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Abstract

Statistical machine learning has played a key role in many areas, such as biology, health sciences,

finance and genetics. Important tasks in computational genetics include disease prediction, capturing

shapes within images, computation of genetic sharing between pairs of individuals, genome-wide

association studies and image clustering. This thesis develops several learning methods to address

these computational genetics problems. Firstly, motivated by the need for fast computation of genetic

sharing among pairs of individuals, we propose the fastest algorithms for computing the kinship

coefficient of a set of individuals with a known large pedigree. Moreover, we consider the possibility

that the founders of the known pedigree may themselves be inbred and compute the appropriate

inbreeding-adjusted kinship coefficients, which has not been addressed in literature. Secondly,

motivated by an imaging genetics study of the Alzheimer’s Disease Neuroimaging Initiative, we

develop a Bayesian bivariate spatial group lasso model for multivariate regression analysis applicable

to exam the influence of genetic variation on brain structure and accommodate the correlation

structures typically seen in structural brain imaging data. We develop a mean-field variational Bayes

algorithm and a Gibbs sampling algorithm to fit the model. We also incorporate Bayesian false

discovery rate procedures to select SNPs. The new spatial model demonstrates superior performance

over a standard model in our application. Thirdly, we propose the Random Tessellation Process

(RTP) to model complex genetic data structures to predict disease status. The RTP is a multi-

dimensional partitioning tree with non-axis aligned cuts. We develop a sequential Monte Carlo

(SMC) algorithm for inference. Our process is self-consistent and can relax axis-aligned constraints,

allowing complex inter-dimensional dependence to be captured. Fourthly, we propose the Random

Tessellation with Splines (RTS) to acquire complex shapes within images. The RTS provides a

framework for describing Bayesian nonparametric models based on partitioning two-dimensional

Euclidean space with splines. We also develop an inference algorithm that is “embarrassingly

parallel”. Finally, we extend the mixtures of spatial spline regression with mixed-effects model under

the Bayesian framework to accommodate streaming image data. We propose an SMC algorithm to

analyze online fashion brain image.

Keywords: Statistical learning; Space partitioning; Monte Carlo methods; Kinship; Genome-wide

association studies; Spatial Spline, Imaging genetics
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Chapter 1

Introduction

Statistical machine learning is an application of computer algorithms accesses and learns from

data (Friedman et al., 2009; Alpaydin, 2020). The goal of machine learning is often more about

making predictions than understanding. Statistical machine learning has played a key role in many

areas, such as health sciences, financial industry, biology and genetics (Beam and Kohane, 2018;

James et al., 2013; Khandani et al., 2010; Baldi and Brunak, 2001; Tarca et al., 2007). A vast

set of learning methods have been developed for learning from data. Broadly speaking, statistical

learning methods can be classified as supervised or unsupervised learning. In supervised learning, we

have an outcome measure, usually named responses or dependent variables, either qualitative (e.g.

with/without disease) or quantitative (e.g. cortical thickness). We try to predict the outcome measure

via a set of input measures, often called predictors, features or independent variables (Russell and

Norvig, 2002; Mohri et al., 2018; Alpaydin, 2020). In unsupervised learning, we do not observe any

outcome measure and generally the task is to cluster or group the data via a set of features (Barlow,

1989; Hofmann, 2001; Dy and Brodley, 2004).

The outcome measures vary among different applications, either qualitative or quantitative. We

call the prediction task classification, if the response is qualitative, and call the prediction task

regression, if the response is quantitative (Draper and Smith, 1998; Breiman et al., 1984; Kotsiantis

et al., 2007). In recent decades, various learning methods have been developed for supervised learning.

Linear models are classical methods in supervised learning, in which we assume a linear relationship

between the responses and the predictors. However, this assumption often violates the nature of

many real applications. Methods beyond linearity have been developed, including smoothing splines,

kernel smoothing methods and additive models. In addition, more flexible nonparametric models,

such as decision trees, neural networks, and support vector machine based approaches are developed

to model the nonlinearity between responses and predictors. With recent advances in biological

techniques, huge amounts of genetic data sets have been generated. More advanced learning methods

are in demand to analyze and interpret these data sets, which would benefit the development of drugs,

treatment and policy.

In this thesis, we aim to develop learning methods to address several important problems in

computational genetics.
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The computation of kinship coefficients is important for assessing the genetic sharing between

pairs of individuals, which is fundamental in correcting for cryptic-relatedness in genome-wide asso-

ciation studies (Yu et al., 2005; Rakovski and Stram, 2009; Kang et al., 2010), understanding breeding

relationships and human genealogy (Thompson, 1985), and also for describing and fostering genetic

diversity in animal breeding. Genetic diversity is critical since it prevents the raising of recessive

Mendelian disease at a population level (Woods et al., 2006). In Chapter 2, we develop the fastest

known algorithms for computing kinship coefficient of a set of individuals with a known pedigree.

Our method also scales to large pedigrees. In addition, our algorithms consider the possibility that the

founders of the known pedigree may themselves be inbred, which had not previously been addressed

in literature, and computes the appropriate inbreeding-adjusted kinship coefficients.

In Chapter 3, we develop a Bayesian bivariate spatial group LASSO model for multivariate

regression analysis applicable to studies examining the influence of genetic mutations on brain

structure. This spatial model is motivated by an imaging genetics study of the Alzheimer’s Disease

Neuroimaging Initiative, where the objective is to uncover the association between neuroimaging

measures as quantitative traits and genetic variations (Vounou et al., 2010; Stein et al., 2010; Silver

et al., 2011; Inkster et al., 2010; Hibar et al., 2011; Ge et al., 2012; Thompson et al., 2013; Stingo

et al., 2013; Zhu et al., 2014; Hibar et al., 2015; Huang et al., 2015, 2017; Lu et al., 2017). A

bivariate spatial process model is developed to accommodate the correlation structures typically

seen in structural brain imaging data. We thereby model both the spatial correlation in the imaging

phenotypes obtained from neighbouring regions on the same hemisphere of the brain, and also the

correlation in the phenotypes obtained from different hemispheres (left/right) of the brain. We develop

both a Gibbs sampling and a mean-field variational Bayes (Ormerod and Wand, 2010) algorithm to

fit the model. We also incorporate Bayesian false discovery rate procedures (Morris et al., 2008) to

select SNPs.

Thirdly, motivated by the need of cutting multi-dimensional Euclidean space with non-axis

aligned cuts, we propose the Random Tessellation Process (RTP) to model complex genetic data

structures to predict disease status in Chapter 4. The RTP is a multi-dimensional partitioning tree

process allowing non-axis aligned cuts, which generalizes axis-aligned methods such as decision

trees and the Mondrian process (Kemp et al., 2006; Roy and Teh, 2008). The RTP provides a

framework for describing Bayesian nonparametric models based on space partitioning. The RTP

includes the Mondrian process and the binary space partitioning-tree process (Fan et al., 2018)

as special cases. Our process is self-consistent and can relax axis-aligned constraints, allowing

complex inter-dimensional dependence to be captured. We derive a sequential Monte Carlo algorithm

(SMC) (Doucet et al., 2000) for inference, which takes advantage of the hierarchical structure of the

generating process for the RTP prior. We also provide random forest versions of RTPs.

In Chapter 5, motivated by modeling shapes within images via Bayesian nonparametric space

partitioning methods. We propose the Random Tessellation with Spines (RTS). The proposed

nonlinear boundaries enable more complex data structures to be acquired. The RTS construction

is based on the theory of stable iterated tessellations in stochastic geometry. We develop an SMC
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algorithm for the RTS inference, which takes advantage of the hierarchical structure of the generative

process of the RTS. We use simulation studies to demonstrate that our Random Tessellation with

Splines may be an appropriate consistent process. We apply our RTS to an HIV-1-infected human

macrophage data set, and compare with modern machine learning methods.

Finally, we extend the mixtures of spatial spline regression with mixed-effects model under the

Bayesian framework to accommodate streaming image data in Chapter 6. The traditional Markov

chain Monte Carlo approach is not scalable to streaming image data since it requires all observed

information to update the posterior distribution of the parameters. To tackle this issue, we propose an

SMC algorithm to analyze online fashion image data. The existence of model sufficient statistics

improves the efficiency of the proposed online SMC algorithm. Instead of saving all batch data

for inference, we only require storage of the model sufficient statistics and every data point is only

used once, which is a configuration well suited for large-scale stream type data. In addition, the

proposed algorithm provides an unbiased estimator of the marginal likelihood as a by-product of the

approach, which can be used for model selection. Numerical experiments are used to demonstrate

the effectiveness of our method.

In Chapter 7, we conclude this thesis work and present directions for future work.
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Chapter 2

Efficient Computation of the Kinship
Coefficients

2.1 Introduction

The kinship coefficient is a measure of genetic similarity between pairs of individuals. Computing

kinship coefficients is fundamental to understanding breeding relationships and human genealo-

gies (Thompson, 1985). Kinship coefficients have been used for correcting GWAS case-control studies

for known relationships and for reducing spurious signals in case-control and quantitative trait asso-

ciation studies (Yu et al., 2005; Rakovski and Stram, 2009; Kang et al., 2010; Eu-Ahsunthornwattana

et al., 2014). They have also been used for pedigree case-control disease association (Thornton and

McPeek, 2007). When breeding pedigree animals such as dogs, cats, horses, cows, or endangered

species, using kinship coefficients to prevent inbreeding would foster genetic diversity. This ge-

netic diversity is important, because it prevents excessive homozygosity and the raise of recessive

Mendelian disease in the population as a whole (Woods et al., 2006). There is some confusion as to

how quickly kinship coefficients can be computed (Abney, 2009). The kinship coefficients are defined

by counting paths of genetic transmission of alleles. The popular recursive algorithm described in

Karigl (1981) was implemented in Zheng and Bourgain (2009).

There were two ways to obtain kinship coefficients. One is the empirical kinship coefficient

estimated using genetic data without knowing the pedigree graph, and the other is based on defining

the kinship coefficient as a function of a pedigree graph. Recently, Wang (2019) proposed to estimate

genetic similarity using phylogenies. The topic of estimation from data is outside the scope of this

chapter. This chapter focuses on computing and approximating the kinship coefficient as a function

of a pedigree graph.

While there exists a nice set of recursive equations, the algorithmic properties have needed more

treatment in the literature. This chapter aims to fill this gap by introducing three fastest known kinship

algorithms: two exact algorithms and one approximate algorithm. Our numerical studies show that

our proposed algorithms are several orders of magnitude faster than the Zheng and Bourgain (2009)

and are faster than the Abney (2009) when the number of individuals per generation is large.
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2.2 Background

The pedigree graph, P = (V, E), is the canonical descriptor of known relationships. This is a

directed acyclic graph with individuals as vertices, V , and each vertex having a gender, either male

or female. The graph has edges, E, directed from parent to child indicating direct relationship. The

graph is acyclic, meaning that no individual can be their own ancestor. The graph has in-degree at

most two with one parent of each gender, meaning that each individual has at most two parents, one

of each gender. Let I ⊆ V be the individuals of interest, or the individuals whose relationships we

would like to quantify. Let there be n individuals in the pedigree, meaning that n = |V |.

A pedigree graph is a complete description of relationships between individuals, because it

includes every parent-child edge. Many interesting quantifications of pedigree relationships are

NP-complete to compute. Most crucially, the pedigree likelihood (Piccolboni and Gusfield, 2003;

Kirkpatrick, 2011), which is the basis of many other pedigree calculations, is NP-complete. This

means that the pedigree and its quantities are inefficient. We now turn our attention to more efficient

representations.

There are a variety of ways to summarize the relationships in a pedigree in condensed forms.

One can look at a pair-wise pedigree relationships and describe those using the language of family

relationships: parent, child, nephew, cousin, etc. One can look at pair-wise genetic relationships

and ask whether two alleles are inherited from an identical allele in an ancestor, i.e. whether the

alleles are identical-by-descent (IBD). One can look at the k-wise relationships describing the

probability of 2k alleles being IBD which is generalized kinship coefficient (Abney, 2009). One

can also summarize a pair-wise relationship by the probability of two random alleles being IBD;

this is the kinship coefficient, sometimes called the coefficient of relationship. This last summary of

relationships, called the kinship coefficient, is the subject of this chapter. This chapter discusses the

kinship coefficient, as it is defined, as a function of a pedigree graph.

Formally, for two individuals in a pedigree, define identity-by-descent (IBD) as the event that

both individuals inherited an allele from the same ancestor. For two individuals i and j, there are four

alleles, two for individual i, a1 and a2 and two for individual j, b1 and b2. In complete generality,

there are 15 ways for these 4 alleles to be IBD (Jacquard, 1972). We draw these 15 possibilities

as graphs on 4 alleles, as in Figure 2.1. There is an edge between every pair of alleles that is IBD.

For example, allele a1 and a2 can be IBD while none of the other alleles are IBD, see row 3 of

Figure 2.1. As another example, alleles a1, b1, and b2 could be IBD while allele a2 is not related

to the others, see row 7 of Figure 2.1. Mathematically, the kinship coefficient of two individuals i

and j in a pedigree is the probability of IBD between two randomly drawn alleles, one from each

person. Let the matrix φ contain all the pair-wise kinship coefficients in a pedigree. Entries φi j, for

i , j, are kinship coefficients, and entries φii are related to inbreeding coefficients. Label the alleles

of individuals i and j with distinct labels: (a1, a2) and (b1, b2), respectively. By the definition of the
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Figure 2.1: Identity States. Each identity state is a graph with four alleles of two individuals drawn
as the nodes and edges appearing between every pair of IBD alleles. The 15 identity states are
grouped so that each row corresponds to one of the 9 condensed identity states. The number of
founder alleles for each identity state is listed, along with whether the identity state is out-bred.

kinship coefficient,

φi j = (1/4)Pr[a1 ≡ b1] + (1/4)Pr[a1 ≡ b2]

+ (1/4)Pr[a2 ≡ b1] + (1/4)Pr[a2 ≡ b2],

where this ‘≡’ operator means IBD. Unlike the IBD probabilities which can apply to specific alleles in

data, the kinship coefficients are an expectation over the structure of the pedigree and are independent

of the data. The kinship coefficients are often defined as an expectation over all possible inheritance

paths (or all possible joint assignments to the segregation indicators of a pedigree), this chapter will

develop the equivalence with an expectation over the identity states and their probabilities.

Suppose that we consider only out-bred IBD possibilities (defined as having φii = 1/2 for all

i). The identity states encode all the possibilities for IBD, including inbreeding possibilities, and

Figure 2.1 has three rows indicating they are out-bred (rows 1, 2, 5). These correspond to the a pair of

individuals, i and j sharing zero, one, or two alleles IBD, respectively. In this case, we can denote the

probability of each of these event as f i j
0 , f i j

1 , and f i j
2 respectively. In this particular case, the kinship

coefficients are simple to compute

φi j = (2 f i j
2 + f i j

1 )/4.

Assume that there might be inbreeding in the pedigree. Now, we wish to compute all the kinship

coefficients in one computation. The recursive algorithm for computing this was developed in detail

in Thompson (1985) and Karigl (1981). This section will only give the recursive equations which are
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a top-down recursion on the pedigree. For all founders f , the matrix is initialized as

φ f f = 1/2, and

φ f j = 0, for any j that is not a descendant of f .

Let the mother and father of i be denoted m and p. Then use the kinship coefficient between j and i’s

parents to compute

φi j = (φm j + φp j)/2,

where i is not an ancestor of j and i , j.

In a similar manner, we compute the kinship coefficient for i from its parents,

φii = (1 + φmp)/2,

where this function of φmp accounts for the probability of picking the same allele when uniformly

choosing two alleles from the same person.

Some researchers write the kinship matrix as given by the output of the above recursion. Others

transform the matrix, so that it contains the inbreeding coefficients for each individual instead of the

kinship coefficients. This transformation, applied only to the diagonal, is

Φi j = φi j for all i , j, and

Φii = 2φii − 1.

We find it convenient to represent the inbreeding coefficient on the diagonal, and this is the convention

used in this chapter.

2.3 Methods

Before introducing the details of the algorithms, we need to develop some mathematical methods

that ease the task of algorithm development. First, the kinship recursion can be initialized in several

ways. If the founders are known to be inbred, it is appropriate to initialize the recursion with that

information, for more accurate computation of kinship coefficients. Second, the kinship coefficients

can be represented in terms of identity state coefficients. This relationship is useful for developing a

sampling algorithm that samples identity states.

2.3.1 Generalized Initialization of the Kinship Recursion

We relate the kinship to inbreeding coefficients estimated for unrelated individuals. The founders

of a pedigree have an ancestry that relates them, even if that ancestry is not recorded in the pedigree

graph.
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Let Ψ be the kinship coefficients for the founders, i.e. a matrix of F × F where F is the number

of founders. We initialize the algorithm using the kinship coefficients of the founders as follows:

φ f f = (1 + Ψ f f )/2,

φ f g = Ψ f g for founders f , g, and (1)

φ f j = 0, for non-founder, not a founder child,

j that is not a descendant of f ,

where Ψ f f is the inbreeding coefficient for founder f . Recall that the diagonal elements of Ψ are the

inbreeding coefficients. The recursive equations also need to be slightly modified, by the addition of

the following case for founder children c not descended from f :

φ f c = φc f = (φm(c), f + φp(c), f )/2,

for founder m(c) or p(c) and founder f .

It may be difficult to obtain the kinship coefficients on the founders if their genealogy is unknown.

More feasibly, we can estimate the inbreeding coefficient from the homozygosity in Leutenegger et al.

(2003). We modify the above recursion in Equation (1) to initialize it with the average inbreeding

among all the founders using the average inbreeding coefficient for founders h, φ f g = 1/F
∑

h Ψhh

for founders f and g, f , g. The change to the recursive equations is still relevant.

If the kinship coefficients of the founders are not properly taken into account, then the kinship will

be computed assuming that the founders are out-bred. Thus, the method will inaccurately represent

the genetic relationships between the individuals whose ancestry contains inbreeding in the founders.

2.3.2 Relating Identity States and the Kinship Coefficient

To relate the identity coefficients into kinship coefficients, we take an expectation over the identity

states. Since there is a deterministic mapping between the condensed identity states and the identity

states, the expectation can be written in terms of the condensed identity states. The proof for this

approach takes as a first step the expression of the kinship as an expectation over inheritance paths

(Kirkpatrick, 2012), which is easily converted into an expectation over identity states.

For an identity state, let t ∈ {aa, ab, bb} denote an edge type, for example, ab indicates any edge

between the alleles in two different individuals a and b, i.e. and edge between one of the nodes

{a1, a2} and one of the nodes {b1, b2}. Another example, aa, indicates an edge between nodes a1 and

a2 within the same individual. Recalling that the identity state is a graph on nodes {a1, a2, b1, b2}, we

let e(s, t) be a function of identity state s and edge type t which gives the number of edges of type t in

identity state s. For example, in Figure 2.1, row 8, column 1, e(s, aa) = 1, e(s, ab) = 2, e(s, bb) = 0.

The kinship coefficient Φa,b between individuals a , b is related to the identity states and their

coefficients via the following expectation over the set of 15 possible identity states (a set that we
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denote by S):

Φa,b =
∑
s∈S

e(s, ab)
4

P[S = s]. (2)

In this equation, e(s, ab)/4 can be interpreted as the fraction of the 4 possible edges between one

node in {a1, a2} and one node in {b1, b2} that are present in the identity state s.

The inbreeding coefficient Φa,a is computed slightly differently via:

Φa,a =
∑
s∈S

e(s, aa) P[S = s], (3)

where e(s, aa) indicates whether the single possible edge between nodes a1 and a2 exists.

The transformation to obtain the kinship coefficient from Equation (3) is φa,a = (1 + Φa,a)/2. The

convention in this chapter is to use Φa,a.

2.4 Efficient Implementations

We will discuss three algorithms for obtaining kinship coefficients which are efficient in different

scenarios. Recall that there are n individuals in our pedigree. The first scenario is exact computation

in time polynomial to the size of the pedigree (i.e., running-time O(n2)), and the second scenario is

approximate computation in linear time (i.e., running-time O(n)).

First, the recursions given, above, can be implemented efficiently in an O(n2)-time algorithm.

The challenging portion of the recursive equations is the check for which individuals are ancestors of

each other. This can be done in constant time, provided that the correct data structure tabulates the

ancestry information. The details of this algorithm are given in Section 2.4.1.

Second, when the individuals of interest are a subset of the individuals in the pedigree, then we

can use a divide-and-conquer approach for applying the first exact algorithm. In this approach we

recursively cut the pedigree graph to obtain sub-pedigrees on which to apply the full exact algorithm.

As long as the individuals of interest all reside in a single sub-pedigree, this approach is more efficient

than the first exact algorithm. Details are given in Section 2.4.2.

Third, when a linear algorithm is desired and the kinship coefficients of a subset of individuals are

needed, there is a sampling algorithm that samples identity states. Given sample size d and the kinship

of
√

n founders, the sampling algorithm works in O(nd) time and the kinship of
√

n of the individuals

is computed. A smaller version of this sampling algorithm that estimates the kinship of one pair

of individuals has previously been introduced (Sun et al., 2014). That algorithm was evaluated for

sampling error, and it was discovered that several thousand identity states are needed for very large

pedigrees. Details of this algorithm appear in Section 2.4.3. Our proposed algorithms are implemented

as PedKin in C++ and are available under the GNU GPL v2.0 open source license. The PedKin

source code is available at: http://www.intrepidnetcomputing.com/research/code/.
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2.4.1 Efficient, Exact Algorithm

There is an O(n2)-time implementation of the kinship calculation where n is the number of

individuals in the pedigree, and I = V . Note that any implementation that touches every cell of

the kinship matrix requires running-time at least O(n2). Any implementation of the kinship that

represents the full kinship matrix requires O(n2) space.

We define Ai, the ancestor set for individual i in the pedigree, as the set containing i and all its

ancestors. This object can easily be computed in O(n2) time. The ancestor set allows us to do the

ancestry check in the kinship recursion in constant time.

The ancestor sets are computed in a top-down recursion on the pedigree graph. Initialize the

recursion with A f = { f }, where f ∈ V is a founder in the pedigree, meaning the individual has no

parents.

Now, the remaining individuals’ ancestor sets are computed from their parents’ using Ai =

{i} ∪ Am(i) ∪ A f (i), where m(i) is the mother of i and f (i) is the father of i.

The top-down order is obtained by creating a topological sort of the graph. This is done by

creating a queue of individuals, initializing the queue with the founders, and popping an individual

from the front of the queue while simultaneously adding their children to the end of the queue. This

produces an order such that each individual is considered after all of their parents.

The recursion from Section 2.2 can now be implemented in O(n2) time, using the ancestor

sets. The ancestor sets can be queried quickly, if they are stored in a look-up table. This makes the

recursion a double loop over the individuals in the pedigree, when those individuals are considered

in the top-down order. Algorithm 1 gives the details of the recursive loops.

2.4.2 Faster, Recursive-Cut Exact Algorithm

In the case where we require the kinship coefficients of a subset of the pedigree individuals,

I ⊂ V , we can improve the running-time for the exact calculation. Recall from Section 2.3.1, that

a correct kinship computation can be done after initializing the founders of a pedigree with their

known kinship coefficients.

Figure 2.2: Recursive Cut. The two individuals through which the dashdotted line passes are in
the cut set. The older subpedigree has those two individuals as leafs and has two components. The
younger pedigree has those two individuals as founders.
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Consider a large pedigree, which is a directed acyclic graph with the founders as sources and the

leafs as sinks. Informally, we can segment the large graph by taking vertex cuts that run ‘horizontally’

and create a generation. The individuals in the cut become the leafs of the upper segment and the

founders of the lower segment of the pedigree. This splits the pedigree in half at the cut, and allows

us to apply the exact algorithm from Section 2.4.1 to each segment of the pedigree. Formally, a vertex

Algorithm 1 O(n2) Exact Kinship Algorithm
1: Let A be an n × n matrix initialized with all zeros.
2: for all the founders i ∈ V do
3: Let Aii = 1
4: for each i ∈ V with parents m(i), f (i) such that their A row is set do
5: for each j ∈ p(i) do
6: for each v ∈ V do
7: Aiv = Am(i)v AND A f (i)v
8: if v == i then
9: Aii = 1

10: Let Φ be an n × n matrix initialized with −1.
11: for every founder f ∈ V do
12: Φ f , f = (1 + Ψ f f )/2

13: for every pair of founders f , g ∈ V with f , g do
14: Φ f ,g = Ψ f g

15: for every founder f and every non-founder j ∈ V , j not founder child do
16: if A j f == 0 then
17: Φ f j = 0

18: for every i ∈ V whose parents have been assigned kinship do
19: for every j ∈ V whose parents have been assigned kinship do
20: if i == j then
21: Φii = (1 + Φmp)/2
22: else
23: if A ji == 0 then
24: Φi j = (Φm j + Φp j)/2

25: for every i ∈ V do
26: Φii = (2 ∗ Φii) − 1

cut is defined as a partition of the vertices of the graph into two sets such that the cut vertices, when

removed, disrupt every path from any source to any sink. A vertex cut produces two edge-disjoint

subgraphs. In our application the sub-pedigrees will share the vertices of the cut set, but will be

edge-disjoint. In one subpedigree, the cut vertices will be the leafs, and in the other subpedigree, the

cut vertices will be the founders.

A pedigree cut for the purposes of this algorithm will be defined as a set of cut vertices which

defines a generation of individuals. Any pedigree cut separates the pedigree into two sub-pedigrees,

one containing the cut vertices as leafs which we will refer to as the upper, or older, sub-pedigree,

and one containing the cut vertices as founders which we will refer to as the lower, or younger,
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sub-pedigree. In Figure 2.2, the two individuals through which the dashdotted line passes are in the

cut set. The upper sub-pedigree, by the placement of the pedigree cut, now has new leaf individuals,

which are the cut vertices. Let the cut set be set Ci ⊆ V . Let the older subpedigree be for individuals

V i and the younger subpedigree be for individuals V i+1 In this case, we know that Ci ⊆ V i and

Ci ⊆ V i+1.

We can recursively bipartition the pedigree and sub-pedigrees many times to get a reasonable

running time of the exact kinship algorithm on any single sub-pedigree. The finest recursive partition-

ing will produce generational sub-pedigrees, but with the flexibility of definitions to allow staggered

generations. The number of generations puts a lower bound on the number of recursive cuts that are

possible. Also, the individuals of interest all need to appear in a single sub-pedigree, if we are to

obtain all their pair-wise kinship coefficients from this algorithm.

Now, we apply the exact kinship algorithm for the sub-pedigrees from the top down. The kinship

coefficients for the leafs of each sub-pedigree are used to initialize the founder kinship coefficients

for the next sub-pedigree. This is done iteratively down the pedigree, until the kinship coefficients of

the individuals of interest are obtained.

When applied to a generational pedigree drawn using the diploid Wright-Fisher model, the

pedigree has |Ci| = 2N individuals per generation for all generations 0 ≤ i ≤ G and V i = Ci. This

recursive-cut kinship algorithm runs on this generational pedigree in O(N2G) time. More generally if

we cut an arbitrary pedigree into m partitions with the maximum partition having s = |V i| individuals,

then the running-time of the recursive-cut kinship algorithm is O(s2m). When n is the number of

individuals in the pedigree, this is an improvement on the O(n2) running-time of the exact method,

since s ≤ n/m.

The main disadvantage of both these exact algorithms is that they are only polynomial in running

time and perhaps may not be fast enough for applications on very large pedigrees. For very large

pedigrees, we need a linear-time algorithm for scalability.

2.4.3 Efficient, Approximate Algorithm

There is a linear-time approximate algorithm. Recall that n is the number of individuals in the

pedigree. The approximate algorithm runs in O(nd)-time algorithm for I ⊂ V where |I| = O(
√

n),

F = O(
√

n) for number of founders and d is the sample size. This algorithm quickly estimates the

kinship coefficients by sampling identity states and using the expectations in Equations (2) and (3).

Recall that in diploid individuals, each individual has two alleles at every site in the genome. Of

these two alleles, one comes from the father, and one from the mother. From each parent, the allele is

copied either from the grand-father or from the grand-mother. This binary choice of grand-paternal

origin is usually stored in segregation indicators, xi = (xm
i , x

f
i ), for individual i where xp

i ∈ {m, f }.

An inheritance path consists of the segregation indicators of all the individuals in the pedigree.

Consider the graph of all the alleles of all the individuals at one site with edges connecting the

alleles that are inherited from parent to child (i.e., the edges indicated by the segregation indicators).

This is a graph of the inheritance path, and it has connected components. The connected component
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Algorithm 2 O(nd) Approximate Kinship Algorithm when |V | = n, |I| = O(
√

n), F = O(
√

n) and d
is the number of samples.

1: Let Φ be the n × n matrix initialized with zeros.
2: for s in 1 to d do
3: for i ∈ V do
4: Flip 2 {m, f }-labeled coins, and assign their values to (xm

i , x
f
i ).

5: Initialize all ci = (0, 0); Let counter = 1.
6: for l ∈ V where l is a leaf do
7: Let (cm

i , c
f
i ) = (counter, counter + 1)

8: counter = counter + 2
9: for each i ∈ V provided all of i’s children have been processed do

10: for p ∈ {m, f } and j ∈ V being the appropriate gendered parent do
11: if c

xp
i

j < cp
i then

12: c
xp

i
j = cp

i

13: for every pair of founders r and q do
14: flip a coin for edges (a1, b1)(a2, b2) or (a1, b2)(a2, b1), a = 0 or a = 1, respectively
15: for x ∈ {m, f }, and let y ∈ {m, f } \ x do
16: Let u ∈ [0, 1] be a uniform random variable
17: if u ≤ Ψrq then
18: if a == 0 then
19: cx

r = cx
q

20: else
21: cx

r = cy
q

22: for each i ∈ V provided all i’s parents have been processed, denote ip as i’s parent do
23: cp

i = c
xp

i
ip

24: for each i ∈ I do
25: for each j ∈ I do
26: Create the identity state graph for (ci, c j) = (cm

i , c
f
i , c

m
j , c

f
j )

27: if i == j then
28: if cm

i == c f
i then

29: Φii = Φii + 1
d

30: else
31: Φi j = Φi j + e

4d , where e is the number edges between ci and c j in the identity
state graph.

13



is the set of inherited copies of a particular ancestral allele, which is the root of the connected

component. Let the Connected Component (CC) membership of each allele be given by a tuple of

integers, ci = (cm
i , c

f
i ), for individual i.

Our method, Algorithm 2, will sample an inheritance path with one pass through the pedigree.

When considering each individual, the algorithm flips a coin to set the segregation indicators for that

individual. Later, these indicators will be used to determine which alleles are identical-by-descent for

this inheritance path.

Two more passes through the pedigree will be used to set the CC membership with consistent

values. The leaf alleles of the pedigree are populated with distinct integers representing their putative

CC membership. The first pass proceeds from the bottom of the pedigree to the top, and processes

each child before their parents. For each allele in each individual, their CC membership integer is

copied to the allelic ancestor given by the segregation indicator. If two children give two different CC

memberships to the parent, the tie is broken with the largest integer value. To account for founder

inbreeding, we merge founder CC memberships randomly according to the probabilities given by the

initialization kinship coefficients. The second pass proceeds from top to bottom, and the tie-broken

CC membership integers are simply copied back down the path of allelic inheritance. After these two

passes, every allele in a connected component of the inheritance path graph will have the same CC

membership, and every pair of alleles from different CC’s will have distinct CC membership unless

the CC’s were randomly merged by founder inbreeding.

Finally, for every pair of individuals of interest, we can use the CC membership to obtain the

identity state. This identity state can be used to update the estimated kinship with the appropriate

terms from Equations 2 and 3.

The details of these procedures are left to Algorithm 2. We will explore the convergence properties

of this sampling algorithm using simulations in Section 2.4.4.

2.4.4 Simulation Results
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Figure 2.3: Simulation results of the approximate algorithm. The left panel represents the rela-
tionship between of running time (seconds) and number of iterations and the right panel represents
the relationship between L1 error and number of iterations.
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Figure 2.4: Comparison of running time. two panels describe the relationship between the running
time (in seconds) and the number of generations G.

The diploid Wright-Fisher model is used to generate pedigree data in our simulation study. To

assess the convergence of our approximate kinship algorithm, we simulate a scenario with 2N = 20

individuals per generation, and G = 10 generations in total. The sample size d ranges from 1000 to

400, 000. We measure the error of estimates in the L1 form. The left panel in Figure 2.3 shows that

the running time increases almost linearly with number of iterations. The right panel in Figure 2.3

indicates that L1 form error decreases rapidly before the sample size reaches 3, 000. The L1 error is

1.6× 10−2 when the sample size d = 3, 000 and keeps decreasing with the the sample size d increases.

KinInbcoef (Zheng and Bourgain, 2009) is a C++ program that computes inbreeding and kinship

coefficients for general pedigrees using the recursion algorithm mentioned in Section 2.2, IdCoefs

(Abney, 2009) is a C program that computes the generalized kinship coefficients and condensed

identity coefficients. Both programs will be used as the competitors in following simulations.

To compare the running time of our exact algorithm and approximate kinship algorithm with

KinInbcoef and IdCoefs, we simulate two scenarios of pedigree data: one is 20 individuals per

generation and another is 40 individuals per generation. We consider a sequence of numbers of

generations for both scenarios. The simulations were carried out on the Grex SGI Altix XE 1300

cluster of Westgrid. The results show both our exact and approximate algorithms can handle large

pedigrees efficiently.

We compare our exact algorithm with the two competitors. Figure 2.4 shows our exact method is

several orders of magnitude faster than the KinInbcoef, and it is faster than IdCoefs when the number

of individuals per generation is not too small. Shown on the right panel, IdCoefs requires a large

RAM size to run efficiently. Note that its performance becomes much worse if we decrease the RAM

size from 10,000 MB to 1,000 MB. Therefore, IdCoefs cannot scale to large pedigrees.

The approximate method is not only efficient but also accurate. As shown in Figure 2.4, the

time cost of our approximate method is linear with number of generations. We use the sample size

d = 10, 000. It runs faster than the exact algorithm when the pedigree is larger, for example, when

(2N = 20, G > 1000) and (2N = 40, G > 400). The corresponding accuracy of the estimate is to 3

decimal digits.
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2.5 Discussion

The above kinship algorithms are applicable to large pedigrees, since they either have efficient

polynomial or linear running-times. This chapter gives two exact algorithms and one approximation

algorithm. The fastest known exact algorithm for kinship computations is the recursive-cut exact

algorithm. All these algorithms are easily run using the source code that is published in tandem

with this chapter. All of the algorithms in this chapter have running times that are parameterized

by the number of individuals. Since the kinship coefficients are defined by inheritance paths which

correspond to edges in the pedigree graph, it is possible that the number of edges in a pedigree graph

provides the true lower-bound on the number of operations needed to compute the exact kinship

coefficients. We leave it as an open problem whether there is an efficient algorithm, perhaps along

the lines of the recursive-cut algorithm, that has running-time parameterized by the number of edges

in the pedigree graph. Another open problem is whether there is a sparse algorithm for computing

the kinship. This type of algorithm would only compute the non-zero entries in the kinship matrix. If

designed properly, such an algorithm would need far less space, since it would not need to represent

the entire kinship matrix. We believe that such an algorithm does exist and has yet to be discovered.
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Chapter 3

A Bayesian Spatial Model for Imaging
Genetics

3.1 Introduction

We consider multivariate multiple regression modeling within the context of imaging genetics

where interest lies in uncovering the associations between genetic variations and neuroimaging

measures as quantitative traits (QTs). This problem has received a great deal of attention recently

and is challenging because it combines the analysis of neuroimaging data with genetic data (Vounou

et al., 2010; Stein et al., 2010; Silver et al., 2011; Inkster et al., 2010; Hibar et al., 2011; Ge et al.,

2012; Thompson et al., 2013; Stingo et al., 2013; Zhu et al., 2014; Hibar et al., 2015; Huang et al.,

2015; Kong et al., 2015; Huang et al., 2017; Lu et al., 2017; Kong et al., 2020). Recent reviews of

statistical issues in this area are discussed in Liu and Calhoun (2014) and Nathoo et al. (2019).

The neuroimaging measures can serve as endophenotypes for neurological disorders such as

Alzheimer’s disease (AD). AD has been considered widely as an application in imaging genetics with

many studies focussing on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As

described in Szefer et al. (2017), the estimated heritability of late-onset AD is 60 - 80 percent (Gatz

et al., 2006).The largest susceptibility allele is the ε4 allele of the Apolipoprotein E (APOE) gene

(Corder et al., 1993), which may play a role in 20 to 25 percent of AD cases. The remaining

heritability of AD may be explained by many additional genetic variants and these may have a small

effect.

Data analysis within this setting can range from studies considering a specific candidate region

of interest (ROI) within the brain and a specific candidate genetic marker in the simplest case, to

massive brain-wide genome-wide analyses in the most challenging case. In our work, we consider

the intermediary setting where interest lies in assessing the association between a moderate number

of brain imaging phentoypes, eg. 111 ROIs in Vounou et al. (2010); 12 ROIs in Wang et al. (2012);

93 ROIs in Zhu et al. (2014); 56 ROIs in Greenlaw et al. (2017) and with the number of SNPs

ranging from between a few hundred to a few thousand. Within this setting a multivariate model

with regression matrix jointly characterizing the associations between all ROIs and genetic markers
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is feasible; although, as detailed in the aforementioned references, we still face a challenging

multivariate potentially high-dimensional regression problem.

Greenlaw et al. (2017) propose a Bayesian group sparse multi-task regression model where the

primary focus is the use of a shrinkage prior based on a product of multivariate Laplace kernels

developed following the ideas of Park and Casella (2008) and Kyung et al. (2010). The specific prior

developed is motivated by the penalized multi-task regression estimator proposed by Wang et al.

(2012). This development is an effort to move from point estimation to Bayesian credible intervals

and fully Bayesian inference.

While these authors demonstrate the advantage of characterizing posterior uncertainty in their

imaging genetics application to the ADNI study, their model makes a simplifying assumption for the

covariance matrix of the imaging phenotypes, where the first level of the model assumes:

yyy` |WWW, σ2 ind
∼ MVNc(WWWTxxx` , σ2Ic), ` = 1, . . . , n, (1)

where yyy` = (yyy`1, . . . ,yyy`c)T denotes the vector of imaging phenotypes for subject ` and c is the

dimension of the imaging phenotype, where ` = 1, . . . , n; AAAT denotes transpose of matrix AAA, WWW is the

regression matrix; xxx` = (xxx`1, . . . , xxx`d)T , where xxx` denotes the vector of genetic markers for subject `

and d is the number of such markers. The assumed covariance structure ignores spatial correlation as

well as bilateral correlation across brain hemispheres. By the latter we mean correlation in similar

structures on opposite hemispheres of the brain (e.g., a priori we expect the volume of the right

hippocampus to be correlated with the volume of the left hippocampus).

We develop a new model that allows for this type of correlation by adopting a proper bivariate

conditional autoregressive (BCAR) process (Gelfand and Vounatsou, 2003; Jin et al., 2005) for the

errors in the regression model. While spatial models for functional magnetic resonance imaging

(fMRI) and other neuroimaging modalities have been developed to a large extent (Penny et al.,

2005; Bowman, 2005; Bowman et al., 2008; Derado et al., 2013; Teng et al., 2018, 2019), to our

knowledge there has been very little development of explicitly spatial models for imaging genetics.

One exception is the mixture model developed by Stingo et al. (2013) where an Ising prior, a binary

Markov random field, is used for Bayesian variable selection. Our model is rather different in both its

aims and structure as it is based on a continuous bivariate Markov random field that is specified at

the first level of the model for the imaging phenotype directly.

In Figure 3.1 we show several summaries of the data from our motivating application demonstrat-

ing the need to account for correlation across brain hemispheres. For example, the sample correlation

between the volume of the right cerebral cortex and the volume of the left cerebral cortex is 0.90,

and across all 28 pairs of measurements, the median left/right correlation between corresponding

phenotypes is approximately 0.8. The bivariate CAR structure allows us to account for this between-

hemisphere correlation while also allowing us to account for within-hemisphere correlation using a

graph structure based on a neighbourhood matrix.
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Figure 3.1: The correlation plot for left and right brain measures showing the bilateral correlation
between 28 brain measurements across brain hemispheres for 632 subjects. Panel (a) presents the
boxplot of all of the pairwise bilateral correlations for the 28 brain measurements across left and
right hemispheres. Panel (b) presents a scatter plot showing mean thickness of left/right frontal with
correlation 0.91. Panel (c) presents a scatter plot showing the volume of left/right cerebral cortex
with correlation 0.90. Panel (d) presents a scatter plot between volume of left/right cerebral white
matter with correlation 0.90.

Typically, models incorporating multivariate CAR specifications are used for modelling observa-

tions (in the case of a proper CAR model) or spatially-varying parameters when multiple observations

or parameters appear at each spatial site. For our application the use of this process is non-standard in

the sense that we do not model multiple observations at each site, but rather, we pair corresponding

observations on opposite hemispheres of the brain and use the bivariate spatial process to model

a combination of the bilateral correlation across the left and right brain hemispheres as well as

potential correlation within each hemisphere. As a matter of fact for the MRI data considered in our

application the bilateral correlation is a very strong signal in the observed data and so it is important

to account for it.

For the bivariate spatial model we use a separable BCAR process as it is reasonable in our

application to assume (as it might be in other neuroimaging studies) that the spatial covariance on

the two hemispheres of the brain is similar. Non-separable multivariate spatial models (Gelfand and
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Banerjee, 2010; MacNab, 2016) could be adopted for more flexibility allowing the spatial structure

on the two hemispheres to be different; however, we do not expect that this additional flexibility

would be useful in the current context. This spatial process is combined with a group LASSO prior

for the regression coefficients, where each group corresponds to a single row of WWW. Each row in

this case represents the associations between a given SNP and all of the phenotypes. We employ

a bivariate Gaussian scale mixture representation of a group LASSO prior in order to facilitate

Bayesian computation.

To compute the posterior distribution we develop two algorithms, both of which are implemented

in our R package bgsmtr for imaging genetics regression modelling. The package is available

for download on the Comprehensive R Archive Network (CRAN). The first algorithm is a Gibbs

sampling algorithm and the second is a faster mean-field variational Bayes (VB) approximation to

the posterior distribution (Ormerod and Wand, 2010). Within the context of hierarchical models

for spatial data, mean-field VB inference has been considered by Ren et al. (2011) who make

comparisons with inference from MCMC within the context of spatial process models. In addition to

the computation of the posterior distribution, the bgsmtr package now incorporates Bayesian FDR

procedures (Morris et al., 2008) for SNP selection. This can be used alongside or as an alternative to

SNP selection based on credible intervals.

The overall contribution of our work is four-fold. First, we develop an explicitly spatial model for

imaging genetics based on the BCAR process. Second, we develop both an MCMC algorithm and a

mean-field VB algorithm for approximating the posterior distribution. Third, we incorporate Bayesian

FDR procedures for SNP selection within the new spatial model. Fourth, our new developments are

implemented in the latest version of the bgsmtr R package that is available for download on CRAN.

The remainder of this chapter is structured as follows. In Section 2, we present our new spatial

model for imaging genetics. Computation of the posterior distribution and SNP selection is discussed

in Section 3. Section 4 presents a simulation study evaluating the performance of the spatial model

relative to a non-spatial model and inference based on MCMC relative to that from VB. In Section

5 we apply our new model to our motivating application examining data from the ADNI-1 study,

examining 56 structural brain imaging phenotypes, 486 SNPs from 33 genes, and 632 subjects. The

chapter concludes with a discussion in Section 6.

3.2 Bayesian Spatial Regression Model

Let yyy` = (yyy`,1, . . . ,yyy`,c)T and xxx` = (xxx`,1, . . . , xxx`,d)T denote the imaging measures at c ROIs

and the genetic data respectively for subject `, ` = 1, . . . , n, where xxx`, j ∈ {0, 1, 2} represents

the number of minor alleles of the jth SNP for subject `. The regression model takes the form

E(y`y`y`) = WT xxx`, ` = 1, . . . , n, where W has dimensions d × c and Wi, j represents the association

between the ith SNP and the jth imaging phenotype.

Our model is developed for settings where the imaging data are symmetric with the same

measures collected on each hemisphere of the brain. This is true when the neuroimaging data are
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considered at the voxel level and it is also the case for the study considered here where we analyze

MRI data from the ADNI-1 database preprocessed using the FreeSurfer V4 software (Fischl, 2012).

The FreeSurfer software is used to conduct automated parcellation to define volumetric and cortical

thickness values from the 28 ROIs considered in Shen et al. (2010); Szefer et al. (2017); Greenlaw

et al. (2017) on each hemisphere leading to c = 56 brain measures in total.

As described in Szefer et al. (2017), potential confounders in the analysis are population strat-

ification and APOE genotype. Since true population structure is not observed, a set of principal

coordinates from multidimensional scaling are used to derive proxy variables for population strat-

ification in the data. We also adjust for APOE genotype, since it can account for the population

stratification in the data, over and above the principal components or principal coordinates (Lucotte

et al., 1997).

The response imaging measures at each brain ROI are first adjusted for the ten principal coordi-

nates, as well as for dummy variables representing APOE genotype, using weighted ordinary least

squares regression. The residuals from each regression are then used as the adjusted neuroimaging

phenotypes (Szefer et al., 2017).

Let y`,i = (y(L)
l,i , y

(R)
l,i )′ be the brain summary measures obtained at the ith ROI in the left hemisphere

(L) and the right hemisphere (R). Then y` = (y′`,1, . . . , y
′
`,c/2)′ is the imaging data ordered so that

left-right imaging phenotype pairs are adjacent in the response vector. There are thus c/2 ROIs on

each hemisphere and we let A denote a c/2 × c/2 symmetric neighborhood matrix which in the

simplest case can have binary elements, where Ai, j = 1 indicates that ROI i and j are neighbors i , j,

or more generally Ai, j ≥ 0 and Ai,i = 0, i = 1, . . . , c/2. A user input is thus a neighborhood matrix

A or in the absence of user input our software implementation takes Ai, j to be the average of the

absolute value of the sample correlation between phenotype/ROI i and phenotype/ROI j, where the

average is taken over left/right hemisphere. The regression model then takes the form

y` = WT x` + ε`. (2)

The model for the errors ε` is a mean-zero multivariate normal distribution of dimension c, which can

be specified through a set of c/2 compatible bivariate conditional distributions for εl,i = (ε(L)
l,i , ε

(R)
l,i )′,

specified as follows:

εl,i|εl(−i), ρ,Σ ∼ BVN
( ρ
Ai.

c/2∑
j=1

Ai, jε l, j,
1

Ai.
Σ
)
,

where ε l(−i) denotes the rest after removing εl,i from εl, Ai. =
∑ c

2
j=1 Ai, j, ρ ∈ [0, 1) characterizes spatial

dependence with ρ = 0 corresponding to independence across all ROI pairs and Σ is a 2 × 2 matrix

where κ = Σ12/
√

Σ11Σ22 ∈ (−1, 1) quantifies within pair dependence, and with κ = 0 corresponding

to independence within ROI pairs. We reiterate that the model allows for correlation across brain

hemispheres but it also has the case of independence as a special case.

As far as we are aware, this spatial model for neuroimaging data is one of the first to explicitly

model dependence across brain hemispheres in addition to accounting for local dependence. Often,
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this left/right bilateral dependence is ignored with neuroimaging data. In our data it is a very clear and

strong signal as is evident in Figure 3.1. As the parameter Σ is free in the model it can be informed

by the data. Therefore, we expect that the posterior will reflect some degree of between hemisphere

correlation when it is present to a sufficient degree, and will remain at roughly a diagonal form when

it is not, in diseases that have major differences across hemispheres, for example. The prior for Σ is

chosen so that it is centered on a diagonal matrix.

Under this new specification the first level of the regression model takes the following form:

y`|W,Σ
ind
∼ MVNc(WT x`, (DA − ρA)−1 ⊗ Σ), l = 1, . . . , n, (3)

where MVNc denotes a c-dimensional multivariate normal distribution, ⊗ is the kronecker product,

DA = diag{Ai., i = 1, ..., c/2} and as before Ai. =
∑ c

2
j=1 Ai, j. For the regression coefficients, we let

W̃i, j∗ = (Wi, j,Wi, j+1), j = 2 j∗ − 1, j∗ = 1, ..., c
2 , and we adopt a shrinkage prior based on a bivariate

Gaussian scale mixture

W̃i, j∗ |ω
2
i ,Σ

ind
∼ BVN(0, ω2

i Σ),

ω2
i |λ

2 iid
∼ Gamma(

c + 1
2

, λ2/2),

Σ ∼ Inv-Wishart(v,S),

where ρ and λ2 are tuning parameters controlling spatial dependence and regression sparsity re-

spectively. Tuning of the model is discussed in Section 3.3 after our discussion of computational

algorithms for fitting the model. The remaining hyperparameters v and S are set at v = 2 and S = I to

yield a prior that is somewhat vague, and they can be varied as part of a sensitivity analysis.

3.3 Computation and SNP Selection

3.3.1 Bayesian Computation

Bayesian inference for our proposed model is based on the posterior distribution P(Θ|YYY), where

Θ = {W,Σ,ω2}, ω2 = (ω2
1, · · · , ω

2
d) and YYY denotes the imaging data for all n subjects. Posterior

computation can be implemented using Gibbs sampling. The update steps for this algorithm are listed

in Algorithm 1 and their derivations are given in the Supplementary Material (Appendix B).

As a faster alternative approach to computing the posterior distribution, we also develop a

mean-field VB algorithm. As opposed to Monte Carlo sampling, VB inference is based on solving

an optimization problem. The approximation q(θ) to the posterior distribution P(θ|YYY) is based on

constructing and optimizing a lower bound on the marginal likelihood P(YYY).
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Assuming that q(θ) has the same support as P(θ|YYY), the log-marginal likelihood can be written as

logP(YYY)

=

∫
q(θ) log{

P(YYY , θ)
q(θ)

}dθ+

∫
q(θ) log{

q(θ)
P(θ|YYY)

}dθ

= Eq[log{
P(θ,YYY)

q(θ)
}] + Eq[log{

q(θ)
P(θ|YYY)

}]

= F(q,YYY) + KL(q||p) ≥ F(q,YYY).

Algorithm 3 Gibbs Sampling Algorithm

1. Set tuning parameters λ2 and ρ.

2. Initialize W,Σ,ω2 and repeat steps (3) - (5) below to obtain the desired Monte Carlo sample
size after burn-in.

3. For i = 1, ..., d, update WT
(i) according Equation 9.

4. Update Σ using Equation 10.

5. For i = 1, . . . , d update ω2
i through Equation 11.

Here, KL(q||p) denotes the Kullback-Leibler divergence from q to p and the final inequality is

true since KL(q||p) ≥ 0. The approximation to P(θ|YYY) by q(θ) is obtained by restricting q(θ) to a

manageable class of distributions and maximizing the lower bound F(q,YYY) (which is equivalent to

minimizing KL(q||p)) over that class. The functionalF(q,YYY) is referred to as the evidence lower bound

(ELBO). In the case of mean-field VB, the restriction of q(θ) is to a product form q(θ) =
∏J

j=1 q j(θj).

In the specific context of our model the assumed mean-field approximation is as follows

P(Θ|Y) ≈
[ d∏

i=1

q(W(i))q(ω2
i )
]
q(Σ), (4)

where W(i) is the ith row W.

We maximize the functional F(q1, . . . , qJ ,YYY) over the q j’s using a coordinate ascent procedure.

The update steps for this procedure take the form (Ormerod and Wand, 2010)

qi(θi) =
exp{Eθ−i[log P(θi|YYY , θ−i)]}∫
exp{Eθ−i[log P(θi|YYY , θ−i)]}dθi

,

where the expectation is taken with respect to q−i(θ−i) =
∏

l,i ql(θl). This leads to a set of update

equations related to the EM algorithm (Beal et al., 2003) that are iterated until convergence to a local

optimum. These update equations are presented in Algorithm 2 and their derivations are detailed

in the Supplementary Material (Appendix B). On convergence, the approximation to the posterior
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Algorithm 4 Mean-field Variational Bayes Algorithm

1. Set tuning parameters λ2 and ρ.

2. Initialize q(W), q(Σ), q(ω2) and cycle through steps (3) - (5) below until the increase in the lower
bound L(q) is negligible.

3. For i = 1, ..., d, update

Σq(W(i)) ←

( [
µq(ηi) ⊗ I c

2
⊗ (vq(Σ)S −1

q(Σ))
]

+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ (vq(Σ)S −1
q(Σ))](xT

`(i) ⊗ Ic)
)−1

,

µq(W(i)) ← Σq(W(i))

(
−

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ (vq(Σ)S −1
q(Σ))](xT

`(−i) ⊗ Ic)
(
µq(W(−i))

)
+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ (vq(Σ)S −1
q(Σ))]y`

)
.

4. Update S q(Σ) as

S q(Σ) ←

n∑
l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
+

d∑
i=1

c
2∑

j∗=1

Eq
(
W̃i, j∗W̃T

i, j∗
)
µq(ηi) + S ,

where:
bi, j =

[
DA − ρA

]
i, j .

5. For i = 1, ..., d, update µq(ηi),

µq(ηi) ←

√
λ2

Eq(c∗i )
,

where:

Eq(c∗i ) = Eq

tr(

c
2∑

j∗=1

W̃i, j∗W̃T
i, j∗Σ

−1)

 .
Update:

µq(ω2
i ) ←

1
µq(ηi)

+
1
λ2 ,

Varq(ω2
i ) ←

1
µq(ηi)λ

2 +
2

(λ2)2 .

distribution is based on (4) as well as the solutions

q(W(i)) ≡ MVN(µq(W(i)) ,Σq(W(i))), i = 1, . . . , d,

q(ω2
i ) ≡ Reciprocal Inverse Gaussian(µq(ηi), λq(ηi)), i = 1, . . . , d,

q(Σ) ≡ Inverse-Wishart(S q(Σ), vq(Σ)),
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where the statistics {µq(W(i)) ,Σq(W(i)) , i = 1, . . . , d}; {µq(ηi), λq(ηi), i = 1, . . . , d}; S q(Σ), vq(Σ), also referred

to as variational parameters, are obtained as the output of the iterative Algorithm 2.

To initialize the variational Bayes algorithm, we use a ridge regression estimator obtained

separately for each column of W obtained by fitting ridge regression with individual scalar-valued

phenotypes as the response. The ridge estimators are then used to initialize the mean of the variational

posterior distribution. The output of variational Bayes is then used to initialize the MCMC sampling

algorithm.

3.3.2 Bayesian FDR

The Bayesian FDR procedure applied in our work for SNP selection follows the approach

developed in Morris et al. (2008), but it has been adapted and implemented for the current spatial

model. We assume that we have N samples W(1)
i, j , . . . ,W

(N)
i, j from the posterior distribution for each

of the regression coefficients Wi, j, i = 1, · · · , d, j = 1, · · · , c. Let c∗ be a known critical value that

is chosen a priori to represent an effect size of interest. Given this value, we compute a posterior

tail probability for the i-th SNP at region j as pi, j = Pr(|Wi, j| > c∗|Y), i = 1, . . . , d; j = 1, . . . , c,

which can be approximated by pi, j ≈ N−1 ∑N
i∗=1 I

{
|W(i∗)

i, j | > c∗
}

and we replace any pi, j = 1 with

1 − (2N)−1. Given these posterior tail probabilities and a desired global FDR-bound α, we denote

by φα the corresponding threshold chosen so that a SNP-region pair (i, j) is selected if pi, j > φα.

The cut-off φα can be computed by sorting
{
pi, j, i = 1, · · · , d; j = 1, . . . , c

}
in descending order

{p(i), i = 1, · · · , d × c}, then φα = p(λ), with λ = max
{
l∗ : (l∗)−1 ∑l∗

l=1 (1 − p(l)) ≤ α
}
. The threshold

φα is a cutpoint on the posterior probabilities that controls the expected Bayesian FDR below level α.

The value of c∗ can be chosen based on prior knowledge of what constitutes an effect size of interest,

or in the absence of such knowledge, it can be chosen based on the data.

3.3.3 Model Selection and Tuning

To compare the spatial and non-spatial models and to choose values for the tuning parameters,

one option is the use of the WAIC (Vehtari et al., 2017). This criterion can be computed from posterior

simulation output and takes the form

WAIC = −2
n∑

l=1

log EWWW,Σ[p(yyy` |WWW,Σ)|yyy1, . . . ,yyyn] + 2
n∑

l=1

VARWWW,Σ[log p(yyy` |WWW,Σ)|yyy1, . . . ,yyyn],

where p(yyy` |WWW,Σ) is the multivariate normal density function associated with the conditional au-

toregressive model (3), and the expectation and variance are taken with respect to the posterior

distribution, with lower values being preferred.

An alternative more convenient approach to tuning the model is to use a simple modified moment

estimator based on the ridge regression estimator that we use to initialize VB. The estimator takes
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the form

λ2 =
dc(c + 1)

max{1, ν − 3}

∑
i, j

ŴWW
2
Ri, j


−1

,

and its form is derived in Appendix C.

For VB we use the moment estimate for λ2 and fix the value of ρ = 0.95 corresponding to a

reasonable degree of spatial dependence on the graph represented by the neighbourhood matrix A.

The MCMC algorithm is then initialized using the output of VB and the value of λ2 can be set at the

moment estimate while ρ can be chosen using the WAIC. The WAIC can also be used to compare the

spatial model with the non-spatial model.

While the WAIC can be used for selection of ρ, we have found that selection of λ2 using the

WAIC can result in patterns where WAIC decreases in a monotone fashion as λ2 increases. In these

situations, we recommend that either the modified moment estimate is used or that the results be

summarized over a range of values for λ2. One example of the latter is to plot the regularization

path which shows, for each region, the value of the posterior mean corresponding to each SNP as a

function of varying λ2. This is demonstrated in our application.

3.4 Simulation Study

We conduct a simulation study in which the dimension of the data is the same as that in our

motivating application with 56 structural brain imaging phenotypes, 486 SNPs from 33 genes, and

632 subjects. The data are simulated from the spatial model with parameter values set at the estimates

obtained from the real data (the estimates from the MCMC algorithm). We use this setting as it is

the most realistic choice of parameter values. Thus, while we are simulating from the model we are

simulating from it under a setting that aligns realistically with the data from our application.

We use 100 simulation replicates and run the MCMC algorithms for both the spatial model and

the non-spatial model for 10000 iterations with 5000 iterations used as burn-in for each replicate,

and we run the variational Bayes algorithm to convergence of the ELBO, where convergence is

declared when the absolute relative change in the ELBO is smaller than 10−4 for two consecutive

iterations. The tuning parameters are chosen using the WAIC over a coarse grid for the spatial model

implemented via MCMC; set using the default approach in the R package for the original non-spatial

model of Greenlaw et al. (based on five-fold cross-validation over a grid of possible values with

out-of-sample prediction based on an approximate posterior mode, the estimator of Wang et al.

(2012), that can be computed quickly) and using our moment based approach to obtain λ2 for VB,

while the spatial parameter is held fixed at the default value of ρ = 0.95 for VB (the true value set

when simulating the data is ρ = 0.8).

Three measures are used for comparison in this study. For the best overall performance, the spatial

model implemented using MCMC has an average mean-squared error (MSE) of 0.0055, followed by

the non-spatial model with an average MSE of 0.012 and finally the spatial model implemented with

VB with an average MSE of 0.043. Here, the average is taken over the 27,216 regression coefficients
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in the model. Next, we examine the correlation between the posterior mean estimates of vec(WWW) and

the true values averaged over simulation replicates. The spatial model implemented using MCMC has

the best performance (0.69), followed by the non-spatial model implemented via MCMC (0.67) and

then the spatial model implemented using VB (0.65). The average-squared bias (where the average is

taken over the regression coefficients in the model) is lowest for the non-spatial model (3.29×10−4),

followed by the spatial model implemented with MCMC (4.70×10−3) and finally the spatial model

implemented using VB (9.10×10−3) has the highest average-squared bias. Both the non-spatial and

spatial models appear to exhibit adequate coverage probability overall when implemented with

MCMC while the variational Bayes implementation of the spatial model exhibits coverage of 95%

equal-tail credible intervals that is slightly lower at 0.91. The average posterior standard deviation

obtained from the spatial model (MCMC) is slightly larger than that obtained from the non-spatial

model perhaps indicating that the spatial model is adequately accounting for the dependence. As

is typical with variational Bayes the posterior standard deviation is underestimated. This arises

from the Kullback-Leibler objective function KL(q||p) for variational Bayes which under-penalizes

approximations that are under-dispersed.

To evaluate the empirical FDR of the Bayesian FDR approach when the expected Bayesian FDR

is controlled with α = 0.05, leading to the threshold for posterior probabilities φα = 0.05, we conduct

an additional 100 simulation replicates where the error structure underlying the simulated data is

again set to that obtained from the real data application. All but 100 SNPs have their 56 coefficients

set to exactly zero while 50 rows of W have coefficients set to Wi j = 1, 25 rows have coefficients set

to Wi j = 2 and the remaining 25 rows have coefficients set to Wi j = 3. Here we evaluate the empirical

FDR for the spatial model and both of its implementations. The methodology of Greenlaw et al.

(2017) uses credible intervals rather than Bayesian FDR for SNP selection. Both the VB and MCMC

algorithms use the moment estimate for λ2. The empirical proportion of false discoveries averaged

over simulation replicates is reported in Supplementary Material (Appendix D) for both VB and

MCMC as a function of c∗. We note that these c∗. values are based on each simulated response matrix

Y having its columns centered and scaled. The empirical FDR appears to drop to 0 with increasing

c∗. faster with the MCMC implementation which is consistent with the VB implementation being

more liberal in selecting SNPs.

3.5 ADNI-1 Study of MRI and Genetics

We apply our spatial model as well as the group sparse multi-task regression model of Greenlaw

et al. (2017) to MRI and genetic data collected from n = 632 subjects from the ADNI-1 database.

The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other biological markers, and

clinical and neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see
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www.adni-info.org. ADNI is an ongoing, longitudinal, multicenter study designed to develop

clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of AD.

The genetic data comprise SNPs belonging to the top 40 Alzheimer’s Disease (AD) candidate

genes listed on the AlzGene database as of June 10, 2010. The data presented here are queried from

the genome build as of December 2014, from the ADNI-1 data. After quality control and imputation

steps, the genetic data used for this study include 486 SNPs from the 33 targeted genes discussed

in Szefer et al. (2017). The freely available software package PLINK (Purcell et al., 2007) is

used for genomic quality control. Subjects are included if their genotyping data is available, they

have a baseline MRI scan, and they have at least one additional follow-up baseline scan. Among

all SNPs, only SNPs belonging to the top 40 AD candidate genes listed on the AlzGene database

(www.alzgene.org) as of June 10, 2010, are selected after the standard quality control (QC) and

imputation steps. The QC criteria for the SNP data include (i) call rate check per subject and per SNP

marker, (ii) gender check, (iii) sibling pair identification, (iv) the Hardy-Weinberg equilibrium test,

(v) marker removal by the minor allele frequency and (vi) population stratification. Our thresholds

for SNP and subject exclusion are the same as in Wang et al. (2012) with three exceptions. In the data

quality control step, we used a stricter minimum call rate of 95% on SNPs vs. Wang et al.’s call rate

of 90%. To assign SNPs to genes, we use a genome build (Build GRCh38.p2) from December 2014

whereas these authors use a genome build (Build 36.2) from September 2006, and use all subjects

with a baseline measurement whereas we choose subjects with a baseline MRI scan and a scan at at

least one additional time point in the longitudinal study.

The response measures are obtained by preprocessing the MRI data using the FreeSurfer V4

software which conducts automated parcellation to define volumetric and cortical thickness values

from the 28 ROIs considered in Szefer et al. (2017) and Greenlaw et al. (2017) on each hemisphere

of the brain, leading to c = 56 brain measures in total. These ROIs are chosen based on prior

knowledge that they are related to Alzheimer’s Disease. Each of the response variables are adjusted

for age, gender, education, handedness, baseline total intracranial volume (ICV), potential population

stratification and APOE genotype and centered to have zero-sample-mean and unit-sample-variance.

We fit our new spatial model to these data using both Algorithm 1 (Gibbs sampling) and Algorithm

2 (VB). In addition, we fit the non-spatial model using the MCMC sampler derived therein, with the

tuning parameters for the non-spatial model set at λ2
1 = 1000 and λ2

2 = 1000 based on the values

selected in Greenlaw et al. (2017). In all cases, MCMC sampling is run for 10,000 iterations with

the initial 5,000 iterations discarded. The required computation time for the spatial model (MCMC)

is 50 hours on a single core (2.66-GHz Xeon x5650) with 20GB of RAM, while the computation for

the non-spatial model is 5hrs. Some trace plots and MCMC convergence diagnostics are presented

in Appendix E and these demonstrate rapid convergence and good mixing of the MCMC sampling

chains. The VB algorithm is run to convergence and requires 45 minutes with the ELBO converging

in approximately 16 iterations. The tuning parameter λ2 is set based on the moment estimator and we

set ρ = 0.95 for VB. The convergence of VB based on successive values of the ELBO is depicted in

Figure 3.2.
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Figure 3.2: Variational Bayes - convergence of the evidence lower bound (ELBO) for the ADNI MRI
and genetic data considered in the application.

Figure 3.3 presents the WAIC computed for a number of different choices of the tuning parameters

ρ and λ2. For the values of ρ = 0.8 and λ2 = 10, 000 for the ADNI-1 data, the value of the WAIC is

83, 170. While the WAIC is able to identify a value for ρ, it is monotone decreasing as a function of

λ2. We thus summarize the results over several values of λ2. The WAIC obtained for the non-spatial

model with value of the tuning parameters used in Greenlaw et al. (2017) (λ2
1 = 1000 and λ2

2 = 1000)

is 108, 745.

Figure 3.4 presents the number of SNPs chosen by the spatial model for each ROI using Bayesian

FDR (based on a critical value of c∗ = 0.044) as a function of the tuning parameter λ2 for both Gibbs

sampling and VB. As expected, the curves are monotone decreasing but it is interesting to note that

their shapes differ when comparing the algorithms. In particular, VB selects a larger number of SNPs

at all values of λ2. Comparing the figures obtained from MCMC and VB, the VB approximation

appears to perform reasonably well in this regard, though MCMC is a gold standard because of

simulation consistency guarantees (Robert and Casella, 2013). We suggest that the VB algorithm

be used for obtaining starting values to initialize the MCMC as well as a tool to gain some initial

insight into the data while the MCMC sampler runs to completion. This is useful because the MCMC

sampler requires a relatively long run time, and the VB algorithm can be used initially (requiring 45

minutes in our study) while the MCMC sampler runs (requiring 50 hrs in our study).

For the values of the tuning parameters ρ = 0.8, λ2 = 10, 000, the average number of SNPs

selected per ROI is 2, while more than half of the ROIs have no SNPs selected. In total, 75 SNPs

across all 56 ROIs are selected and these are listed in Table 3.1 of the Supplementary Material
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Figure 3.3: ADNI-1 Data - the WAIC for the spatial model implemented with MCMC for various
values of λ2 and ρ.

Figure 3.4: ADNI-1 Data - Relationship between the number of selected SNPs in each region and
λ2. Each region is represented with a curve in each panel of the figure. The left panel shows this
relationship for MCMC combined with Bayesian FDR (α = 0.05) while the right panel shows the
same relationship for VB with Bayesian FDR (α = 0.05).
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(Appendix A) along with the corresponding phenotypes that they are associated with. With the VB

approximation, 150 SNPs are selected, and the set of SNP-ROI pairs selected by MCMC is a proper

subset of the set selected by VB. In addition, the subset of SNPs and phenotypes also selected by the

approach of Greenlaw et al. (2017) where the marginal posterior 95% credible interval is used for

SNP selection are also highlighted in bold in Table 3.1 of the Supplementary Material (Appendix A).

Considering all three approaches, a consistent signal is found at the APOE gene, where all three

methods select SNP rs405509 and the Bayesian FDR procedure selects this SNP for four phenotypes,

namely, the middle temporal gyrus thickness on the right hemisphere, supramarginal gyrus thickness

on the right hemisphere, mean thickness of the caudal midfrontal, rostral midfrontal, superior frontal,

lateral orbitofrontal, and medial orbitofrontal gyri and frontal pole on the right hemisphere, and the

mean thickness of the inferior temporal, middle temporal, and superior temporal gyri on the right

hemisphere. It is of interesting to note that the selected associations for this SNP all correspond to

ROIs in the right brain hemisphere. The associations between the genetic signal represented in our

analysis by APOE SNP rs405509 with phenotypes on the right hemisphere of the brain may be of

potential interest for further investigation.

The associated point estimates and 95% equal-tail credible intervals for all 56 phenotypes and

APOE SNP rs405509 are presented in Table 3.4 of the supplementary material (Appendix F) and a

subset of these results for 26 phenotypes is presented in Table 3.1. Overall, there is broad agreement

based on the overlap of the interval estimates, though, we also see are a number of examples where the

95% interval estimate obtained from the spatial model includes the value 0 while the corresponding

interval estimate for the non-spatial model does not include zero. The higher bias arising from VB in

the simulation studies is also apparent in the results presented in Table 3.1. The interval estimates

arising from VB appear to be slightly more narrow than those obtained from MCMC, but not to a

large degree, and this may also be reflected in the selection rates depicted in Figure 3.4 which are

slightly higher.

Table 3.1: ADNI-1 Study: posterior means and 95% equal-tail credible intervals for a subset of the
ROIs and their association with APOE SNP rs405509.

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Amygdala volume

(L)

0.09 [-0.03,0.22] 0.17 [0.08,0.28] 0.12 [0.02,0.23]

Cerebral white mat-

ter volume (L)

0.09 [-0.04,0.22] 0.19 [0.10,0.28] 0.13 [0.03,0.23]

Inferior lateral ven-

tricle volume (L)

-0.13 [-0.24,-0.01] -0.14 [-0.24,-0.05] -0.08 [-0.18,0.02]

Continued on next page
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Table 3.1 – Continued from previous page

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Inferior parietal

gyrus thickness (R)

0.11 [0.01,0.21] 0.20 [0.11,0.29] 0.13 [0.03,0.23]

Fusiform, parahip-

pocampal, and lin-

gual gyri, temporal

pole and transverse

temporal pole mean

thickness (L)

0.12 [0.01,0.24] 0.22 [0.13,0.32] 0.14 [0.04,0.24]

Inferior temporal,

middle temporal,

superior tem-

poral, fusiform,

parahippocampal,

and lingual gyri,

temporal pole

and transverse

temporal pole mean

thickness (L)

0.11 [0.01,0.22] 0.20 [0.11,0.28] 0.13 [0.03,0.23]

Postcentral gyrus

thickness (L)

0.13 [0.03,0.24] 0.23 [0.13,0.33] 0.14 [0.03,0.23]

Superior frontal

gyrus thickness (R)

0.12 [0.02,0.22] 0.19 [0.11,0.28] 0.14 [0.04,0.24]

Supramarginal

gyrus thickness (L)

0.13 [0.02,0.23] 0.21 [0.13,0.29] 0.14 [0.04,0.25]

Supramarginal

gyrus thickness (R)

0.14 [0.04,0.24] 0.24 [0.17,0.33] 0.15 [0.05,0.25]

Fusiform gyrus

thickness (L)

0.11 [-0.02,0.23] 0.19 [0.09,0.28] 0.13 [0.03,0.23]

Hippocampus vol-

ume (L)

0.12 [-0.02,0.26] 0.22 [0.14,0.34] 0.15 [0.05,0.26]

Continued on next page

32



Table 3.1 – Continued from previous page

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Caudal midfrontal,

rostral midfrontal,

superior frontal,

lateral orbitofrontal,

and medial or-

bitofrontal gyri and

frontal pole mean

thickness (L)

0.10 [-0.02,0.22] 0.18 [0.10,0.27] 0.13 [0.03,0.23]

Inferior temporal,

middle temporal,

and superior tem-

poral gyri mean

thickness (L)

0.10 [-0.01,0.21] 0.17 [0.08,0.26] 0.12 [0.02,0.22]

Inferior temporal,

middle temporal,

and superior tem-

poral gyri mean

thickness (R)

0.10 [-0.01,0.21] 0.20 [0.11,0.30] 0.13 [0.02,0.22]

Fusiform, parahip-

pocampal, and lin-

gual gyri, temporal

pole and transverse

temporal pole mean

thickness (R)

0.10 [-0.01,0.21] 0.20 [0.11,0.29] 0.12 [0.02,0.22]

Inferior and supe-

rior parietal gyri,

supramarginal

gyrus, and pre-

cuneus mean

thickness (L)

0.09 [-0.02,0.21] 0.16 [0.07,0.25] 0.12 [0.02,0.22]

Precentral and post-

central gyri mean

thickness (R)

0.09 [-0.02,0.20] 0.17 [0.09,0.26] 0.12 [0.01,0.22]

Continued on next page
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Table 3.1 – Continued from previous page

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Precentral and post-

central gyri mean

thickness (L)

0.10 [-0.01,0.20] 0.16 [0.08,0.25] 0.12 [0.02,0.22]

Middle temporal

gyrus thickness (L)

0.08 [-0.03,0.19] 0.15 [0.06,0.23] 0.11 [0.01,0.21]

Middle temporal

gyrus thickness (R)

0.09 [-0.01,0.20] 0.18 [0.11,0.27] 0.12 [0.02,0.22]

Postcentral gyrus

thickness (R)

0.09 [-0.01,0.20] 0.18 [0.08,0.28] 0.11 [0.01,0.21]

Precentral gyrus

thickness (R)

0.08 [-0.03,0.19] 0.15 [0.06,0.25] 0.11 [0.01,0.21]

Precuneus thick-

ness (R)

0.09 [-0.01,0.19] 0.17 [0.08,0.25] 0.11 [0.01,0.21]

Superior parietal

gyrus thickness (R)

0.08 [-0.02,0.18] 0.14 [0.06,0.22] 0.11 [0.01,0.21]

Superior temporal

gyrus thickness (R)

0.10 [-0.01,0.22] 0.22 [0.14,0.31] 0.13 [0.03,0.23]

Another consistent signal is found at the ACE gene with SNP rs4311, which is found associated

with 12 ROIs. We note that all but one of these ROIs is in the right hemisphere, and three of these

ROIs (all of which are in the right hemisphere) are in common with the ROIs selected for this SNP

by Greenlaw et al. (2017). In Figure 3.5 we indicate the SNPs chosen for each ROI, where the SNPs

are grouped on the x-axis by gene and the ROIs are grouped in left/right pairs on the y-axis. The

selected SNPs for each ROI are shown for tuning parameter values λ2 = 1000 and λ2 = 10, 000. In

both cases the value of the spatial tuning parameter for the CAR model is set at ρ = 0.8 as suggested

by Figure 3.3.

Examining Figure 3.5, two ROIs stand out has having a relatively broad genetic signal that

persists even as the tuning parameter increases from λ2 = 1000 to λ2 = 10, 000. These are Left-

Supramarg (thickness of the left supramarginal gyrus) and Left-SupTemporal (thickness of the left

superior temporal gyrus). For the case where λ2 = 1000, phenotype Left-Supramarg is associated

with 188 SNPs (top panel of Figure 3.5) and this decreases to 24 SNPs (bottom panel of Figure 3.5)

when λ2 = 10, 000. When λ2 = 1000 phenotype Left-SupTemporal is associated with 188 SNPs and

this decreases to 23 SNPs when λ2 = 10, 000. This is to be compared with the average number of
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Figure 3.5: ADNI-1 Data: SNPs chosen with the spatial model fit using Gibbs sampling and
Bayesian FDR (α = 0.05) are highlighted in red for each phenotype. The black ticks on y-axis
indicate the phenotypes from the left/right hemisphere, and the SNPS from same gene are indicated
by the ticks on x-axis. The top panel corresponds to the case λ2 = 1000 while the bottom panel
corresponds to the case λ2 = 10, 000.

SNPs selected over all ROIs when λ2 = 10, 000 which is just 2. The regularization paths for these

two regions are shown in Figure 3.6 where the SNPs having the most persistent signal across values
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of λ2 are highlighted. These include SNP rs10868609 for the thickness of the left supramarginal

gyrus and rs10501426 for the thickness of the left superior temporal gyrus.

3.6 Conclusion

We have developed a spatial multi-task regression model for relating genetic data to multivariate

imaging phenotypes. The model uses a shrinkage prior with group penalization for the coefficients of

each SNP (rows of W) in the regression structure and the error structure for the imaging phenotype

is based on a proper bivariate conditional autoregressive model, which allows us to account for

bilateral correlation across brain hemispheres while also allowing us to account for within-hemisphere

correlation using a graph structure characterized by a neighbourhood matrix. Ours is one of the first

explicitly spatial hierarchical models for imaging genetics and neuroimaging to account for both

spatial correlation and bilateral cross-hemisphere correlation.

Within the current context the investigation of alternative shrinkage priors is of interest. Future

development will investigate a group spike-and-slab prior as an alternative to the Bayesian group

LASSO prior. The development of reduced rank approximations for WWW in combination with mean-

field approximations is also of interest in enabling the application of the bivariate spatial model to

much larger scale imaging and genetic data. Future developments may also incorporate the Bayesian

false discovery probability proposed by Wakefield (2007) which allows the user to account explicitly

for the cost of false discoveries and the cost of false non-discovery.

With regards to the two computational algorithms, we recommend that the approximate VB

procedures be used to initialize the MCMC algorithm and also to obtain an initial insight into the

data while the MCMC sampler runs. It appears that VB combined with Bayesian FDR tends to be

more liberal in the selection of SNPs, and in our application the SNP-ROI pairs selected by MCMC

+ Bayesian FDR are a proper subset of that selected by VB + Bayesian FDR. Nevertheless, Figure

3.4 suggests that the approximation can be reasonable when good initializations are used. In addition,

improving the optimization algorithm by including gradient steps operating on the ELBO directly

will likely lead to better VB solutions and potentially improved approximations.

While our current methodology is best suited for situations where the analysis is focussed on a

relatively small set of targeted SNPs and a moderate number of ROIs, these are settings in which

a full multivariate model for imaging genetics can be specified and fit. Extending the applicability

of the methodology to settings with massive numbers of genetic and neuroimaging variables is an

avenue for future work. Combining variational Bayes with better optimization schemes, reduced

rank regression and the use of parallel matrix computations may be a useful avenue in this regard.

Divide and conquer strategies such as the consensus Monte Carlo algorithm (Scott et al., 2016) as

well as splitting up the brain into a smaller number of sub-regions might lead to feasible Monte Carlo

implementations for such settings. Their design and implementation for imaging genetics and the

Bayesian spatial model should lead to greater scalability.
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Figure 3.6: ADNI-1 Data: regularization paths showing the posterior mean estimates for varying
λ2 for all SNPs for the thickness of the supramarginal gyrus on the left side of the brain and the
thickness of the superior temporal gyrus on the left side of the brain.
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3.7 Appendix A

3.7.1 Selected SNPs and the Corresponding Regions of Interest for the ADNI-1 Ap-
plication

Table 3.2: Application to ADNI-1 data: The 75 SNPs and corresponding phenotypes selected from
the proposed Bayesian spatial group LASSO regression model with Gibbs Sampling combined
with Bayesian FDR at α = 0.05. These same SNP-ROI pairs are also selected by variational Bayes
combined with Bayesian FDR at α = 0.05. SNPs and phenotypes in bold correspond to those also
chosen using 95% credible intervals and the model of Greenlaw et al. (2017).

SNP Gene Phenotype ID (hemisphere)

rs4305 ACE SupTemporal(L), Supramarg(L)

rs4311 ACE AmygVol(R), CerebCtx(R), HippVol(R), InfParietal(R),
Parahipp(R), Precentral(L), SupFrontal(R),SupParietal(R),
Supramarg(R), TemporalPole(R), MeanCing(R), Mean-

MedTemp(R)

rs4353 ACE Supramarg(R)

rs405509 APOE MidTemporal(R), Supramarg(R), MeanFront(R), MeanLat-
Temp(R)

rs11191692 CALHM1 SupTemporal(L)

rs3811450 CHRNB2 SupParietal(R)

rs2025935 CR1 Postcentral(L), Supramarg(L)

rs10780849 DAPK1 InfParietal(R)

rs1105384 DAPK1 TemporalPole(R), MeanCing(L)

rs1473180 DAPK1 CerebWM(L)

rs17399090 DAPK1 MeanCing(L)

rs3095747 DAPK1 Postcentral(L)

rs3118853 DAPK1 SupTemporal(L)

rs3124237 DAPK1 InfParietal(R)

rs3124238 DAPK1 SupTemporal(L)

rs4877368 DAPK1 Parahipp(R)

rs4878117 DAPK1 Parahipp(R)

rs913782 DAPK1 InfParietal(R)

rs10916959 ECE1 Supramarg(L)

rs212539 ECE1 SupTemporal(L), Supramarg(L)

rs4654916 ECE1 SupTemporal(L), Supramarg(L)

rs6584307 ENTPD7 InfParietal(R)

rs11601726 GAB2 SupTemporal(L), Supramarg(L)

rs7927923 GAB2 SupTemporal(L)

Continued on next page
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Table 3.2 – Continued from previous page

SNP Gene Phenotype ID (hemisphere)

rs17561 IL1A InfTemporal(R)

rs16924159 IL33 TemporalPole(L), MeanCing(L)
rs928413 IL33 Postcentral(L)

rs1433099 LDLR CerebWM(L), SupFrontal(R)

rs2228671 LDLR MidTemporal(R)

rs2569537 LDLR MeanCing(R)

rs6511720 LDLR Postcentral(L), Supramarg(L)

rs688 LDLR Supramarg(L)

rs2184226 MTHFR SupTemporal(L), Supramarg(L)

rs3737964 MTHFR MeanSensMotor(R)

rs4846048 MTHFR Supramarg(L)

rs12209631 NEDD9 CerebWM(L)

rs1475345 NEDD9 InfParietal(R)

rs16871157 NEDD9 SupTemporal(L), Supramarg(L)

rs17496723 NEDD9 MeanFront(R)

rs2072834 NEDD9 Supramarg(L)

rs2182335 NEDD9 Precuneus(R), MeanTemp(R)

rs2182337 NEDD9 SupTemporal(L)

rs2950 NEDD9 SupTemporal(L), Supramarg(L)

rs4713379 NEDD9 InfParietal(R)

rs744970 NEDD9 Supramarg(L)

rs760680 NEDD9 PostCing(L), Postcentral(L), SupTemporal(L), Supramarg(L)

rs10501604 PICALM Supramarg(L)

rs7938033 PICALM Supramarg(L)

rs6084833 PRNP PostCing(L), SupTemporal(L)

rs10748924 SORCS1 InfTemporal(R)

rs10786972 SORCS1 MeanCing(L), MeanTemp(R)

rs10787010 SORCS1 PostCing(L), MeanSensMotor(L)

rs10787011 SORCS1 Supramarg(L)

rs10884399 SORCS1 Supramarg(L)

rs11193198 SORCS1 SupTemporal(L)

rs12240854 SORCS1 Postcentral(L), SupTemporal(L)

rs1269918 SORCS1 CerebWM(L)
rs1887635 SORCS1 SupTemporal(L)

rs2149196 SORCS1 MidTemporal(R), Parahipp(R)

rs2243581 SORCS1 SupTemporal(L)

Continued on next page
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Table 3.2 – Continued from previous page

SNP Gene Phenotype ID (hemisphere)

rs2418811 SORCS1 PostCing(L), SupTemporal(L)

rs596577 SORCS1 Supramarg(L)

rs7903481 SORCS1 InfParietal(R), InfTemporal(R)

rs10502262 SORL1 Postcentral(L)

rs1699102 SORL1 PostCing(L), Postcentral(L), SupTemporal(L), Supramarg(L)

rs1699105 SORL1 SupTemporal(L)

rs2276346 SORL1 Supramarg(L)

rs3781832 SORL1 Supramarg(L)

rs4936632 SORL1 SupTemporal(L)

rs661057 SORL1 SupTemporal(L)

rs726601 SORL1 Supramarg(L)

rs762484 TF MeanCing(L)

rs1568400 THRA MeanTemp(R)

rs3744805 THRA HippVol(R), Parahipp(R), Precuneus(R)

rs7219773 TNK1 Parahipp(R)

3.8 Appendix B

3.8.1 Derivations for the Gibbs Sampling and Mean Field Variational Bayes Algo-
rithm

Recall that ω2 = (ω2
1, · · · , ω

2
d), W̃i, j∗ = (Wi, j,Wi, j+1), i = 1, ..., d, j = 2 j∗ − 1, j∗ = 1, ..., c

2 . based

on the hierarchical prior setting, the joint posterior distribution can be expressed up to a normalizing

constant as

p(W, ω2
1, · · · , ω

2
d,Σ, |Y) ∝ p(Y|W,Σ)p(W|Σ,ω2)p(ω2)p(Σ)

∝ |(DA − ρA)−1 ⊗ Σ|−
n
2 exp

{
−

1
2

n∑
`=1

(y` −WT x`)T [(DA − ρA)−1 ⊗ Σ]−1

(y` −WT x`)
}

×

d∏
i=1

(ω2
i )−

c
2 |Σ|−

c
4 exp{−

1
2

c
2∑

j=1

W̃T
i, j(ω

2
i Σ)−1W̃i, j}

×

d∏
i=1

(λ
2

2 )
c+1

2

Γ( c+1
2 )

(ω2
i )

c
2−

1
2 exp{−

λ2

2
ω2

i }

×
|S |

v
2

2vΓ2( v
2 )
|Σ|−

v+3
2 exp

{
−

1
2

tr(SΣ−1)
}
.
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The full conditional distribution of W(i)

For any matrix A, let A(i) be the ith row of A, Ai, j be ith row and jth column of A if A is a matrix

and A(i) be the ith element of A if A is a vector. And let A(−i) be the rest after removing A(i) from A.

The full conditional distribution of W(i), i = 1, . . . , d is expressed as

p(W(i)
∣∣∣Y,W(−i),ω

2,Σ, ρ, λ2) ∝ p(Y|W(i),W(−i),Σ, ρ)p(W|Σ,ω2)

∝ exp

−1
2

n∑
`=1

(y` −WT x`)T [(DA − ρA)−1 ⊗ Σ]−1(y` −WT x`)


×

∏
|ω2

i Σ|
− c

4 exp

−1
2

c
2∑

j∗=1

w̃T
i j∗ (ω2

i Σ)−1 w̃i j∗


∝ exp

−1
2

n∑
`=1

(y` −WT x`)T [(DA − ρA)−1 ⊗ Σ]−1(y` −WT x`)


× exp

−1
2

∑
i∈πk

c
2∑

j∗=1

w̃T
i j∗ (ω2

i Σ)−1 w̃i j∗

 .

(5)

Split W into W(i) and W(−i) and rewrite the first exponent of (5) as

exp

−1
2

n∑
`=1

(y` −WT
(i)x`(i) −WT

(−i)x`(−i))T [(DA − ρA)−1 ⊗ Σ]−1(y` −WT
(i)x`(i) −WT

(−i)x`(−i))

 . (6)

We vectorise the terms that include either W(i) or W(−i) and simplify based on:

1) vec(WT
(i)x`(i)) = (xT

`(i) ⊗ Ic)vec(WT
(i)),

2) vec(WT
(−i)x`(−i)) = (xT

`(−i) ⊗ Ic)vec(WT
(−i)).

These results give an equivalent expression for (6)

exp

−1
2

n∑
`=1

(
y` − (xT

`(i) ⊗ Ic)vec(WT
(i)) − (xT

`(−i) ⊗ Ic)vec(WT
(−i))

)T
[(DA − ρA)−1 ⊗ Σ]−1.(

y` − (xT
`(i) ⊗ Ic)vec(WT

(i)) − (xT
`(−i) ⊗ Ic)vec(WT

(−i))
)}
,

which can be expressed as

exp

−1
2

n∑
`=1

(
yT
` − vec(WT

(i))
T (xT

`(i) ⊗ Ic)T − vec(WT
(−i))

T )(xT
`(−i) ⊗ Ic)T

)
[(DA − ρA)−1 ⊗ Σ]−1

(
y` − (xT

`(i) ⊗ Ic)vec(WT
(i)) − (xT

`(−i) ⊗ Ic)vec(WT
(−i))

)}
,
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Using (A ⊗ B)T = (AT ⊗ BT ) and (A ⊗ B)−1 = (A−1 ⊗ B−1) the above is simplified to

exp

− 1
2σ2

n∑
`=1

(
yT
` − vec(WT

(i))
T (x`(i) ⊗ Ic) − vec(WT

(−i))
T (x`(−i) ⊗ Ic)

)
[(DA − ρA) ⊗ Σ−1](

y` − (xT
`(i) ⊗ Ic)vec(WT

(i)) − (xT
`(−i) ⊗ Ic)vec(WT

(−i))
)}
.

It is now possible to expand the expression. Only those terms that include W(i) are kept, as the other

terms are considered to be constants that can be factored out to become part of the normalising

constant. We have

exp

−1
2

n∑
`=1

(
−yT

` ((DA − ρA) ⊗ Σ−1)(xT
`(i) ⊗ Ic)vec(WT

(i))

−vec(WT
(i))

T (x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`
+vec(WT

(i))
T (x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT

`(i) ⊗ Ic)vec(WT
(i))

+vec(WT
(i))

T (x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)vec(WT

(−i))

+vec(WT
(−i))

T (x`(−i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(i) ⊗ Ic)vec(WT

(i))
)}
,

which can be expressed as

exp

−1
2

vec(WT
(i))

T
n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(i) ⊗ Ic)vec(WT

(i))

+2vec(WT
(i))

T
n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)vec(WT

(−i))

−2vec(WT
(i))

T
n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`


 .

Next, consider the second exponent in (5),

exp

−1
2

∑
i∈πk

c
2∑

j∗=1

w̃T
i j∗ (ω2

i Σ)−1 w̃i j∗

 ,
and define a matrix, Hi, such that Hi =

[
diag

{
( 1
ω2

i
)I c

2

}
⊗ Σ−1

]
=

[
diag

{
1
ω2

i

}
⊗ I c

2
⊗ Σ−1

]
.

Notice that, ∑
i∈πk

c
2∑

j∗=1

w̃T
i j∗ (ω2

i Σ)−1 w̃i j∗ = vec(WT
(i))

T Hivec(WT
(i)).
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We can then rewrite (5), up to its normalising constant, as,

p(W(i)
∣∣∣Y,W(−i),ω

2,Σ, λ2) ∝

exp

−1
2

vec(WT
(i))

T (Hk +

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(i) ⊗ Ic))vec(WT

(i))

+2vec(WT
(i))

T
n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)vec(WT

(−i))

−2vec(WT
(i))

T
n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`


 . (7)

Expression (7) is a quadratic form in vec(WT
(i)) in the exponent. Therefore, the full conditional

distribution of vec(WT
(i)) is multivariate normal of dimension mkc, with parameters, say, µi

∼

µi
∼

µi
∼

and Σi.

After expanding, the exponent of a multivariate normal distribution is of the form,

exp
{
−

1
2

[
vec(WT

(i))
TΣ−1

i vec(WT
(i)) − 2vec(WT

(i))
TΣ−1

i µi
∼

µi
∼

µi
∼

+ constant
]}
. (8)

The next steps involve matching (7) to (8).

Solving for Σi:

Consider the terms of (7) that are quadratic in vec(WT
(i)). We have

exp

−1
2

vec(WT
(i))

T (Hi +

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(i) ⊗ Ic))vec(WT

(i))


 .

Rearrange to obtain

exp

−1
2

vec(WT
(i))

T

 n∑
`=1

(x`(i) ⊗ Ic)(xT
`(i) ⊗ Ic) + Hi

 vec(WT
(i))


 .

We now observe that

Σ−1
i =

Hi +

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(i) ⊗ Ic)

 ,
Σi =

Hi +

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(i) ⊗ Ic)

−1

.

Solving for µi
∼

µi
∼

µi
∼

:

Consider the term − 1
2

(
−2vec(WT

(i))
TΣ−1

i µi
∼

µi
∼

µi
∼

)
within the density of the multivariate normal density.
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We have the expression,

−
1
2

(
2vec(WT

(i))
T

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)vec(WT

(−i))

− 2
n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`
)

= vec(WT
(i))

T
(
−

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)vec(WT

(−i))

+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`
)
.

Match up the expressions,

Σ−1
i µi
∼

µi
∼

µi
∼

=

(
−

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)vec(WT

(−i))

+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`
)
.

Isolate µi
∼

µi
∼

µi
∼

to obtain

µi
∼

µi
∼

µi
∼

= Σi

(
−

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)vec(WT

(−i))

+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`
)
.

Finally, the full conditional distribution of W(i) is expressed as

vec(WT
(i))

∣∣∣Y,W(−i),ω,Σ, ρλ
2 ∼ MVNmkc( µi

∼

µi
∼

µi
∼

, Σi), (9)

where

µi
∼

µi
∼

µi
∼

= Σi

(
−

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)vec(WT

(−i))

+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`
)
,

Σi =

Hi +

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(i) ⊗ Ic)

−1

, and Hi =

diag

 1
ω2

i

 ⊗ I c
2
⊗ Σ−1

 .
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Since we already have the full conditional distribution, the coordinate-wise updates for mean

field variational Bayes can be derived as:

q((W(i))T ) ∝ exp
{
E−i(logP((W(i))T |rest))

}
∝ exp

{
E−i

(
−

c
2

log(2π) −
1
2

log(det|Σi|) −
1
2

((W(i))T − µi
∼

µi
∼

µi
∼

)TΣ−1
i ((W(i))T − µi

∼

µi
∼

µi
∼

)
)}

∝ exp
{
E−i

(
− const −

1
2

(W(i))Σ−1
i (W(i))T + (W(i))Σ−1

i µi
∼

µi
∼

µi
∼

)}
∝ exp

{
const −

1
2

(W(i))E−i(Σ−1
i )(W(i))T + (W(i))E−i

(
Σ−1

i µi
∼

µi
∼

µi
∼

)}
.

We still can see that q((W(i))T ) is still MVN with

Σ−1
q(W(i)) = E−i(Σ−1

i )

= E−i



 1
ω2

i

 ⊗ I c
2
⊗ Σ−1

 +

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(i) ⊗ Ic)


=

( 
 1
ω2

i

 ⊗ I c
2
⊗ Eq(Σ)(Σ−1)

 +

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Eq(Σ)(Σ−1)](xT
`(i) ⊗ Ic)

)
.

Also, we can find that:

E−i
(
Σ−1

i µi
∼

µi
∼

µi
∼

)
= Σ−1

q(W(i))µq(W(i)) = E−i

(
−

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1](xT
`(−i) ⊗ Ic)(WT

(−i))

+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Σ−1]y`
)
,

⇒ Σ−1
q(W(i))µq(W(i)) =

(
−

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Eq(Σ)(Σ−1)](xT
`(−i) ⊗ Ic)

(
µq(W(−i))

)
+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Eq(Σ)(Σ−1)]y`
)
,

⇒ µq(W(i)) = Σq(W(i))

(
−

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Eq(Σ)(Σ−1)](xT
`(−i) ⊗ Ic)

(
µq(W(−i))

)
+

n∑
`=1

(x`(i) ⊗ Ic)[(DA − ρA) ⊗ Eq(Σ)(Σ−1)]y`
)
.
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Then, we can also compute:

Eq[log(q(vecWT
(i)))] = Eq

[
−

1
2

log|2πΣq(W(i))| −
1
2

(
vec(WT

(i)) − µq(W(i))
)T
Σ−1

q(W(i))(
vec(WT

(i)) − µq(W(i))
) ]

= −
1
2

log|2πΣq(W(i))| −
1
2
µT

q(W(i))Σ
−1
q(W(i))µq(W(i))

+ Eq

[
−

1
2

(W(i))Σ−1
q(W(i))(W(i))T + (W(i))Σ−1

q(W(i))µq(W(i))

]
= −

1
2

log|2πΣq(W(i))| −
1
2
µT

q(W(i))Σ
−1
q(W(i))µq(W(i))

−
1
2

(
µT

q(W(i))Σ
−1
q(W(i))µq(W(i)) + tr(Σ−1

q(W(i))Σq(W(i)))
)

+ µT
q(W(i))Σ

−1
q(W(i))µq(W(i))

= −
1
2

log|2πΣq(W(i))| −
1
2

tr(Σ−1
q(W(i))Σq(W(i))).

Full conditional distribution of Σ

p(Σ
∣∣∣Y,W,ω2) ∝ p(Y|W,Σ)p(W|Σ,ω2)p(Σ)

∝ |(DA − ρA)−1 ⊗ Σ|−
n
2 exp

{
−

1
2

n∑
`=1

(y` −WT x`)T [(DA − ρA) ⊗ Σ−1](y` −WT x`)
}

×

d∏
i=1

|ω2
i Σ|
− c

4 exp

−1
2

c
2∑

j∗=1

W̃T
i, j∗ (ω2

i Σ)−1 W̃i, j∗


×
|S |

v
2

2vΓ2( v
2 )
|Σ|−

v+3
2 exp

{
−

1
2

tr(SΣ−1)
}
.

Denote y∗l = yl − WT xl, ỹ∗Tl, j∗ = (y∗l, j, y
∗
l, j+1), j = 2 j∗ − 1, j∗ = 1, ..., c

2 , l = 1, ..., n. Let

B = DA − ρA, then dim(B)= c
2 ×

c
2 . Denote bi, j be ith row and jth column of B, bi, j is a scalar,

where i = 1, ..., c
2 , j = 1, ..., c

2 . Using |E ⊗ F| = |E|n|F|m, where dim(E) = n × n and dim(F) = m × m.

tr(G) + tr(Q) = tr(G + Q) where dim(G)=dim(Q) and tr(JK) = tr(KJ) where dim(J)=dim(KT ). This

can be simplified as:

p(Σ
∣∣∣Y,W,ω2) ∝ |DA − ρA|

nc
4 |Σ|−n exp

−1
2

tr

 n∑
l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
Σ−1




×

d∏
i=1

|ω2
i Σ|
− c

4 exp

−1
2

c
2∑

j∗=1

W̃T
i, j∗ (ω2

i Σ)−1 W̃i, j∗


×
|S |

v
2

2vΓ2( v
2 )
|Σ|−

v+3
2 exp

{
−

1
2

tr(SΣ−1)
}
.
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Since |DA − ρA| ,
∏d

i=1 |ω
2
i |
− c

2 and |S |
v
2

2vΓ2( v
2 ) do not depend on Σ, they can be factored out of the

expression. This leaves,

p(Σ
∣∣∣Y,W,ω2) ∝ |Σ|−n exp

−1
2

tr

 n∑
l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
Σ−1




× |Σ|−
cd
4 exp

−1
2

tr

 d∑
i=1

c
2∑

j∗=1

˜Wi, j∗ ˜Wi, j∗
T

ω2
i

Σ−1




× |Σ|−
v+3

2 exp
{
−

1
2

tr(SΣ−1)
}

∝ |Σ|−
2n+ cd

2 +v+3
2 exp

−1
2

tr


 n∑

l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
+

d∑
i=1

c
2∑

j∗=1

W̃i, j∗W̃T
i, j∗

ω2
i

+ S

Σ−1


 .

Therefore

Σ ∼ Inverse −Wishart(S ∗, v∗), (10)

where

S ∗ =

n∑
l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
+

d∑
i=1

c
2∑

j∗=1

W̃i, j∗W̃T
i, j∗

ω2
i

+ S ,

v∗ = 2n +
cd
2

+ v.

Here S ∗ is a 2× 2 matrix and v∗ is a scalar. Similarly, we can derive the mean field approximation for

Σ based on the full conditional distribution as follows:

q(Σ) ∝ exp
{
Erest

(
logP(Σ|rest)

)}
∝ exp

{
Erest

(
−

2n + cd
2 + v + 3
2

log(|Σ|)

−
1
2

tr
[( n∑

l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
+

d∑
i=1

c
2∑

j∗=1

˜Wi, j∗ ˜Wi, j∗
T

ω2
i

+ S
)
Σ−1

])}

∝ exp
{
−

2n + cd
2 + v + 3
2

log(|Σ|)

− Erest
(1
2

tr
[( n∑

l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
+

d∑
i=1

c
2∑

j∗=1

˜Wi, j∗ ˜Wi, j∗
T

ω2
i

+ S
)
Σ−1

])}
.

This is still a Inverse-Wishart distribution. That is

q(Σ) ∼ Inverse −Wishart(S q(Σ), vq(Σ)).
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For W̃i, j∗ = (Wi, j,Wi, j+1), j = 2 j∗ − 1, j∗ = 1, ..., c
2 .

Eq(W)(W̃i, j∗W̃T
i, j∗) =

 Eq(W)(W2
i, j) Eq(W)(Wi, jWi, j+1)

Eq(W)(Wi, jWi, j+1) Eq(W)(W2
i, j+1)

 .
Now, for Eq(W)(W2

i, j) and Eq(W)(Wi, jWi, j+1), we can get that:

Eq(W)(W2
i, j) = (µq(W(i))( j))

2 + Σq(W(i)) j, j ,

Eq(W)(W2
i, j+1) = (µq(W(i))( j+1))

2 + Σq(W(i)) j+1, j+1 ,

Eq(W)(Wi, jWi, j+1) = µq(W(i))( j)µq(W(i))( j+1) + Σq(W(i)) j, j+1 ,

S q(Σ) = Erest

 n∑
l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
+

d∑
i=1

c
2∑

j∗=1

˜Wi, j∗ ˜Wi, j∗
T

ω2
i

+ S


=

 n∑
l=1

c
2∑

i=1

c
2∑

j=1

bi, jỹ∗l,iỹ
∗
l,i

T
+

d∑
i=1

c
2∑

j∗=1

Eq
(

˜Wi, j∗ ˜Wi, j∗
T )

Eq
( 1
ω2

i

)
+ S

 ,
vq(Σ) = 2n +

cd
2

+ v.

Now for log(q(Σ)):

Eq(log(q(Σ))) = Eq

[
vq(Σ)

2
log|S q(Σ)| − log(2vq(Σ)) − logΓ2(

vq(Σ)

2
) −

v + 3
2

log(|Σ|) −
1
2

tr(S q(Σ)Σ
−1)

]
=

vq(Σ)

2
log|S q(Σ)| − log(2vq(Σ)) − logΓ2(

vq(Σ)

2
) − Eq

[
v + 3

2
log(|Σ|) −

1
2

tr(S q(Σ)Σ
−1)

]
.

Full Conditional of ω2

We consider a joint update of the scale mixing variable based on the corresponding full conditional

distribution. We have:

p(ω2
∣∣∣Y,W,Σ) ∝ p(W|Σ,ω2)p(ω2|λ2)

∝

d∏
i=1

(ω2
i )−

c
2 |Σ|−

c
4 exp

−1
2

c
2∑

j∗=1

w̃T
i, j∗ (ω2

i Σ)−1 w̃i, j∗


×

d∏
i=1

(λ
2

2 )
c+1

2

Γ( c+1
2 )

(ω2
i )

c+1
2 −1 exp{−

λ2

2
ω2

i }

∝

d∏
i=1

(ω2
i )−

1
2 exp

−
(
λ2

2

)
ω2

i −
c∗i

2ω2
i

 ,
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where:

c∗i =

c
2∑

j∗=1

W̃T
i, j∗Σ

−1W̃i, j∗ = tr(

c
2∑

j∗=1

W̃i, j∗W̃T
i, j∗Σ

−1).

The above expression shows that the scale mixing variables are conditionally independent given

Y,W,Σ, ρ, λ2. We next apply a transformation of variable ηi = (ω2
i )−1, Jacobian =

∣∣∣ d
dηi
ω2

i

∣∣∣ = η−2
i

which yields:

p(ω2
∣∣∣Y,W,Σ, ρ, λ2) ∝

d∏
i=1

(ηi)−
3
2 exp

{
−

(
λ2

2ηi

)
−
ηic∗i

2

}
,

and from this we see that the conditional distributions lie within the Inverse Gaussian family. More

specifically we have

ηi =
1
ω2

i

∣∣∣∣ Y,W,Σ, ρ, λ2 ∼ Inverse-Gaussian


√
λ2

c∗i
, λ2

 , i = 1, . . . , d. (11)

Now, since we already know the full conditional distribution of ωi, we have:

q(ηi) ∝ exp
{
Eq

(
logP(ηi|rest)

)}
∝ exp

{
Eq

(
−

3
2

log(ηi) −
 λ2

2ω2
i

 − ω2
i c∗i
2

)}
∝ exp

{(
−

3
2

log(ηi) −
(
λ2

2ηi

)
− Eq

(
ηic∗i

2

) )}
∝ exp

{(
−

3
2

log(ηi) −
(
λ2

2

)
1
ηi
− Ec∗i (c∗i )

(
ηi

2

) )}
.

Therefore, q(ηi) is still an Inverse-Gaussian distribution with

µq(ηi) =

√
λ2

Ec∗i (c∗i )
,

Ec∗i (c∗i ) =

c
2∑

j∗=1

E(tr(W̃i, j∗W̃T
i, j∗Σ

−1)) =

c
2∑

j∗=1

(Eq(W)(W2
i, j) + Eq(W)(W2

i, j+1))tr(S −1
q(Σ)).
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Now, since ηi is an Inverse Gaussian, then ω2
i = 1/ηi will be a reciprocal of inverse gaussian. where

we have:

µq(ω2
i ) =

1
µq(ηi)

+
1
λ2 ,

Varq(ω2
i ) =

1
µq(ηi)λ

2 +
2

(λ2)2 .

For Eq(log(q(ω2
i ))), we can compute as:

Eq(log(q(ω2
i ))) = Eq

1
2

(
log(λ2) − log(2π) − log(ω2

i )
)
−
λ2(1 − ω2

i µq(ηi))
2

2µ2
q(ηi)

ω2
i


=

1
2

(
log(λ2) − log(2π)

)
− Eq

[
log(ω2

i )
]
− λ2Eq

 1
2µ2

q(ηi)

 1
ω2

i

 − 1
µ2

q(ηi)

+
ω2

i

2

 .
For Eq(log(ω2

i )), we can use Taylor series to approximate as:

Eq(log(ω2
i )) = log(µq(ω2

i )) −
1

2µω2
i

Varq[ω2
i ].

Then, we can have:

Eq(log(q(ω2
i ))) =

1
2

(
log(λ2) − log(2π)

)
− log(µq(ω2

i
)) −

1
2µω2

i

Varq[ω2
i ]

− λ2Eq

 1
2µ2

q(ηi)

 1
ω2

i

 − 1
µ2

q(ηi )

+
ω2

i

2


=

1
2

(
log(λ2) − log(2π)

)
− log(µq(ω2

i )) −
1

2µω2
i

Varq[ω2
i ]

− λ2

 1
2µ2

q(ηi)

µq(ηi) −
1

µ2
q(ηi)

+
µq(ω2

i )

2

 .
Therefore, the posterior distribution can be approximated by mean field variational bayes as:

P(Θ|Y) ≈
d∏

i=1

[
qW (i)

(W(i))
] d∏

i=1

[
qω2

i
(ω2

i )
]
qΣ(Σ),

where

qW (i)
(W(i)) ≡ MVN(µqW (i)

,ΣqW (i)
), qω2

i
(ω2

i ) ≡ reciprocal of Inverse Gaussian(µq(ηi), λ
2), and

qΣ(Σ) ≡ Inverse −Wishart(S q(Σ), vq(Σ)).
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Lower Bound L(q) for Variational Bayes

We now have derived the optimal q distributions. The logarithm lower bound takes following

explicit form:

L(q) = Eq[log(P(Y, θ))] − Eq[log(q(θ))]

= Eq
[
log(p(Y|W,Σ, ρ)) + log(p(W|Σ,ω2)) + log(p(ω2|λ2)) + log(p(Σ))

]
− Eq[log(q(θ))].

Now, taking the expectation with respect to q for each component in above, we have:

Eq(log(p(Y|W,Σ, ρ))) = Eq

[
−

n
2

log|(DA − ρA)−1 ⊗ Σ| −
1
2

n∑
`=1

(y` −WT x`)T [(DA − ρA) ⊗ Σ−1]

(y` −WT x`)
]

= −
n
2

log|(DA − ρA)−1 ⊗ µq(Σ)| − Eq

[1
2

n∑
`=1

(y` −WT x`)T [(DA − ρA)

⊗ Σ−1](y` −WT x`)
]
,

Eq(log(p(W|Σ,ω2))) = Eq

[ d∑
i=1

c
2∑

j=1

(
−

1
2

log|ω2
i Σ| −

1
2

W̃T
i, j(ω

2
i Σ)−1W̃i, j

) ]

=

[ d∑
i=1

c
2∑

j=1

−
1
2

log|µq(ω2
i )µq(Σ)| − Eq

(
1
2

W̃T
i, j(ω

2
i Σ)−1W̃i, j

) ]
,

Eq(log(p(ω2|λ2))) = Eq

[ d∑
i=1

(c + 1
2

log(λ2) − log(Γ(
c + 1

2
)) + (

c + 1
2
− 1)log(ω2

i ) −
λ2

2
ω2

i

)]
=

[ d∑
i=1

(c + 1
2

(log(λ2) − log(2)) − log(Γ(
c + 1

2
)) + (

c + 1
2
− 1)Eq(log(ω2

i ))

−
1
2
λ2Eq(ω2

i )
)]
,

Eq(log(p(Σ))) = Eq

[
const −

(v + 3
2

)
log|Σ| −

1
2

tr(SΣ−1)
]

=

[
const −

(v + 3
2

)
log|µq(Σ)| −

1
2

tr(S Eq(Σ)(Σ−1))
]
.

Now, let’s take a look at the Eq[log(q(θ))], which could be written as:

Eq[log(q(θ))] = Eq[log(q(W))] + Eq[log(q(ω2)] + Eq[log(q(Σ))]

=

d∑
i=1

Eq[log(q(vec(WT
(i))))] +

d∑
i=1

Eq[log(q(ω2
i )] + Eq[log(q(Σ))].
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Where these expectations are evaluated from the forms derived above. Then the lower bound can be

written as :

L(q) = Eq
[
log(p(Y|W,Σ, ρ)) + log(p(W|Σ,ω2)) + log(p(ω2|λ2)) + log(p(Σ))

]
− Eq[log(q(θ))]

= Eq
[
log(p(Y|W,Σ, ρ)) + log(p(W|Σ,ω2)) + log(p(ω2|λ2)) + log(p(Σ))

]
−

[ d∑
i=1

Eq[log(q(vec(WT
(i))))] +

d∑
i=1

Eq[log(q(ω2
i )] + Eq[log(q(Σ))]

]
= −

n
2

log
∣∣∣(DA − ρA)−1 ⊗ (S q(Σ)/(vq(Σ) − 3)

∣∣∣
−

1
2

n∑
`=1

tr
(
(y` − µq(W)x`)

T (y` − µ
T
q(W)x`)

T [(DA − ρA) ⊗ (vq(Σ) ∗ S −1
q(Σ))]

)
+

d∑
i=1

c
2∑

j=1

[
−

1
2

log
∣∣∣∣( 1
µq(ηi)

+
1
λ2

)
(S q(Σ)/(vq(Σ) − 3)

∣∣∣∣ − Eq

(
1
2

˜µq(W) ˜µq(W)
T
i, jµq(ηi)(vq(Σ) ∗ S −1

q(Σ))
) ]

+

d∑
i=1

[(c + 1
2

(log(λ2) − log(2)) − log(Γ(
c + 1

2
))
)

+
(
(
c + 1

2
− 1)(log(µq(ω2

i )) −
1

2µq
ω2

i

Varq[ω2
i ]) −

1
2
λ2µq(ω2

i )

)]
−

[(v + 3
2

)
log|(S q(Σ)/(vq(Σ) − 3))| +

1
2

tr(S (vq(Σ) ∗ S −1
q(Σ)))

]
−

[ d∑
i=1

(
−

1
2

log|2πΣq(W(i))| −
1
2

tr(Σ−1
q(W(i))Σq(W(i)))

)
+

1
2

(
log(λ2) − log(2π)

)
− log(µq(ω2

i
)) −

1
2µω2

i

Varq[ω2
i ]λ2

 1
2µ2

q(ηi)

µq(ηi) −
1

µ2
q(ηi )

+
µq(ω2

i )

2


+

vq(Σ)

2
log|S q(Σ)| − log(2vq(Σ)) − logΓ2(

vq(Σ)

2
)

−

[
v + 3

2
log

(
|(S q(Σ)/(vq(Σ) − 3)|

)
−

1
2

tr(S q(Σ)(vq(Σ) ∗ S −1
q(Σ)))

] ]
.
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3.9 Appendix C

3.9.1 Derivation of the Moment Estimator for λ2

We have developed a simple approach for tuning the algorithm that is based on a simple moment

estimator of λ2 and does not require multiple runs of the algorithm over different values of λ2. It is

thus well suited to computation on a single processor. Beginning with the model for WWW we have

W̃i, j∗ |ω
2
i ,Σ

ind
∼ BVN(0, ω2

i Σ),

ω2
i |λ

2 iid
∼ Gamma(

c + 1
2

, λ2/2),

Σ ∼ Inv-Wishart(v,S).

From this we have

E[W2
i, j] = E[E[W2

i, j|ω
2
i ,Σ]] = E[VAR[Wi, j|ω

2
i ,Σ] + E2[Wi, j|ω

2
i ,Σ]]

= E[VAR[Wi, j|ω
2
i ,Σ]] =

E[ω2
i Σ11], if coefficient is for the left hemisphere,

E[ω2
i Σ22], if coefficient is for the right hemisphere.

When S = I, we have E[W2
i, j] = c+1

λ2
1
ν−3 . We then use the ridge estimator Ŵ̂ŴWR obtained to initialize

the VB algorithm to setup a moment equation

c + 1
λ2

1
ν − 3

=
1
dc

∑
i, j

ŴWW
2
Ri, j
,

Solving for λ2 yields

λ2 =
dc(c + 1)
ν − 3

∑
i, j

ŴWW
2
Ri, j


−1

.

We modify this equation so that it can apply more generally by replacing ν − 3 with max{1, ν − 3}

which yields

λ2 =
dc(c + 1)

max{1, ν − 3}

∑
i, j

ŴWW
2
Ri, j


−1

.
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3.10 Appendix D

3.10.1 Simulation Study Examining Empirical FDR

Table 3.3: Empirical proportion of false discoveries in 100 simulation replicates when the expected
Bayesian FDR is controlled at α = 0.05 leading to the threshold for posterior probabilities φα = 0.05.
Note that the values of c∗ are obtained after transforming the response matrix Y so that its columns
are centered and scaled.

c∗ MCMC VB
0.001 1.0000 1.0000
0.002 1.0000 1.0000
0.003 1.0000 1.0000
0.004 1.0000 0.9884
0.005 0.9412 0.8134
0.006 0.5640 0.5619
0.007 0.1997 0.3739
0.008 0.0579 0.2496
0.009 0.0185 0.1699
0.010 0.0067 0.1177
0.020 0.0000 0.0065
0.030 0.0000 0.0012
0.040 0.0000 3 × 10−4

0.050 0.0000 1 × 10−4

0.060 0.0000 0.0000
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3.11 Appendix E

3.11.1 MCMC Trace Plots and Convergence Diagnostics
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Figure 3.7: Left Panels displays MCMC trace plots representing 5 randomly selected elements of
W. The right panels display the evolution of Gelman and Rubin shrink factor as the number of
iterations increase and GB is the point estimate of Gelman and Rubin’s convergence diagnostic
statistic.
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Figure 3.8: Left Panels displays MCMC trace plots representing Σ. The right panels display the
evolution of Gelman and Rubin’s shrink factor as the number of iterations increase and GB is the
point estimate of Gelman and Rubin’s convergence diagnostic statistic.
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3.12 Appendix F

3.12.1 Posterior Summaries for APOE SNP rs405509

Table 3.4: ADNI-1 Study: posterior means and 95% equal-tail credible intervals for all the ROIs
and their association with APOE SNP rs405509.

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Amygdala volume

(L)

0.09 [-0.03,0.22] 0.17 [0.08,0.28] 0.12 [0.02,0.23]

Amygdala volume

(R)

0.03 [-0.09,0.16] 0.10 [0.02,0.21] 0.07 [-0.03,0.17]

Cerebral cortex vol-

ume (L)

0.03 [-0.08,0.13] 0.10 [0.02,0.21] 0.06 [-0.04,0.16]

Cerebral cortex vol-

ume (R)

0.03 [-0.07,0.14] 0.13 [0.03,0.23] 0.06 [-0.03,0.16]

Cerebral white mat-

ter volume (L)

0.09 [-0.04,0.22] 0.19 [0.10,0.28] 0.13 [0.03,0.23]

Cerebral white mat-

ter volume (R)

0.02 [-0.11,0.15] 0.09 [0.00,0.18] 0.05 [-0.04,0.16]

Entorhinal cortex

thickness (L)

0.03 [-0.08,0.15] 0.10 [0.01,0.19] 0.06 [-0.04,0.16]

Entorhinal cortex

thickness (R)

0.05 [-0.07,0.17] 0.10 [0.00,0.18] 0.08 [-0.02,0.18]

Fusiform gyrus

thickness (L)

0.11 [-0.02,0.23] 0.19 [0.09,0.28] 0.13 [0.03,0.23]

Fusiform gyrus

thickness (R)

0.07 [-0.06,0.19] 0.17 [0.06,0.27] 0.10 [-0.01,0.20]

Hippocampus vol-

ume (L)

0.12 [-0.02,0.26] 0.22 [0.14,0.34] 0.15 [0.05,0.26]

Hippocampus vol-

ume (R)

0.07 [-0.08,0.21] 0.16 [0.06,0.26] 0.10 [0.00,0.20]

Inferior lateral ven-

tricle volume (L)

-0.13 [-0.24,-0.01] -0.14 [-0.24,-0.05] -0.08 [-0.18,0.02]

Inferior lateral ven-

tricle volume (R)

-0.08 [-0.20,0.04] -0.08 [-0.17,0.01] -0.03 [-0.14,0.07]

Continued on next page
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Table 3.4 – Continued from previous page

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Inferior parietal

gyrus thickness (L)

0.08 [-0.02,0.19] 0.15 [0.05,0.24] 0.10 [0.00,0.21]

Inferior parietal

gyrus thickness (R)

0.11 [0.01,0.21] 0.20 [0.11,0.29] 0.13 [0.03,0.23]

Inferior temporal

gyrus thickness (L)

0.10 [0.00,0.21] 0.18 [0.09,0.26] 0.12 [0.02,0.22]

Inferior temporal

gyrus thickness (R)

0.07 [-0.04,0.17] 0.15 [0.06,0.23] 0.10 [-0.01,0.19]

Lateral ventricle

volume (L)

-0.07 [-0.17,0.03] -0.05 [-0.13,0.02] -0.02 [-0.12,0.08]

Lateral ventricle

volume (R)

-0.04 [-0.14,0.06] -0.01 [-0.09,0.08] -0.00 [-0.10,0.10]

Caudal anterior

cingulate, isthmus

cingulate, posterior

cingulate, and

rostral anterior

cingulate mean

thickness (L)

0.04 [-0.06,0.14] 0.09 [0.00,0.18] 0.07 [-0.03,0.17]

Caudal anterior

cingulate, isthmus

cingulate, posterior

cingulate, and

rostral anterior

cingulate mean

thickness (R)

0.01 [-0.09,0.11] 0.06 [-0.02,0.15] 0.05 [-0.05,0.15]

Caudal midfrontal,

rostral midfrontal,

superior frontal,

lateral orbitofrontal,

and medial or-

bitofrontal gyri and

frontal pole mean

thickness (L)

0.10 [-0.02,0.22] 0.18 [0.10,0.27] 0.13 [0.03,0.23]

Continued on next page
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Table 3.4 – Continued from previous page

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Caudal midfrontal,

rostral midfrontal,

superior frontal,

lateral orbitofrontal,

and medial or-

bitofrontal gyri and

frontal pole mean

thickness (R)

0.12 [0.00,0.25] 0.23 [0.15,0.32] 0.15 [0.05,0.26]

Inferior temporal,

middle temporal,

and superior tem-

poral gyri mean

thickness (L)

0.10 [-0.01,0.21] 0.17 [0.08,0.26] 0.12 [0.02,0.22]

Inferior temporal,

middle temporal,

and superior tem-

poral gyri mean

thickness (R)

0.10 [-0.01,0.21] 0.20 [0.11,0.30] 0.13 [0.02,0.22]

Fusiform, parahip-

pocampal, and lin-

gual gyri, temporal

pole and transverse

temporal pole mean

thickness (L)

0.12 [0.01,0.24] 0.22 [0.13,0.32] 0.14 [0.04,0.24]

Fusiform, parahip-

pocampal, and lin-

gual gyri, temporal

pole and transverse

temporal pole mean

thickness (R)

0.10 [-0.01,0.21] 0.20 [0.11,0.29] 0.12 [0.02,0.22]

Continued on next page
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Table 3.4 – Continued from previous page

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Inferior and supe-

rior parietal gyri,

supramarginal

gyrus, and pre-

cuneus mean

thickness (L)

0.09 [-0.02,0.21] 0.16 [0.07,0.25] 0.12 [0.02,0.22]

Inferior and supe-

rior parietal gyri,

supramarginal

gyrus, and pre-

cuneus mean

thickness (R)

0.11 [0.00,0.22] 0.20 [0.11,0.29] 0.13 [0.03,0.23]

Precentral and post-

central gyri mean

thickness (L)

0.10 [-0.01,0.20] 0.16 [0.08,0.25] 0.12 [0.02,0.22]

Precentral and post-

central gyri mean

thickness (R)

0.09 [-0.02,0.20] 0.17 [0.09,0.26] 0.12 [0.01,0.22]

Inferior temporal,

middle temporal,

superior tem-

poral, fusiform,

parahippocampal,

and lingual gyri,

temporal pole

and transverse

temporal pole mean

thickness (L)

0.11 [0.01,0.22] 0.20 [0.11,0.28] 0.13 [0.03,0.23]

Continued on next page

60



Table 3.4 – Continued from previous page

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Inferior temporal,

middle temporal,

superior tem-

poral, fusiform,

parahippocampal,

and lingual gyri,

temporal pole

and transverse

temporal pole mean

thickness (R)

0.10 [0.00,0.21] 0.21 [0.12,0.29] 0.12 [0.02,0.23]

Middle temporal

gyrus thickness (L)

0.08 [-0.03,0.19] 0.15 [0.06,0.23] 0.11 [0.01,0.21]

Middle temporal

gyrus thickness (R)

0.09 [-0.01,0.20] 0.18 [0.11,0.27] 0.12 [0.02,0.22]

Parahippocampal

gyrus thickness (L)

0.01 [-0.10,0.11] 0.09 [-0.00,0.21] 0.03 [-0.07,0.14]

Parahippocampal

gyrus thickness (R)

0.07 [-0.03,0.18] 0.18 [0.08,0.29] 0.09 [-0.01,0.19]

Postcentral gyrus

thickness (L)

0.13 [0.03,0.24] 0.23 [0.13,0.33] 0.14 [0.03,0.23]

Postcentral gyrus

thickness (R)

0.09 [-0.01,0.20] 0.18 [0.08,0.28] 0.11 [0.01,0.21]

Posterior cingulate

thickness (L)

0.05 [-0.07,0.16] 0.11 [0.02,0.20] 0.07 [-0.03,0.17]

Posterior cingulate

thickness (R)

0.07 [-0.04,0.18] 0.15 [0.05,0.24] 0.10 [0.00,0.20]

Precentral gyrus

thickness (L)

0.06 [-0.05,0.17] 0.10 [0.02,0.21] 0.09 [-0.01,0.19]

Precentral gyrus

thickness (R)

0.08 [-0.03,0.19] 0.15 [0.06,0.25] 0.11 [0.01,0.21]

Precuneus thick-

ness (L)

0.08 [-0.02,0.19] 0.14 [0.06,0.23] 0.10 [0.00,0.20]

Precuneus thick-

ness (R)

0.09 [-0.01,0.19] 0.17 [0.08,0.25] 0.11 [0.01,0.21]

Continued on next page
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Table 3.4 – Continued from previous page

Spatial Model Non-Spatial Model
MCMC MFVB MCMC

Region Mean 95% CI Mean 95% CI Mean 95% CI

Superior frontal

gyrus thickness (L)

0.10 [0.00,0.20] 0.16 [0.08,0.25] 0.12 [0.02,0.22]

Superior frontal

gyrus thickness (R)

0.12 [0.02,0.22] 0.19 [0.11,0.28] 0.14 [0.04,0.24]

Superior parietal

gyrus thickness (L)

0.07 [-0.02,0.18] 0.13 [0.05,0.21] 0.10 [0.00,0.20]

Superior parietal

gyrus thickness (R)

0.08 [-0.02,0.18] 0.14 [0.06,0.22] 0.11 [0.01,0.21]

Supramarginal

gyrus thickness (L)

0.13 [0.02,0.23] 0.21 [0.13,0.29] 0.14 [0.04,0.25]

Supramarginal

gyrus thickness (R)

0.14 [0.04,0.24] 0.24 [0.17,0.33] 0.15 [0.05,0.25]

Superior temporal

gyrus thickness (L)

0.07 [-0.03,0.18] 0.14 [0.06,0.22] 0.10 [0.00,0.20]

Superior temporal

gyrus thickness (R)

0.10 [-0.01,0.22] 0.22 [0.14,0.31] 0.13 [0.03,0.23]

Temporal Pole

thickness (L)

0.03 [-0.07,0.13] 0.09 [0.02,0.18] 0.06 [-0.04,0.16]

Temporal Pole

thickness (R)

-0.02 [-0.11,0.08] 0.06 [-0.01,0.15] 0.02 [-0.08,0.12]
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Chapter 4

Random Tessellation Forests

4.1 Introduction

Bayesian nonparametric models provide flexible and accurate priors by allowing the dimension-

ality of the parameter space to scale with dataset sizes (Ferguson, 1973). The Mondrian process (MP)

is a Bayesian nonparametric prior for space partitioning and provides a Bayesian view of decision

trees and random forests (Roy and Teh, 2008; Kemp et al., 2006). Inference for the MP is conducted

by recursive and random axis-aligned cuts in the domain of the observed data, partitioning the space

into a hierarchical tree of hyper-rectangles.

The MP is appropriate for multi-dimensional data, and it is self-consistent (i.e., it is a projective

distribution), meaning that the prior distribution it induces on a subset of a domain is equal to

the marginalisation of the prior over the complement of that subset. Self-consistency is required in

Bayesian nonparametric models in order to insure correct inference, and prevent any bias arising from

sampling and sample population size. Recent advances in MP methods for Bayesian nonparametric

space partitioning include online methods (Lakshminarayanan et al., 2014), and particle Gibbs

inference for MP additive regression trees (Lakshminarayanan et al., 2015). These methods achieve

high predictive accuracy, with improved efficiency. However, the axis-aligned nature of the decision

boundaries of the MP restricts its flexibility, which could lead to failure in capturing inter-dimensional

dependencies in the domain.

Recently, advances in Bayesian nonparametrics have been developed to allow more flexible

non-axis aligned partitioning. The Ostomachion process (OP) was introduced to generalise the

MP and allow non-axis aligned cuts. The OP is defined for two dimensional data domains (Fan

et al., 2016). In the OP, the angle and position of each cut is randomly sampled from a specified

distribution. However, the OP is not self-consistent, and so the binary space partitioning-tree (BSP)

process (Fan et al., 2018) was introduced to modify the cut distribution of the OP in order to recover

self-consistency. The main limitation of the OP and the BSP is that they are not defined for dimensions

larger than two (i.e., they are restricted to data with two predictors). To relax this constraint, in Fan

et al. (2019) a self-consistent version of the BSP was extended to arbitrarily dimensioned space

(called the BSP-forest). But for this process each cutting hyperplane is axis-aligned in all but two
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Figure 4.1: A draw from the uRTP prior with domain given by a four dimensional hypercube
(x, y, z,w) ∈ [−1, 1]4. Intersections of the draw and the three dimensional cube are shown for
w=−1, 0, 1. Colours indicate polytope identity, and are randomly assigned.

dimensions (with non-axis alignment allowed only in the remaining two dimensions, following the

specification of the two dimensional BSP). Alternative constructions of non-axis aligned partitioning

for two dimensional spaces and non-Bayesian methods involving sparse linear combinations of

predictors or canonical correlation have also been proposed as random forest generalisations (George,

1987; Tomita et al., 2015; Rainforth and Wood, 2015).

In this work, we propose the Random Tessellation Process (RTP), a framework for describing

Bayesian nonparametric models based on cutting multi-dimensional Euclidean space. We consider

four versions of the RTP, including a generalisation of the Mondrian process with non-axis aligned

cuts (a sample from this prior is shown in Figure 4.1), a formulation of the Mondrian process as

an RTP, and weighted versions of these two methods (shown in Figure 4.2). By virtue of their

construction, all versions of the RTP are self-consistent, and are based on the theory of stable iterated

tessellations in stochastic geometry (Nagel and Weiss, 2005). The partitions induced by the RTP

prior are described by a set of polytopes.

We derive a sequential Monte Carlo (SMC) algorithm (Doucet et al., 2000) for RTP inference

which takes advantage of the hierarchical structure of the generating process for the polytope tree.

We also propose a random forest version of RTPs, which we refer to as Random Tessellation Forests

(RTFs). We apply our proposed model to simulated data and several gene expression datasets, and

demonstrate its effectiveness compared to other modern machine learning methods.

4.2 Methods

Suppose we observe a dataset (v1, z1), . . . , (vn, zn), for a classification task in which vi ∈ R
d

are predictors and zi ∈ {1, . . . ,K} are labels (with K levels, K ∈ N>1). Bayesian nonparametric

models based on partitioning the predictors proceed by placing a prior on aspects of the partition,

and associating likelihood parameters with the blocks of the partition. Inference is then done on the

joint posterior of the parameters and the structure of the partition. In this section, we develop the
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RTP: a unifying framework that covers and extends such Bayesian nonparametric models through a

prior on partitions of (v1, z1), . . . , (vn, zn) induced by tessellations.

4.2.1 The Random Tessellation Process

A tessellation Y of a bounded domain W ⊂ Rd is a finite collection of closed polytopes such

that the union of the polytopes is all of W, and such that the polytopes have pairwise disjoint

interiors (Chiu et al., 2013). We denote tessellations of W by Y(W) or the symbol . A polytope is

an intersection of finitely many closed half-spaces. In this work we will assume that all polytopes

are bounded and have nonempty interior. An RTP Yt(W) is a tessellation-valued right-continuous

Markov jump process (MJP) defined on [0, τ] (we refer to the t-axis as time), in which events are

cuts (specified by hyperplanes) of the tessellation’s polytopes, and τ is a prespecified budget (Berger,

2012). In this work we assume that all hyperplanes are affine (i.e., , they need not pass through the

origin).

The initial tessellation Y0(W) contains a single polytope given by the convex hull of the observed

predictors in the dataset: W = hull{v1, . . . , vn} (the operation hull A denotes the convex hull of the set

A). In the MJP for the random tessellation process, each polytope has an exponentially distributed

lifetime, and at the end of a polytope’s lifetime, the polytope is replaced by two new polytopes.

The two new polytopes are formed by drawing a hyperplane that intersects the interior of the old

polytope, and then intersecting the old polytope with each of the two closed half-spaces bounded by

the drawn hyperplane. We refer to this operation as cutting a polytope according to the hyperplane.

These cutting events continue until the prespecified budget τ is reached.

Let H be the set of hyperplanes in Rd. Every hyperplane h ∈ H can be written uniquely as the

set of points {P : 〈⇀n , P − u ⇀n〉 = 0}, such that ⇀n∈ S d−1 is a normal vector of h, and u ∈ R≥0 (u ≥ 0).

Here S d−1 is the unit (d − 1)-sphere (i.e., , S d−1 = {⇀n∈ Rd : ‖⇀n ‖ = 1}). Thus, there is a bijection

ϕ : S d−1 × R≥0 7−→ H by ϕ(⇀n , u) = {P : 〈⇀n , P − u ⇀n〉 = 0}, and therefore a measure Λ on H is

induced by any measure Λ ◦ ϕ on S d−1 × R≥0 through this bijection (Kingman, 1996; Chiu et al.,

2013).

Nagel and Weiss (2005) describe a random tessellation associated with a measure Λ on H through

a tessellation-valued MJP Yt such that the rate of the exponential distribution for the lifetime of a

polytope a ∈ Yt is Λ([a]) (here and throughout this work, [a] denotes the set of hyperplanes in Rd

that intersect the interior of a), and the hyperplane for the cutting event for a polytope a is sampled

according to the probability measure Λ(· ∩ [a])/Λ([a]). We use this construction as the prior for

RTPs, and describe their generative process in Algorithm 5. This algorithm is equivalent to the first

algorithm listed in Nagel and Weiss (2005).

Self-consistency of Random Tessellation Processes

From Theorem 1 in Nagel and Weiss (2005), if the measure Λ is invariant with respect to

translation (i.e., , Λ(A) = Λ({h + x : h ∈ A}) for all measurable subsets A ⊂ H and x ∈ Rd), and

if a set of d hyperplanes with orthogonal normal vectors is contained in the support of Λ, then
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Algorithm 5 Generative Process for RTPs
1: Inputs: a) Bounded domain W, b) RTP measure Λ on H,

c) prespecified budget τ.
2: Outputs: A realisation of the Random Tessellation Process (Yt)0≤t≤τ.
3: τ0 ← 0.
4: Y0 ← {W}.
5: while τ0 ≤ τ do
6: Sample τ′ ∼ Exp

(∑
a∈Yτ0

Λ([a])
)
.

7: Set Yt ← Yτ0 for all t ∈ (τ0,min{τ, τ0 + τ′}].
8: Set τ0 ← τ0 + τ′.
9: if τ0 ≤ τ then

10: Sample a polytope a from the set Yτ0 with probability
proportional to (w.p.p.t.) Λ([a]).

11: Sample a hyperplane h from [a] according to the probability
measure Λ(· ∩ [a])/Λ([a]).

12: Yτ0 ←
(
Yτ0/{a}

)
∪ {a ∩ h−, a ∩ h+}.

h− and h+ are the h-bounded closed half planes.
13: else
14: return the tessellation-valued right-continuous MJP sample (Yt)0≤t≤τ.

for all bounded domains W′ ⊆ W, Yt(W′) is equal in distribution to Yt(W) ∩W′. This means that

self-consistency holds for the random tessellations associated with such Λ. (Here, for a hyperplane

h, h + x refers to the set {y + x : y ∈ h}, and for a tessellation Y and a domain W′, Y ∩ W′ is the

tessellation {a ∩W′ : a ∈ Y}.) In Nagel and Weiss (2005), such tessellations are referred to as stable

iterated tessellations.

If we assume that Λ◦ϕ is the product measure λd ×λ+, with λd symmetric (i.e., , λd(A) = λd(−A)

for all measurable sets A ⊆ S d−1) and further that λ+ is given by the Lebesgue measure on R≥0,

then Λ is translation invariant (a proof of this statement is given in Appendix A, Lemma 1 of the

Supplementary Material). So, through Algorithm 5 and Theorem 1 in Nagel and Weiss (2005), any

distribution λd on the sphere S d−1 that is supported on a set of d hyperplanes with orthogonal normal

vectors gives rise to a self-consistent random tessellation, and we refer to models based on this

self-consistent prior as Random Tessellation Processes (RTPs). We refer to any product measure

Λ ◦ ϕ = λd × λ+ such these conditions hold (i.e., , λd symmetric, Λ supported on d orthogonal

hyperplanes and λ+ given by the Lebesgue measure) as an RTP measure.

Relationship to cutting nonparametric models

If λd is the measure associated with a uniform distribution on the sphere with respect to the usual

Borel sets on S d−1 (Halmos, 1974), then the resulting RTP is a generalisation of the Mondrian process

with non-axis aligned cuts. We refer to this RTP as the uRTP (for uniform RTP). In this case, λd is a

probability measure and a normal vector ⇀n may be sampled according to λd by sampling ni ∼ N(0, 1)
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Figure 4.2: Draws from priors Left) wuRTP, and Right) wMRTP, for the domain given by the
rectangle W = [−1, 1] × [−1/3, 1/3]. Weights are given by ωx = 14, ωy = 1, leading to horizontal
(x-axis heavy) structure in the polygons. Colours are randomly assigned and indicate polygon
identity, and black delineates polygon boundaries.

and then setting ⇀n i= ni/‖n‖. A draw from the uRTP prior supported on a four dimensional hypercube

is displayed in Figure 4.1.

We consider a weighted version of the uniform RTP found by setting λd to the measure associated

with the distribution on ⇀n induced by the scheme ni ∼ N(0, ω2
i ), ⇀n i= ni/‖n‖. We refer to this RTP

as the wuRTP (weighted uniform RTP), and the wuRTP is parameterised by d weights ωi ∈ R>0.

Note that the isotropy of the multivariate Gaussian n implies symmetry of λd. Setting the weight

ωi increases the prior probability of cuts orthogonal to the i-th predictor dimension, allowing prior

information about the importance of each of the predictors to be incorporated. Figure 4.2(left) shows

a draw from the wuRTP prior supported on a rectangle.

The Mondrian process itself is an RTP with λd =
∑

v∈poles(d) δ
v. Here, δx is the Dirac delta

supported on x, and poles(d) is the set of normal vectors with zeros in all coordinates, except for

one of the coordinates (the non-zero coordinate of these vectors can be either −1 or +1). We refer

to this view of the Mondrian process as the MRTP. If λd =
∑

v∈poles(d) ωi(v)δv, where ωi are d axis

weights, and i(v) is the index of the nonzero element of v, then we arrive at a weighted version of the

MRTP, which we refer to as the wMRTP. Figure 4.2(right) displays a draw from the wMRTP prior.

The horizontal organisation of the lines in Figure 4.2 arise from the uneven axis weights.

Other nonparametric models based on cutting polytopes may also be viewed in this way. For

example, Binary Space Partitioning-Tree Processes (Fan et al., 2018) are uRTPs and wuRTPs

restricted to two dimensions, and the generalization of the Binary Space Partitioning-Tree Process

in Fan et al. (2019) is an RTP for which λd is a sum of delta functions convolved with smooth

measures on S 1 projected onto pairs of axes. The Ostomachion process (Fan et al., 2016) does not

arise from an RTP: it is not self-consistent, and so by Theorem 1 in Nagel and Weiss (2005), the OP

cannot arise from an RTP measure.

Likelihoods for Random Tessellation Processes

In this section, we illustrate how RTPs can be used to model categorical data. For example, in

gene expression data of tissues, the predictors are the amounts of expression of each gene in the tissue

(the vector vi for sample i), and our goal is to predict disease condition (labels zi). Let t be an RTP
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on the domain W = hull{v1, . . . , vn}. Let Jt denote the number of polytopes in t. We let h(vi) denote

a mapping function, which matches the i-th data item to the polytope in the tessellation containing

that data item. Hence, h(vi) takes a value in the set {1, . . . , Jt}. We will consider the likelihood arising

at time t from the following generative process:

t ∼ Yt(W), φ j ∼ Dirichlet(α) for 1 ≤ j ≤ Jt, (1)

zi| t,φh(vi) ∼ Multinomial(φh(vi)) for 1 ≤ i ≤ n. (2)

Here φ j = (φ j1, . . . , φ jK) are parameters of the multinomial distribution with a Dirichlet prior with

hyperparameters α = (αk)1≤k≤K . The likelihood function for Z = (zi)1≤i≤n conditioned on the

tessellation t and V = (vi)1≤i≤n and given the hyperparameter α is as follows:

P(Z| t,V,α) =

∫
· · ·

∫
P(Z, φ| t,α)dφ1 · · · dφJt

=

Jt∏
j=1

B(α + mj)
B(α)

. (3)

Here B(·) is the multivariate beta function, mj = (m jk)1≤k≤K and m jk =
∑

i:h(vi)= j δ(zi = k), and δ(·) is

an indicator function with δ(zi = k) = 1 if zi = k and δ(zi = k) = 0 otherwise. We refer to Appendix

A, Lemma 2 of the Supplementary Material for the derivation of (3).

4.2.2 Inference for Random Tessellation Processes

Our objective is to infer the posterior of the tessellation at time t, denoted π( t|V, Z,α). We let

π0( t) denote the prior distribution of t. Let P(Z| t,V,α) denote the likelihood (3) of the data

given the tessellation t and the hyperparameter α. By Bayes’ rule, the posterior of the tessellation

at time t is π( t|V, Z,α) = π0( t)P(Z| t,V,α)/P(Z|V,α).

Here P(Z|V,α) is the marginal likelihood given data Z. This posterior distribution is intractable,

and so in Section 4.2.2 we introduce an efficient SMC algorithm for conducting inference on π( t).

The proposal distribution for this SMC algorithm involves draws from the RTP prior, and so in

Section 4.2.2, we describe a rejection sampling scheme for drawing a hyperplane from the probability

measure Λ(· ∩ [a])/Λ([a]) for a polytope a. We provide some optimizations and approximations used

in this SMC algorithm in Section 4.2.2.

Sampling cutting hyperplanes for Random Tessellation Processes

Suppose that a is a polytope, and Λ ◦ ϕ is an RTP measure such that Λ(ϕ(·)) = (λd × λ+)(·). We

wish to sample a hyperplane according to the probability measure Λ(· ∩ [a])/Λ([a]). We note that if

Br(x) is the smallest closed d-ball containing a (with radius r and centre x), then [a] is contained

in [Br(x)]. If we can sample a normal vector ⇀n according to λd, then we can sample a hyperplane

according to Λ(· ∩ [a])/Λ([a]) through the following rejection sampling scheme.

• Step 1) Sample ⇀n according to λd.
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• Step 2) Sample u ∼ Uniform[0, r].

• Step 3) If the hyperplane h = x + {P : 〈⇀n , P − u ⇀n〉} intersects a, then RETURN h.

Otherwise, GOTO Step 1).

Note that in Step 3, the set {P : 〈⇀n , P − u ⇀n〉} is a hyperplane intersecting the ball Br(0) centred

at the origin, and so translation of this hyperplane by x yields a hyperplane intersecting the ball

Br(x). When this scheme is applied to the uRTP or wuRTP, in Step 1 ⇀n is sampled from the uniform

distribution on the sphere or the appropriate isotropic Gaussian. And for the MRTP or wMRTP, ⇀n is

sampled from the discrete distributions given in Section 4.2.1.

Optimizations and approximations

We use three methods to decrease the computational requirements and complexity of inference

based on RTP posteriors. First, we replace all polytopes with convex hulls formed by intersecting the

polytopes with the dataset predictors. Second, in determining the rates of the lifetimes of polytopes,

we approximate Λ([a]) with the measure Λ([·]) applied to the smallest closed ball containing a. Third,

we use a pausing condition so that no cuts are proposed for polytopes for which the labels of all

predictors in that polytope are the same label.

Convex hull replacement. In our posterior inference, if a ∈ Y is cut according to the hyperplane

h, we consider the resulting tessellation to be Y/{a} ∪ {hull(a ∩ V ∩ h+), hull(a ∩ V ∩ h−)}. Here h+

and h− are the two closed half planes bounded by h, and / is the set minus operation. This requires a

slight loosening of the definition of a tessellation Y of a bounded domain W to allow the union of the

polytopes of a tessellation Y to be a strict subset of W such that V ⊆ ∪a∈Ya.

In our computations, we do not need to explicitly compute these convex hulls, and instead for

any polytope b, we store only b ∩ V, as this is enough to determine whether or not a hyperplane h

intersects hull(b ∩ V). This membership check is the only geometric operation required to sample

hyperplanes intersecting b according to the rejection sampling scheme from Section 4.2.2. By the

self-consistency of RTPs, this has the effect of marginalizing out MJP events involving cuts that do

not further separate the predictors in the dataset. This also obviates the need for explicit computation

of the facets of polytopes, significantly simplifying the codebase of our implementation of inference.

After this convex hull replacement operation, a data item in the test dataset may not be contained

in any polytope, and so to conduct posterior inference we augment the training dataset with a version

of the testing dataset in which the label is missing, and then marginalise the missing label in the

likelihood described in Section 4.2.1.

Spherical approximation. Every hyperplane intersecting a polytope a also intersects a closed

ball containing a. Therefore, for any RTP measure Λ, Λ([a]) is upper bounded by Λ([B(ra)]). Here

ra is the radius of the smallest closed ball containing a. We approximate Λ([a]) ' Λ([B(ra)]) for

use in polytope lifetime calculations in our uRTP inference and we do not compute Λ([a]) exactly.

For the uRTP and wRTP, Λ([B(ra)]) = ra. A proof of this is given in Appendix A, Lemma 3 of the
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Supplementary Material. For the MRTP and wMRTP, Λ([a]) can be computed exactly (Roy and Teh,

2008).

Pausing condition. In our posterior inference, if zi = z j for all i, j such that vi, v j ∈ a, then we

pause the polytope a and no further cuts are performed on this polytope. This improves computational

efficiency without affecting inference, as cutting such a polytope cannot further separate labels. This

was done in recent work for Mondrian processes (Lakshminarayanan et al., 2014) and was originally

suggested in the Random Forest reference implementation (Breiman et al., 1984).

Sequential Monte Carlo for Random Tessellation Process inference

Algorithm 6 SMC for inferring RTP posteriors
1: Inputs: a) Training dataset V, Z, b) RTP measure Λ on H, c) prespecified budget τ, d) likelihood

hyperparameter α.
2: Outputs: Approximate RTP posterior

∑M
m=1$mδ

τ,m
at time τ. ($m are particle weights.)

3: Set τm ← 0, for m = 1, . . . ,M.
4: Set 0,m ← {hull V}, $m ← 1/M, for m = 1, . . . ,M.
5: while min{τm}

M
m=1 < τ do

6: Resample ′
τm,m from { τm,m}

M
m=1 w.p.p.t. {$m}

M
m=1, for m = 1, . . . ,M.

7: Set τm,m ←
′
τm,m, for m = 1, . . . ,M.

8: Set $m ← 1/M, for m = 1, . . . ,M.
9: for m ∈ {m : m = 1, . . . ,M and τm < τ} do

10: Sample τ′∼Exp
(∑

a∈ τm ,m
ra
)
. (ra is the radius of the smallest closed ball containing a.)

11: Set t,m ← τm,m, for all t ∈ (τm,min{τ, τm + τ′}].
12: if τm + τ′ ≤ τ then
13: Sample a from the set τm,m w.p.p.t. ra.
14: Sample h from [a] according to Λ(· ∩ [a])/Λ([a]) using Section 4.2.2.
15: Set τm,m ←

(
τm,m/{a}

)
∪ {hull(V ∩ a ∩ h−), hull(V ∩ a ∩ h+)}.

16: Set $m ← $mP(Z| τm,m,V, α)/P(Z| ′τm,m,V, α) according to (3).
17: else
18: Set t,m ← τm,m, for t ∈ (τm, τ].
19: Set τm ← τm + τ′.
20: SetZ ←

∑M
m=1 $m.

21: Set $m ← $m/Z, for m = 1, . . . ,M.
22: return the particle approximation

∑M
m=1 $mδ

τ,m
.

We provide an SMC method (Algorithm 6) with M particles, to approximate the posterior

distribution π( t) of an RTP conditioned on Z,V, and given an RTP measure Λ and a hyperparameter

α and a prespecified budget τ. Our algorithm iterates between three steps: resampling particles

(Algorithm 6, line 7), propagation of particles (Algorithm 6, lines 13-15) and weighting of particles

(Algorithm 6, line 16). At each SMC iteration, we sample the next MJP events using the spherical

approximation of Λ([·]) described in Section 4.2.2. For brevity, the pausing condition described in

Section 4.2.2 is omitted from Algorithm 6.
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In our experiments, after using Algorithm 6 to yield a posterior estimate
∑M

m=1 $mδ τ,m , we

select the tessellation τ,m with the largest weight $m (i.e., , we do not conduct resampling at the last

SMC iteration). We then compute posterior probabilities of the test dataset labels using the particle

τ,m. This method of not resampling after the last SMC iteration is recommended in (Chopin, 2004)

for lowering asymptotic variance in SMC estimates.

The computational complexity of Algorithm 6 depends on the number of polytopes in the

tessellations, and the organization of the labels within the polytopes. The more linearly separable

the dataset is, the sooner the pausing conditions are met. The complexity of computing the spherical

approximation in Section 4.2.2 (the radius ra) for a polytope a is O(|V ∩ a|2), where | · | denotes set

cardinality.

Prediction with Random Tessellation Forests

Random forests are commonly used in machine learning for classification and regression prob-

lems (Breiman, 2001). A random forest is represented by an ensemble of decision trees, and pre-

dictions of test dataset labels are combined over all decision trees in the forest. To improve the

performance of our methods, we consider random forest versions of RTPs (which we refer to as

RTFs: uRTF, wuRTF, MRTF, wMRTF are random forest versions of the uRTP, MRTP and their

weighted versions resp.). We run Algorithm 6 independently T times, and predict labels using the

modes. Differing from Breiman (2001), we do not use bagging.

Lakshminarayanan et al. (2015) consider an efficient Mondrian forest in which likelihoods are

dropped from the SMC sampler and cutting is done independent of likelihood. This method follows

recent theory for random forests (Geurts et al., 2006). We consider this method (by dropping line

16 of Algorithm 6) and refer to the implementations of this method as the uRTF.i and MRTF.i (i for

likelihood independence).

4.3 Experiments

In Section 4.3.1, we explore a simulation study that shows differences among uRTP and MRTP,

and some standard machine learning methods. Variations in gene expression across tissues in brain

regions play an important role in disease conditions. In Section 4.3.2, we examine predictions of

a variety of RTF models for gene expression data. For all our experiments, we set the likelihood

hyperparameters for the RTPs and RTFs to the empirical estimates αk to nk/1000. Here nk =∑n
i=1 δ(zi = k). In all of our experiments, for each train/test split, we allocate 60% of the data items at

random to the training set.

An implementation of our methods (released under the open source BSD 2-clause license) and a

software manual are provided in the Supplementary Material.
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Figure 4.3: Left) A view of the Mondrian cube, with cyan indicating label 1, magenta indicating
label 2, and black delineating label boundaries. Right) Percent correct versus number of cuts for
predicting Mondrian cube test dataset, with uRTP, MRTP and a variety of baseline methods.

4.3.1 Simulations on the Mondrian cube

We consider a simulated three dimensional dataset designed to exemplify the difference between

axis-aligned and non-axis aligned models. We refer to this dataset as the Mondrian cube, and we

investigate the performance of uRTP and the MRTP on this dataset, along with some standard

machine learning approaches, varying the number of cuts in the processes. The Mondrian cube

dataset is simulated as follows: first, we sample 10,000 points uniformly in the cube [0, 1]3. Points

falling in the cube [0, 0.25]3 or the cube [0.25, 1]3 are given label 1, and the remaining points are

given label 2. Then, we centre the points and rotate all of the points by the angles π
4 and −π4 about

the x-axis and y-axis respectively, creating a dataset organised on diagonals. In Figure 4.3(left), we

display a visualization of the Mondrian cube dataset, wherein points are colored by their label. We

apply the SMC algorithm to the Mondrian cube data, with 50 random train/test splits. For each split,

we run 10 independent copies of the uRTP and MRTP and take the mode of their results, and we also

examine the accuracy of logistic regression (LR), a decision tree (DT) and a support vector machine

(SVM).

Figure 4.3(right) shows that the percent correct for the uRTP and MRTP both increase as the

number of cuts increases, and plateaus when the number of cuts becomes larger (greater than 25).

Even though the uRTP has lower accuracy at the first cut, it starts dominating the MRTP after

the second cut. Overall, in terms of percent correct, with any number of cuts > 105, a sign test

indicates that the uRTP performs significant better than all other methods at nominal significance,

and the MRTP performs significant better than DT and LR for any number of cuts > 85 at nominal

significance.
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Figure 4.4: Box plot showing wuRTF and wMRTF improvements for GL85, and generally best
performance for wuRTF method (with sign test p-value of 3.2 × 10−9 vs wMRTF). Medians,
quantiles and outliers beyond 99.3% coverage are indicated.

4.3.2 Experiment on gene expression data in brain tissue

We evaluate a variety of RTPs and some standard machine learning methods on a glioblastoma

tissue dataset GSE83294 (Freije et al., 2004), which includes 22,283 gene expression profiles for

85 astrocytomas (26 diagnosed as grade III and 59 as grade IV). We also examine schizophrenia

brain tissue datasets: GSE21935 (Barnes et al., 2011), in which 54,675 gene expression in the

superior temporal cortex is recorded for 42 subjects, with 23 cases (with schizophrenia), and 19

controls (without schizophrenia), and dataset GSE17612 (Maycox et al., 2009), a collection of 54,675

gene expressions from samples in the anterior prefrontal cortex (i.e., , a different brain area from

GSE21935) with 28 schizophrenic subjects, and 23 controls. We refer to these datasets as GL85,

SCZ42 and SCZ51, respectively.

We also consider a combined version of SCZ42 and SCZ51 (in which all samples are concate-

nated), which we refer to as SCZ93. For GL85 the labels are the astrocytoma grade, and for SCZ42,

SCZ51 and SCZ93 the labels are schizophrenia status. We use principal components analyais (PCA)

in preprocessing to replace the predictors of each data item (a set of gene expressions) with its scores

on a full set of principal components (PCs): i.e., , 85 PCs for GL85, 42 PCs in SCZ42 and 51 PCs

in SCZ51. We then scale the PCs. We consider 200 test/train splits for each dataset. These datasets
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were acquired from NCBI’s Gene Expression Omnibus and were are released under the Open Data

Commons Open Database License. We provide test/train splits of the PCA preprocessed datasets in

the Supplementary Material.

Through this preprocessing, the j-th predictor is the score vector of the j-th principal component.

For the weighted RTFs (the wuRTF and wMRTF), we set the weight of the j-th predictor to be

proportional to the variance explained by the j-th PC (σ2
j ): ω j = σ2

j . We set the number of trees in all

of the random forests to 100, which is the default in R’s randomForest package (Liaw and Wiener,

2002). For the all RTFs, we set the budget τ = ∞, as is done in Lakshminarayanan et al. (2014).

4.4 Results

We compare percent correct for the wuRTF, uRTF, uRTF.i, and the Mondrian Random Tessellation

Forests wMRTF, MRTF and MRTF.i, a random forest (RF), logistic regression (LR), a support

vector machine (SVM) and a baseline (BL) in which the mode of the training set label is always

predicted (Meyer et al., 2019; Liaw and Wiener, 2002). Mean percent correct and sign tests for all

of these experiments are reported in Table 4.1 and box plots for the GL85 experiment reported in

Figure 4.4. We observe that the increase in accuracy of wuRTFs achieves nominal significance over

other methods on GL85. For datasets SCZ42, SCZ51 and SCZ93, the performance of the RTFs is

comparable to that of logistic regression and random forests. For all datasets we consider, RTFs

have higher accuracy than SVMs (with nominal significance). Boxplots with accuracies for the

datasets SCZ42, SCZ51 and SCZ93 are provided in Appendix B, Supplementary Figure 1 of the

Supplementary Material. Results of a conservative pairwise sign test performed between each pair of

methods on each dataset, standard deviation of the percent correct, and mean runtime across different

methods for all these four datasets are reported in Supplementary Tables 1, 2, and 3 in Appendix B

of the Supplementary Material.

4.5 Discussion

Rejection sampling, and computation of the radii of the approximating spheres are computational

bottlenecks of RTP methods. This leads to longer running times as dimension grows as indicated

in Supplementary Table 3. Supplementary Algorithm 1 replaces the spherical approximation by a

Monte Carlo approximation. This algorithm may improve runtime and accuracy.

There are many directions for future work in RTPs including improved SMC sampling for MJPs

as in Hajiaghayi et al. (2014), hierarchical likelihoods and online methods as in Lakshminarayanan

et al. (2015), analysis of minimax convergence rates (Mourtada et al., 2018), and extensions using

Bayesian additive regression trees (Chipman et al., 2010; Lakshminarayanan et al., 2015). We could

Downloaded from https://www.ncbi.nlm.nih.gov/geo/ in Spring 2019.
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Table 4.1: Comparison of mean percent correct on gene expression datasets over 200 random
train/test splits across different methods. Nominal statistical significance (p-value < 0.05) is
ascertained by a sign test in which ties are broken in a conservative manner. Tests are performed
between the top method and each other method. Bold values indicate the top method and all
methods statistically indistinguishable from the top method according to nominal significance.
Largest nominally significant improvement is seen for wuRTF on GL85, and wuRTF is significantly
better than other methods for this dataset. The wMRTF and wuRTF have largest mean percent
correct for SCZ51 and SCZ93 but are not statistically distinguishable from RF or LR for those
datasets.

Dataset BL LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

GL85 70.34 58.13 70.34 73.01 70.74 70.06 77.09 70.60 80.57 84.90
SCZ42 46.68 57.65 46.79 51.76 49.56 48.50 49.91 47.71 53.12 53.97
SCZ51 46.55 51.15 46.67 57.38 52.55 48.58 57.95 44.70 58.12 49.05
SCZ93 48.95 53.05 50.15 52.45 50.23 50.24 51.80 50.34 53.12 54.99

also consider applications of RTPs to data that naturally displays tessellation and cracking, such as

sea ice (Godlovitch, 2011).

4.6 Conclusion

We have described a framework for viewing Bayesian nonparametric methods based on space

partitioning as Random Tessellation Processes. This framework includes the Mondrian process as

a special case, and includes extensions of the Mondrian process allowing non-axis aligned cuts in

high dimensional space. The processes are self-consistent, and we derive inference using sequential

Monte Carlo and random forests. To our knowledge, this is the first work to provide self-consistent

Bayesian nonparametric hierarchical partitioning with non-axis aligned cuts that is defined for more

than two dimensions. As demonstrated by our simulation study and experiments on gene expression

data, these non-axis aligned cuts can improve performance over the Mondrian process and other

machine learning methods such as support vector machines, and random forests.

4.7 Appendix A

4.7.1 Theorems and proofs

Lemma 1. With the notation established in Section 2.1 of the main text, let Λ ◦ ϕ be a product

measure λd × λ+ on S d−1 × R≥0. If λd is symmetric and if λ+ is the Lebesgue measure, then Λ is a

translation invariant measure on the set H of hyperplanes in Rd.
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Proof: We will first show that Λ is also symmetric (i.e., , invariant under reflection through the

origin). Suppose that A ⊆ H is a Λ-measurable set of hyperplanes.

Λ(A) = (λd × λ+)(ϕ−1A) (4)

=

∫ ∞

0
λd

(
{
⇀n : (⇀n , u) ∈ ϕ−1A}

)
du (5)

=

∫ ∞

0
λd

(
{ −

⇀n : (⇀n , u) ∈ ϕ−1A}
)

du = Λ(−A). (6)

We use the symmetry of λd in (6), and in (5) we use the definition of product measures (Halmos,

1974).

Let x ∈ Rd. If h ∈ A, and ϕ−1h = (⇀n , u), then h = {P : 〈⇀n , P − u ⇀n〉 = 0} and h + x = {P :

〈
⇀n , P − (u + 〈x,⇀n〉) ⇀n〉 = 0}. Let A+ + x = {h + x ∈ A + x : ϕ−1h = (⇀n , u) and u + 〈x,⇀n〉 ≥ 0}

and let A− + x = {h + x ∈ A + x : ϕ−1h = (⇀n , u) and u + 〈x,⇀n〉 < 0}. By these definitions,

(A++ x) ∪ (A−+ x) = A + x.

Λ(A + x) = Λ(A+ + x) + Λ(A− + x) = Λ(A+ + x) + Λ(−(A− + x)) (7)

=

∫
⇀n ∈S d−1

λ+({u : (⇀n , u) ∈ ϕ−1(A+ + x)}) + λ+({u : (⇀n , u) ∈ ϕ−1−(A− + x)})dλd(⇀n ) (8)

=

∫
⇀n ∈S d−1

λ+({u+〈x,⇀n〉 : (⇀n , u) ∈ ϕ−1A+})+λ+({u+〈x,⇀n〉 : (⇀n , u) ∈ ϕ−1−A−)})dλd(⇀n ) (9)

=

∫
⇀n ∈S d−1

λ+({u : (⇀n , u) ∈ A+}) + λ+({u : (⇀n , u) ∈ −A−})dλd(⇀n ) (10)

=Λ(A+) + Λ(−A−) = Λ(A+) + Λ(A−) = Λ(A). (11)

Thus, Λ is translation invariant. In (7) and (11), we use the symmetry of Λ (from the first paragraph

of this proof). In (10), we use the translation invariance of λ+ and in (8), we use the definition of

product measures (Halmos, 1974). In (9), we use the definitions of A+ + x and A− + x. Note that

(⇀n , u) ∈ A+ + x⇔ (⇀n , u + 〈x,⇀n〉) ∈ A+ and (⇀n , u) ∈ −(A− + x)⇔ (⇀n , u + 〈x,⇀n〉) ∈ −A−.

The intuition behind this proof is that translation by any x in A induces a measure preserving

shear in Λ ◦ ϕ, as in the stochastic geometry chapter of Kingman (1996) (this is shown for d = 2 in

that chapter). In addition, the problem that arises from the fact that translation of a hyperplane through

the origin in H flips the sign of ⇀n is handled by lifting the symmetry of λd in S d−1 to symmetry of Λ,

which requires the decomposition of A + x into a subsets with and without the sign flip (the subsets

A++ x, and A−+ x resp.).
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Lemma 2. The likelihood function of the labels Z given the tessellation t and the labels V and

the hyperparameter α can be computed as follows:

P(Z| t,V,α) =

∫
· · ·

∫
P(Z, {φ j}1≤ j≤Jt | t,α) dφ1 · · · dφJt

(12)

=

∫
· · ·

∫ Jt∏
j=1

P(φ j)
n∏

i=1

P(zi| t,φh(vi)) dφ1 · · · dφJt
(13)

=

∫
· · ·

∫ Jt∏
j=1

P(φ j)
∏

i:h(vi)= j,

K∏
k=1

φδ(zi=k)
jk dφ1 · · · dφJt

. (14)

In (12), we use the conditional independence between Z and t. Let m jk =
∑

i:h(vi)= jδ(zi = k), and

let mj = (m jk)1≤k≤K .

P(Z| t) =

∫
· · ·

∫ Jt∏
j=1

P(φ j)
K∏

k=1

φ
m jk

jk dφ1 · · · dφJt
(15)

=

∫
· · ·

∫ Jt∏
j=1

1
B(α)

K∏
k=1

φαk−1
jk

K∏
k=1

φ
m jk

jk dφ1 · · · dφJt
(16)

=

Jt∏
j=1

B(α + mj)
B(α)

. (17)

Here B(·) is the multivariate beta function (Sivazlian, 1981).

Lemma 3. In the notation from Section 2.1 of the main text, if Λ is the uRTP measure such that

Λ ◦ ϕ = λd × λ+ and λd is measure associated with the uniform distribution on λd, and if B(x, r) is

the closed ball centred at x with radius r, then Λ ([B(x, r)]) = r.

Proof: By Lemma 1, the measure Λ is translation invariant, and so Λ([B(x, r)])=Λ([B(0, r)]). By

the definition of product measures (Halmos, 1974), ϕ−1[B(0, r)]=S d−1×[0, r], and so Λ([B(0, r)])

can be evaluated: Λ([B(0, r)])=λd(S d−1) · λ+([0, r]) = r.
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4.8 Appendix B

4.8.1 Supplementary figures and tables
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Figure 4.5: Boxplots for percent correct on all methods considered for the SCZ42, SCZ51 and SCZ93
datasets. Variance and disorganisation of these results may be due to noise, disorder and difficulty
in the mapping from gene expression to schizophrenia. Despite this variance and disorganisation,
many of the boxplots show significant improvements over the baseline. For example, a conservative
sign test for the improvement of the wuRTF over the baseline in SCZ93 is significant with a p-value
of 5.1 × 10−10.
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Table 4.2: Pairwise sign tests among all methods considered on GL85, SCZ42, SCZ51 and SCZ93
datasets. Each table shows raw sign test p-values indicated by methods in row and column headers
(not corrected for multiple testing). Sign tests are conducted in a conservative manner, in which the
sign test is one-tailed towards the better method, and ties are assigned in favour of the method that
is not better. Bolding in Table 1 of the main text is found by examining the column of this table
corresponding to the best method for a dataset, and then bolding every method in that column with
p-value > 0.05 (i.e., , nominal significance). BL indicates a baseline method in which the mode
label in the training dataset is predicted for all data items.

GL85 BL LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

BL 6.7e-18 1.0e+00 7.0e-04 1.0e+00 1.0e+00 1.7e-24 1.0e+00 2.2e-28 5.3e-50
LR 6.7e-18 6.7e-18 1.7e-24 2.3e-20 2.6e-17 2.6e-43 9.9e-20 5.3e-50 8.3e-55
SVM 1.0e+00 6.7e-18 7.0e-04 1.0e+00 1.0e+00 1.7e-24 1.0e+00 2.2e-28 5.3e-50
RF 7.0e-04 1.7e-24 7.0e-04 1.1e-01 4.6e-05 2.0e-07 2.0e-02 1.4e-14 1.2e-37
MRTF.i 1.0e+00 2.3e-20 1.0e+00 1.1e-01 1.0e+00 2.3e-20 1.0e+00 1.4e-27 1.5e-44
uRTF.i 1.0e+00 2.6e-17 1.0e+00 4.6e-05 1.0e+00 5.4e-26 1.0e+00 4.6e-30 5.3e-50
MRTF 1.7e-24 2.6e-43 1.7e-24 2.0e-07 2.3e-20 5.4e-26 2.3e-22 7.0e-04 2.3e-20
uRTF 1.0e+00 9.9e-20 1.0e+00 2.0e-02 1.0e+00 1.0e+00 2.3e-22 1.4e-27 1.5e-48
wMRTF 2.2e-28 5.3e-50 2.2e-28 1.4e-14 1.4e-27 4.6e-30 7.0e-04 1.4e-27 3.2e-09
wuRTF 5.3e-50 8.3e-55 5.3e-50 1.2e-37 1.5e-44 5.3e-50 2.3e-20 1.5e-48 3.2e-09

SCZ42 BL LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

BL 4.0e-08 1.0e+00 1.1e-01 9.9e-01 1.0e+00 8.2e-01 1.0e+00 1.8e-03 1.3e-05
LR 4.0e-08 4.0e-08 3.8e-02 4.6e-05 4.2e-04 4.4e-03 6.9e-06 5.3e-01 3.1e-01
SVM 1.0e+00 4.0e-08 1.1e-01 9.9e-01 1.0e+00 8.2e-01 1.0e+00 1.8e-03 1.3e-05
RF 1.1e-01 3.8e-02 1.1e-01 5.8e-01 2.6e-01 8.9e-01 3.1e-01 9.6e-01 5.3e-01
MRTF.i 9.9e-01 4.6e-05 9.9e-01 5.8e-01 1.0e+00 1.0e+00 9.6e-01 3.8e-02 5.2e-02
uRTF.i 1.0e+00 4.2e-04 1.0e+00 2.6e-01 1.0e+00 6.4e-01 1.0e+00 6.9e-02 7.0e-04
MRTF 8.2e-01 4.4e-03 8.2e-01 8.9e-01 1.0e+00 6.4e-01 7.4e-01 7.4e-01 1.8e-01
uRTF 1.0e+00 6.9e-06 1.0e+00 3.1e-01 9.6e-01 1.0e+00 7.4e-01 6.9e-02 8.2e-05
wMRTF 1.8e-03 5.3e-01 1.8e-03 9.6e-01 3.8e-02 6.9e-02 7.4e-01 6.9e-02 9.5e-01
wuRTF 1.3e-05 3.1e-01 1.3e-05 5.3e-01 5.2e-02 7.0e-04 1.8e-01 8.2e-05 9.5e-01

SCZ51 BL LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

BL 1.1e-01 1.0e+00 7.6e-11 2.8e-03 1.0e+00 1.4e-13 1.0e+00 1.2e-15 4.7e-01
LR 1.1e-01 1.1e-01 2.8e-02 9.3e-01 3.1e-01 1.1e-03 1.4e-04 8.2e-05 2.6e-01
SVM 1.0e+00 1.1e-01 7.6e-11 2.8e-03 1.0e+00 1.4e-13 1.0e+00 4.1e-15 4.7e-01
RF 7.6e-11 2.8e-02 7.6e-11 8.9e-02 4.0e-08 9.8e-01 1.4e-14 9.3e-01 6.9e-06
MRTF.i 2.8e-03 9.3e-01 2.8e-03 8.9e-02 1.8e-01 2.8e-03 3.5e-06 8.2e-05 4.2e-01
uRTF.i 1.0e+00 3.1e-01 1.0e+00 4.0e-08 1.8e-01 2.8e-11 8.2e-01 3.2e-09 9.6e-01
MRTF 1.4e-13 1.1e-03 1.4e-13 9.8e-01 2.8e-03 2.8e-11 4.2e-19 1.0e+00 2.0e-07
uRTF 1.0e+00 1.4e-04 1.0e+00 1.4e-14 3.5e-06 8.2e-01 4.2e-19 3.4e-16 2.8e-02
wMRTF 1.2e-15 8.2e-05 4.1e-15 9.3e-01 8.2e-05 3.2e-09 1.0e+00 3.4e-16 4.4e-14
wuRTF 4.7e-01 2.6e-01 4.7e-01 6.9e-06 4.2e-01 9.6e-01 2.0e-07 2.8e-02 4.4e-14

SCZ93 BL LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

BL 8.9e-02 1.0e+00 3.8e-02 9.6e-01 9.5e-01 6.9e-02 9.7e-01 6.6e-03 5.1e-10
LR 8.9e-02 3.1e-01 7.8e-01 1.8e-01 9.7e-03 3.6e-01 8.9e-02 8.2e-01 3.6e-01
SVM 1.0e+00 3.1e-01 3.6e-01 9.9e-01 1.0e+00 5.8e-01 1.0e+00 1.4e-01 4.0e-08
RF 3.8e-02 7.8e-01 3.6e-01 3.1e-01 3.1e-01 9.1e-01 1.4e-01 9.3e-01 6.9e-02
MRTF.i 9.6e-01 1.8e-01 9.9e-01 3.1e-01 9.1e-01 3.6e-01 7.8e-01 1.8e-03 2.0e-07
uRTF.i 9.5e-01 9.7e-03 1.0e+00 3.1e-01 9.1e-01 2.6e-01 8.6e-01 3.8e-02 8.2e-05
MRTF 6.9e-02 3.6e-01 5.8e-01 9.1e-01 3.6e-01 2.6e-01 2.2e-01 6.9e-01 2.8e-03
uRTF 9.7e-01 8.9e-02 1.0e+00 1.4e-01 7.8e-01 8.6e-01 2.2e-01 1.4e-02 9.0e-08
wMRTF 6.6e-03 8.2e-01 1.4e-01 9.3e-01 1.8e-03 3.8e-02 6.9e-01 1.4e-02 2.6e-01
wuRTF 5.1e-10 3.6e-01 4.0e-08 6.9e-02 2.0e-07 8.2e-05 2.8e-03 9.0e-08 2.6e-01
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Table 4.3: Standard deviation of percent correct on gene expression datasets over 200 random
train/test splits across different methods.

Dataset BL LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

GL85 5.58 10.52 5.58 7.18 6.09 5.16 6.43 5.78 6.16 6.05
SCZ42 10.62 13.89 10.60 12.17 10.93 11.10 11.76 11.40 11.70 11.41
SCZ51 10.65 12.77 10.67 11.74 11.36 11.12 9.84 10.21 11.07 9.69
SCZ93 7.74 9.65 7.24 7.42 7.20 6.94 7.65 7.24 6.86 6.90

Table 4.4: Comparison of mean running time (in minutes) on gene expression datasets over 200
random train/test splits across different methods. The experiments were run on an Intel Xeon CPU
E5-2683v4@2.10GHz.

Dataset LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

GL85 <.08 <.08 0.006 0.003 43.221 21.681 22.614 15.595 14.679
SCZ42 <.08 <.08 0.005 0.001 2.118 5.468 4.675 5.180 5.066
SCZ51 <.08 <.08 0.004 0.002 5.305 8.420 7.764 8.161 8.641
SCZ93 0.006 0.012 0.006 0.005 89.106 43.534 35.802 41.759 41.068

4.9 Appendix C

4.9.1 Algorithm for Monte Carlo based approximate inference

The spherical approximation introduced in Section 2.2.2 of the main text requires the computation

of the radius of smallest closed ball of each polytope in the tessellation. This may be a costly

O(
∑

a∈ |a ∩ V|2) operation. Further, this approximation may introduce bias into the sampling

procedure. In this appendix, we provide a sampling strategy based on Monte Carlo approximation

within SMC that may be more precise and efficient. This strategy is described in Supplementary

Algorithm 1.

We derive this algorithm for the case discussed in the main text in which the budget for the MJP

is τ = ∞ by making use of the ‘pausing condition’ described in Section 2.2.2 of the main text. We

say that a polytope a is ‘paused’ if the set of labels {Zi : V i ∈ a} contains only one label, and we say

that a tessellation has met the pausing condition if a is paused for all a ∈ .
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Algorithm 7 Monte Carlo approximations for RTPs
1: Inputs: a) Training dataset V, Z, b) RTP measure Λ on H, c) likelihood hyperparameter α, d) A

radius r such that B(r) is the smallest closed ball containing V, e) The number of Monte Carlo
iterations N (our suggested default is N = 1, 000).

2: Outputs: Approximate RTP posterior
∑M

m=1 $mδ m
at time∞. ($ are particle weights.)

3: Set m ← {hull V}, $m ← 1/M, for m = 1, . . . ,M.
4: while the ‘pausing condition’ is not met for all m do
5: Resample ′

m from { m}
M
m=1 w.p.p.t. {$m}

M
m=1, for m = 1, . . . ,M.

6: Set m ←
′
m, for m = 1, . . . ,M.

7: Set $m ← 1/M, for m = 1, . . . ,M.
8: for m : the ‘pausing condition’ is not met for m do
9: Sample N hyperplanes H = {h1, . . . , hN} from Λ(· ∩ [B(r)])/Λ([B(r)]).

10: Set Ha = {h ∈ H : h ∩ a , ∅}, for each polygon a ∈ m such that a is not ‘paused’.
11: if

∑
a∈ m

|Ha| > 0 then
12: Sample a polytope a from m with probability |Ha|/

∑
a′∈ m

|Ha′ |.
13: Sample a hyperplane h uniformly from Ha.
14: Set m ← ( m/{a}) ∪ {hull(V ∩ a ∩ h−), hull(V ∩ a ∩ h+)}.
15: Set $m ← $mP(Z| m,V, α)/P(Z| ′m,V, α).
16: SetZ ←

∑M
m=1 $m.

17: Set $m ← $m/Z, for m = 1, . . . ,M.
18: return the particle approximation

∑M
m=1 $mδ m

.

4.10 Appendix D

4.10.1 Manual for tess19 v1.0

19

Copyright (c) 2019. Shufei Ge and Lloyd T. Elliott

The tess19 software implements the Bayesian nonparametric methods described in Ge et al.,

Random Tessellation Forests, 2019. This software constructs a random forest for posterior prediction

of categorical data based on real valued predictors. The trees of the random forest are found through
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SMC inference. This manual is for version v1.0. This software requires the following R packages:

optparse, purrr. This software is released under the open source BSD 2-clause license.

1. Basic Usage

tess19 <IFILE.txt> <OFILE.txt>

Predictions for the missing labels in the Levels column of the file <IFILE.txt> are made using

the predictors in the file <IFILE.txt> and the uRTF model, with 100 trees, with the prespecified

budget τ = ∞, and with the hyperparameter settings αk = nk/1000. The predictions are saved in the

Levels column of the file <OFILE.txt>.

The format of the file <IFILE.txt> is as follows. The file is space separated. The first line is a

header line with one column name for each of predictor (for example, V1 V2 ...), followed by a

column named Levels. Subsequent lines are given with one line per data item, with the predictors

for the data item followed by the items level. The predictors are real numbers and the levels must be

positive integers in the set 1, . . .K, where K is the number of levels. Both test and train data must be

provided in <IFILE.txt>, and the test data items must have missing labels indicated by the string

NaN. The predictors may not have missing data.

The format of the file <OFILE.txt> is as follows. The first line is a header line naming the

column Levels (i.e., , one column). Subsequent lines are given with one line for data item. If the

data item is a training data item, then the value NaN is recorded in the corresponding line. If the data

item is a testing data item, then a predicted label is recorded.

2. Advanced Usage

tess19 --usage

tess19 --license

tess19 --version

tess19 [--Mondrian] [--weights <WFILE.txt>] [--cuts <MAX-CUTS>]

[--tau <PRESPECIFIED-BUDGET>] [--alpha <HYPER-PARAMETER>]

[--trees <NUMBER-OF-TREES>] [--particles <PARTICLES>]

[--seed <SEED>] <IFILE.txt> <OFILE.txt>

--usage. Prints this manual to the standard output.

--license. Prints the open source BSD 2-clause license for this software.

--version. Prints the software version information.
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--Mondrian. Instructs tess19 to conduct axis aligned cuts, yielding the MRTF model, or (if

the --weights flag is provided) the wMRTF model. By default, axis aligned cuts are not used.

--weights <WFILE.txt>. Instructs tess19 to use a weighted version of the uniform distri-

bution for the measure λd, yielding the wuRTF or wMRTF model. The weights ω j are read

from the file <WFILE.txt> which must contain d lines corresponding to the prior weight for

each predictor, with one real number per line.

--cuts <MAX-CUTS>. This flag sets a stopping condition wherein SMC particles will return

after <MAX-CUTS> cuts, regardless of the budget. By default, <MAX-CUTS> is set to 100. This

value must be a positive integer. By the pausing condition, each cut separates a data item, and

setting <MAX-CUTS> to a value larger than or equal to the number of data items is equivalent to

setting <MAX-CUTS> to∞.

--tau <PRESPECIFIED-BUDGET>. This flag specifies the budget. The budget τ must be a

positive real number, or∞ (the string Inf). By default, τ is set to infinity.

--alpha <HYPER-PARAMETER>. This flag is a positive real number that sets the coefficient

of the empirical label proportion in the Dirichlet/multinomial prior, so that the value of the

hyperparameter is αk = <HYPER-PARAMETER> * nk. The default value is 10−3.

--ntrees <NUMBER-OF-TREES>. This flag is a positive integer that sets the number of trees to

use in the random forest. By default, <NUMBER-OF-TREES> is set to 100. A value of 1 specifies

the uRTP/wuRTP/MRTP/wMRTP priors (i.e., no random forest).

--particles <PARTICLES>. This flag sets the number of particles to use in the SMC approx-

imations. The default value of <PARTICLES> is 100.

--seed <SEED>. This flag sets the random seed to <SEED>. The default is to use the system

clock to set the random seed.

3. License

tess19 v1.0. Copyright (c) 2019. Shufei Ge and Lloyd T. Elliott.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Chapter 5

Random Tessellation with Splines

5.1 Introduction

Shapes (i.e. boundaries of objects) within images are widely studied in biological science. This

application domain includes for example classifying cells collected in a blood sample from individuals

and characterizing brain diseases of patients by analyzing shapes within brain images. One basic

issue that arises in estimating shapes is the choice of the representation of the shape. Curves (Su

and Liu, 2014; Muller, 1997) are commonly used to provide flexible representations of a wide range

of objects (e.g., : tumors, cells). In related work, shape models have been explored using smooth

stochastic processes Kurtek et al. (2012). Bayesian hierarchical models and Gaussian processes have

also been used Gu et al. (2012); Lin et al. (2019). Bayesian nonparametrics has identified shape

modelling as an important area of application, supplementing traditional classification, regression and

clustering applications Hannah and Dunson (2013); Bhattacharya and Dunson (2010). We consider

modeling shapes within image with curves, in the framework of space partitioning methods.

The Mondrian process (Roy and Teh, 2008) partitions multidimensional space into hyper-

rectangles with recursive axis-aligned hyperplane cutting. In the Mondrian process, hyper-rectangles

are assigned to lifetimes (i.e., costs) sampled from an exponential distribution, with rate given by the

perimeter of the hypercube. In each iteration, the hypercube with the smallest lifetime is removed and

replaced by two new partitioning hyper-rectangles with randomly sampled hyperplans. New lifetimes

for all existing hyper-rectangles are then sampled. This process repeats until the total cost exceeds a

prespecified budget. The Mondrian process is used as a nonparametric prior distribution in Bayesian

models of relational data, and provides a Bayesian view of decision trees (Roy and Teh, 2008; Kemp

et al., 2006). Developments in the Mondrian process for space partitioning achieve high predictive

accuracy, with improved efficiency. These methods include online methods (Lakshminarayanan et al.,

2014), and particle Gibbs for Mondrian process additive regression trees (Lakshminarayanan et al.,

2015). However, the axis-aligned hyperplanes of the decision boundaries of the Mondrian process

restrict its flexibility, which could lead to failure in capturing inter-dimensional dependencies among

features. Bayesian nonparametric methods have been introduced to generalise the Mondrian process

and allow non-axis aligned cuts, such as generating arbitrary oblique cutting lines or hyperplanes
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(Fan et al., 2018, 2019, 2016; Ge et al., 2019) to partition the target space. Alternative constructions of

non-axis aligned partitioning for multidimensional spaces and non-Bayesian methods include sparse

linear combinations of predictors or canonical correlation as random forest generalisations (George,

1987; Tomita et al., 2015; Rainforth and Wood, 2015).

We propose a random tessellation with splines (RTS), an extension of the Mondrian process

and random tessellation process (RTP) which further modifies the random tessellation process by

replacing the non-axis aligned cutting hyperplanes with curved cuts. The RTS provides a framework

for describing Bayesian nonparametric models based on partitioning two-dimensional Euclidean

space with splines. The proposed nonlinear curves enable more complex data-structures to be

represented, and allow arbitrary shapes to be approximated and outputted by the model. As with the

random tessellation process, the construction of the RTS is based on the theory of stable iterated

tessellations in stochastic geometry (Nagel and Weiss, 2005). The partitions induced by the RTS

prior are described by a sets of compact subsets. We note that in contrast to the RTP, each compact

subset could contain more than one disjoint connected components (i.e., , the blocks of the partition

need not be connected).

We implement a sequential Monte Carlo (SMC) algorithm (Doucet et al., 2000) for RTS inference,

which takes advantage of the hierarchical structure of the generative process of RTS. The SMC

algorithm can be easily parallelized by allocating samples across multiple CPUs (cores) to decrease

the computational time. Our simulation study provides some evidence that our random tessellation

with splines is consistent, however exploring the consistency of RTS is an area of future work. We

apply our proposed model to simulated yin-yang data and an HIV-1-infected human macrophage

dataset to demonstrate its effectiveness. For the experiment on the macrophage dataset, we consider a

task wherein the perimeter of a macrophage cell is estimated. Shapes of biological microstructures

may indicate disease etyology. For example, the fractal dimension of vascularization in a cancer

tumor is known to be modulated during remission and metastasis Gazit et al. (1997). This motivates

the perimeter estimation, as estimation of perimeters through a continuum of resolution indicates

fractal dimension.

5.2 Methods

We characterize shapes by describing their boundary through a space partitioning approach. Let

(v1, z1), . . . , (vn, zn) denote n observed data items, where vi ∈ R
2 are predictors and zi ∈ {1, . . . ,K} are

labels. In our application, we are interested in modeling the shapes within a two-dimensional image.

The predictors vi are pixels of images, and the labels zi are labels of shapes. For example, in our real

data application, we are interested in estimating the shapes of HIV-1-infected human macrophage.

Pixels falling within the cell are labelled 1 and other pixels are labelled 2.

A Bayesian nonparametric model partitions the feature space by placing a prior distribution on

the partition process, and associates model parameters with the blocks of the partition. Inference is

then made on the joint posterior of the parameters and the structure of the partition. In this section,

86



Algorithm 8 A generative Process for the RTS, as in Ge et al. (2019) but with Λ as a measure on
splines

1: Inputs: a) Bounded domain W, b) RTS measure Λ on H, c) prespecified budget τ.
2: Outputs: A realisation of the Random Tessellation with Splines (Yt)0≤t≤τ.
3: τ0 ← 0.
4: Y0 ← {W}.
5: while τ0 ≤ τ do
6: Sample τ′ ∼ Exp

(∑
a∈Yτ0

Λ([S ])
)
.

7: Set Yt ← Yτ0 for all t ∈ (τ0,min{τ, τ0 + τ′}].
8: Set τ0 ← τ0 + τ′.
9: if τ0 ≤ τ then

10: Sample a subset S from the set Yτ0 with probability proportional to Λ([S ]).
11: Sample a Bézier curve b from [S ] according to the probability measure Λ(·∩ [S ])/Λ([S ]).
12: Yτ0 ←

(
Yτ0/{S }

)
∪ {S ∩ b−, S ∩ b+}. (b− and b+ are the b − bounded closed half curved

planes.)
13: else
14: return the tessellation-valued right-continuous MJP sample (Yt)0≤t≤τ.

we develop the RTS and place a prior on partitions of (v1, z1), . . . , (vn, zn) induced by tessellations

via splines in a two-dimensional feature space.

5.2.1 Random Tessellation with Splines

A tessellation Y in the RTS of a bounded domain W ⊂ R2 is a finite collection of compact subsets,

such that the union of the subsets is all of W, and the subsets have pairwise disjoint interiors (Chiu

et al., 2013). Note that each subset may contain more than one disjoint connected components, as

shown in Fig 5.1. Also: throughout this work we consider the two-dimensional plane (although,

these methods may be generalized to higher dimensions as a point of future work). Denote C0

as the set of all compact sets with finitely many connected components, C0 = ∪
Jc
j=1C j, Jc ≥ 2,

interior(Ci) ∩ interior(C j) = ∅ for any i , j. Let S i, i = 1, · · · , Js denotes each subset in the

tessellation, and each S i could contain more than one disjoint connected components. We denote

tessellations of W by Y(W), Y(W) = ∪
Js
i=1S i, S i = ∪C j∈S iC j. For example, in Fig 5.1, at time τ4,

Y(W) = ∪5
i=1S i, S 1 = C1, S 2 = C2 ∪C5, S 3 = C4, S 4 = C3 ∪C6, S 5 = C7.

Figure 5.1: An example of a generative process from the RTS prior with domain given by a two
dimensional box (x, y)∈ [−1, 1]2. Colours indicate subsets identity, and are randomly assigned.
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The random tessellation with splines forms a partition. An element of the partition is a subset

with non-empty interior formed by the intersection of finitely many closed curves. The RTS itself

Yt(W) is a partition-valued Markov process defined on [0, τ], with cutting events specified by splines

that intersect the tessellation’s subsets. Here τ is a prespecified budget (Berger, 2012).

The RTS Y0(W) is initialized with a single subset W covering all of the observed predictors: W

is the convex hull hull{v1, . . . , vn}. The Markov process for the RTS associates each subset with an

exponentially distributed lifetime. The subset is replaced by two new subsets at the end of subset’s

lifetime t. At time t, we sample a spline that intersects the interior of the old subset to form two new

subsets. We evolve the Markov process until we reach the prespecified budget τ.

As in Ge et al. (2019), we associate a measure on splines with the generative process described in

Section 2.3. If W′ is a subset of W, let [W′] be the set of all splines formed by the generative process

described in Section 2.3 that intersect W′. The generative process thus implicitly defines a measure Λ

on splines such that the density of the spline found through the generative process is Λ(·)/Λ([W′]).

We can sample from this density using rejection sampling.

To sample an RTS, we sample a Bézier curve (Mortenson, 1999) to cut a subset. Bézier curves

are widely used in computer graphic to draw shapes, due to their flexibility in modeling complex

shapes and their simple mathematical formulation. Let B be the set of Bézier curves in R2. Every

Bézier curve b is uniquely defined by a set of control points P0, . . . , Pn, where n is the order of the

Bézier curve. In our numerical experiments, we let n takes values from 1, 2, 3 randomly (n = 1 for

linear, 2 for quadratic, 3 for cubic).

5.2.2 Coordinate rotation

Figure 5.2: An example of coordinate rotation. (a) A rotated
Bézier curve (with angle θ), which is not injective in the origi-
nal coordinate system. (b-c) A new coordinate system and a
Bézier curve proposed so as to be injective. The new coordi-
nate is obtained by rotating the original coordinate by angle θ.
(d-e)Translating a Bézier curve in the new coordinate system.
(f ) A subset of a Bézier curve splits the targets from different
positioning via moving up and down. (g) A subset of a Bézier
curve splits the target from different angles and positions.

We discuss the problem of deter-

mining which side of a Bézier curve

a point lies on. This is required in or-

der to partition points in the target,

given the Bézier curve cuts. After

proposing a Bézier curve in a ref-

erence coordinate system, we may

rotate it and translate it along a nor-

mal in order to produce a proposal

for the cut. However, after rotation

the curve may no longer be a func-

tion of the x-axis (i.e., , the mapping

from x to the rotated and translated

spline is not injective), which makes

it difficult to identify which side of

the curve target points lie on (we cannot just compare their y-levels). This is shown in Fig.5.2 (a).

In order to use the Bézier curve to split targets after rotation by an arbitrary angle, we rotate the
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coordinate system rather than the curve: We project the targets to a new coordinate system and the

Bézier curve proposal can split the targets by comparing the y-levels in the new coordinate system.

This rotation is shown in Fig.5.2 (b) - (c). The translation of the Bézier curve is displayed in Fig.5.2

(d) - (e). Fig.5.2 (f ) and (g) show subsets of Bézier curves splitting targets according to an arbitrary

angle.

5.2.3 Generative process for the cutting spline

Now we turn to the description of a generative process for the cutting spline. Without loss of

generality, we can assume the shape being cut is a square. Our cutting procedure should define a cut

given by a single random spline, and incorporate the coordinate rotation scheme. The generative

process is as follows:

1. Project the shape to a new coordinate system by rotating the coordinate with angle θ as in

Fig.5.2 (a) - (c), and moving it along a normal vector by t as in Fig.5.2 (e) - (f ). Denote

the coordinates before projection by (x, y), and after projection by (x′, y′). This indicates the

following transformations:x′

y′

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 x

y

 +

0t
 , θ ∼ Unif(0, 2π), t ∼ Unif(−Lt, Lt). (1)

2. Get the range of the segment in the new coordinate system on both x and y-axes, denote them

by [x′min, x
′
max], [y′min, y

′
max]. Expand the ranges Lx′ , Ly′ times separately. Denote the new ranges

as [x∗min, x
∗
max], [y∗min, y

∗
max], where:

x∗min

x∗max

=

x′min − Lx‘ × (x′max − x′min)

x′max + Lx‘ × (x′max − x′min)

 , y∗min

y∗max

=

y′min − Ly‘ × (y′max − y′min)

y′max + Ly‘ × (y′max − y′min)

 . (2)

3. Sample the control points for the spline in the new coordinate system via following sampling

scheme:

(a) Sample the number of control points, nc, from values {2, 3, 4} with equal probability.

(b) Sample the control points themselves:

Sample

xc
1

yc
1

 , · · · , xc
nc

yc
nc

 , such that: (3)

xc
1 = x∗min, x

c
nc

= x∗max, x
c
j ∼ Uniform(x∗min, x

∗
max)∀ j < {1, nc}. (4)
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Sample yc
j ∼ Uniform(y∗min, y

∗
max). Set yc

nc
= yc

1. (5)

(c) The spline is then determined by the control points, according to Mortenson (1999).

4. Divide the segment into two new segments, according to the spline.

5. Transform the new segments and the the sampled spline back to the original coordinate system.

Note that in Equation 4 we assume that xc
1, ..., x

c
nc

are arranged in ascending order. If we choose Lt,

Lx′ ,Ly′ appropriately, the proposed splines would be approximately uniformly distributed over the

target as shown in Section 5.2.4.

5.2.4 Evidence of projectivity for the RTS

(a) (b)

Figure 5.3: (a) Frequency of p-values of bivariate uniformity tests on 100 experiments. The left
panel displays the p-values of data sampled from the first cuts, the right panel presents the p-values
of data sampled from a bivariate uniform distribution. (b) The upper panels are bivariate density
plots of 5 randomly selected experiments, in which data are sampled from the proposed first cuts
on a unit square; the lower panels show density of 5 random draws of 5000 points sampled from a
uniform distribution on a unit square.

Projectivity (or self-consistency) is required in order for inference on Bayesian nonparametric

objects to be well defined. For all bounded domains W′ ⊆ W, if Yt(W′) is equal in distribution to

Yt(W) ∩W′, then projectivity holds. We conduct a simulation study to explore the projectivity of

the RTS. The experiment is repeated 100 times with different random seeds. In each replicate, we

generate 5000 random Béizer curves that intersect with the unit square [0, 1]2, with Lt = 9
√

2, Lx‘ =

10, Ly‘ = 2. We randomly sample one point from each Béizer curve, lying inside the square. The

total number of sampled points is 5000 in each replicate. Under the assumption of projectivity, the

sampled points are distributed according to a bivariate uniform random variable. We then conduct a

bivariate uniformity test (Yang and Modarres, 2017) on the sampled points for each experiment. The

null hypothesis H0 is that the data are drawn from a bivariate uniform distribution on a square. The

frequency of the p-values is displayed in Fig. 5.3 (a) left panel, in which 93 out of the 100 p-values

are greater than 0.05. We also provide the p-values of the bivariate uniformity test on 100 randomly
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sampled same sized datasets from a uniformly distribution on [0, 1]2 as a benchmark in Fig. 5.3 (a)

right panel, and 95% of the p-values are greater than 0.05. In Fig.5.3 (b) upper panels, we provide

the bivariate density plots of 5 randomly drawn data sets from the 100 replicates. The density plots

show that the distribution of data points are not concentrated on a certain small area, but on many

small areas or the distribution is relatively flat over the square, which has a similar pattern as bivariate

uniform distributions (e.g. Fig.5.3 (b) lower panels). This indicates the sampled points may follow a

bivariate uniform distribution, and provides some evidence towards projectivity.

5.2.5 Sequential Monte Carlo for RTS inference

We use techniques from relational modeling for categorical data in order to specify a likelihood

model for the RTS. This specifies the same likelihood that was used in the random tessellation

process Ge et al. (2019). Let Yt(W) be an RTS on the domain W = hull{v1, . . . , vn}. Our objective

is to infer the normalized posterior distribution of Yt(W), denoted π(Yt(W)). We develop an SMC

algorithm to infer π(Yt(W)), by taking advantage of the hierarchical structure of the RTS prior. Our

algorithm iterates between three steps until a total budget τ is reached: resampling particles, propaga-

tion of particles and weighting of particles. We obtain a list of weighted particles to approximate

the RTS posterior
∑M

m=1$mδYτ,m(W) at time τ. Here m is the particle index, M is the total number of

particles and $m are the particle weights. Two methods are used to decrease the cost and complexity

for computation. Firstly, we approximate Λ([S ]) with the measure Λ([·]) applied to the smallest

closed circle containing S in the computation of the lifetimes of subsets. Secondly, we use a pausing

condition so that no cutting splines are proposed for subsets in which the labels of all predictors are

same. We refer readers to Ge et al. (2019) for more details of these two methods and the frame work

of the SMC algorithm. In addition, we parallel the propagation step and the weighting step in the

SMC algorithm by allocating samples across multiple CPUs (cores) to decrease the computational

time.

(a) (b)

Figure 5.4: (a) A view of the yin-yang dataset, with black indicting label 1 and white indicting label
2 . (b) Best first cuts among different number of particles. Each experiment is repeated 100 times.

5.3 Experiments

In Section 5.2.5, we conduct a simulation study to evaluate the performance of our SMC approach

with respect to different number of cores and particles. In Section 5.3.2 we evaluate our method

via an HIV-1-infected human macrophage image data sets, and compare our method with modern

machine learning approaches. We also explore the value of outputing shapes by computing the
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perimeter of cells. Throughout our experiments, we set the likelihood hyperparameters for the RTS

to αk = nk/1000, nk =
∑

i δ(zi = k), and use δ(·) as is an indicator function with δ(zi = k) = 1 if zi = k

and δ(zi = k) = 0 otherwise.

5.3.1 Simulations on the yin-yang
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Figure 5.5: (Left) Cost-ratio of SMC versus number of
cores with different number of particles settings. The base-
line is the running time with 20 cores. (Middle) Running
time (seconds) of SMC versus different numbers of parti-
cles with 16 cores. (Right) % correct of parallel SMC with
different numbers of particles. All experiments were run
on Intel E5-2683 v4 Broadwell 2.1Ghz machines.

We simulate an yin-yang dataset.

First, we uniformly sample 10000 points

in the square [−1, 1]2, points falling out-

side of the circle x2+y2 = 1 are removed.

Points satisfying (x − 0.5)2 + y2 < 0.12

or x > 0, y < 0, (x− 0.5)2 + y2 > 0.25 or

x < 0, y < 0, (x+0.5)2+(y+0.5)2 > 0.12

or x < 0, y > 0, (x + 0.5)2 + y2 < 0.25

are labeled 1 and the rest are labeled 2.

Fig. 5.4a provides a visualization of the

yin-yang dataset, wherein points are col-

ored black or white based on their label. We first conduct an experiment to evaluate the performance

of SMC approach with respect to different number of particles. Each experiment is repeated 100

times, and we allocate 60% of the data items at random to a training set, the rest to the testing set.

Fig. 5.4b displays the best first cuts with different number of particles. The first cut can generally

capture the division of the yin-yang image when we use M = 5000 particles in SMC, which indicates

that a larger number of particles can improve the performance of the SMC algorithm. We note that

due to the recursive nature of tree-based algorithms such as the RTS, successful first cuts suggest

good general performance of the algorithm.

We conduct another experiment to evaluate the computational cost of our SMC approach. As

indicated in Fig. 5.5, the running time of SMC is a linear function of the number of particles. A larger

number of particles increase the computational cost. But we can parallelize the propagation and

weighting steps to decrease the cost by allocating samples across different cores. The computational

cost decreases more than 10 times if we use 20 cores. This shows one advantage of using our SMC

approach over traditional Bayesian inference methods such as Markov chain Monte Carlo.

5.3.2 Experiment on an HIV-1–infected human macrophage

We evaluate the performance of the RTS on a series of images of Human Immunodeficiency Virus

Type I (HIV-1) infected human macrophage. We also display the results provided by some popular

image segmentation approaches, such as the Simple Linear Iterative Clustering (SLIC) Superpixels

(Achanta et al., 2010, 2012), zero version of the SLIC (SLICO) (Ren and Malik, 2003; Lucchi et al.,

2010), affinity propagation clustering based on the SLIC superpixels (SLICAP) (Frey and Dueck,

2007; Zhou, 2015) and supervised classification algorithms methods, such as the K-nearest neighbor
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classifier (KNN), decision trees (DT), random forest (RF) (with 100 trees), support vector machines

(SVM).

The images are extracted from a real-time video showing HIV-1–infected human macrophage

sensing its environment (Gaudin). Images are taken from stills every second from the video, with 12

images are acquired (see Fig.5.6a). All images are converted to binary images and each binary image

contains 600 × 460 pixels. We reduce the size of each image to 20% of its original size (i.e. 120 × 92

pixels), and these images are assumed to be the ground truth (see Fig.5.6b). Our goal is to capture

the smooth shape of HIV-1–infected human macrophage for each image. In this experiment, we use

2000 particles, 16 cores, and set τ = ∞ (i.e., , running the RTS until the pausing conditions are met

for all partitions). The rest of the parameters are set to the default values described in the beginning

of this section.

100 400 100 400 100 400 100 400 100 400 100 400 100 400 100 400 100 400 100 400 100 400 100 400
(a)

(b)

(c)

Figure 5.6: (a) Original Images. (b) Ground truth. (c) RTS produced image shapes (with shape
boundaries in blue) with different number of cuts. Rows from top to bottom are the shapes produced
by the RTS with 10, 50, 100, 150 cuts.

5.4 Results

Macrophage infection is a major aspect of HIV-1 Merrill and Chen (1991); Cunningham et al.

(1997); Hrecka et al. (2011); Koppensteiner et al. (2012). Measures of HIV-1–infected human

macrophages, such as the perimeters of infected cells may reveal aspects of HIV-1 etiology Castellano

et al. (2017). To acquire these shapes within an image, we combine the curves that lie at the boundaries

between subsets in the tessellation, and then mark the curve segments as interior boundaries if the K

nearest pixels on both sides of the curve have the same label, and then remove the interior boundaries.
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(a) (b)

Figure 5.7: (a) Estimated perimeters of shapes as a function of number of cuts for images 1 to
12. Each line represents one image.(b) Performance measures MSE, PSNR, JSC and SSIM as a
function of the number of cuts for hiv dataset. For MSE, lower is better and for PSNR, SSIM and
JSC higher is better.

This leaves only curves that delineate the boundary of the object. We sample points from the curves

evenly and use the K-nearest neighbours algorithm to obtain K = 10 pixels for each point on the

curve. We then extract properties of the resulting shape: In this experiment we focus on the perimeter.

Fig. 5.6c displays the shapes of the macrophage captured by the RTS with different numbers of cuts,

and Table 5.1 displays the corresponding estimated perimeters. The 12 extracted images in the Table

are labelled by I1, I2, . . .. In Fig. 5.6c, overplotting (in which multiple splines indicate the same

border) arises on the boundaries. The degree of overplotting increases linearly with the number of

the cuts: Fig. 5.7 (a). This suggests that the true perimeter of the shape is proportional to p̃/#cuts,

where p̃ is the perimeter of the shape found by the RTS.

Table 5.1: Estimated perimeters of the shapes of the 12 images (I1 to I12) by the RTS with different
numbers of cuts.

#cuts I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12
10 2.84 2.33 2.50 1.22 1.18 1.44 1.02 1.25 0.98 1.85 1.62 0.86
50 6.94 5.71 6.56 4.36 3.04 4.02 3.96 3.39 4.07 3.97 2.77 2.77
100 10.20 9.27 8.94 7.55 4.55 6.28 5.89 6.32 6.83 5.27 4.67 4.37
150 13.16 12.16 11.23 9.60 6.07 7.80 7.46 7.93 8.01 8.16 7.01 6.84

Table 5.2: Mean of quantitative measures PSNR, MSE, JSC, SSIM on images over different
methods.

Methods SVM RF DT KNN SLIC SLICO SLICAP RTS
PSNR 11.9100 17.8337 15.2747 15.0990 17.2681 17.2713 17.2681 27.3121
MSE 0.0670 0.0172 0.0309 0.0320 0.0197 0.0196 0.0197 0.0132
JSC 0.8751 0.9662 0.9402 0.9381 0.9614 0.9615 0.9614 0.9741
SSIM 0.9983 0.9997 0.9995 0.9994 0.9996 0.9996 0.9996 0.9998

We compare the ground truth and predicted images with different number of cuts via both

visualization (see Fig. 5.8 in Appendix A) and quantitative measures (Fig. 5.7b). Fig. 5.7b displays

the mean squared error (MSE), peak signal-to-noise ratio (PSNR), Jaccard similarity coefficient

(JSC) and structural similarity (SSIM) of RTS as a function of number of cuts. Each line denotes
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a quantitative measure for one image. The MSEs decrease as the budget τ increase, and becomes

stable when number of cuts exceed 25. The PSNRs, JSCs and SSIM increase rapidly for the first few

cuts and become stable after 25 cuts. Table 5.2 shows the average of different quantitative measures

on the images across the methods. Fig. 5.8(b) displays the predicted images versus number of cuts,

with ground truth (Fig. 5.8(a)) , showing that a large number of cuts can better capture the shape of

the macrophage. Comparing Fig. 5.8(b) to Fig. 5.8(c-d), our proposed RTS captures the shapes of

the images comparable or better to other methods. Table 5.2 and Fig. 5.8 indicate that our proposed

RTS with τ = ∞ performs comparable to other methods in terms of the quantitative measures and

visualization. The SVM in Table 5.2 uses radial basis kernels, the result of the SVM with other

kernels in is given in Appendix A.

5.5 Conclusion

In this chapter, we present a novel Bayesian nonparametric method for space partitioning.

Our method partitions a domain with curves to capture complex images shapes. We develop an

inference algorithm that can be parallelized, and provide evidence towards consistency. Our real data

application shows that the RTS has satisfactory performance in a task in which the smooth shape

of HIV-1–infected human macrophage is captured, provided that enough computing resources are

allocated (in terms of the number of particles and the computational budget τ). One future direction of

this work is to extend the RTS to capture shapes of multidimensional objects with cutting manifolds.

Broader Impact

Our work involves a Bayesian nonparametric model for shapes. Theoretically, we consider the

problem of generalizing a decision tree to use decision boundaries that are drawn from a parameterized

set of curves. We illustrate a potential biomedical application: determination of the characteristics of

the shapes of cells. Our aim with that application is to advance medicine by providing a method for

determining the perimeter of cells or microstructures which may be correlated with severity of disease.

Our work towards this biomedical application is in early stages and is currently a proof-of-concept.

Positive impact in medicine in our intended direction would require much additional work involving

acquisition of datasets, and collaboration with pathologists.

Bayesian nonparametric methods are general, and can be applied to any problem. For example,

Bayesian nonparametric versions of latent dirichlet allocation (LDA) have been used extensively by

Facebook and sometimes in possibly unhelpful gender discourse Wang et al. (2013). In addition,

general advances in image processing and image analysis (our work is also a contribution to this) in

machine learning have led to a cat-and-mouse game of detection and generation in image manipulation

(deep fakes), and erosion of privacy through technologies such as automatic name-plate recognition.

The primary application we consider in this chapter is biomedical, and is in the public interest.

However, much work is still required for its potential to become realized to that end.
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5.6 Appendix A

5.6.1 Results of different methods on an HIV-1–infected human macrophage

In this section, we provide the results of different methods on a series of images of HIV-1 infected

human macrophage. Fig.5.8 gives the comparison of the ground truth and predicted images of

different methods, include the RTS with different number of cuts, DT, KNN, SLIC, SLICO, SLICAP

and SVM with different kernels. Table 5.3 presents the mean of quantitative measures of PSNR, MSE,

JSC and SSIM of the SVM with different kernels on the 12 images. These metrics are described in

the main text. And the mean of these quantitative measures of other methods is given in the Table 5.2

of the main text. Figure 5.8 provides the reconstruction of the shape of the macrophage, according to

various methods, as described in the main text.

Table 5.3: Mean of quantitative measures PSNR, MSE, JSC, SSIM on images over the SVM with
different kernels.

Methods Radial Polynomial Linear Sigmoid
PSNR 11.9100 11.1974 11.1974 8.3061
MSE 0.0670 0.0779 0.0779 0.1516
JSC 0.8751 0.8560 0.8560 0.7383
SSIM 0.9983 0.9978 0.9978 0.9974
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(a)

(b)

(c)

(d)

Figure 5.8: (a) Ground truth. (b) RTS predictions with 10, 50, 100, 150, ∞ cuts from top to
bottom. (c) From top to bottom, predictions of the RF (with 100 trees), DT, KNN, SLIC, SLICO,
SLICAP. (d) Predicted images of the SVM with different kernels. From top to bottom, predictions
of the SVM with radial basis function, polynomial, linear and sigmoid kernels.
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Chapter 6

Online Bayesian learning for mixtures of
spatial spline regressions with
mixed-effects

6.1 Introduction

Classification and clustering of random objects has been received substantial attention in func-

tional data analysis. James and Hastie (2001) proposed the functional linear discriminant analysis,

which can perform the classification of curves, by extending the classical method of linear discrim-

inant analysis (Izenman, 2013) to functional data. Motivated by radar-range problems, Hall et al.

(2001) developed the classification of Gaussian process regression to do real-time discrimination

in the context of signal analysis based on principal coordinates analysis. James and Sugar (2003)

generalized the clustering of functional data based on mixtures of linear mixed models, and their

method is particularly well suited for sparsely sampled data. Chamroukhi et al. (2010) proposed

the clustering of curves based on piecewise polynomial regression. These authors combined the

piecewise polynomial regression with a discrete hidden regression model to accommodate abrupt or

smooth changes in curves.

Although not as abundant as univariate functions, bivariate functional data analysis has also been

well-developed as a statistical tool in surface smoothing and estimation. Matheron (1963) introduced a

geostatistical procedure called “kriging”, which predicts the value of a panel at any arbitrary location

via a weighted average of available samples. Duchon (1977) proposed the use of thin-plate splines as

an interpolation method for surfaces and a penalty term was introduced to control the smoothness of

the fitted surface. Malfait and Ramsay (2003) proposed a spatial spline regression (SSR) model to

deal with functional time series. Wood et al. (2008) showed that conventional smoothing methods

may not work well for complex domains, due to poor performance at the boundary of these domains.

These authors discuss a technique known as soap film smoothing which can be applied for smoothing

over difficult subregions of R2. The aforementioned work has a main focus on surface smoothing and

estimation for a single population rather than clustering of surfaces from several populations.
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Nguyen et al. (2016) proposed a new application of bivariate functions to do clustering and

classification for surfaces by extending the clustering techniques of James and Sugar (2003) to

mixtures of spatial spline regression with mixed-effects model. We will refer to mixture of spatial

spline regression with mixed-effects as “MSSRm" in what follows. Nguyen et al. (2016) fitted the

MSSRm model using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). In the

E-step the expectation of log-likelihood function is computed over the latent variables conditioned

on the observations and the current parameter estimates. In the M-step the expected log-likelihood

obtained in E-step is maximized over the model parameters. The EM algorithm is efficient in finding

a local mode of likelihood function but it is very sensitive to the initial values and it only provides

point estimates.

An alternative approach to implement inference in the latent variable model is Markov chain

Monte Carlo (MCMC) (Jasra et al., 2005; Diebolt and Robert, 1994). Besides point estimates, MCMC

provides uncertainty quantification for the parameters of interest. Chamroukhi (2015); Chamroukhi

and Nguyen (2019) consider Bayesian approaches to the problem of static estimation for spatial

spline regression. However, there are several constraints for an MCMC algorithm to be implemented

for inference in an online problem. First of all, the storage of a “big data" set may cause memory

issues in practice. Second, the MCMC has to be rerun to update parameters when a new observation

arrives, which is inefficient for dynamic problems. Finally, the marginal likelihood is expensive and

challenging to compute in an MCMC algorithm.

Sequential Monte Carlo (SMC) (Doucet et al., 2001; Liu and Chen, 1998; Doucet et al., 2000),

aka Particle Filtering, provides a sequential approximate of the posterior distribution using sampled

particles (samples), and is often used to learn the distribution of latent variables. SMC has been

demonstrated as a gold standard for dynamic problems, which leads to interest in implementing

this method to many batch problems as an alternative to traditional Bayesian computation methods

(e.g. MCMC). The sequential scheme in SMC makes online inference in latent variable models

possible. Some sophisticated work has been done on mixture models using SMC (Fearnhead and

Meligkotsidou, 2007; Carvalho et al., 2010b; MacEachern et al., 1999). When a new observation

arrives, within this framework we only need to update the uncertainty immediately using this

new observation and the low dimensional sufficient statistics we have stored, which means every

observation is only used once. This is especially suitable for large-scale stream type data. In addition,

another advantage of our proposed SMC algorithm over MCMC is that the marginal likelihood

calculation is very convenient, which can be used for model selection. The posterior cluster allocation

is also obtained from the algorithm.

In this chapter, we build a Bayesian hierarchical model based on the MSSRm as described in

Section 6.3.1, in which we take the cluster labels as latent variables. The latent variables of the

model are discrete and evolve with time. We apply the SMC scheme to learn the distribution of

these latent variables and static parameters of the model. As described in Algorithm 11, we take

the Resample-Propagate strategy to reduce the approximation errors since both the resample and

propagate step will be informed by the new observation (Carvalho et al., 2010a,b; Pitt and Shephard,
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1999). In addition, we include MCMC moves within the SMC algorithm to mutate particles so as to

prevent the progressive degeneration (Fearnhead, 2002; Gilks and Berzuini, 2001). Moreover, with

the adoption of model sufficient statistics, instead of requiring storage of an entire data set, only

sufficient statistics are required to summarize the data in the MCMC move, and this scheme makes

the SMC algorithm computationally more efficient.

In this chapter, we have three main contributions. First, we derive the full MCMC (Gibbs)

sampling scheme for the MSSRm model. Second, we propose an online SMC algorithm for image

clustering based on the MSSRm model, which allows us to conduct model inference for sequential

images efficiently. Our proposed method is related to the work in Carvalho et al. (2010b). Their

method is applied to relatively simple mixture models. In contrast, our spatial spline mixture has

a more complicated model structure, high dimensional model parameters and a large number of

random effects. Third, we numerically assess the performance of our algorithm with different number

of latent states (clusters) and observations.

The remainder of this chapter is organized as follows. We introduce the mixture of spatial spline

regression model in Section 6.2. In Section 6.3, we derive the Gibbs sampling algorithm for the

mixture of spatial spline regression and propose an online inference scheme for this model. In Section

6.4, we introduce the model selection criteria for the proposed online SMC algorithm. In Section 6.5,

we use a numerical study to assess and compare the performance of MCMC and the proposed online

SMC algorithm. In Section 6.6, we apply the methods to hand writing recognition data and brain

image magnetoencephalography (MEG) data. We list all notations in the 6.8.1.

6.2 Mixture of spatial spline regression model

The spatial spline regression (SSR) dates back to Malfait and Ramsay (2003); Sangalli et al.

(2013). Malfait and Ramsay (2003) first applied the SSR model to functional time series. Sangalli

et al. (2013) refined the SSR model and showed that it can be extended to areal data with three

dimensions, including volumes and surfaces that are embedded in three-dimensional spaces. Nguyen

et al. (2016) implemented this methodology to surface clustering and classification by extending SSR

model to MSSRm model. In this section, we will describe the MSSRm Model.

6.2.1 Mixture of spatial spline regression model with mixed-effects

Let t be an index for time, at time t, t = 1, . . . ,T , denote yt, an mt × 1 vector, as the observation at

time t, where mt is the length of observation yt. Suppose observations y1, . . . , yT can be grouped into

K clusters. Let St be the spatial covariates matrix at time t. The matrix St has dimension mt × d and is

calculated from the tent shaped piecewise linear Nodal basis functions (NBFs) (Malfait and Ramsay,

2003), which will be introduced in Section 6.2.2, and d is fixed and refers to the number of basis

functions. Let ᵀ be a symbol denoting the transpose of a vector or matrix. Let π = (π1, π2, . . . , πK)ᵀ

be the cluster allocation probability for observations and let βk, a d × 1 vector, be the model fixed

effects for cluster k. We use btk, a d× 1 vector, to denote the random effect coefficients of cluster k for
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yt. We let etk, a d × 1 vector, represent the random error of cluster k for observation t. The MSSRm

model for the observation at time t can be expressed as

yt =

K∑
k=1

πk(Stβk + St btk + etk), (1)

where btk ∼ MVN(0, ξ2
k Id) and etk ∼ MVN(0, σ2

k Imt ). Here MVN(·, ·) denotes the multivariate

normal distribution, and Il denotes an identity matrix with dimension l × l. Denote π = ({πk}
K
k=1)ᵀ,

β = ({βk}
K
k=1)ᵀ, σ2 = ({σ2

k}
K
k=1)ᵀ and ξ2 = ({ξ2

k }
K
k=1)ᵀ. Our interest is to make Bayesian inference for

θ = (πᵀ,βᵀ, (σ2)ᵀ, (ξ2)ᵀ)ᵀ.

6.2.2 Linear nodal basis function

In this section, we focus on the nodal basis functions (NBFs) (Malfait and Ramsay, 2003). While

B-splines are often used to approximate the univariate functions, NBFS can be used in a similar way

to approximate surfaces. As argued by Nguyen et al. (2016), the linear NBFs (Malfait and Ramsay,

2003) are useful for problems involving clustering and classification.

The linear NBF is a “tent shaped” piecewise linear function with shape parameter δ = (δ1, δ2)ᵀ,

center parameter c = (c1, c2)ᵀ and coordinates x1, x2 on a rectangular domain, where δ1 is a positive

real number representing the horizontal shape parameter, and δ2 is a positive real number representing

the vertical shape parameter. For any coordinates η = (η1, η2)ᵀ on a rectangular domain R =

[η−1 , η
+
1 ] × [η−2 , η

+
2 ], let η

′

1 = (η1 − c1)/δ1, η
′

2 = (η2 − c2)/δ2, the exact form of linear NBF of η is

defined in Eq.(2) (Malfait and Ramsay, 2003; Sangalli et al., 2013; Nguyen et al., 2016),

s(η; c, δ) =



1 + η2
′ if η

′

∈ {(η
′

1, η
′

2) : −1 ≤ η
′

1 ≤ 0, −1 ≤ η
′

2 ≤ η
′

1},

1 + η1
′ if η

′

∈ {(η
′

1, η
′

2) : −1 ≤ η
′

1 ≤ 0, η
′

1 ≤ η
′

2 ≤ 0},

1 + η1
′ − η2

′ if η
′

∈ {(η
′

1, η
′

2) : −1 ≤ η
′

1 ≤ 0, 0 ≤ η
′

2 ≤ η
′

1 + 1},

1 − η1
′ + η2

′ if η
′

∈ {(η
′

1, η
′

2) : 0 ≤ η
′

1 ≤ 1, η
′

1 − 1 ≤ η
′

2 ≤ 0},

1 − η1
′ if η

′

∈ {(η
′

1, η
′

2) : 0 ≤ η
′

1 ≤ 1, 0 ≤ η
′

2 ≤ η
′

1},

1 − η2
′ if η

′

∈ {(η
′

1, η
′

2) : 0 ≤ η
′

1 ≤ 1, η
′

1 ≤ η
′

2 ≤ 1},

0 otherwise.

(2)

Figure 6.1a is an example of a NBF function defined on a rectangular domain R = [−1, 1]×[−1, 1],

with δ = (1, 1)ᵀ and c = (0, 0)ᵀ.

Similarly to B-splines, the number of nodal basis functions used to approximate surfaces has to

be specified. Suppose we use d = d1 × d2 basis functions to approximate the surfaces over a fixed

rectangular domain. The rectangular domain is divided into (d1 − 1) × (d2 − 1) small grids evenly,

d1 − 1 grids in each row and d2 − 1 grids in each column. Nodes on the grids are centers of these

nodal basis, and the horizontal length and vertical height on small grids are δ1 = (η+
1 − η

−
1 )/(d1 − 1) ,
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η1
η2

(a) s(η; c, δ), with c = (0, 0)ᵀ and δ = (1, 1)ᵀ.

c1 c2 c3

c4 c5 c6

c7 c8 c9

(b) centers of 3 × 3 NBFs on a fixed domain.
s(η; c1, δ) s(η; c2, δ) s(η; c3, δ) s(η; c4, δ) s(η; c5, δ)

s(η; c6, δ) s(η; c7, δ) s(η; c8, δ) s(η; c9, δ)

(c) 3 × 3 NBFs on fixed rectangular domain R = [−1, 1] × [−1, 1].

Figure 6.1: An example of Nodal Basis Functions.

δ2 = (η+
2 − η

−
2 )(d2 − 1), respectively. The covariates matrix St for yt, t = 1, . . . ,T , is defined as

St =


s(ηt,1; c1, δ) . . . s(ηt,1; cd, δ)

s(ηt,2; c1, δ) . . . s(ηt,2; cd, δ)
...

. . .
...

s(ηt,mt
; c1, δ) . . . s(ηt,mt

; cd, δ)


, (3)

where ηt,1, . . . , ηt,mt
are coordinates of yt, δ = (δ1, δ2)ᵀ = ((η+

1 − η
−
1 )/(d1 − 1), (η+

2 − η
−
2 )/(d2 − 1))ᵀ,

and cl = (cl1, cl2)ᵀ, l = 1, . . . , d are the centers and can be obtained by setting c1 = (η−1 , η
−
2 )ᵀ,

c2 = (η−1 + δ1, η
−
2 )ᵀ, . . ., cd−1 = (η+

1 , η
−
2 + (d2 − 1)δ2)ᵀ, cd = (η+

1 , η
+
2 )ᵀ. For example, given a fixed

rectangular domain R = [−1, 1] × [−1, 1], suppose we set the number of NBFs d = 3 × 3, therefore

δ1 = δ2 = 1, and the corresponding 9 NBFs centers are c1 = (−1,−1)ᵀ, c2 = (−1, 0)ᵀ, c3 =

(−1, 1)ᵀ, c4 = (0,−1)ᵀ, c5 = (0, 0)ᵀ, c6 = (0, 1)ᵀ, c7 = (1,−1)ᵀ, c8 = (1, 0)ᵀ and c9 = (1, 1)ᵀ.

These centers and their corresponding NBFs are shown in Figure 6.1b and 6.1c, respectively.

6.3 Model inference

In this section, we introduce two methodologies to make inference on the mixture of spatial spline

regression model. Before introducing the inference methods, we discuss the Bayesian framework for

this MSSRm model. We first incorporate the auxiliary variable zt (t = 1, . . . ,T ) in the mixture model

to indicate the cluster label of observation yt. Denote Y = ({yᵀt }Tt=1)ᵀ, Z = ({zt}
T
t=1)ᵀ, b = ({bᵀt }Tt=1)ᵀ,

bt = {bᵀt1, . . . , b
ᵀ
tK}
ᵀ. Recall that θ = (πᵀ,βᵀ, (σ2)ᵀ, (ξ2)ᵀ)ᵀ, conditional on zt, bt and θ, we have
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f (yt|zt, bt, θ) =

K∏
k=1

{
φ(yt; Stβk + St btk, σ

2
k Imt )

}1k(zt)
, (4)

where φ(·; Stβk + St btk, σ
2
k Imt ) denotes the density of a multivariate normal distribution with mean

Stβk + St btk, and covariance σ2
k Imt . 1(·) is a indicator function: 1k(zt) = 1 if zt = k, otherwise

1k(zt) = 0.

The joint density (likelihood) of Y conditional on Z, b, θ can be written as

f (Y|Z, b,π,β, ξ2,σ2) =

T∏
t=1

K∏
k=1

{
φ(yt; Stβk + St btk, σ

2
k Imt )

}1k(zt)
. (5)

Taking integration of Eq.(4) over bt, we have

f (yt|zt, θ) =

K∑
k=1

1k(zt)φ(yt; Stβk, ξ
2
k StS

ᵀ
t + σ2

k Imt ). (6)

Taking integration of Eq.(4) over zt and bt, we have

f (yt|θ) =

K∑
k=1

πkφ(yt; Stβk, ξ
2
k StS

ᵀ
t + σ2

k Imt ). (7)

6.3.1 Bayesian framework

In this section, we build a hierarchical MSSRm model under the Bayesian framework. Let a

Dirichlet distribution with hyperparameters (α1, . . . , αK) be the prior for the allocation parameter π,

a multinomial distribution with parameter π be the prior for the label zt, t = 1, . . . ,T , a multivariate

normal distribution with hyperparameters µ0,Σ0 be the prior of the fixed-effects coefficients. We use

an inverse-gamma distribution with hyperparameters a0, b0 (or g0, h0) as the prior for the variance

parameter ξ2
k (or σ2

k) for k = 1, . . . ,K and use a multivariate normal distribution with parameters ξ2
k

to model the random-effects coefficients btk for k = 1, . . . ,K, t = 1, . . . ,T . The hierarchical MSSRm

model can be expressed as follows:

yt|zt = k,βk, btk, σ
2
k ∼ MVN(Stβk + St btk, σ

2
k Imt ), (8)

π ∼ Dir(α1, . . . , αK), (9)

zt ∼ Mult(π1, . . . , πK), t = 1, . . . ,T, (10)

βk ∼ MVN(µ0,Σ0), k = 1, . . . ,K, (11)

btk|ξ
2
k ∼ MVN(0d, ξ

2
k Id), k = 1, . . . ,K, t = 1, . . . ,T, (12)

ξ2
k ∼ IG(a0, b0), k = 1, . . . ,K, (13)

σ2
k ∼ IG(g0, h0), k = 1, . . . ,K. (14)
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where a0, b0, g0, h0, α1, . . . , αK ,µ0,Σ0 are hyperparameters. Therefore, the normalized posterior

distribution for (θᵀ, bᵀ, Zᵀ)ᵀ = (πᵀ,βᵀ, (σ2)ᵀ, (ξ2)ᵀ, bᵀ, Zᵀ)ᵀ can be written as

p(θ, b, Z|Y) =
f (π)

∏K
k=1 f (βk) f (ξ2

k ) f (σ2
k)

∏T
t=1

∏K
k=1 f (btk|ξ

2
k )

{
φ(yt|Stβk + St btk, σ

2
k Imt )πk

}1k(zt)

f (Y)
,

where f (Y) refers to the marginal likelihood and can be evaluated by

f (Y) =

∫
. . .

∫
f (π)

K∏
k=1

f (βk) f (ξ2
k ) f (σ2

k)

×

T∏
t=1

K∏
k=1

f (btk|ξ
2
k )

{
φ(yt|Stβk + St btk, σ

2
k Imt )πk

}1k(zt) dθ db dZ. (15)

However, the integral in Eq.(15) is intractable. We propose two methods to estimate the normalized

posterior distribution for θ, which will be described in the next two sections.

6.3.2 Markov chain Monte Carlo

Markov chain Monte Carlo is the most commonly used approach for the implementation of

Bayesian inference. The basic idea is to construct an ergodic irreducible Markov chain which admits

the normalized posterior as its stationary and limiting distribution. The algorithm is run sufficiently

long for a burn-in period so that subsequent draws after this period are approximate draws from

the posterior. The availability of the conditional posterior distribution for all parameters of interest

allows us to estimate the mixture of spatial spline regression in the Gibbs sampling framework (see

Algorithm 9). The full conditional distributions is derived in Section 6.9.1.

Algorithm 9 Markov chain Monte Carlo (MCMC) algorithm - Gibbs sampler

1: Input: data y1:T , initial parameters {θ(0)ᵀ, b(0)ᵀ}ᵀ, where θ(0)ᵀ = (π(0)ᵀ,β(0)ᵀ,σ2(0)ᵀ
, ξ2(0)ᵀ)ᵀ.

2: Output: {θ(i)ᵀ, b(i)ᵀ}
ᵀ
1≤i≤N∗ , where θ(i)ᵀ = (π(i)ᵀ,β(i)ᵀ,σ2(i)ᵀ

, ξ2(i)ᵀ)ᵀ, N∗ is total number of itera-
tions.

3: for i = 1 to N∗ do
4: for t = 1 to T do
5: Sample z(i)

t ∼ p(·|yt,π
(i−1),β(i−1),σ2(i−1)

, ξ2(i−1)
, b(i−1)) according to Eq.(21).

6: Sample π(i) ∼ p(·|Y, Z(i),β(i−1),σ2(i−1)
, ξ2(i−1)

, b(i−1)) according to Eq.(22).
7: for k = 1 to K do
8: Sample β(i)

k ∼ p(·|Y, Z(i),π(i), σ2(i−1)
k , ξ2(i−1)

k , {b(i−1)
tk }Tt=1) according to Eq.(23).

9: for t = 1 to T do
10: Sample b(i)

tk ∼ p(·|Y, Z(i),π(i),β(i)
k , σ

2(i−1)
k , ξ2(i−1)

k ) according to Eq.(24).

11: Sample σ2
k

(i)
∼ p(·|Y, Z(i),π(i),β(i)

k , ξ
2(i−1)

k , {b(i)
tk }

T
t=1) according to Eq.(25).

12: Sample ξ2
k

(i)
∼ p(·|Y, Z(i),π(i),β(i)

k , σ
2(i)

k , {b
(i)
tk }

T
t=1) according to Eq.(26).
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Figure 6.2: Graphical representation of a simple state space model.

6.3.3 Online sequential Monte Carlo with Gibbs moves

Sequential Monte Carlo methods (Doucet et al., 2001; Liu and Chen, 1998) were developed to

analyze dynamical models. The most popular application is in state space models. In a state space

model, which is graphically displayed in Figure 6.2, we let xt denote the latent variable at time t,

and assume it is specified by fθ(xt|xt−1), where θ refers to the model static parameter. Let yt denote

the observation at time t. We assume that the observation yt is independent conditional on xt, and

it is specified by fθ(yt|xt). For simplicity, we will adopt the notation a1:t to be an abbreviation of

{a1, . . . , at}. The target distribution is pθ(x1:T |y1:T ) ∝
∏T

t=1 fθ(xt|xt−1) fθ(yt|xt).

To approximate pθ(x1:T |y1:T ) using a standard SMC algorithm described in Algorithm 10, we

introduce a sequence of intermediate target distributions pθ(x1:t|y1:t) (t = 1, 2, . . . ,T ). Each interme-

diate target distribution is approximated by a set of weighted samples, also called particles in the

SMC literature. More specifically, at time t, pθ(x1:t|y1:t) is approximated by {x(i)
1:t,W

(i)
t }1≤i≤N . In our

notation, superscripts and subscripts respectively refer to the particle and time indices.

The standard SMC algorithm iterates between the following three steps to approximate the

intermediate targets: resampling, propagating and weighting. At each iteration t, we first conduct a

resampling step to prune particles at iteration t − 1 with small weights. The path degeneracy issue

is well known in SMC literature (Lin et al., 2013; Doucet et al., 2006). The earlier approximation

of intermediate target distributions may collapse as t increases. The purpose of resampling step

is to alleviate the path degeneracy issue. A commonly used resampling algorithm is multinomial

resampling. Equally weighted particles are produced after multinomial resampling. Then we propose

new particles from a proposal distribution. Finally, we compute the weights for each proposed

particle.

In Algorithm 10, qt,θ(·) denotes the proposal distribution for xt, w(i)
t refers to the unnormalized

weight and we use W(i)
t to represent the normalized version. If we choose the proposal distribution

for x(i)
t to be the prior fθ(xt|x

(Ai
t)

t−1 ), we can obtain a simplified weight update form of w(i)
t = fθ(yt|x

(i)
t ).

However, fθ(xt|x
(Ai

t)
t−1 ) does not take advantage of any information carried by the observations. With

this choice of simple proposal distribution, the performance of SMC algorithm will be inefficient if

the observations are informative. A more efficient importance proposal distribution is the “partial

posterior" distribution (Pitt and Shephard, 1999; Carvalho et al., 2010b,a) (also known as “optimal

proposal distribution” in literature), qt,θ(xt) = pθ(xt|x
(Ai

t)
t−1 , yt) = fθ(xt|x

(Ai
t)

t−1 ) · fθ(yt|xt)/ fθ(yt|x
(Ai

t)
t−1 ), in
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Algorithm 10 Standard Sequential Monte Carlo for a simple State Space Model
1: Input: data y1:T , parameter θ.
2: Output: {x(i)

1:T ,W
(i)
T }1≤i≤N .

3: for i = 1 to N do
4: Draw x(i)

1 ∼ q1,θ(·|y1).
5: Update weights W (i)

1 = w(i)
1 /

∑N
i=1 w(i)

1 , where

w(i)
1 =

fθ(y1|x
(i)
1 ) fθ(x(i)

1 )

q1,θ(x(i)
1 |y1)

. (16)

6: for t = 2 to T do
7: for i = 1 to N do
8: Resample the ancestor index Ai

t ∼ Mult({W( j)
t−1,θ}1≤ j≤N).

9: Sample x(i)
t ∼ qt,θ(·|x

(Ai
t)

t−1 , yt).
10: Update weights W(i)

t = w(i)
t /

∑N
i=1 w(i)

t , where

w(i)
t =

fθ(yt|x
(i)
t ) fθ(x(i)

t |x
(Ai

t)
t−1 )

qt,θ(x(i)
t |x

(Ai
t)

t−1 , yt)
. (17)

which the numerator is the same as the numerator in Eq.(16) and Eq.(17) and therefore it can be

canceled. In this case, the unnormalized weight takes the form w(i)
t = fθ(yt|x

(Ai
t)

t−1 ).

Now we extend the above standard SMC scheme to the MSSRm model to conduct online inference.

All the notations related to the MSSRm model in this section are consistent with the notations used

before. Recall that zt is the cluster label (latent variable) in the model and θ is a vector of unknown

static parameters, and bt = {bt,1, . . . , bt,K}, where bt,k is the random effect coefficients of cluster k

for yt. Let xt = (zt, bt). The hierarchical MMSRm model specified in Section 6.3.1 is also a state

space model, with notations listed in Table 6.1. We choose the “partial posterior" as proposals for

the latent variable, i.e. qt,θ(xt) = pθ(xt|xt−1, yt) = pθ(xt|yt) = pθ(zt, bt|yt) = p(zt|yt, θ)p(bt|zt, yt, θ),

which is a product of p(zt|θ, yt), partial posterior of zt and p(bt|zt, yt, θ), full conditional distribution

of bt. Using p(zt|θ, yt) ∝ f (zt|θ) f (yt|zt, θ), p(zt|θ, yt) can be expressed as

p(zt|θ, yt) ∼ Mult(1; τ∗t1, . . . , τ
∗
tK), (18)

where τ∗tk ∝ φ(yt; Stβt,k, ξ
2
t,kStST

t + σ2
t,kImt )πt,k and

∑K
k=1 τ

∗
tk = 1.

Our objective is to sequentially approximate p(θ|y1:T ) ∝ fθ(y1:T ) f (θ), where f (θ) is the prior

distribution of θ: f (θ) = f (π)
∏K

k=1 f (βk) f (ξ2
k ) f (σ2

k). Direct estimation of the posterior distribution

of p(θ|y1:T ) is complicated. In order to approximate p(θ|y1:T ), we combine the latent variable x1:T

with the model static parameters θ to conduct model inference. We aim to estimate the posterior

distribution p(x1:T , θ|y1:T ) = p(z1:T , b1:T , θ|y1:T ) in the SMC framework.
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Table 6.1: Notations of a general state space model and a hierarchical MMSRm model.

Notations Simple State Space Model Hierarchical MSSRm model
Observation yt yt
Latent variable xt xt = (zt, b

ᵀ
t )ᵀ, bt = {bᵀt1, . . . , b

ᵀ
tK}
ᵀ

Static Parameter θ (known) θ = (πᵀ,βᵀ, (σ2)ᵀ, (ξ2)ᵀ)ᵀ (unknown)
Prior fθ(xt|xt−1) fθ(xt|xt−1) = fθ(xt) = f (zt|π)

∏K
k=1 f (btk|ξ

2)
Proposal pθ(xt|xt−1, yt) pθ(xt|xt−1, yt) = pθ(xt|yt) = pθ(zt, bt|yt)

= p(zt|yt, θ)p(bt|zt, yt, θ)
= p(zt|yt, θ)

∏K
k=1 p(btk|zt, yt, θ)

Weight wt fθ(yt|xt−1) fθ(yt|xt−1) = f (yt|xt−1, θ) = f (yt|θ)

Conditional on ( {yᵀi }1:t, z1:t, {b
ᵀ
i }1:t ), for t = 1, . . . ,T , sufficient statistics st for the parameters θ

in MSSRm is given in Proposition 1.

Proposition 1 The sufficient statistics st for the parameters θ in MSSRm model given (y1:t, z1:t, b1:t)

for t = 1, . . . ,T can be written as

st =

 t∑
t′=1

bᵀt′kbt′k,

t∑
t′=1

1k(zt′),
t∑

t′=1

1k(zt′)S
ᵀ
t′ y
∗
t′ ,

t∑
t′=1

1k(zt′)y∗t′
ᵀy∗t′ ,

t∑
t′=1

1k(zt′)S
ᵀ
t′St′


K

k=1

,

where y∗t′ = yt′ − St′bt′k for t′ = 1, . . . , t.

Since st is a function of st−1 and yt, zt, bt, we denote it as st = T (st−1, yt, zt, bt). Section 6.9.2

provides the proof of existence of sufficient statistics for the model static parameters.

Similar to the general particle learning (i.e. SMC) procedures of state space models in Carvalho

et al. (2010a), when model static parameter θ is unknown and its sufficient statistics exists, the online

SMC learning of the hierarchical MSSRm model iterates between the following 4 steps at time t:

Resample (ancestor index), Propagate latent variable, Propagate sufficient statistics, update model

static parameters θ using one Gibbs Move:

Step 1. Resample Sample ancestor index Ai
t, i = 1, . . . ,N, from a multinomial distribution with

event probabilities {W( j)
t−1}1≤ j≤N , W j

t−1 ∝ f (yt|θ
( j)
t−1) according to Eq.(7). We introduce another set of

notations {s(Ai
t)

t−1 , θ
(Ai

t )

t−1}1≤i≤N to represent particles after resampling.

Step 2. Propagate latent variable Sample zt
(i) from p(zt

(i)|θ
(Ai

t)
t−1 , yt) according to Eq.(18). Then

sample bi
t according to Eq.(24) with (θ(Ai

t)
t , z(i)

t ).

Step 3. Propagate sufficient statistics Update sufficient statistics s(i)
t according to Proposition 1,

by letting s(i)
t = T (s(Ai

t)
t−1 , yt, z

(i)
t , b

(i)
t )

Step 4. Gibbs move Update θ(i)
t with one Gibbs move. Details are shown in Algorithm 11.
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Algorithm 11 provides a detailed description for our proposed online SMC algorithm. Once a new

observation, for example a new image, arrives, we iterate between the above “Resample-Propagate-

Propagate” steps with one Gibbs Move to update the parameters. After obtaining the particles

{z(i)
1:T , b

(i)
1:T , θ

(i)
T }

N
i=1, we get the approximated marginal posterior density p̂(θ|y1:T ) = 1

N
∑N

i=1 1θ(i)
T

(θ) by

dropping particles z(i)
1:T and b(i)

1:T , where 1θ(i)
T

(θ) = 1 if θ = θ(i)
T , otherwise 1θ(i)

T
(θ) = 0.

As specified in Algorithm 11, we do not run MCMC within SMC to update the model static

parameters θ(i)
t until t = n.min. The purpose is to make sure our algorithm is numerically well

behaved as MCMC may be degenerate for models with a very small number of observations. In our

numerical experiments we set n.min to a small number (e.g. a value falls between 20 and 100), and

we observe this is sufficient. As the size of first batch of input for the proposed online SMC algorithm

reaches n.min, we start to update the static parameters when new observations arrive.

As argued by Fearnhead (2002) and Gilks and Berzuini (2001), including MCMC moves within

SMC to mutate particles can alleviate the progressive degeneration. With the existence of model

sufficient statistics, this online SMC learning algorithm will be computationally efficient. Instead of

using all of the data in the MCMC move, only sufficient statistics are required to summarize the data.

Recall that K is the total number of clusters, and N∗ is the total number of iterations in the

MCMC algorithm, as described in Algorithm 9. The MCMC algorithm would take O(tKN∗)-time to

update model parameters when a new observation yt arrives, because we have to re-run the algorithm

in order to use all data information y1:t. The cost of MCMC algorithm is a function of the total

number of observations t, total number of MCMC iterations N∗ and total number of clusters K. In

contrast, the computation of the proposed online SMC algorithm (Algorithm 11) at time t takes

O(NK)-time, which does not depend on the number of observations t with the adoption of sufficient

statistics in the algorithm. The cost only depends on the total number of clusters K and total number

of particles N. Consequently, the proposed online SMC algorithm is computationally more efficient

than the MCMC algorithm, especially when t is large.

6.4 Model selection

Model selection is an important task in the Bayesian MSSRm model framework as in many

scenarios we are not able to know the optimum model. The goal is to compute the marginal likelihood

p(y1:T ). Numerous methods have been proposed to estimate the marginal likelihood (Friel and

Pettitt, 2008; Gelman and Meng, 1998; Watanabe, 2010; Gelman et al., 2014). These algorithms

require substantial additional effort in both computation and implementation to compute the marginal

likelihood, which is not accessible to stream type data.

One advantage of the standard sequential Monte Carlo method is that it can provide an unbiased

marginal likelihood estimator as a by-product of the algorithm. This marginal likelihood estimator

admits a concise form, which is the product of average unnormalized weights. In the following

proposition, we show that the marginal likelihood estimator provided by our proposed algorithm is

unbiased, with specific conditions. The proof of this proposition is presented in Section 6.10.1.
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Algorithm 11 Online learning for mixtures spatial spline regression model
1: Input: data y1:T , number of clusters K, initial value {θ0}.
2: Output: {θ(i)ᵀ

1:T , s
(i)ᵀ
1:T ,W

(i)ᵀ
T }

ᵀ
1≤i≤N .

3: if t = 1 then
4: for i = 1 to N do
5: Draw z(i)

1 ∼ p(·|y1, θ0) according to Eq.(18).
6: for k = 1 to K do
7: Draw b(i)

1k ∼ p(·|y1, θ0, z
(i)
1 ) according to Eq.(24).

8: Update the model sufficient statistics s(i)
1 as described in Proposition 1.

9: if t > 1 then
10: for i = 1 to N do
11: Compute weights {W ( j)

t−1}
N
j=1, W( j)

t−1 ∝ f (yt|θ
( j)
t−1) according Eq.(7).

12: Sample the ancestor index of particle i at time t, Ai
t ∼ Mult({W ( j)

t−1}1≤ j≤N).

13: Sample z(i)
t ∼ pt(·|yt, θ

(Ai
t)

t−1 ) according to Eq.(18).
14: for k = 1 to K do
15: Sample b(i)

tk ∼ p(·|yt, θ
(Ai

t)
t−1 , z

(i)
t ) according to Eq.(24).

16: Update the model sufficient statistics s(i)
t conditional on s(Ai

t)
t−1 and yt, b

(i)
tk , z

(i)
t via Proposi-

tion 1.
17: if t > n.min then
18: Sample π(i)

t ∼ p(·|y1:t, z
(i)
1:t,β

(Ai
t)

t−1 ,σ
2(Ai

t)
t−1 , ξ

2(Ai
t)

t−1 , b
(i)
t , s

(i)
t ) according to Eq.(22).

19: for k = 1 to K do
20: Sample β(i)

t,k ∼ p(·|y1:t, z
(i)
1:t,π

(i)
t , σ

2(Ai
t)

t−1,k, ξ
2(Ai

t)
t−1,k, b

(i)
t,k, s

i
t) according to Eq.(23).

21: Sample σ2
t,k

(i)
∼ p(·|y1:t, z

(i)
1:t,π

(i)
t ,β

(i)
t,k, ξ

2(Ai
t)

t−1,k, b
(i)
t,k, s

i
t) according to Eq.(25).

22: Sample ξ2
t,k

(i)
∼ p(·|y1:t, z

(i)
1:t,π

(i)
t ,β

(i)
t,k, σ

2(i)
t,k, b

(i)
t,k, s

i
t) according to Eq.(26).

23: else
24: Set θ(i)

t = θ
(Ai

t)
t−1 .
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Proposition 2. If we update θ(i)
t with multiple Gibbs moves until convergence achieved, such

that θ(i)
t ∼ p(θ|x1:t, y1:t). The product of average unnormalized weights

∏T
t=1

1
N

∑N
i=1 p(yt|θ

(i)
t−1) is an

unbiased estimator of the marginal likelihood p(y1:T ),

E

 T∏
t=1

1
N

N∑
i=1

p(yt|θ
(i)
t−1)

 = p(y1:T ). (19)

Even though practically we only use one Gibbs move to update θ(i)
t , the marginal likelihood

estimator is generally not unbiased as the condition displayed in Proposition 2 is broken. In our real

data analysis, we compare our model selection criteria with Watanabe-Akaike information criteria

(WAIC) (Watanabe, 2010; Gelman et al., 2014) and demonstrate it works in practice.

6.5 Simulation study

We evaluate the proposed algorithms using simulation studies. Assume each surface cluster k,

k = 1, · · · , 6, its common features fk(η1, η2) over a rectangular domain [−1, 1] × [−1, 1] admit the

following functional forms

f1(η1, η2) =
η3

1 + η3
2 + 3√

1 + η2
1 + η2

2

, f2(η1, η2) =
η2

1 + η2
2 + 1√

4 + η2
1 + η2/4

,

f3(η1, η2) = 1 − sin(η2
1 + 1) +

cos(1 + η2
2)

2
, f4(η1, η2) = sin(η1η2),

f5(η1, η2) = cos(η1 + η2) + sin(η2
1) + cos(η2

2), f6(η1, η2) = η1 + η2.

(20)

A surface yt belonging to cluster k is simulated through

yt = ( fk(ηt,1), . . . , fk(ηt,mt
))ᵀ + St btk + etk,

where ( fk(ηt,1), . . . , fk(ηt,mt
))ᵀ is the common feature for surfaces in cluster k - the mean surface

for cluster k, and ηt,1, . . . , ηt,mt
are distributed uniformly over the domain, each surface contains

mt = 12 × 12 points. St is the basis covariates function defined in Eq.(3). The observed surface

is then yt = (yt,1, . . . , yt,mt ). The random effects and the errors of the model are simulated from

btk ∼ MVN(0, ξ2
k Id) and etk ∼ MVN(0, σ2

k Imt ). The number of nodal basis functions we used in the

simulation study is d = 6 × 6. The 6 panels in the first row of Figure 6.3 display the mean surfaces

simulated by functions ( fk(ηt,1), . . . , fk(η1,mt
))ᵀ in Eq.(20).

6.5.1 Surface fitting

In this section, we use a relatively simple experiment to illustrate the MSSRm model fitting using

the MCMC algorithm. We use Eq.(20) to generate the common feature for surfaces in each cluster.

A data set comprising 600 images in total (100 for each cluster) is simulated. We set σ2
k = 0.1 and
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Figure 6.3: True surfaces versus fitted surfaces: the top row displays the true surfaces of simulated
by functions f1, . . . , f6 uniformly over the rectangular domain [−1, 1] × [−1, 1], and the bottom row
is the corresponding MCMC fitted mean surfaces with d = 6 × 6.

Figure 6.4: MCMC estimates of σ2
k and ξ2

k , (k = 1, . . . , 6). The dashed blue lines represent 95%
equal tailed credible interval, the solid blue lines indicate the mean value of the estimates and the
solid red lines imply the true values of the estimates.

ξ2
k = 0.3 for k = 1, . . . , 6. The total number of MCMC iterations is set to 5, 000, and we discard

the first 1, 000 iterations as burn-in. Figure 6.3 displays a comparison between the true surfaces we

simulated (upper panels) and the estimated mean surfaces provided by running the MCMC algorithm

(bottom panels). As indicated in Figure 6.3, the fitted mean surfaces, Stβk, recover the common

features of the true surfaces. In Figure 6.4, we show the histogram of the posterior distributions of σ2
k

and ξ2
k obtained from running MCMC. The red line represents the true value of parameter and the

blue line represents the mean value of estimated posterior. The dashed blue lines are the 2.5% and

97.5% quantiles of the posterior distribution. Figure 6.4 indicates that all of the true values of the

parameters can be covered by the associated 95% credible intervals. The estimated posterior means

of both σ2
k and ξ2

k are very close to the corresponding true values.

6.5.2 Comparison of online SMC with MCMC

In this section, we simulate two data sets to evaluate the performance of online SMC and MCMC

in terms of sequential image clustering. In both data sets, we simulate images in an online fashion

where the observation arrives one by one, and the data keep accumulating until the total number

of observations reaches T = 10, 000. The number of particles we set in the online SMC algorithm

is N = 1000. The number of MCMC iterations is set to 5000 to guarantee the convergence of the

algorithm and we burn-in the first 20% of the chain.
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Figure 6.5: Estimated parameters πk, σ2
k with 95% equal tailed credible interval of online SMC

algorithm versus MCMC algorithm when K = 3 and the number of observations increases from
t = 20 to 10, 000.

In the first experiment, we simulate a data set with a relatively small number of clusters, K = 3.

The common features of images are generated by f1, f2 and f3 of Eq.(20). The allocation probability

is set to π = ( 1
3 ,

1
3 ,

1
3 ). We assume the variance of random effects and error are σ2

k = 0.1 and ξ2
k = 0.3

for k = 1, 2, 3. In online SMC algorithm, we do not update the model parameters until we have

received a small batch of images, here we set n.min = 20, a relative small number. The initial value

of parameters are obtained by running MCMC on the first 20 images. After that, we update the

model parameters once when we obtain a new image. The MCMC algorithm serves as a baseline

for comparison, and is updated with T = nmin, 100, 500, 1000, 2000, . . . , 10000 images. Figure 6.5

displays the comparison of πk, σ2
k as a function of t provided by online SMC and MCMC. The

horizontal lines represent the posterior mean provided by the different methods. The vertical lines

represent the 95% credible intervals for online SMC and MCMC. We only display the credible

intervals for online SMC every 500 images for the purpose of making a comparison with the MCMC

algorithm. As indicated in Figure 6.5, both algorithms achieve similar performance in terms of

inference on the parameters πk and σ2
k , for k = 1, 2, . . . ,K. With the increment of observations, the

posterior mean of both MCMC and online SMC gets closer to the true value, and the credible interval

tends to get narrower, as expected.

In our second experiment, we simulate from the MSSRm model with more latent states by setting

K = 6. The common features are simulated from the six functions listed in Eq.(20). The allocation

probability πk, random effects ξ2
k and variance of the error σ2

k are set to π = ( 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ), σ2

k = 0.1

and ξ2
k = 0.3 for k = 1, . . . , 6. Our online SMC algorithm does not update the parameters until we

have n.min = 40 observations. Figure 6.6 displays the posterior mean and 95% credible interval for

πk and σ2
k as a function of time t. Both online SMC and MCMC can achieve good performance in

terms of estimating πk and σ2
k . With the increment of the number of images, the posterior means of

πk and σ2
k tend to converge to the corresponding true value.
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Figure 6.6: Estimated parameters πk, σ2
k with 95% equal tailed credible interval of online SMC

algorithm versus MCMC algorithm when K = 6 and the number of observations increases from
t = 40 to 10, 000.

0.85

0.90

0.95

1.00

1,000 5,000 9,000
 

A
R

I

mcmc smc

0.85

0.90

0.95

1.00

1,000 5,000 9,000

 

 

mcmc smc

0

3500

7000

1,000 5,000 9,000
 R

u
n

n
in

g
 t

im
e

 (
m

c
m

c
/s

m
c

)

0

3500

7000

1,000 5,000 9,000

 

 

Figure 6.7: Estimated ARI of online SMC algorithm versus MCMC algorithm when K = 3 (top left
panel) and K = 6 (top right panel) and running time ratio of MCMC algorithm over online SMC
algorithm when K = 3 and (bottom right panel) when K = 6 (bottom right panel).
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In both experiments, we also apply the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) to

measure the performance of clustering. As indicated in Figure.6.7, both the online SMC algorithm

and the MCMC algorithm can achieve quite a good performance in terms of ARI. However, the

running time ratio of MCMC over online SMC increases almost linearly as time evolves, which

indicates that online SMC is more scalable to stream type data. Both experiments indicate that the

online SMC algorithm is at least several orders of magnitude faster than the MCMC algorithm in

terms of computational cost when t is large (> 2, 000). Instead of a re-run of the MCMC method,

our proposed online SMC algorithm only needs to update the sufficient statistics in Proposition 1
in order to achieve model updating, which leads to efficient computation relative to that of MCMC

for sequential image data. With the increment of observations, both algorithms can achieve good

performance in terms of parameter estimation and image clustering.

6.6 Real data analysis

In this section, we apply our proposed online SMC algorithm to two real data sets: one handwritten

image data and one brain imaging dataset where brain activity is recorded using MEG. In real

applications, one challenge in clustering is the lack of information for the number of clusters. This

generally requires some model selection technique to choose the optimum model. As we have alluded

in the previous section, the computation of the marginal likelihood p(y1:T ) in Bayesian statistics

is challenge, but online SMC can provide an unbiased estimator of the marginal likelihood as a

by-product of the algorithm, which is a big advantage of SMC over MCMC. In this real data analysis,

we investigate the performance of marginal likelihood of online SMC, and treat Watanabe-Akaike

information criteria (WAIC) (Watanabe, 2010; Gelman et al., 2014) as a baseline for comparison.

The implementation of WAIC for our model can be found in Section 6.12.1.

6.6.1 Handwritten number images

The first real application we consider is the analysis of handwritten number images. We apply our

proposed online SMC algorithm to a subset of the ZIP code data set used in Friedman et al. (2009).

Every image is of one Hindu-Arabic handwritten number and consists of 16 × 16 grid of pixels, i.e.

each image contains 256 observations and we use 5, 000 images in total. The images distribution is

shown in Table 6.2

Table 6.2: Distribution of Hindu-Arabic handwritten numbers in the sample.

Number 0 1 2 3 4 5 6 7 8 9 Total
Frequency 904 723 500 385 413 344 443 419 408 461 5000

We set K = 8, 10, 12, and for each K, let d = 6 × 6, 8 × 8 separately. Hence, we have 6 MSSRm

models in total. We mimic a scenario where the images arrive one by one. For the online SMC

algorithm, we do not update the model parameters until we have n.min = 100 images. After t = 100,
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we update the parameters once one image arrives. The number of particles we use is N = 1000. For

each pair of K and d, we try several sets of initial values.

The WAIC and log(p(y1:T )) provided by online SMC is shown in Table 6.3. It shows model with

a larger number of basis functions has higher marginalized likelihood and smaller WAIC value, which

indicates a larger number of basis function is more preferable. And the performance of the MSSRm

model gets better as K increases as shown in Table 6.3. Both WAIC and log(p(y1:T )) indicate the

MSSRm model with K = 12 and d = 8 × 8 is the optimal model for those considered. However,

WAIC is computationally much more expensive, as it takes an extra O(T N)-time to compute. We

display the common features of the image digits provided by MSSRm model with K = 12 in Figure

6.8. The MSSRm model is able to recover all the common features of the 10 digits as well as multiple

sub-groups for 0 (the 2nd, 7th clusters), 2 (the 4th, 9th, 11th clusters), 5 (5th, 10th clusters). The 1st

cluster indicates that handwritten digit 9 shares some common features with handwritten digit 7,

the 6th cluster indicates that handwritten digit 8 shares some common features with 3 and the 9th

indicates that some of the handwritten digit 8 share same common features as some handwritten

digits 2. The common features of models with K = 8 and K = 10 are displayed in Section 6.11.1.

Table 6.3: Comparison of WAIC and logarithm of marginal likelihood log(p(y1:T )) for MSSRm
model with K = 8, 10, 12 and d = 6 × 6, 8 × 8.

Criteria d
No. of Clusters

K=8 K=10 K=12

log(p(y1:T ))
6 × 6 -1452774 -1443364 -1442439
8 × 8 -1294886 -1277154 -1274572

WAIC
6 × 6 2901789 2883780 2881520
8 × 8 2582337 2548418 2541894

6.6.2 Brain images

In this subsection we apply the online SMC algorithm to a subset of images collecting during

a neuroimaging study examining the neural response to different natural stimuli. The data are

collected using 204 MEG sensors located around the scalp where each sensor measures a time series

representing the magnetic field at its location. The magnetic field at a given location is an indirect

measurement of the electric neural activity within the brainNathoo et al. (2013, 2014) . The sensor

data at a given time point are projected onto a 2D grid and represented through a 2D image and each

recording is made at 200Hz for 1 second resulting in 200 images made in each recording. The study

involves over 700 such recordings, where each is associated with one of the five visual stimuli (1.

Artificial: screen savers showing animated shapes or text; 2. Nature: clips from nature documentaries,

showing natural scenery like mountains or oceans; 3. Football: clips taken from (European) football

matches of Spanish La Liga; 4. Mr. Bean: clips from the episode Mind the Baby, Mr. Bean of the

Mr. Bean television series; 5. Chaplin: clips from the Modern Times feature film, starring Charlie

Chaplin).
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Figure 6.8: Online SMC estimated common features from MSSRm model of handwritten number
images by cluster when K = 12, d = 8 × 8. Images are labeled as the 1st cluster to the 12th cluster
in left-to-right, top-to-bottom order.

The neuroimaging data set contains a time series of 200 images for each of 727 recordings.

Each time series (sample) is associated with one of the aforementioned five stimuli, that is, what

the subject was watching when the time series of images was recorded. Figure 6.9 shows 2D

images of 3 randomly drawn recordings against the same stimulus at the beginning (t = 1, 2, 3),

middle (t = 101, 102, 103) and end (t = 198, 199, 200) of the 1 second recording period. Figure 6.9

demonstrates the variability in brain activity across different recordings for the same stimulus and

thus shows that the type of stimulus associated with a given recording does not clealy distinguish

the images from each other, at least by eye. We apply our classifier to decode the images in order

to reveal the common stimuli via clustering. We focus our analysis of this application on model

selection.

In this application, we use 5, 000 images, the corresponding stimuli associated with each image

is distributed as shown in Table 6.4. Each image originally consists of 512 × 512 pixels, the high

dimensionality of these images makes the implementation challenging. Hence, we begin by removing

redundant zeros around the boundaries for each image and compressing the images to a more coarse

level, 14 × 18 pixels to save computational cost.

Table 6.4: Distribution of stimuli in the sample data.

Stimulus 1 2 3 4 5
Frequency 1183 1003 706 887 1221
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Figure 6.9: Brain Images of 3 different recordings against same stimulus at the beginning (t = 1, 2, 3),
middle (t = 101, 102, 103) and end (t = 198, 199, 200) of the experimental period.
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Figure 6.10: Online SMC estimated common features from MSSRm model for Brain Images when
K = 5, 7, 9 and d = 8 × 8.

We set K = 5, 7, 9, and d = 6 × 6, 8 × 8 for each K. We assume that the images are received

one by one or batch by batch. We do not update the model parameters until we have n.min = 100

images. After t = 100, we update the parameters once one image arrives. The number of particles
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we use is N = 1000. For each pair of K and d, we try several sets of initial values. The WAIC and

log(p(y1:T )) provided by online SMC is shown in Table 6.5. Both log(p(y1:T )) and WAIC indicate

the model performs better when more basis functions are used. And the performance of MSSRm

model gets better as K increases as shown in Table 6.5. Both WAIC and online SMC indicate the

MSSRm model with K = 9 and d = 8 × 8 is the optimum.

Table 6.5: WAIC and log(p(y1:T )) for MSSRm models with K = 5, 7, 9 and d = 6 × 6, 8 × 8.

Criteria d
No. of Clusters

K = 5 K = 7 K = 9

log(p(y1:T ))
6 × 6 -1549603 -1545583 -1543856
8 × 8 -1466522 -1460035 -1456731

WAIC
6 × 6 3098131 3089754 3086072
8 × 8 2931129 2917420 2909831

As indicated in Figure 6.10, compared to K = 5, when K = 7, 9, the MSSRm model is able to

capture more common features of several subtle subgroups. As we mentioned in Section 6.3.3, the

computational cost of updating parameters in the online SMC algorithm is O(NK). Thus, the larger

is K, the higher is the computational cost. To balance the computational cost and the performance

of estimation, in this application of brain images we suggest to take 7 as the appropriate K for the

MSSRm model, since its estimates result in more subtle discrimination than that of when K = 5 and

its computational cost is lower than that of when K = 9.

6.7 Discussion

In this chapter, we derive an MCMC algorithm under the Bayesian framework as an alternative

approach to do model inference for the MSSRm models. Moreover, we propose an online SMC

algorithm to deal with the stream type of image data efficiently via adoption of sufficient statistics and

augment variables. When new data arrive, our proposed online SMC algorithm achieves parameter

updating in a constant time, which is more adaptable to large sequential image data. In contrast,

the required computation time for the MCMC algorithm is a linear function of the total number of

observations at time t since it always has to be re-run when new data arrive. Our simulation studies

demonstrated that the proposed online SMC algorithm is more efficient than the MCMC algorithm in

terms of computing time, while both algorithms can achieve good performance from the perspective

of model inference.

Model selection is an important but challenging task in Bayesian statistics. We show that the

marginal likelihood estimator provided by our proposed algorithm is unbiased, and it serves as a

by-product of the algorithm. We compare this estimator with existing model selection criteria, WAIC,

and showed that the same models are selected via log(p(y1:T )) and WAIC. WAIC requires extra cost

to compute and the computational complexity increases linearly with artificial time T .
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In the posterior distribution of MSSRm models, the likelihood function is identical for all K!

permutation of labels. This may induce the label switching and complicate the inference, which

makes it impossible to justify the convergence of MCMC (Stephens, 2000). Many approaches have

been developed to address the label switching issue (Stephens, 2000; Grün and Leisch, 2009; Geweke,

2007; Diebolt and Robert, 1994; Puolamäki and Kaski, 2009) of mixture models. Our developed

online algorithm has much more common with importance sampling (IS) than with MCMC and

the validation of the proposed algorithm is based on IS principles, hence the approximation to

the target is valid at each iteration and does not require convergence (Marin et al., 2005). Our

numerical experiments demonstrate our proposed online algorithm provides an appropriate discrete

approximation to the distributions of interest.
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6.8 Appendix A

6.8.1 List of notations

Table 6.6: List of notations.

Notation Description
ᵀ transpose symbol of a vector or matrix.
T total number of observations.
N∗ total number of Gibbs sampling iterations.
N total number of particles in online SMC algorithm.
K number of clusters.
d number of Nodal basis functions.
k index for cluster k, for k = 1, . . . ,K.
t time index, takes value from 1, . . . ,T .
mt length of observation yt, for t = 1, . . . ,T .
yt a mt × 1 vector, observation at time t, for t = 1, . . . ,T .
η η = (η1, η2), arbitrary coordinates.
ηt,1, . . . , ηt,mt

coordinates for yt, for t = 1, . . . ,T .
c c = (c1, c2), center parameter for a Nodal basis function.
cl cl = (cl1, cl2), center parameter for lth Nodal basis function, l = 1, . . . , d.
δ δ = (δ1, δ2), shape parameter for a Nodal basis function.
s(·) Nodal basis function.
St a mt × d matrix, spatial coordinates matrix of observation, yt, for t = 1, . . . ,T .
βk a d × 1 vector, fixed effects for cluster k, for k = 1, . . . ,K.
btk a d × 1 vector, random effects of cluster k for yt, for k = 1, . . . ,K, t = 1, . . . ,T .
etk a d × 1 vector, random error of cluster k for yt, for k = 1, . . . ,K, t = 1, . . . ,T .
σ2

k , ξ
2
k variance parameter for cluster k, k = 1, . . . ,K.

π π = (π1, . . . , πK), cluster allocation probability for observations.
zt cluster label of yt for t = 1, . . . ,T .
Y, Z, b, bt Y = {yt}

T
t=1, Z = {zt}

T
t=1, b = {bt}

T
t=1, bt = {btk}

K
k=1 for k = 1, . . . ,K.

θ θ = {π,β,σ2, ξ2}.
MVN,Dir,Mult, IG abbreviations for multivariate normal distribution, Dirichlet distribution,

multinomial distribution and inverse-gamma distribution, respectively.
φ(·) density function of a multivariate normal distribution,
f (·), fθ(·), p(·), pθ(·) density functions, usually f (·)(or fθ(·)) for a prior, p(·)(or pθ(·)) for a posterior,

and p(zt = k) refers to probability of zt = k for k = 1, . . . ,K, t = 1, . . . ,T .
a0, b0, g0, h0 hyper parameters.
{αk}

K
k=1,µ0,Σ0 hyper parameters.

1(·) indicator function.
b1:t, z1:t, x1:t, y1:t abbreviations of b1, . . . , bt ,z1, . . . , zt, x1, . . . , xt , y1, . . . , yt, for t = 1, . . . ,T .
w(i)

t ,W
(i)
t unnormalized and normalized weight, respectively, for i = 1, . . . ,N, t = 1, . . . ,T .

A(i)
t ancestor index for particle i at time t for i = 1, . . . ,N, t = 1, . . . ,T .

qt,θ(·) proposal distribution for xt for t = 1, . . . ,T .
st sufficient statistics for the MSSRm model given ( y1:t, z1:t, b1:t ) for t = 1, . . . ,T .
T (·) function of (st−1, yt, zt, bt), and takes st as return, for t = 2, . . . ,T .
fk(·) function used to simulate surfaces from cluster k, k = 1, . . . ,K.
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6.9 Appendix B

6.9.1 Derivations for the Gibbs Sampling Algorithm.

In this section we derived the full conditional distributions for zt, π, βk, btk, σ2
k and ξ2

k . Given

the hierarchical priors of the Bayesian mixture of spatial spline regression with mixed effects model

described in section 6.3.1, the full joint posterior distribution of π,β, b,σ2, ξ2, Z can be expressed

up to a marginal likelihood as

p(π,β, b,σ2, ξ2, Z|Y) ∝ f (π) f (β2) f (ξ2) f (σ2) f (Y, Z|β, b, ξ2,σ2)

∝ f (π) ×
K∏

k=1

f (βk) ×
K∏

k=1

f (ξ2
k ) ×

T∏
t=1

K∏
k=1

f (btk|ξ
2
k ) ×

K∏
k=1

f (σ2
k)

×

T∏
t=1

K∏
k=1

{
φ(yt|Stβk + St btk, σ

2
k Imt )p(zt = k)

}1k(zt)

∝ f (π) ×
K∏

k=1

f (βk) f (ξ2
k ) f (σ2

k) ×
T∏

t=1

K∏
k=1

f (btk|ξ
2
k )

×

T∏
t=1

K∏
k=1

{
φ(yt|Stβk + St btk, σ

2
k Imt )p(zt = k)

}1k(zt)

∝ f (π) ×
K∏

k=1

f (βk) f (ξ2
k ) f (σ2

k) ×
T∏

t=1

K∏
k=1

(ξ2
k )−

d
2 exp{−

1
2ξ2

k

bᵀtkbtk}

×

T∏
t=1

K∏
k=1

(σ2
k)−

d
2 exp

− 1
2σ2

k

(yt − Stβk − St btk)ᵀ(yt − Stβk − St btk)

 πk


1k(zt)

∝ f (π) ×
K∏

k=1

f (βk) f (ξ2
k ) f (σ2

k)(ξ2
k )−

dT
2 ×

K∏
k=1

exp{−
1

2ξ2
k

T∑
t=1

bᵀtkbtk}

×

K∏
k=1

(σ2
k)−

d
2
∑T

t=1 1k(zt)(πk)
∑T

t=1 1k(zt) exp{−
1

2σ2
k

T∑
t=1

1k(zt)(yt − Stβk − St btk)ᵀ(yt − Stβk − St btk)}

∝ f (π) ×
K∏

k=1

f (βk) f (ξ2
k ) f (σ2

k)(ξ2
k )−

dT
2 ×

K∏
k=1

exp{−
1

2ξ2
k

T∑
t=1

bᵀtkbtk}(σ2
k)−

d
2
∑T

t=1 1k(zt)(πk)
∑T

t=1 1k(zt)

×

K∏
k=1

exp

− 1
2σ2

k

T∑
t=1

1k(zt)
(
(yt − St btk)ᵀ(yt − St btk) − 2(yt − St btk)ᵀStβk + βᵀk Sᵀt Stβk

)
∝ f (π) ×

K∏
k=1

f (βk) f (ξ2
k ) f (σ2

k)(ξ2
k )−

dT
2

×

K∏
k=1

exp{−
1

2ξ2
k

T∑
t=1

bᵀtkbtk} exp{− log(σ2
k)

d
2

T∑
t=1

1k(zt)} exp{log(πk)
T∑

t=1

1k(zt)}

×

K∏
k=1

exp

− 1
2σ2

k

T∑
t=1

1k(zt)
(
(yt − St btk)ᵀ(yt − St btk) − 2βkSᵀt (yt − St btk) + βᵀk Sᵀt Stβk

) .
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Full conditional distribution of zt

p(zt|Y,π,β, b,σ2, ξ2) ∝
∏K

k=1{φ(yt; Stβk + S ibtk, σ
2
k Imt )p(zt = k)}1k(zt).

Therefore,

zt = k|Y,π,β, b,σ2, ξ2 ∼ Mult(1; τt1, . . . , τtK), (21)

where τtk =
φ(yt;Stβk+St btk ,σ

2
k Imt )πk∑K

j=1 φ(yt;Stβ j+St bt j,σ
2
j Imt )π j

, for k = 1, . . . ,K, t = 1, . . . ,T.

Full conditional distribution of π

p(π|Y, Z,β, b,σ2, ξ2) ∝ p(π)
T∏

t=1

K∏
k=1

p(zt = k)1k(zt)

∝
1

B(α1, . . . , αK)

K∏
k=1

παk−1
k

T∏
t=1

K∏
k=1

π1k(zt)
k

∝ (
K∏

k=1

παk−1
k )

K∏
k=1

π
nT,k
k

∝

K∏
k=1

π
(αk+nT,k)−1
k .

Therefore,

π|Y, Z,β, b,σ2, ξ2 ∼ Dir(α1 + nT,1, . . . , αK + nT,K), (22)

where nT,k =
∑T

t=1 1k(zt), for k = 1, . . . ,K.
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Full conditional distribution of βk

p(βk|Y, Z,π, b,σ
2, ξ2) ∝ f (βk|µ0,Σ0)

T∏
t=1

{
φ(yt|Stβk + S t btk, σ

2
k Imt )

}1k(zt)

∝

{
(2π)−

d
2 |Σ0|

− 1
2 exp{−

1
2

(βk − µ0)ᵀΣ−1
0 (βk − µ0)}

}
×

T∏
t=1

{
(2π)−

mt
2 |Imtσ

2
k |
− 1

2 exp
[
−

1
2

(yt − Stβk − St btk)ᵀ(Imtσ
2
k)−1(yt − Stβk − St btk)

]}1k(zt)

∝

{
exp{−

1
2

(βk − µ0)ᵀΣ−1
0 (βk − µ0)}

}
×

T∏
t=1

{
exp{−

1
2

(yt − Stβk − St btk)ᵀ(σ2
k)−1(yt − Stβk − St btk)}

}1k(zt)

∝ exp
{
−

1
2

(
β
ᵀ
kΣ0

−1βk − 2βᵀkΣ0
−1µ0 + µ0Σ

−1
0 µ0

)}

×

T∏
t=1

exp

−1
2

βᵀk Sᵀt St

σ2
k

βk − 2βᵀk
Sᵀt (yt − St btk)

σ2
k

+
(yt − St btk)ᵀ(yt − St btk)

σ2
k




1k(zt)

∝ exp
{
−

1
2

(
βᵀkΣ0

−1βk − 2βᵀkΣ0
−1µ0

)}

×

T∏
t=1

exp

−1
2

βᵀk Sᵀt St

σ2
k

βk − 2βᵀk
Sᵀt (yt − St btk)

σ2
k




1k(zt)

∝ exp
{
−

1
2

(
βᵀkΣ0

−1βk − 2βᵀkΣ0
−1µ0

)}
×exp

−1
2

βᵀk T∑
t=1

1k(zt)
Sᵀt St

σ2
k

βk − 2βᵀk

T∑
t=1

1k(zt)
Sᵀt (yt − St btk)

σ2
k




∝ exp

−1
2

βᵀk
Σ−1

0 +

T∑
t=1

1k(zt)
Sᵀt St

σ2
k

βk − 2βᵀk

Σ−1
0 µ0 +

T∑
t=1

1k(zt)
Sᵀt (yt − St btk)

σ2
k



 .

Therefore,

βk|Y, Z,π, b,σ
2, ξ2 ∼ MVN(µβk

,Σβk ), (23)

where Σβk
−1 = Σ−1

0 +
∑T

t=1 1k(zt)
Sᵀt St

σ2
k
, µβk

= Σβk

(
Σ−1

0 µ0 +
∑T

t=1 1k(zt)
Sᵀt (yt−St btk)

σ2
k

)
, for k = 1, . . . ,K.
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Full conditional distribution of bt k

p(btk|Y, Z,π,β,σ2, ξ2) ∝ f (btk|0d, ξ
2
k Id)φ(yt; Stβk + St btk, σ

2
k Imt )

1k(zt)

∝ (2π)−
d
2 |ξ2

k Id |
− 1

2 exp{−
1
2

bᵀtk
1
ξ2

k

Id btk}

×

{
(2π)−

mt
2 |Imtσ

2
k |
− 1

2 exp{−
1
2

(yt − Stβk − St btk)ᵀ(Imtσ
2
k)−1(yt − Stβk − St btk)}

}1k(zt)

∝ exp{−
1
2

bᵀtk
1
ξ2

k

Id btk}

×

{
exp{−

1
2

(yt − Stβk − St btk)ᵀ(Imtσ
2
k)−1(yt − Stβk − St btk)}

}1k(zt)

∝ exp{−
1
2

bᵀtk
1
ξ2

k

Id btk}

×exp

−1
2

bᵀtk
Sᵀt St

σ2
k

btk − 2bᵀtk
Sᵀt (yt − Stβk)

σ2
k

+
(yt − Stβk)ᵀ(yt − Stβk)

σ2
k




1k(zt)

∝ exp{−
1
2

bᵀtk
1
ξ2

k

Id btk}

×exp

−1
2

bᵀtk
Sᵀt St

σ2
k

btk − 2bᵀtk
Sᵀt (yt − Stβk)

σ2
k




1k(zt)

∝ exp

−1
2

bᵀtk

 1
ξ2

k

Id + 1k(zt)
Sᵀt St

σ2
k

 btk − 2bᵀtk1k(zt)
Sᵀt (yt − Stβk)

σ2
k


 .

Therefore,

btk|Y, Z,π,β,σ2, ξ2 ∼ MVN(µbtk
,Σbtk ), (24)

where Σbtk
−1 = 1

ξ2
k

Id + 1k(zt)
Sᵀt St

σ2
k

, µbtk
= 1k(zt)Σbtk

Sᵀt (yt−Stβk)
σ2

k
, for k = 1, . . . ,K.
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Full conditional distribution of σ2
k

p(σ2
k |Y, Z,π,β, b, ξ

2) ∝ f (σ2
k) f (Y|Z,βk, btk, σ

2
k , ξ

2
k , πk)

∝
h0

g0

Γ(g0)
(σ2

k)
−g0−1

exp

− h0

σ2
k


×

T∏
t=1

{
(2π)−

mt
2 |Imtσ

2
k |
− 1

2 exp
[
−

1
2

(yt − Stβk − St btk)ᵀ(Imtσ
2
k)−1(yt − Stβk − St btk)

]}1k(zt)

∝ (σ2
k)
−g0−1

exp

− h0

σ2
k


×

T∏
t=1

σ2
k
−

mt
2 exp

−1
2

(yt − Stβk − St btk)ᵀ
1
σ2

k

(yt − Stβk − St btk)




1k(zt)

∝ (σ2
k)
−g0−1

exp

− h0

σ2
k


×

σ2
k
−

mt
2

∑T
t=1 1k(zt)exp

−∑T
t=1 1k(zt)(yt − Stβk − St btk)ᵀ(yt − Stβk − St btk)

2σ2
k




∝ (σ2
k)
−{g0+

mt
2

∑T
t=1 1k(zt)}−1

×exp

−h0 +
∑T

t=1 1k(zt)(yt−Stβk−St btk)ᵀ(yt−Stβk−St btk)
2

σ2
k

 .
Therefore,

σ2
k |Y, Z,π, b,β, ξ

2 ∼ IG(g∗0, h
∗
0), (25)

where g∗0 = g0 +
nT,k

2 mt, h∗0 = h0 +
∑T

t=1 1k(zt)(yt−Stβk−St btk)ᵀ(yt−Stβk−St btk)
2 , nT,k =

∑T
t=1 1k(zt), for k =

1, . . . ,K.
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Full conditional distribution of ξ2
k

p(ξ2
k |Y, Z,π,β, b,σ

2) ∝ f (ξ2
k )

T∏
t=1

f (btk|ξ
2
k )

∝
b0

a0

Γ(a0)
(ξ2

k )
−a0−1

exp

−b0

ξ2
k


×

T∏
t=1

(2π)−
d
2 |ξ2

k Id |
− 1

2 exp{−
1
2

bᵀtk
1
ξ2

k

Id btk}

∝ (ξ2
k )
−a0−1

exp

−b0

ξ2
k


×

T∏
t=1

(ξ2
k )−

d
2 exp{−

1
2

bᵀtk
1
ξ2

k

btk}

∝ (ξ2
k )
−(a0+ nd

2 )−1
exp

−b0 + 1
2
∑T

t=1 bᵀtkbtk

ξ2
k

 .
Therefore,

ξ2
k |Y, Z,π, b,β,σ

2 ∼ IG(a∗0, b
∗
0), (26)

where a∗0 = a0 + Td
2 , b∗0 = b0 + 1

2
∑T

t=1 bᵀtkbtk, for k = 1, . . . ,K.

6.9.2 Proof of Proposition 1

As indicated in Section 6.9.1, the joint posterior distribution of π,β,σ2, conditional on z1:t, b1:t, y1:t

can be expressed up to a marginal likelihood as

p(π,β,σ2, ξ2|z1:t, b1:t, y1:t) ∝ f (π) f (β2) f (ξ2) f (σ2) f (y1:t, z1:t|β, b1:t, ξ
2,σ2)

∝ f (π) ×
K∏

k=1

f (βk) f (ξ2
k ) f (σ2

k)(ξ2
k )−

dt
2

×

K∏
k=1

exp{−
1

2ξ2
k

t∑
t=1

bᵀt′kbt′k} exp{− log(σ2
k)

d
2

t∑
t=1

1k(zt′)} exp{log(πk)
t∑

t′=1

1k(zt′)}

×

K∏
k=1

exp

− 1
2σ2

k

t∑
t′=1

1k(zt′)
(
(yt′ − St′bt′k)ᵀ(yt′ − St′bt′k) − 2βkSᵀt′(yt′ − St′bt′k) + βᵀk Sᵀt′St′βk

)
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∝ f (π) ×
K∏

k=1

f (βk) f (ξ2
k ) f (σ2

k)(ξ2
k )−

dt
2

×

K∏
k=1

exp{−
1

2ξ2
k

t∑
t′=1

bᵀt′kbt′k} exp{− log(σ2
k)

d
2

t∑
t′=1

1k(zt′)} exp{log(πk)
t∑

t′=1

1k(zt′)}

×

K∏
k=1

exp

− 1
2σ2

k

 t∑
t′=1

1k(zt′)(yt′ − St′bt′k)ᵀ(yt′ − St′bt′k) − 2βk

t∑
t′=1

1k(zt′)S
ᵀ
t′(yt′ − St′bt′k)




×

K∏
k=1

exp

− 1
2σ2

k

βᵀk (
t∑

t′=1

1k(zt′)S
ᵀ
t′St′)βk


 .

The sufficient statistics st for the MSSRm model given ( {yᵀi }1:t, z1:t, {b
ᵀ
i }1:t ) for t = 1, . . . ,T can

be written as

st =

 t∑
t′=1

bᵀt′kbt′k,

t∑
t′=1

1k(zt′),
t∑

t′=1

1k(zt′)S
ᵀ
t′ y
∗
t′ ,

t∑
t′=1

1k(zt′)y∗t′
ᵀy∗t′ ,

t∑
t′=1

1k(zt′)S
ᵀ
t′St′


K

k=1

where y∗t′ = yt′ − St′bt′k.

6.10 Appendix C

6.10.1 Proof of Proposition 2

Our online SMC algorithm is run for time steps t = 1, . . . ,T , and samples the random variables

θt = {θ(i)
t }

N
i=1, xt = {x(i)

t }
N
i=1, At = {A(i)

t }
N
i=1. The distributions of these random variables are:

A(i)
t ∼ W (i)

t−1, (27)

x(i)
t ∼ p(xt|θ

A(i)
t

t−1, yt), (28)

θ(i)
t ∼ p(θt|x(i)

1:t, y1:t). (29)

Note that Equation 29 is true only if the Gibbs chain for θ(i)
t reaches stationary.

The distribution of all random variables is

ψN,T (x1:T−1, θ0:T−1, A1:T−1) =

{ N∏
i=1

p(θ(i)
0 )

} T−1∏
t=1

{ N∏
i=1

WA(i)
t

t−1 p(xt|θ
A(i)

t
t−1, yt)p(θt|x(i)

1:t, y1:t)
}
. (30)

To prove

EψN,T (x1:T−1,θ0:T−1,A1:T−1)

 T∏
t=1

1
N

N∑
i=1

p(yt|θ
(i)
t−1)

 = p(y1:T ), (31)
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we solve the integral

EψN,T (x1:T−1,θ0:T−1,A1:T−1)

 T∏
t=1

1
N

N∑
i=1

p(yt|θ
(i)
t−1)


=

∫ T∏
t=1

1
N

N∑
i=1

p(yt|θ
(i)
t−1)

{ N∏
i=1

p(θ(i)
0 )

} T−1∏
t=1

{ N∏
i=1

WA(i)
t

t−1 p(xt|θ
A(i)

t
t−1, yt)

×p(θt|x(i)
1:t, y1:t)

}
dx1:T−1dθ0:T−1d A1:T−1

=

∫ {∫
1
N

N∑
i=1

p(yT |θ
(i)
T−1)

{ N∏
i=1

W
A(i)

T−1
T−2 p(xT−1|θ

A(i)
T−1

T−2 , yT−1)

×p(θT−1|x(i)
1:T−1, y1:T−1)

}
dxT−1dθT−1d AT−1

}
×

T−1∏
t=1

1
N

N∑
i=1

p(yt|θ
(i)
t−1)

{ N∏
i=1

p(θ(i)
0 )

}
×

T−2∏
t=1

{ N∏
i=1

WA(i)
t

t−1 p(xt|θ
A(i)

t
t−1, yt)p(θt|x(i)

1:t, y1:t)
}
dx1:T−2dθ0:T−2d A1:T−2

We first consider the integral over (xT−1, θT−1, AT−1),

∫
1
N

N∑
i=1

p(yT |θ
(i)
T−1)

{ N∏
i=1

W
A(i)

T−1
T−2 p(xT−1|θ

A(i)
T−1

T−2 , yT−1)

×p(θT−1|x(i)
1:T−1, y1:T−1)

}
dxT−1dθT−1d AT−1

=

N∑
i=1

W (i)
T−2 p(yT |θ

(i)
T−2, x

(i)
1:T−2, y1:T−1).

Hence,

EψN,T (x1:T−1,θ0:T−1,A1:T−1)

 T∏
t=1

1
N

N∑
i=1

p(yt|θ
(i)
t−1)


=

∫ {∫ N∑
i=1

W(i)
T−2 p(yT |θ

(i)
T−2, x

(i)
1:T−2, y1:T−1)

1
N

N∑
i=1

p(yT−1|θ
(i)
T−2)

×

{ N∏
i=1

W
A(i)

T−2
T−3 p(xT−2|θ

A(i)
T−2

T−3 , yT−2)p(θT−2|x(i)
1:T−2, y1:T−2)

}
dxT−2dθT−2d AT−2

}
×

T−2∏
t=1

1
N

N∑
i=1

p(yt|θ
(i)
t−1)

{ N∏
i=1

p(θ(i)
0 )

} T−3∏
t=1

{ N∏
i=1

WA(i)
t

t−1 p(xt|θ
A(i)

t
t−1, yt)

×p(θt|x(i)
1:t, y1:t)

}
dx1:T−2dθ0:T−2d A1:T−2.
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We then consider the integral over (xT−2, θT−2, AT−2), recall that W(i)
t−1 = p(yt|θ

(i)
t−1)/

∑N
i=1 p(yt|θ

(i)
t−1)

for t = 1, · · · ,T ,

∫ N∑
i=1

W (i)
T−2 p(yT |θ

(i)
T−2, x

(i)
1:T−2, y1:T−1)

1
N

N∑
i=1

p(yT−1|θ
(i)
T−2)

×

{ N∏
i=1

W
A(i)

T−2
T−3 p(xT−2|θ

A(i)
T−2

T−3 , yT−2)p(θT−2|x(i)
1:T−2, y1:T−2)

}
dxT−2dθT−2d AT−2

}
=

∫
1
N

N∑
i=1

p(yT−1|θ
(i)
T−2)p(yT |θ

(i)
T−2, x

(i)
1:T−2, y1:T−1)

×

{ N∏
i=1

W
A(i)

T−2
T−3 p(xT−2|θ

A(i)
T−2

T−3 , yT−2)p(θT−2|x(i)
1:T−2, y1:T−2)

}
dxT−2dθT−2d AT−2

}
=

∫
1
N

N∑
i=1

p(yT−1:T |θ
(i)
T−2, x

(i)
1:T−2, y1:T−2)

×

{ N∏
i=1

W
A(i)

T−2
T−3 p(xT−2|θ

A(i)
T−2

T−3 , yT−2)p(θT−2|x(i)
1:T−2, y1:T−2)

}
dxT−2dθT−2d AT−2

}
=

N∑
i=1

W (i)
T−3 p(yT−1:T |θ

(i)
T−3, x

(i)
1:T−3, y1:T−2).

Similarly, we can integrate over (xt, θt, At) (t = T − 3,T − 4, . . . , 1) and get

EψN,T (x1:T−1,θ0:T−1,A1:T−1)

 T∏
t=1

1
N

N∑
i=1

p(yt|θ
(i)
t−1)


=

∫ N∑
i=1

W (i)
0 p(y2:T |θ

(i)
0 , y1) ×

1
N

N∑
i=1

p(y1|θ
(i)
0 ) ×

N∏
i=1

p(θ(i)
0 )dθ0

=

∫
1
N

N∑
i=1

p(y1|θ
(i)
0 )p(y2:T |θ

(i)
0 , y1) ×

N∏
i=1

p(θ(i)
0 )dθ0

=

∫
1
N

N∑
i=1

p(y1:T |θ
(i)
0 ) ×

N∏
i=1

p(θ(i)
0 )dθ0

= p(y1:T ).

This proves the proposition.
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Figure 6.12: True surfaces versus estimated common features based on MSSRm model: the top
row displays the true surfaces of simulated by functions f1, . . . , f6 uniformly over the rectangular
domain [−1, 1]× [−1, 1], the middle row and bottom row are the corresponding MCMC fitted mean
surfaces and online SMC fitted mean surfaces at T = 5, 000 with d = 6 × 6, n.min = 40.

6.11 Appendix D

6.11.1 Results of simulation study.

Figure 6.11: True surfaces versus estimated common features based on MSSRm model: the top
row displays the true surfaces of simulated by functions f1, . . . , f3 uniformly over the rectangular
domain [−1, 1]× [−1, 1], the middle row and bottom row are the corresponding MCMC fitted mean
surfaces and online SMC fitted mean surfaces at T = 5, 000 with d = 6 × 6, n.min = 20.

As shown in Figure 6.11 -6.12, the estimated mean surfaces of proposed online SMC algorithm

(common features) for each cluster as comparable as that of the MCMC algorithm.

As indicated in Figure 6.13, online SMC algorithm achieves similar performance as the MCMC

algorithm in terms of ξ2
1, ξ

2
2, ξ

2
3.

As indicated in Figure 6.14, online SMC algorithm achieves similar performance as the MCMC

algorithm in terms of ξ2
1, ξ

2
2, ξ

2
3, ξ

2
4. And there exists a small bias between the true value and the

posterior mean provided by online SMC method for ξ2
5, ξ

2
6 and the bias gets smaller as t increases.
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Figure 6.13: Estimated parameter of ξ2
k , k = 1, 2, 3 with 95% equal tailed credible interval of online

SMC algorithm versus MCMC algorithm when K = 3 and the number of observations increases
from t = 20 to 10, 000.
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Figure 6.14: Estimated parameter ξ2
k , k = 1, . . . , 6 with 95% equal tailed credible interval of online

SMC algorithm versus MCMC algorithm when K = 6 and the number of observations increases
from t = 40 to 10, 000.

6.12 Appendix E

6.12.1 Real data analysis.

WAIC WAIC (Watanabe, 2010; Gelman et al., 2014) is often used to measure model predictive

accuracy in Bayesian model and in our proposed online SMC algorithm, we can compute WAIC via

Eq.(32) and computed at time T after we obtaining all the estimates of model parameters.

WAIC = −2
T∑

t=1

logEθ[p(yt|θ)] + 2
T∑

t=1

V(log(p(yt|θ))). (32)

In our proposed online SMC algorithm, we use
∑N

i=1 p(yt|θ
(i)
T )/N to approximate Eθ[p(yt|θ)] and

V(log(p(yt|θ))) is approximated via follows

∑N
i=1(log(p(yt|θ

i
T )))2 −

(
∑N

i=1 log(p(yt |θ
(i)
T )))2

N

N − 1
,

where p(yt|θ
(i)
T ) is estimated by

∑K
k=1 p(yt|θ

(i)
T , zt = k)p(zt = k).
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Figure 6.15: Online SMC estimated common features from MSSRm model of handwritten number
images by cluster when K = 8, d = 8 × 8, labeled as the 1st cluster to the 8th cluster in left-to-right,
top-to-bottom order.

Figure 6.16: Online SMC estimated common features from MSSRm model of handwritten number
images by cluster when K = 10, d = 8×8, labeled as the 1st cluster to the 10th cluster in left-to-right,
top-to-bottom order

Handwritten number images As indicated in Figure 6.15 and Figure 6.16, when K = 8, the

MSSRm model is able to capture the common features of the most of the 10 digits as well as subgroup

of 0, except 3, 8, and as indicated by the 1st cluster, 7, 9 share some same common features. As

indicated in Figure 6.16, when K = 10, the MSSRm model is able to capture the common features

for most of the 10 digits as well as subgroup of 0, 2, except 3, and 7, 9 (the 1st cluster) share some

common features, as well as 8 and 2 (the 9th cluster).
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Chapter 7

Discussion

In this section, we summarize this thesis work and provide some discussion of future work.

7.1 Summary

In this thesis, we have presented several novel statistical machine learning methods in computa-

tional genetics. Our first application gives the fastest known algorithms for computing the kinship

coefficient given a known pedigree. Our proposed algorithms are applicable to large pedigrees, since

they either have efficient polynomial or linear running-times. Our proposed algorithms are also

applicable to the scenarios where the founders of the given pedigree are inbred and compute the

appropriate inbreeding-adjusted kinship coefficients.

Secondly, we develop a Bayesian bivariate spatial group lasso model to jointly investigate the

relationship between genetic variation and brain structure. Our proposed model is one of the first

explicitly spatial hierarchical models for imaging genetics and neuroimaging to allow for both spatial

correlation and bilateral cross-hemisphere correlation.

Thirdly, motivated by disease prediction via gene expression data, we propose a Bayesian

nonparametric model, the Random Tessellation Process (RTP). The RTP provides a framework that

includes the MP and the binary space partitioning-tree process as special cases. In addition, we

provide random forest versions of the RTP.

Fourthly, we focus on Bayesian nonparametric methods for capturing shapes in images by

partitioning space with curves. In this work, we propose a novel Bayesian nonparametric approach,

Random Tessellation with Splines (RTS), to partition a domain with curves, which enables complex

data shapes to be acquired. We develop a parallel algorithm for inference, which could decrease the

computational time efficiently with multiple CPUs.

Finally, in Chapter 6, we extend the mixtures of spatial spline regression with mixed-effects

model under the Bayesian framework to accommodate streaming image data. We propose a sequential

Monte Carlo (SMC) algorithm to analyze online fashion image data. The existence of model sufficient

statistics improves the efficiency of the proposed online SMC algorithm. The algorithm only requires

storage of the model sufficient statistics and every data point is only used once.
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7.2 Future work

All of the proposed algorithms in Chapter 2 have running times that are parameterized by the

number of individuals. Edges in a pedigree graph corresponds to the kinship coefficients defined by

inheritance paths, hence it is possible that the number of edges in pedigree graphs provides a true

lower-bound on running-time of the computation of the kinship coefficients. We leave it as an open

problem whether there is an efficient algorithm, which has the number of operations parameterized

by the number of edges in the pedigree graph. Another open problem in computation of the kinship

coefficients for a known pedigree is whether there is a sparse algorithm, which would only compute

the non-zero entries in the kinship coefficient matrix. If designed properly, such algorithms would

need far less space and far less number of operations, since it would not need to represent the entire

kinship matrix.

In Chapter 3, we uses a shrinkage prior with group penalization for the coefficients of each SNP

in the regression model. Within the current context, there are many future developments of interest.

For example, using a group spike-and-slab prior as an alternative to the Bayesian group lasso prior.

Our current methodology is best suited for situations where the targeted SNPs is relatively small

and the number of ROIs is moderate. Extending the applicability of the methodology to settings

with massive numbers of genetic and neuroimaging variables is an avenue for future work, such

as combining variational Bayes with better optimization schemes, reduced rank regression and the

use of parallel matrix computations, the use of divide and conquer strategies such as the consensus

Monte Carlo algorithm (Scott et al., 2016) as well as splitting up the brain into a smaller number of

sub-regions might lead to feasible Monte Carlo implementations for such settings.

Chapter 4 describes a framework for viewing Bayesian nonparametric methods based on space

partitioning as Random Tessellation Processes, derives inference using sequential Monte Carlo and

investigates the relationships between gene profiles and disease status. There are many extensions of

RTPs of interest, such as improved SMC sampling for Markov jump processes (Hajiaghayi et al.,

2014), hierarchical likelihoods and online methods (Lakshminarayanan et al., 2015), analysis of

minimax convergence rates (Mourtada et al., 2018) and Bayesian additive regression trees as in

Chipman et al. (2010); Lakshminarayanan et al. (2015). Moreover, we could apply RTPs to data that

naturally displays tessellation and cracking, such as sea ice (Godlovitch, 2011).

Chapter 5 presents a novel Bayesian nonparametric method for estimating shapes within images

and develops an inference algorithm that is “embarrassingly parallel". One future direction of this

work is to extend the RTS to capture shapes of 3D objects (e.g. manifolds).

Chapter 6 introduces a new approach for online image clustering. There are several lines for

our future work to improve surface clustering. First of all, one limitation of the current model is that

we fix the number of clusters. It is of interest to automatically select the number of clusters K by

model and data. One possible way to loosen this constraint is to treat K as a parameter, and introduce

a Dirichlet process prior for K. Second, the covariance matrix of the random effects is proportional

to an identity matrix. A more realistic assumption is to incorporate spatial correlation in the random
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effects. For example, assuming the random effects arise from a Gaussian process with a suitable

spatial covariance. Images for one specific cluster share common features. Another line of future

work is to conduct clustering based on the common features by principle component analysis for

image data.

136



Bibliography

M. Abney. A graphical algorithm for fast computation of identity coefficients and generalized kinship
coefficients. Bioinformatics, 25(12):1561–1563, 2009.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic superpixels. Technical
report, 2010.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC superpixels compared
to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(11):2274–2282, 2012.

E. Alpaydin. Introduction to Machine Learning. MIT press, 2020.

P. Baldi and S. Brunak. Bioinformatics: the Machine Learning Approach. MIT press, 2001.

H. B. Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

M. R. Barnes, J. Huxley-Jones, P. R Maycox, M. Lennon, A. Thornber, F. Kelly, S. Bates, A. Taylor,
J. Reid, N. Jones, and J. Schroeder. Transcription and pathway analysis of the superior temporal
cortex and anterior prefrontal cortex in schizophrenia. Journal of Neuroscience Research, 89(8):
1218–1227, 2011.

M. J. Beal et al. Variational algorithms for approximate Bayesian inference. university of London,
2003.

A. L. Beam and I. S. Kohane. Big data and machine learning in health care. Journal of the American
Medical Association, 319(13):1317–1318, 2018.

M. A. Berger. An Introduction to Probability and Stochastic Processes. Springer Texts in Statistics,
2012.

A. Bhattacharya and D. B. Dunson. Nonparametric Bayesian density estimation on manifolds with
applications to planar shapes. Biometrika, 97(4), 2010.

F. D. Bowman. Spatio-temporal modeling of localized brain activity. Biostatistics, 6(4):558–575,
2005.

F. D. Bowman, B. Caffo, S. S. Bassett, and C. Kilts. A bayesian hierarchical framework for spatial
modeling of fMRI data. NeuroImage, 39:146–156, 2008.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Chapman and Hall/CRC, 1984.

137



C. M. Carvalho, M. S. Johannes, H. F. Lopes, N. G. Polson, et al. Particle learning and smoothing.
Statistical Science, 25(1):88–106, 2010a.

C. M. Carvalho, H. F. Lopes, N. G. Polson, M. A. Taddy, et al. Particle learning for general mixtures.
Bayesian Analysis, 5(4):709–740, 2010b.

P. Castellano, L. Prevedel, and A. A. Eugenin. HIV-infected macrophages and microglia that survive
acute infection become viral reservoirs by a mechanism involving Bim. Scientific Reports, 7, 2017.

F. Chamroukhi. Bayesian mixtures of spatial spline regressions. arXiv preprint arXiv:1508.00635,
2015.

F. Chamroukhi and H. D. Nguyen. Model-based clustering and classification of functional data.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4):e1298, 2019.

F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. A hidden process regression model for functional
data description. Application to curve discrimination. Neurocomputing, 73(7-9):1210–1221, 2010.

H. A. Chipman, E. I. George, and R. E. McCulloch. BART: Bayesian additive regression trees.
Annals of Applied Statistics, 4(1):266–298, 2010.

S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and its Applications. Wiley
Series in Probability and Statistics, 2013.

N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian
inference. Annals of Statistics, 32(6):2385–2411, 2004.

E. H. Corder, A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C. Gaskell, G. Small, A. D.
Roses, J. L. Haines, and M. A. Pericak-Vance. Gene dose of apolipoprotein E type 4 allele and the
risk of Alzheimer’s disease in late onset families. Science, 261(5123):921–923, 1993.

A. L. Cunningham, H. Naif, N. Saksena, G. Lynch, J. Chang, S. Li, R. Jozwiak, M. Alali, B. Wang,
and W. Fear. HIV infection of macrophages and pathogenesis of AIDS dementia complex:
interaction of the host cell and viral genotype. Journal of Leukocyte Biology, 62(1):117–125, 1997.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society. Series B (methodological), 39(1):1–22,
1977.

G. Derado, F. D. Bowman, L. Zhang, and Alzheimer’s Disease Neuroimaging Initiative. Predicting
brain activity using a Bayesian spatial model. Statistical Methods in Medical Research, 22(4):
382–397, 2013.

J. Diebolt and C. P. Robert. Estimation of finite mixture distributions through Bayesian sampling.
Journal of the Royal Statistical Society. Series B (Methodological), 56(2):363–375, 1994.

A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian
filtering. Statistics and Computing, 10(3):197–208, 2000.

A. Doucet, N. De Freitas, and N. Gordon. An introduction to sequential Monte Carlo methods. In
Sequential Monte Carlo methods in practice. Springer, 2001.

138



A. Doucet, M. Briers, and S. Sénécal. Efficient block sampling strategies for sequential Monte Carlo
methods. Journal of Computational and Graphical Statistics, 15(3):693–711, 2006.

N. R. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, 1998.

J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive
Theory of Functions of Several Variables. Springer, 1977.

J. G. Dy and C. E. Brodley. Feature selection for unsupervised learning. Journal of Machine Learning
Research, 5(Aug):845–889, 2004.

J. Eu-Ahsunthornwattana, E. N. Miller, M. Fakiola, S. M. B. Jeronimo, J. M. Blackwell, et al.
Comparison of methods to account for relatedness in genome-wide association studies with
family-based data. PLOS Genetics, 10(7):e1004445, 2014.

X. Fan, B. Li, Y. Wang, Y. Wang, and F. Chen. The Ostomachion process. In Proceedings of the
Thirtieth Conference of the Association for the Advancement of Artificial Intelligence, 2016.

X. Fan, B. Li, and S. Sisson. The binary space partitioning-tree process. In Proceedings of the 35th
International Conference on Artificial Intelligence and Statistics, 2018.

X. Fan, B. Li, and S. Sisson. Binary space partitioning forests. arXiv preprint 1903.09348, 2019.

P. Fearnhead. Markov chain Monte Carlo, sufficient statistics, and particle filters. Journal of
Computational and Graphical Statistics, 11(4):848–862, 2002.

P. Fearnhead and L. Meligkotsidou. Filtering methods for mixture models. Journal of Computational
and Graphical Statistics, 16(3):586–607, 2007.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2):
209–230, 1973.

B. Fischl. FreeSurfer. NeuroImage, 62(2):774–781, 2012.

W. A. Freije, F. E. Castro-Vargas, Z. Fang, S. Horvath, T. Cloughesy, L. M. Liau, P. S. Mischel, and
S. F. Nelson. Gene expression profiling of gliomas strongly predicts survival. Cancer Research,
64(18):6503–6510, 2004.

B. J. Frey and D. Dueck. Clustering by passing messages between data points. science, 315(5814):
972–976, 2007.

J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning, volume 1. Springer
series in statistics, 2009.

N. Friel and A. N. Pettitt. Marginal likelihood estimation via power posteriors. Journal of the Royal
Statistical Society: Series B (Methodological), 70(3):589–607, 2008.

M. Gatz, C. A. Reynolds, L. Fratiglioni, B. Johansson, J. A. Mortimer, S. Berg, A. Fiske, and N. L.
Pedersen. Role of genes and environments for explaining Alzheimer disease. Archives of general
psychiatry, 63(2):168–174, 2006.

R. Gaudin. 2011 Olympus BioScapes Digital Imaging Competition® (2012) CIL:41568, Homo
sapiens, macrophage. CIL. Dataset. https://doi.org/doi:10.7295/W9CIL41568.

139

https://doi.org/doi:10.7295/W9CIL41568


Y. Gazit, J. W. Baish, N. Safabakhsh, M. Leunig, L. T. Baxter, and R. K. Jain. Fractal characteristics
of tumor vascular architecture during tumor growth and regression. Microcirculation, 4(4), 1997.

S. Ge, S. Wang, Y. W. Teh, L. Wang, and L. Elliott. Random tessellation forests. In Advances in
Neural Information Processing Systems, 2019.

T. Ge, J. Feng, D. P. Hibar, P. M. Thompson, and T. E. Nichols. Increasing power for voxel-wise
genome-wide association studies: the random field theory, least square kernel machines and fast
permutation procedures. NeuroImage, 63:858–873, 2012.

A. E. Gelfand and S. Banerjee. Multivariate spatial process models. Handbook of Spatial Statistics,
pages 495–515, 2010.

A. E. Gelfand and P. Vounatsou. Proper multivariate conditional autoregressive models for spatial
data analysis. Biostatistics, 4(1):11–15, 2003.

A. Gelman and X. L. Meng. Simulating normalizing constants: From importance sampling to bridge
sampling to path sampling. Statistical Science, pages 163–185, 1998.

A. Gelman, J. Hwang, and A. Vehtari. Understanding predictive information criteria for Bayesian
models. Statistics and Computing, 24(6):997–1016, 2014.

E. I. George. Sampling random polygons. Journal of Applied Probability, 24(3):557–573, 1987.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63(1):3–42,
2006.

J. Geweke. Interpretation and inference in mixture models: Simple MCMC works. Computational
Statistics & Data Analysis, 51(7):3529–3550, 2007.

W. R. Gilks and C. Berzuini. Following a moving target—Monte Carlo inference for dynamic
Bayesian models. Journal of the Royal Statistical Society: Series B (Methodological), 63(1):
127–146, 2001.

D. Godlovitch. Idealised models of sea ice thickness dynamics. PhD thesis, University of Victoria,
2011.

K. Greenlaw, E. Szefer, J. Graham, M. Lesperance, F. S. Nathoo, and Alzheimer’s Disease Neu-
roimaging Initiative. A Bayesian group sparse multi-task regression model for imaging genetics.
Bioinformatics, 33(16):2513–2522, 2017.

B. Grün and F. Leisch. Dealing with label switching in mixture models under genuine multimodality.
Journal of Multivariate Analysis, 100(5):851–861, 2009.

K. Gu, D. Pati, and D. B. Dunson. Bayesian hierarchical modeling of simply connected 2d shapes.
arXiv preprint arXiv:1201.1658, 2012.

M. Hajiaghayi, B. Kirkpatrick, L. Wang, and A. Bouchard-Côté. Efficient continuous-time Markov
chain estimation. In Proceedings of the 31st International Conference on Machine Learning, 2014.

P. Hall, D. S. Poskitt, and B. Presnell. A functional data—analytic approach to signal discrimination.
Technometrics, 43(1):1–9, 2001.

140



P. Halmos. Measure Theory. Springer, 1974.

L. A. Hannah and D. B. Dunson. Multivariate convex regression with adaptive partitioning. Journal
of Machine Learning Research, 14(1):3261–3294, 2013.

D. P. Hibar, J. L. Stein, O. Kohannim, N. Jahanshad, A. J. Saykin, L. Shen, S. Kim, N. Pankratz,
T. Foroud, M. J. Huentelman, et al. Voxelwise gene-wide association study (vGeneWAS): mul-
tivariate gene-based association testing in 731 elderly subjects. NeuroImage, 56:1875–1891,
2011.

D. P. Hibar, J. L. Stein, M. E. Renteria, A. Arias-Vasquez, S. Desrivières, N. Jahanshad, R. Toro,
L. Wittfeld, K.and Abramovic, M. Andersson, et al. Common genetic variants influence human
subcortical brain structures. Nature, 520(7546):224, 2015.

T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42
(1-2):177–196, 2001.

K. Hrecka, C. Hao, M. Gierszewska, S. K. Swanson, M. Kesik-Brodacka, S. Srivastava, L. Florens,
M. P. Washburn, and J. Skowronski. Vpx relieves inhibition of HIV-1 infection of macrophages
mediated by the SAMHD1 protein. Nature, 474(7353), 2011.

C. Huang, P. Thompson, Y. Wang, Y. Yu, J. Zhang, D. Kong, R. R. Colen, R. C. Knickmeyer, H. Zhu,
Alzheimer’s Disease Neuroimaging Initiative, et al. FGWAS: Functional genome wide association
analysis. NeuroImage, 159:107–121, 2017.

M. Huang, T. Nichols, C. Huang, Y. Yu, Z. Lu, R. C. Knickmeyer, Q. Feng, H. Zhu, Alzheimer’s
Disease Neuroimaging Initiative, et al. FVGWAS: Fast voxelwise genome wide association
analysis of large-scale imaging genetic data. NeuroImage, 118:613–627, 2015.

L. Hubert and . Arabie. Comparing partitions. Journal of Classification, 2(1):193–218, 1985.

B. Inkster, T. E. Nichols, P. G. Saemann, D. P. Auer, F. Holsboer, P. Muglia, and P. M. Matthews.
Pathway-based approaches to imaging genetics association studies: Wnt signaling, GSK3beta
substrates and major depression. NeuroImage, 53:908–917, 2010.

A. J. Izenman. Linear discriminant analysis. In Modern multivariate statistical techniques, pages
237–280. Springer, 2013.

A. Jacquard. Genetic information given by a relative. Biometrics, 28(4):1101–1114, 1972.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to Statistical Learning. Springer,
2013.

G. M. James and T. J. Hastie. Functional linear discriminant analysis for irregularly sampled curves.
Journal of the Royal Statistical Society: Series B (Methodological), 63(3):533–550, 2001.

G. M. James and C. A. Sugar. Clustering for sparsely sampled functional data. Journal of the
American Statistical Association, 98(462):397–408, 2003.

A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain Monte Carlo methods and the label
switching problem in Bayesian mixture modeling. Statistical Science, 2005.

141



X. Jin, B. P. Carlin, and S. Banerjee. Generalized hierarchical multivariate CAR models for areal
data. Biometrics, 61(4):950–961, 2005.

H. M. Kang et al. Variance component model to account for sample structure in genome-wide
association studies. Nature Genetics, 42(4):348–354, 2010.

G. Karigl. A recursive algorithm for the calculation of identity coefficients. Annals of Human
Genetics, 45(3):299, 1981.

C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda. Learning systems of concepts
with an infinite relational model. In Proceedings of the 20th Conference on the Association for the
Advancement of Artificial Intelligence, 2006.

A. E. Khandani, A. J. Kim, and A. W. Lo. Consumer credit-risk models via machine-learning
algorithms. Journal of Banking & Finance, 34(11):2767–2787, 2010.

J. F. Kingman. Poisson Processes. Oxford University Press, 1996.

B. Kirkpatrick. Haplotype versus genotypes on pedigrees. Algorithms for Molecular Biology, 6(10):
136–147, 2011.

B. Kirkpatrick. Non-identifiable pedigrees and a Bayesian solution. Int. Symp. on Bioinformatics
Res. and Appl. (ISBRA), pages 139–152, 2012.

D. Kong, K. S. Giovanello, Y. Wang, W. Lin, E. Lee, Y. Fan, P. Murali Doraiswamy, and H. Zhu.
Predicting Alzheimer’s disease using combined imaging-whole genome SNP data. Journal of
Alzheimer’s Disease, 46(3):695–702, 2015.

D. Kong, B. An, J. Zhang, and H. Zhu. L2RM: Low-Rank Linear Regression Models for High-
Dimensional Matrix Responses. Journal of the American Statistical Association, 115(529):
403–424, 2020.

H. Koppensteiner, R. Brack-Werner, and M. Schindler. Macrophages and their relevance in Human
Immunodeficiency Virus Type I infection. Retrovirology, 9(1):1–11, 2012.

S. B. Kotsiantis, I. Zaharakis, and P. Pintelas. Supervised machine learning: a review of classification
techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160:3–24,
2007.

S. Kurtek, A. Srivastava, E. Klassen, and Z. Ding. Statistical modeling of curves using shapes and
related features. Journal of the American Statistical Association, 107(499):1152–1165, 2012.

M. Kyung, J. Gill, M. Ghosh, G. Casella, et al. Penalized regression, standard errors, and Bayesian
lassos. Bayesian Analysis, 5(2):369–411, 2010.

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Mondrian forests: Efficient online random forests.
In Proceedings of the 28th Conference on Neural Information Processing Systems, 2014.

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Particle Gibbs for Bayesian additive regression
trees. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics,
2015.

142



A. L. Leutenegger, B. Prum, et al. Estimation of the inbreeding coefficient through use of genomic
data. The American Journal of Human Genetics, 73(3):516–523, 2003.

A. Liaw and M. Wiener. Classification and Regression by randomForest. R News, 2(3):18–22,
2002.

L. Lin, N. Mu, P. Cheung, D. Dunson, et al. Extrinsic gaussian processes for regression and
classification on manifolds. Bayesian Analysis, 14(3):907–926, 2019.

M. Lin, R. Chen, J. S. Liu, et al. Lookahead strategies for sequential Monte Carlo. Statistical Science,
28(1):69–94, 2013.

J. Liu and V. D. Calhoun. A review of multivariate analyses in imaging genetics. Frontiers in
Neuroinformatics, 8:29, 2014.

J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic systems. Journal of the
American Statistical Association, 93(443):1032–1044, 1998.

Z. H. Lu, Z. Khondker, J. G. Ibrahim, Y. Wang, H. Zhu, Alzheimer’s Disease Neuroimaging Initiative,
et al. Bayesian longitudinal low-rank regression models for imaging genetic data from longitudinal
studies. NeuroImage, 149:305–322, 2017.

A. Lucchi, K. Smith, R. Achanta, V. Lepetit, and P. Fua. A fully automated approach to segmentation
of irregularly shaped cellular structures in EM images. In International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 2010.

G. Lucotte, F. Loirat, and S. Hazout. Pattern of gradient of apolipoprotein E allele* 4 frequencies in
western Europe. Human Biology, 1997.

S. N. MacEachern, M. Clyde, and J. S. Liu. Sequential importance sampling for nonparametric
Bayes models: The next generation. Canadian Journal of Statistics, 27(2):251–267, 1999.

Y. C. MacNab. Linear models of coregionalization for multivariate lattice data: a general framework
for coregionalized multivariate CAR models. Statistics in Medicine, 35(21):3827–3850, 2016.

N. Malfait and J. O. Ramsay. The historical functional linear model. Canadian Journal of Statistics,
31(2):115–128, 2003.

J. M. Marin, k. Mengersen, and C. P. Robert. Bayesian modelling and inference on mixtures of
distributions. Handbook of statistics, 25:459–507, 2005.

G. Matheron. Principles of geostatistics. Economic Geology, 58(8):1246–1266, 1963.

P. R. Maycox, F. Kelly, A. Taylor, S. Bates, J. Reid, R. Logendra, et al. Analysis of gene expression
in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal
function. Molecular Psychiatry, 14(12):1083–1094, 2009.

J. E. Merrill and I. S. Chen. HIV-1, macrophages, glial cells, and cytokines in AIDS nervous system
disease. The FASEB Journal, 5(10), 1991.

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071: Misc Functions of the
Department of Statistics, Probability Theory Group (Formerly: E1071), Technische Universität
Wien. R package version 1. 7–1, 2019.

143



M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT press, 2018.

J. S. Morris, P. J. Brown, R. C. Herrick, K. A. Baggerly, and K. R. Coombes. Bayesian analysis of
mass spectrometry proteomic data using wavelet-based functional mixed models. Biometrics, 64
(2):479–489, 2008.

M. E. Mortenson. Mathematics for Computer Graphics Applications. Industrial Press Inc., 1999.

J. Mourtada, S. Gaïffas, and E. Scornet. Minimax optimal rates for Mondrian trees and forests. arXiv
preprint 1803.05784, 2018.

H. Muller. Surface reconstruction-an introduction. In Scientific Visualization Conference
(dagstuhl’97). IEEE, 1997.

W. Nagel and V. Weiss. Crack STIT tessellations: Characterization of stationary random tessellations
stable with respect to iteration. Advances in Applied Probability, 37(4):859–883, 2005.

F. S. Nathoo, M. L. Lesperance, A. B. Lawson, and C. B. Dean. Comparing variational Bayes with
Markov chain Monte Carlo for Bayesian computation in neuroimaging. Statistical Methods in
Medical Research, 22(4):398–423, 2013.

F. S. Nathoo, A. Babul, A. Moiseev, N. Virji-Babul, and M. F. Beg. A variational Bayes spatiotemporal
model for electromagnetic brain mapping. Biometrics, 70(1):132–143, 2014.

F. S. Nathoo, L. Kong, and H. Zhu. A review of statistical methods in imaging genetics. Canadian
Journal of Statistics, 47(1):108–131, 2019.

H. D. Nguyen, G. J. McLachlan, and I. A. Wood. Mixtures of spatial spline regressions for clustering
and classification. Computational Statistics & Data Analysis, 93:76–85, 2016.

J. T. Ormerod and M. P. Wand. Explaining variational approximations. The American Statistician,
64(2):140–153, 2010.

T. Park and G. Casella. The Bayesian LASSO. Journal of the American Statistical Association, 103
(482):681–686, 2008.

W. D Penny, N. J Trujillo-Barreto, and K. J. Friston. Bayesian fMRI time series analysis with spatial
priors. NeuroImage, 24:350–362, 2005.

A. Piccolboni and D. Gusfield. On the complexity of fundamental computational problems in
pedigree analysis. Journal of Computational Biology, 10(5):763–773, 2003.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Journal of the
American Statistical Association, 94(446):590–599, 1999.

K. Puolamäki and S. Kaski. Bayesian solutions to the label switching problem. In International
Symposium on Intelligent Data Analysis. Springer, 2009.

S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, et al. PLINK: a tool set for whole-genome
association and population-based linkage analyses. The American journal of human genetics, 81
(3):559–575, 2007.

T. Rainforth and F. Wood. Canonical correlation forests. arXiv preprint 1507.05444, 2015.

144



C. S. Rakovski and D. O. Stram. A kinship-based modification of the armitage trend test to address
hidden population structure and small differential genotyping errors. PLOS ONE, 4(6):e5825, 06
2009.

Q. Ren, S. Banerjee, A. O. Finley, and J. S. Hodges. Variational Bayesian methods for spatial data
analysis. Computational Statistics & Data Analysis, 55(12):3197–3217, 2011.

X. Ren and J. Malik. Learning a classification model for segmentation. In Proceedings Ninth IEEE
International Conference on Computer Vision. IEEE, 2003.

C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Science & Business Media,
2013.

D. M. Roy and Y. W. Teh. The Mondrian process. In Proceedings of the 22nd Conference on Neural
Information Processing Systems, 2008.

S. Russell and P. Norvig. Artificial intelligence: a modern approach. 2002.

L. M. Sangalli, J. O. Ramsay, and T. O. Ramsay. Spatial spline regression models. Journal of the
Royal Statistical Society: Series B (Methodological), 75(4):681–703, 2013.

S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. I. George, and R. E. McCulloch. Bayes
and big data: The consensus Monte Carlo algorithm. International Journal of Management Science
and Engineering Management, 11(2):78–88, 2016.

X. Shen, X. Papademetris, and R. T. Constable. Graph-theory based parcellation of functional
subunits in the brain from resting-state fMRI data. NeuroImage, 50:1027–1035, 2010.

M. Silver, G. Montana, T. E. Nichols, Alzheimer’s Disease Neuroimaging Initiative, et al. False
positives in neuroimaging genetics using voxel-based morphometry data. NeuroImage, 54:992–
1000, 2011.

B. D. Sivazlian. On a multivariate extension of the gamma and beta distributions. SIAM Journal on
Applied Mathematics, 41(2), 1981.

J. L. Stein, X. Hua, S. Lee, A. J. Ho, A. D. Leow, A. W. Toga, A. J. Saykin, L. Shen, T. Foroud,
N. Pankratz, et al. Voxelwise genome-wide association study (vGWAS). NeuroImage, 53:
1160–1174, 2010.

M. Stephens. Dealing with label switching in mixture models. Journal of the Royal Statistical
Society: Series B (Methodological), 62(4):795–809, 2000.

F. C. Stingo, M. Guindani, M. Vannucci, and V. D. Calhoun. An integrative Bayesian modeling
approach to imaging genetics. Journal of the American Statistical Association, 108(503):876–891,
2013.

B. Su and D. Liu. Computational Geometry: Curve and Surface Modeling. Elsevier, 2014.

D. Sun, Z. Wang, and S. Yu. Kinship accuracy: Comparing algorithms for large pedigrees. Stanford
Undergraduate Research Journal, 13:97–102, 2014.

145



E. Szefer, D. Lu, F. Nathoo, M. F. Beg, J. Graham, et al. Multivariate association between single-
nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery,
refinement and validation. Statistical Applications in Genetics and Molecular Biology, 16(5-6):
367–386, 2017.

A. L. Tarca, V. J. Carey, X.W. Chen, R. Romero, and S. Drăghici. Machine learning and its
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