacts related to the rotation of the fiber and the attached components are
eliminated by rotating the microprism at the distal tip of the probe. In such a case, the prism is separated
from the GRIN lens and actuated using a micromotor placed at the distal end [54,61], providing the
images with a finer resolution. The schematic of a catheter-based side viewing endoscope is shown
in Figure 11a. More recent side viewing imaging probes rely on the use of parabolic or cone-shaped
mirrors at the distal tip. Such mirrors permit the incoming light from the fiber to be reflected in all
directions, giving an omnidirectional side view. Such devices, called catadioptric probes, provide a
panoramic field of view, obviating the need for rotation of the probe components [62].

Appl. Sci. 2020, 10, x 14 of 35 

electrostatic actuator [72], electro-thermal bimorph actuator [73], piezoelectric actuation method [74], 

or servo motor [75]. 

Some of the forward viewing devices use a coherent fiber bundle (CFB) to shine the light on a 

target sample. Such devices permit the scanning mechanism to be employed at the proximal end [76]. 

Another type of forward-viewing devices utilize a pair of GRIN lenses rotating in opposite directions 

to deflect the beam in a fan-shaped scan [77,78]. 

 

(a) 

 
(b) 

Figure 11. Schematic diagram: (a) side viewing probe; (b) forward viewing probe. 

The features of the scanners based on these two kinds of imaging modalities are compared in 

Table 2. 

Table 2. Comparison between forward and side view scanners. 

 Forward View Side View References. 

Probe 

diameter 

>250 µm (proximal scanning) 

>1.65 mm (distal scanning) 

>250 µm (proximal scanning) 

>2.4 mm (distal scanning) 
[54,56,77] 

Rigid length >9 mm >11 mm [64,79] 

FOV 50–400 µm ~3–4 mm [23,53,75] 

Image 

orientation 
en face Peripherical surface  

Advantages 

Can be used for image guidance to 

relocate and control the position of 

the medical devices, can directly 

image the extent of the malignancy 

and cancerous surface 

Can image the finer cavities of the 

body, gives information about the 

wall/section of tissue layer 

involved in the malignancy, 

higher field of view, less expensive 

 

Disadvantages 

Limited field of view, limitation of 

miniaturization limits the ability to 

image the narrower sections 

Difficult to guide the probe in the 

body due to lack of guidance 
 

4. Scanning Principle 

Optical scanners for medical imaging predominantly are scanning fiber endoscopes (SFEs). In 

these devices, an optical fiber is vibrated to shine light on a target tissue, and the reflected light is 

captured using one of the modalities described earlier. The main reason for the large demand of SFEs 

comes from the fact that the resolution in these devices is not limited by pixel elements in the image 

sensor but by the peak to peak displacement of the fiber tip and core diameter of the fiber. The optical 

fibers can be vibrated in resonant, non-resonant mode, or using an intermediate frequency to scan 

Figure 11. Schematic diagram: (a) side viewing probe; (b) forward viewing probe.



Appl. Sci. 2020, 10, 6865 14 of 34

3.2. Forward View Imaging

Forward view imaging techniques provide images of the area in front of the probe. A laser beam
incoming from the optical fiber is scanned laterally to cover the 2-D imaging area as in Figure 11b. A large
number of these probes use piezoelectric [16,55,63,64], electromagnetic [65–67], electrothermal [6,68,69],
shape memory alloy [70], or electroactive ionic polymer [71] actuators to excite an SMF acting as a
cantilever beam in the desired scan pattern.

Another group of forward-viewing imaging probes use a scanning mirror at the distal end of the
probe to deflect the light beam while scanning it. These mirrors can be actuated using an electrostatic
actuator [72], electro-thermal bimorph actuator [73], piezoelectric actuation method [74], or servo
motor [75].

Some of the forward viewing devices use a coherent fiber bundle (CFB) to shine the light on a
target sample. Such devices permit the scanning mechanism to be employed at the proximal end [76].
Another type of forward-viewing devices utilize a pair of GRIN lenses rotating in opposite directions
to deflect the beam in a fan-shaped scan [77,78].

The features of the scanners based on these two kinds of imaging modalities are compared in Table 2.

Table 2. Comparison between forward and side view scanners.

Forward View Side View References.

Probe diameter >250 µm (proximal scanning)
>1.65 mm (distal scanning)

>250 µm (proximal scanning)
>2.4 mm (distal scanning) [54,56,77]

Rigid length >9 mm >11 mm [64,79]
FOV 50–400 µm ~3–4 mm [23,53,75]

Image orientation en face Peripherical surface

Advantages

Can be used for image guidance to
relocate and control the position of
the medical devices, can directly

image the extent of the
malignancy and cancerous surface

Can image the finer cavities of
the body, gives information

about the wall/section of tissue
layer involved in the

malignancy, higher field of
view, less expensive

Disadvantages
Limited field of view, limitation of
miniaturization limits the ability
to image the narrower sections

Difficult to guide the probe in
the body due to lack of

guidance

4. Scanning Principle

Optical scanners for medical imaging predominantly are scanning fiber endoscopes (SFEs).
In these devices, an optical fiber is vibrated to shine light on a target tissue, and the reflected light
is captured using one of the modalities described earlier. The main reason for the large demand
of SFEs comes from the fact that the resolution in these devices is not limited by pixel elements in
the image sensor but by the peak to peak displacement of the fiber tip and core diameter of the
fiber. The optical fibers can be vibrated in resonant, non-resonant mode, or using an intermediate
frequency to scan the light beam across the target tissue sample. The resonance actuation is used
in cases where high-frequency operation and a high amplitude of the scanning fiber are required.
The non-resonant scanners are preferred in cases when very different scan frequencies in two directions
is a prerequisite. It is possible to avoid the drawbacks of both methods and keep the higher flexibility
using a semi-resonant scanning mode.

4.1. Resonant Scanner

The distal tip of the fiber can achieve higher displacement when it is vibrated at resonance. In other
words, the amplitude of the beam scanning and the obtainable resolution can be maximized by exciting
the distal free end of the optical fiber at its natural (first resonant) frequency. From the vibrational
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theory, the resonance frequencies for a clamped-free configuration (called cantilevered) of the beam are
given by:

fn =
βn

2

2π

√
EI
ρAL4

, (6)

where E, I, ρ, L, A, and βn are Young’s modulus, moment of inertia, density, length, cross-section area of
the cantilevered beam, and the coefficient value depending on the resonance mode, respectively [80].

A large number of scanning fiber endoscopes are based on the first mode of resonance to
scan the light. The proximal end of the fiber is usually excited at resonant frequency using
piezoelectric [2,12,13,15], electromagnetic [16–18], electrothermal [19–21], shape memory alloy [25],
or electroactive ionic polymer [26] actuators. The distal end follows the mode shape shown in Figure 12.
Various resonant scanners in the literature are compared in [81].
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In most cases, the cantilevered fiber scanners are characterized by having a symmetrical cylindrical
section. In cases when the beam structure is excited with large displacements near its resonance
frequency, the cross-coupling of the motion between the planes perpendicular to the beam axis leads to
a whirling phenomenon. This nonlinear tip response of the excited fiber is highly unstable. In very
small frequency ranges, a stable whirling motion can be produced, which allows the fiber to trace an
elliptical shape pattern. The equation of motion describing the whirling phenomenon was studied by
Haight and King in [82], and further developed by Hyer in the case of a cantilever beam [83].

It is possible to avoid the undesired whirling motion by changing the shape of the optical fiber
beam or finding the two eigendirections on the beam where the excitation can cancel the whirling
effect [84]. It is even seen that the whirling effect can be positively exploited for 2-D scanning using a
single actuator. It is experimentally shown in [85] that exciting the cantilevered fiber at a second mode
of resonance gives a stable circular-shaped pattern by tip displacement. Thus, it can be beneficially
used for scanning the target area by sweeping the circular area by continuously increasing the driving
voltage of the exciting actuator [85].

4.2. Non-Resonant Scanner

Resonant fiber scanners provide a large scan area for a given input power. However, it is difficult
to get a resonant fiber scanner for an application requiring low-frequency scanning [81]. From Equation
(6), it is clear that very long and slender beams are required to get a small resonant frequency. Moreover,
the resonant scanners do not provide the flexibility in offsetting the center of the image field from the
optical axis. It is possible to offset the center using additional deflectors, which, on the other hand,
make the scanner more complex and bulkier.

Such problems can be partially solved by exciting the scanning fiber at a frequency away from its
natural frequency. In this case, the tip displacement of the fiber, given the excitation power, will be much
smaller. There are some non-resonant scanners available using a bimorph piezo bender actuator [86],
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and electro-magnetic actuators [87]. As stated earlier, these scanners use a high amount of power to
produce the desired tip displacement, which can cause safety issues in such devices.

Park et al. developed an MEMS scanner for the design of an endoscopic OCT probe. In this case,
a 40-mm-long fiber is actuated using a 3 V drive voltage [88]. Naono et al. designed a non-resonant
thin-film piezoelectric actuated scanner for an OCT application [89].

Non-resonant scanners can be miniaturized by decreasing the length of the cantilevered portion
and increasing the tip deflection using the leverage method. Sawinski and Denk used a double-lever
method to amplify the tip displacement of the optical fiber. In this case, a piezo-bender actuator
was connected to the fiber at the cross point of the leverage. Such an optical scanner provides a tip
deflection comparable to that obtained in resonant scanners, with the possibility of shifting the center
of the image [90].

4.3. Semi-Resonant Scanner

As seen above, the resonance operation mode limits the shifting of the center of the image and
is operable in high-frequency scanning fields. The resonant scanner is also sensitive to the working
conditions. A slight offset from the peak frequency can generate instability in the motion of the
fiber. Conversely, a non-resonant scanner operates at a low-frequency range but requires high power
consumption or longer fiber tips to cover a certain scanning area.

These problems can be circumvented using a semi-resonant scanning mode of operation. Such a
scanner is proposed by Moon et al., where the cantilevered optical fiber is excited at an intermediate
frequency, which is far from the resonance peak but provides some amplitude gain. An OCT endoscope
designed based on this method prevents the sensitivity and nonlinear whirling problems related to
resonant scanners [91].

A representative table highlighting the performance of three kinds of scanners described above is
reported as Table 3 where the number of check marks indicates qualitatively the value of the parameter.

Table 3. Summary table for different scanners.

Resonant Scanner Semi-Resonant Scanner Non-Resonant Scanner

Scan area 444 44 4

Power consumption 4 44 444

Operating frequency High Intermediate Low

Advantages
Large displacement

amplitude, low power
consumption

Large scanning amplitude
than non-resonant

scanners, variable imaging
field, stable working

conditions

Operable at very low
frequencies, stable to

small variations of
operating conditions,
image field is variable

Disadvantages

Offsetting the image field
requires complex

systems, Instability can
lead to whirling motion

Performance highly
depending on the working

frequency

Small scanning
amplitude, high power

consumption

5. Actuation Methods

The continuous growth of MEMS devices enables the rapid growth of numerous industry sectors
that support the batch fabrication of a wide variety of miniaturized components, including optical
devices. MEMS-based actuators are largely used in optical scanners due to their small dimensions,
low power consumption, light weight, fine performance characteristics, and easy integration with
other devices. In optical scanners, MEMS actuators permit scanning by sweeping a light beam in one
direction for 1-D scanners, or over a solid angle for 2-D scanners.

The MEMS actuators can mainly be classified into five categories based on their working principle,
which are: electrostatic, electrothermal, piezoelectric, electromagnetic, and shape memory alloy
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actuators. The performance of these actuators is shown in Table 4 along with their strengths and
limitations for one use as compared to others.

Table 4. The performance of different actuation methods.

Electrostatic Electro-Thermal Piezoelectric Electromagnetic Shape Memory Alloy

Force 4 4 444 44 444

Displacement
amplitude 44 444 4 444 44

Compactness 444 444 44 4 44

Working
principle

Electrostatic
force

Thermal
expansion

Piezoelectric
effect

Magnetization
effect Material deformation

Advantages

Fast response,
low voltage

required, easy
fabrication, and

no hysteresis

Large
displacement,
low operating
voltage, small

dimensions

Large force
generated,

wide operating
frequency
range, low

power
consumption

Large
displacement

obtained, quick
and linear

response, easy
to control

Flexibility, large
frequency response

Disadvantages

Large device
dimensions,

pull-in
problem,

complicated
circuit

High working
temperature,

not operable at
very high

frequencies

Limited
displacement

Large device
dimensions,
difficult to

manufacture

Low displacement

5.1. Electrostatic Actuators

Electrostatic actuators are the most used actuators in MEMS devices due to their simple structure,
low power consumption, fast response, and use in fabrication, which does not require any unusual
material [81,92]. An electrostatic actuator consists of two electrodes, one of which is fixed by anchors
(called stator), and the other one which is moveable (called shuttle). When a driving voltage is applied
to the electrodes, an attraction force between its structural components is generated, which causes
motion of the moveable part in the parallel and perpendicular directions. This change in the gap or
separation distance between the two parts is proportional to the change in the capacitance.

During the driving cycle, the voltage difference between the two electrodes causes the mobile part
to move towards the fixed one. Based on the configuration of these parts, the electrostatic actuators can
be classified into parallel plate and comb drive. The schematic configuration of electrostatic actuators
is described in Figure 13 [93].Appl. Sci. 2020, 10, x 18 of 35 
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One of the main drawbacks of the electrostatic actuators is that a large driving voltage is required
to get moderate deflection angles. However, this disadvantage can be partially overcome by using
tapered electrodes instead of parallel-shaped ones [94].

It is experimentally characterized that a higher deflection of the mirror surface can be obtained
by placing the electrodes around the mirror surface in a star-shaped pattern [95]. Pengwang et al.
mentioned research on micromirrors driven by electrostatic actuators [93]. Dickensheets et al.
developed one of the earliest confocal optical microscopes using a pair of scanning mirrors driven by
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electrostatic actuation [19]. Piyawattanametha et al. developed a 2-D optical scanning OCT catheter
using an electrostatically actuated mirror at the distal end of the probe. The angular vertical comb
actuators drive a 1-mm-diameter mirror deviating the light beam for side-view imaging, allowing
the scanning of the sample. The 5-mm-diameter probe provides OCT images with a resolution of
<5 µm. The electrostatically driven micromirror is shown in Figure 14 [96]. The same group used
an electrostatically actuated micromirror for two-photon fluorescence imaging [97]. The recently
developed ultra-small confocal endomicroscope by Wang et al. also uses an electrostatically driven
micromirror to deflect the light beam in two directions at the distal end of the device [24].
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5.2. Electrothermal Actuators

Electrothermal actuators are based on the principle of thermal expansion. When a current is passed
through a material, it causes an increase in the temperature of the material due to the Joule/electric
resistive heating effect. The rise in the temperature causes deformation, and consequently the motion of
the electrothermal actuator material. Thus, the motion of an electrothermal actuator can be controlled
by the driving voltage [98].

In electrothermal actuators, large actuation forces can be obtainable with less operating voltage as
compared to the electrostatic actuators. However, the longer response time for thermal actuation and
the heat dissipation limit the use of these actuators at a very high frequency. However, it has been
proven that at sub-micrometer or nanometer scale, it is possible to use electrothermal actuators at very
high frequencies (in the order of MHz) due to the very small response time [99].

The electrothermal actuators can be classified into three categories: hot-and-cold arm, Chevron,
and bimorph actuators. Such actuators are schematized in Figure 15 [100].
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Bimorph electrothermal actuators are frequently used in optical devices, especially to guide the
optical mirror by connecting it to the tip of more than one bimorph actuator [101–103]. Pengwang et al.
described many micromirror scanning devices actuated using a bimorph electrothermal actuator [93].
Tanguy et al. fabricated an electrothermally driven micro-scanner for OCT probes [104,105].
Seo et al. developed an MEMS fiber scanner actuated using an electrothermal bimorph actuator for a
forward-viewing confocal endoscopic catheter [68,69]. The schematic diagram of an electrothermally
driven endoscopic catheter is shown in Figure 16 [69].

Figure 16. Schematic diagram of a thermally driven micro-electro-mechanical systems (MEMS) scanner
(used with the permission of [69]© The Optical Society).

5.3. Piezoelectric Actuators

Piezoelectric actuators are based on the characteristic properties of certain ceramic materials to
induce reversible mechanical strain or force in the presence of an electric field applied to the material,
and vice versa. In the presence of an electric field, the polarized molecules of the piezoelectric material
tend to align themselves, thereby deforming the material structure. The magnitude of the force or
strain generated in the material depends upon the geometry and electromechanical properties of
the material. Among the various piezoelectric materials available, aluminum nitride (AlN) and lead
zirconate titanate (PZT) are the most used materials in MEMS devices [106].

Depending upon the application, it is possible to use a single disc, plate, or tubular structure of
piezoelectric material. A cantilever-shaped piezoelectric actuator is another promising structure used
to obtain a bending motion where two different materials are combined in a cantilever structure [107].

Piezoelectric actuators are widely used in optical scanners, and fiber optic devices. Numerous
micromirrors actuated using bulk piezoelectric actuators, and piezoelectric bender actuators are listed
in [93]. It is possible to achieve 2-D motion by using a tube with split electrodes. The tubular piezoelectric
actuator is mainly used to excite an optical fiber acting as a cantilever at the resonant frequency.
By modulating the drive voltage in two pairs of electrodes, the desired scanning pattern from the fiber
tip can be achieved. A large number of endoscopes are fabricated using this technique [84,91,108–110].

Some researchers developed 2-D fiber optic scanning devices using a single pair of piezoelectric
electrodes. In such cases, the actuation in a direction perpendicular to that generated by the actuator is
obtained using the asymmetry of the optical fiber [63,111]. Liu et al. developed an endoscope obtaining
the 2-D actuation of a fiber using two piezoelectric ceramic cantilever benders [112]. Seibel et al.
developed a tubular piezoelectric-based 1.06-mm-diameter endoscopic catheter. It was one of the
earliest scanning fiber endoscopes used for fluorescence imaging. A schematic diagram of the developed
SFE is shown in Figure 17 [3,64].
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Figure 17. Schematic diagram of scanning fiber endoscope (SFE), and the schematic of the actuator
used (taken with the permission of [3]).

5.4. Electromagnetic Actuators

An electromagnetic actuator works based on the conversion of electric energy into mechanical
energy by means of a magnetic field. It comprises a stationary part called a stator, and a moving
part called a rotor. The conversion of energy takes place in the area separating the two components
(also called an air gap). The interaction between the stator and rotor produces a high vibration of
the rotor component. These actuators have two different configurations depending on the moving
component. In one configuration, the moving part is represented by a bulk magnet or a thin magnetic
film deposited on a device component, while the stationary part is represented by an electric coil.
In the other configuration, an electric coil is the moving part, and the static magnetic field is provided
by the stationary magnets placed around the coil [81].

Joos and Shen designed an OCT probe where the current passing through the outer coil slides the
tube containing the magnet at its distal end and the fiber inside the tube. The developed OCT probe
is shown in Figure 18 [113]. Sun et al. placed a magnet around an optical fiber, which was vibrated
at resonance using the electromagnetic force generated by a tilted coil placed on the tube surface via
lithography [114], and 3-D printing technology [115]. Later, the authors used a pair of driving coils
embedded in polyimide film and wrapped it around the tube surface to drive an optical fiber at a
second resonance mode to get a higher scanning angle [66].Appl. Sci. 2020, 10, x 21 of 35 
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Figure 18. Electromagnetically driven OCT probe: (A) schematic; (B) developed probe; (C) test of
probe through a 25-gauge port (taken with the permission of [113]© The Optical Society).

Many MEMS micromirror scanners are actuated using a moving coil configuration of electromagnetic
actuators. Barbaroto et al. developed an optical scanner by making the mechanical structure using bulk
silicon micromachining, and the electric circuit coil was fabricated using deep UV lithography and gold
electroplating [116]. Using this technique, Miyajima et al. developed a similar 1-D MEMS scanner for the
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confocal microscope, guaranteeing the reliability and stability of the scan angle. A macroscale scanner is
used together with an electromagnetic scanner to achieve a 2-D scan [117,118]. Mitsui et al. designed a
2-D scanner driven using this kind of electromagnetic actuation method for OCT imaging. In this scanner,
two different sets of coils are placed on a moveable plane to actuate the plane in the X or Y direction inside
a permanent magnet. Two coils exhibit the X direction motion of the central mirror, and four coils placed
at intermediate frames permit the Y axis motion [119].

Electromagnetic actuation also finds use in capsule endoscopy to achieve the movement of the
device [120]. Recently, Hoang et al. proposed a new biopsy capsule endoscope, which uses an external
rotating magnetic field to linearly actuate the permanent magnet connected to the biopsy needle.
The linear motion of the needle permits the collection of the biopsy sample and brings it back in the
capsule using the movement in the reverse direction. Such devices define a new field for less invasive
diagnosis procedures [121].

Magnetic materials are characterized by a special property, which allows them to change their
dimensions in the presence of a magnetic field. This effect is called magnetostriction. The material can
undergo a change in dimension until it reaches the value of saturation magnetostriction, which depends
on the magnetization and thus on the applied magnetic field [122]. Bourouina et al. developed a
2-D optical scanner based on the magnetostrictive effect where a silicon cantilever is coated with a
magnetostrictive film [123].

5.5. Shape Memory Alloy Actuators

Shape memory alloys (SMAs) are metallic alloys that can be reversibly deformed. These materials
can memorize their shape and are able to return to their pre-deformed shape by changing the
temperature and the state of stress. Usually, these alloys undergo temperature-induced phase
transformation between the less-ordered martensitic phase, and the ordered crystallographic austenitic
phase. An SMA material is deformed at low temperature and then heat treated to memorize the
shape; the plastic strain is recovered by increasing the temperature above the transition temperature.
Frequently used shape memory materials are the alloys of nickel and titanium (Nitinol).

Conventional endoscopes are controlled by a wire traction to achieve bending of the endoscopes
inside the body cavities. Many researchers have proposed the use of SMA coil actuators to permit
bending of the tip of the endoscope. Maeda et al. used a pair of SMA coil springs to achieve the
bending of optical guide fibers. One of the coils is heated via Joule heating, causing it to recover its
shape and rotate the actuation ring connected to its free end. The actuation ring is connected to one
end of the pull wire while the other end of the wire is connected to the distal end of the endoscope.
The actuation of the coil bends the tip of the endoscope in one direction. By halting the current in this
coil and activating the other coil, the endoscope is returned to its original position [124]. Haga et al.
used three SMA coils distributed around the working channel of a catheter to achieve active bending
of the endoscope in all directions [125].

Makishi et al. developed an endoscope based on a CCD imager, and the omni-direction bending
was achieved using three SMA coil actuators [126]. Kobayashi et al. fabricated an endoscope where
the bending of the CMOS imager and light-emitting diodes (LEDs) was obtained using three SMA
wires that permit a large bending angle at a lower expense. The fabricated endoscope is shown in
Figure 19 [70].
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Figure 19. Endoscope actuated using shape memory alloy wires: (a) actuator; (b) front-view of
developed endoscope; (c) outer surface of the developed endoscope (taken with the permission
from [70]).

6. Scanning Patterns

In MEMS scanning mirrors or fiber optic scanners, the laser beam is scanned along two
perpendicular axes to reconstruct the image of the target sample. The scan along the two directions can
be implemented either using separate actuation methods or by a single actuation device. The resolution
of the image obtained depends upon the scanning method used to scan the laser beam across the
sample [127]. The different scanning methods used by the optical scanners are reported below in
the detail.

6.1. Raster Scanning

Raster scanning (also called serpentine scanning) is a commonly used scanning pattern. In this
case, the scanning image is subdivided into scan lines in one direction. The beam sweeps the sample
in one direction along a line, comes back to other side, and again starts scanning along the next line.
Thus, it follows a rectangular scan pattern. The axis of the line scan is called the fast axis (scanned
rapidly), while the other axis is called the slow axis (scanned slowly). Usually, the fast axis is driven by
oscillating the light beam at resonance, while the slow-axis scan is performed using a non-resonant
scan [127]. Typically, the raster scan pattern is obtained using gimbal-mounted micromirrors or optical
fiber scanners.

The scanning beam passes over the surface of the target object at different times. Thus, each pixel
on the reconstructed image corresponds to a different time point. This kind of scanning in time leads to
in-frame and inter-frame motion artifacts. The former among these takes place in the case where there
is a displacement or movement of the sample within the acquisition time. The inter-frame artifacts
occur due to motion occurring between the successive frames or image sequences. The in-frame
motion artifact can be reduced by changing the motion path or using image processing algorithms.
The inter-frame distortions can be reduced by increasing the scanning speed by implementing a
bidirectional scan [128]. Duma et al. tested triangular, sinusoidal, and sawtooth scanning profiles and
demonstrated that the triangular profile provides artifact-free images. The other two profiles display
image distortion at the margins [129].

The raster scanners require high operating voltages to get slow-axis scans and have difficulties
incorporating them in small spaces, which make them less usable in clinical devices [130].

6.2. Spiral Scanning

A spiral scan pattern is generated using a 2-D actuation method by employing the same actuation
frequency along two axes. In other words, the spiral pattern is obtained by driving the light beam at
the same frequency with increasing amplitude along two directions with a phase shift of 90◦ [130].
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The phase shift between the two signals, and the amplitude variation in the driving signal affect the
circularity of the obtained spiral. Such scanning patterns are obtained with resonant fiber-optic scanner.
These scanners are activated with increasing actuation amplitude until they reach the maximum radius
(rmax) followed by a breaking time to reset the fiber to its rest position, which then repeats the scan and
moves to the next frame [3].

The motion of the fiber tip in time during the spiral scan in polar coordinates can be described by:

r(t) = r0 + vrt, (7)

φ(t) = φ0 + βt, (8)

where vr and β are the constant radial and angular velocities, respectively. The angular motion is fast
with respect to the radial motion. The scanning pattern is smooth and is used in fiber-optic endoscopic
scanners [3,110]. A higher frame rate can be achieved using a larger amplitude compared to a raster
scanner. However, the illumination beam density is variable within the scanned image and is higher at
the center compared to the outer surface [130].

6.3. Lissajous Scanning

A Lissajous scanning pattern is another 2-D scanning pattern obtained with variable frequencies
(ωx, ωy), and phases (φx, φy) along two axes. The scanning pattern is governed by independent
oscillatory equations along the two axes [131]:

x = Axsin(ωxt + φx), (9)

y = Aysin
(
ωyt + φy

)
. (10)

One of the main parameters characterizing the scanning pattern is its fill factor, defined as the
ratio of the scanned area vs. the total pixel area in the image. The fill factor depends on the ratio of the
frequencies along the two axes. For a higher fill factor, a high ratio between the two scanning frequencies
is desired [81]. The scanning pattern is quasi-random and non-repetitive in time. The scanning beam is
uniformly spread on the scanned surface, is highly smooth, and requires low power consumption [131].
Such patterns are not very useful for high quality displays; however, they are largely used in resonant
fiber scanners [68,132].

6.4. Circular Scanning

A circular section optical fiber is characterized by having the same fundamental frequency along
two directions. It is possible to get a circular-shaped pattern from the fiber tip by exciting it in the
two directions with a 90◦ phase shift [133]. As stated earlier, it is also possible to get a circular-shaped
pattern from the fiber tip by exciting it in a single direction at a second mode of resonance due to
nonlinear coupling with longitudinal inertia [85].

By changing the amplitude of the driving signal, it is possible to sweep the area inside the circular
shape like the spiral shape pattern. Wu et al. developed an imaging fiber optic catheter, where the 2-D
scan is obtained using a concentric circle scan pattern with the help of a triangle amplitude modulated
sinusoidal actuation wave [85]. Like the spiral-shaped pattern, the light density is higher in the center
and decreases moving toward the outer circle.

6.5. Propeller Scanning

Propeller scanning consists of generating a line scan by actuating the optical fiber in one direction,
or steering the beam using a mirror device. The line pattern is then rotated to generate a circular-shaped
2-D pattern [134]. The rotation motion can be transmitted from the proximal end to the distal end
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using torque cables, while the optical connection between the steady and rotating parts can be applied
using fiber optic rotary joints.

The line scan direction represents the fast axis, while the rotation represents the slow axis. The light
intensity is not uniform and is higher in the center compared to the edges. The rotation speed affects
the resolution of the obtained image. Kaur et al. used a propeller scanning pattern to get a 2-D scan
pattern using a single direction actuation of a cantilevered fiber. The fast-axis scan is obtained by using
an electrothermal actuator, while the slow-axis scan is performed by rotating the target sample [6].

Scanning patterns and the actuation power provided to the two actuators to get the corresponding
2-D pattern are shown in Table 5 along with their advantages and disadvantages.

Table 5. Comparison table for different scanning patterns.
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7. Discussion

Imaging devices used in medical applications are characterized by their resolution. Non-invasive
technologies, such as MRI, CT, and ultrasound, provide in vivo imaging of tissue structures with a
large penetration depth, but the resolution is limited. Endoscopic imaging permits imaging body
structures with finer details, however, they are invasive in some cases. Fiber optics allow the fabrication
of imaging devices that are flexible and can image the target area via hollow cavities. The recent
advances in the optical and mechanical fields allow in vivo imaging of tissue surfaces to be performed
by using devices having a very fine resolution at the micrometer level.

In an endoscopic optical imaging device, the laser light is illuminated on the target surface using
an optical fiber or by deviating the light by micro mirrors. The image can be either reconstructed by
direct reflectance, or via detection of the fluorescence light using optical fibers, lenses, or CCD/CMOS
cameras. In the case of direct reflectance imaging, the morphological information of the tissue structure
is obtained, while fluorescence provides information about the inner cell or tissue structures by labelling
them using fluorophores. Fluorophore materials are usually added from outside to stain the target
sample and emit light at a wavelength higher than that of illumination, increasing the contrast in
the images.

In biomedical imaging devices, OCT is one of the most used techniques. OCT is a direct reflectance
imaging technique where the imaging contrast is provided by the change in the refractive index of the
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tissue media causing a variation of intensity of the reflected light [7]. Most of the current OCT systems
are FD-OCT based, where the information about the depth scan is calculated by using the inverse
Fourier transform of the backscattered light spectrum. The fast-axial scanning is obtained by sweeping
the light source, which gives high-resolution images due to fast signal acquisition and provides images
with a large signal to noise ratio. Given the current state of the art, ophthalmology is the predominating
application for OCT due to the low laser output compatible with the ophthalmological structures
permitting the imaging without damaging the tissue structures [12–14]. The transparency and low light
scattering of the aqueous humor media allows imaging of the ocular surfaces at a greater depth with
resolution independent of the surface depth. In addition to ophthalmology, deep tissue penetration
and high resolution morphological and functional imaging make OCT a promising technology to
assess the artery lumens in cardiology [10], tissue structures of the biliary tract, and the gastrointestinal
(GI) tract, especially for Barrett’s esophagus [135]. Furthermore, the skin is a highly light-scattering
tissue that contains a large number of inhomogeneities. OCT makes it possible to detect and diagnose
various skin diseases and lesions [136]. OCT is also a useful method to monitor lesions in the enamel
and dental structures of the teeth [137].

Another promising technology is confocal microscopy, which provides high-resolution imaging
of thick specimens by virtually slicing them using optical sectioning [10]. It is possible to image
the tissue structures in either confocal or fluorescence mode. In the latter case, the target tissue
structure is stained using fluorescent dyes to enhance the contrast in the image. Combining confocal
microscopy with the optical fibers in an FCFM, Cell-viZio-developed mini optical probes can be used
for microcirculation imaging of the stomach, ear, mesentery, kidney, and conjunctive tissues [23].
Other applications of confocal endomicroscopy include functional imaging of the GI tract [24],
liver, pancreas, and reproductive tracts after the application of a fluorescent agent that provides contrast
to the image [138].

In addition to OCT and confocal microscopy, nonlinear microscopy also finds many applications
in tissue structure imaging. Nonlinear microscopy comprises multiphoton imaging, higher order
harmonic generation, and coherent Raman scattering microscopy. These techniques allow the structural
and chemical changes of cells, tissues, or organs to be inspected with deep tissue penetration and
minimal photobleaching and phototoxicity. The use of a pinhole and the signal generation from
only a localized specific area provide high-contrast images. The cellular level resolution allows
these techniques to be used for imaging and diagnosing tumors at early stages in the skin and ovary.
In particular, TPEF is used to image endothelial cells, while SHG is used to image collagen fibers,
and CARS is used for the detection of chemical changes at the cellular levels [139].

Another technique is photoacoustic imaging. In this case, laser pulses are emitted towards the
target tissue surface, which absorbs the light and generates an ultrasonic emission detected by an
ultrasonic transducer. Thus, the imaging contrast is based on the absorption spectra of the media.
These devices find applications in measuring the oxygen level in the blood and guiding surgical tools
during surgical procedures. Furthermore, photoacoustic imaging is particularly suitable to image the
breast, brain, and GI tract for cancer diagnosis due to the high optical absorption contrast [38,40].

Apart from imaging techniques, optical devices can monitor the target sample either from a side of
the distal end perpendicular to its axis, or from the front end of the device providing a peripheric or en
face image, respectively. In side-viewing devices, the probe is rotated to visualize the circumferential
structural area. A forward-viewing imaging probe provides an image of the front surface and can be
used as a guide for surgical procedures. It should be noted that forward-viewing imaging requires a
transverse scan of the light beam, which poses challenges in the miniaturization of the imaging device.

In advanced imaging systems, the resolution of images is improved by scanning the laser beam
across the surface. Often the systems are vibrated at resonance to get maximum light displacement at
the distal end of the scanner. Since it is difficult to get resonant scanners for applications requiring
low-frequency scanning, imaging devices based on the use of non-resonant or semi-resonant frequencies
have been developed for this specific requirement.
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Optical fibers are mainly actuated using electrostatic, electrothermal, piezoelectric, electromagnetic,
or shape memory alloys. The electrostatic actuators are easy to fabricate and rapidly responsive
but have a limited scanning range and moderate actuation force. On the other hand, electrothermal
actuators can be made in very small dimensions and can provide large forces. In this case, they can
actuate at very high frequencies, but the heat dissipation can compromise the material performance.
Piezoelectric actuators are widely used in optical fiber endoscopes because of their fast response.
However, the manufacturing of very small-sized endoscopes based on these actuators pose some
challenges. The electromagnetic and shape memory alloy actuators are better suited for larger
dimensional scales.

Base on the type of the actuator and power/voltage profile provided as the input, it is possible to
generate 2-D scanning patterns in a raster, spiral, Lissajous, circular, or propeller shape. Raster and
Lissajous patterns provide uniform light intensity within the light scanning area. The spiral pattern is
easy to obtain but has more light intensity in the center compared to the edges. Each pattern has its
own advantages and disadvantages. Table 5 summarizes the pros and cons of the different scanning
patterns in detail.

A descriptive summary of some recently developed optical imaging devices for medical purposes
using a variety of different imaging techniques, configurations, actuating methods, and scanning
patterns is shown in Table 6. The scanning catheter developed by Aguirre et al. is a side-viewing
OCT endoscope, where the light is transported to the distal end using an SMF, and the forward
mirror used to deflect the light is vibrated at resonance using angular vertical electrostatic comb
drives and generates a raster scanning pattern [96]. Park et al. developed a forward-viewing spectral
domain OCT endomicroscope. In this case, an SMF is excited at resonance using piezoelectric tube
actuators and describes a Lissajous scanning pattern [63]. Myaing et al. reported a forward-viewing
two-photon fluorescence microscope. A double clad fiber (DCF) is used to deliver light to the target
sample and collect the fluorescence signal. The spiral pattern is generated by the fiber tip using
a piezoelectric actuator exciting the tip at resonance [108]. Recently, Li et al. developed a 2.4-mm
confocal endomicroscope using electrostatic actuators for laser light scanning. Such a probe with a
1.5-µm lateral and 12-µm axial resolution is compatible with the finer operating channel of current
endoscopes [24].

Table 6. Comparison of some advanced optical scanning devices.

Working
Principle Frequency FOV Drive Voltage Scanner Dimensions Scanning

Pattern References

OCT using
rotational
MEMS probe

Micromotor 1 kHz - >1 V 2.4 mm (in diameter) Radial [54]

MEMS fiber
scanner for
confocal
microscopy

Electrothermal
actuation

239 Hz (x-axis)
207 Hz (y-axis)

378 µm ×
439 µm

16 Vpp
(duty cycle
13%)

Diameter (1.65 mm)
Rigid length (28 mm)

Lissajous
scanning [69]

Fiber scanner
for forward
viewing
endoscope

Piezoelectric
tube

86 Hz (x-axis) 97
Hz (y-axis)

732 µm ×
591.7 µm 40 Vac Diameter (3.2 mm)

Rigid length (50 mm)
Lissajous
scanning [63]

OCT based on
2D MEMS
mirror

Electrothermal
actuation

1.25 Hz (fast
scan actuator
pair)
0.0125 Hz
(longitudinal)

2.3 mm ×
2.3 mm

0–4 V ramp
(fast scan)
0.5–3.5 V ramp
(slow axis)

Diameter (5.8 mm)
Rigid length (12 mm)

Lissajous
scanning [140]

Scanning fiber
endoscope

Piezoelectric
tube 5 kHz 200 µm

(in diameter) <20 Vac
Diameter
(1.2 mm–1.7 mm)
Rigid length (9 mm)

Spiral scan
pattern [55,64]

Multi-Photon
Endoscope

Piezoelectric
tube 35 Hz 900 µm

(in diameter) 40 Vac Diameter (5 mm) Rigid
length (4 cm)

Circular
pattern [141]
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Table 6. Cont.

Working
Principle Frequency FOV Drive Voltage Scanner Dimensions Scanning

Pattern References

OmniVision
camera

Chip on tip
camera - 364 µm ×

364 µm 3.3 Vac 650 µm × 650 µm ×
1158 µm - [142]

FCFM using
Cellvizio

Scanning
mirrors at
proximal end

4 kHz

160 µm ×
120 µm ÷
400 µm ×
280 µm

-
350 µm ÷ 1.8 mm
diameter 20 mm Rigid
length

- [23]

Scanning
confocal
microscope

Electrostatic
torsional
mirrors

4.3 kHz (fast
scan) 1.07 kHz
(slow scan)

100 µm
(in diameter) 20 V 1.2 mm × 2.5 mm × 6.5

mm
Lissajous
scanning [19,143]

Two-photon
microscope

Electrostatically
actuated
mirrors

1.08 kHz (fast
scan) 0.65 kHz
(slow scan)

295 µm ×
100 µm 60 V 2.0 cm × 1.9 cm × 1.1 cm Raster

scanning [144]

Side view
endomicroscope

Electrostatically
driven mirror

12 kHz (fast
scan) 3 kHz
(slow scan)

350 µm ×
350 µm 60 Vpp 2.4 mm (in diameter) Lissajous

scanning [24]

Non-resonant
MEMS
scanner for
OCT

Thin film
piezoelectric 50 Hz 1 mm ×

0.7 mm 40 Vpp 2.2 mm × 2.7 mm Lissajous
scanning [89]

In summary, the choice of an optical scanner over another type often depends on the target tissue
and the constraints it poses. For example, some tissue surfaces, such as the eye, cannot tolerate shining
a laser light on it for a long period of time due to the energy of the laser beam causing photoablation of
the tissue. Thus, some scanners are better fit for imaging certain tissue surfaces than others. Similarly,
some of the optical scanning devices are better at imaging the tissue surface by illuminating the
light from the side of the probe, while others are designed for direct en face imaging. In addition,
the selection of an imaging device for a medical purpose is also based on the size, the usage simplicity,
and the ergonomics of the device. Another relevant consideration for endoscopic devices is their
suitability for reprocessing; that is their suitability multiple uses. Reprocessing, which generally
requires washing optical devices using chemicals to reduce risks of infection, can be a very expensive
process. Endoscopes should also be mechanically robust; the handling of the endoscopes during
reprocessing may damage the endoscopes. For example, a small crack could be initiated, leading to
light leakage and the consequent considerable degradation of the performance of the device.

8. Conclusions

In the present paper, we reviewed the different imaging techniques used in medical applications.
The continuous growth of microfabrication techniques and optical components make the latest imaging
devices much smaller, allowing visualization of narrower sections of the body and imaging of target
areas with a very fine resolution. The thinner the imaging device is, the further the imaging device can
be advanced into the body, which enables improved detection of the lesion/tumor surface.

In medical applications, OCT is a frequently used imaging modality to image tissue structures due
to the smaller size of the probe device; among this type, FD-OCT is widely used. Among the
other imaging modalities, nonlinear microscopy can generate images with a finer resolution,
while photoacoustic imaging can image deeper into the tissue. A large number of imaging probes have
been developed using electrostatic actuation due to the ease of fabrication and fast scanning speed.

In conclusion, the advancement of MEMSs and small-sized optical components enable the
fabrication of imaging devices with promising performance as compared to the traditional medical
devices. Such devices enable the detection of lesions/tumors at an earlier stage and act as a guide
during surgical procedures, increasing diagnostic capabilities.
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