-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Simon Fraser University Institutional Repository

Final version published as: Tavassoly, O., Sade, D., Bera, S., Shaham-Niv, S., Vocadlo, D. J., & Gazit, E. (2018).
Quinolinic Acid Amyloid-like Fibrillar Assemblies Seed a-Synuclein Aggregation. Functional Amyloids in Health and
Disease, 430(20), 3847-3862. https://doi.org/10.1016/j.jmb.2018.08.002

Quinolinic Acid Amyloid-like Fibrillar Assemblies Seed
a-Synuclein Aggregation

Omid Tavassoly ' T, Dorin Sade? ', Santu Bera?, Shira Shaham-Niv?,
David J. Vocadlo ''3 and Ehud Gazit®*°

1 - Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

2 - Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel

3 - Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 156
4 - Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel

5 - Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel

Correspondence to Ehud Gazit: Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv
6997801, Israel. ehudg @post.tau.ac.il

Abstract

Quinolinic acid (QA), a downstream neurometabolite in the kynurenine pathway, the biosynthetic pathway
of tryptophan, is associated with neurodegenerative diseases pathology. Mutations in genes encoding kynurenine
pathway enzymes, which control the level of QA production, are linked with elevated risk of developing Parkinson's
disease. Recent findings have revealed the accumulation and deposition of QA in post-mortem samples, as well as
in cellular models of Alzheimer's disease and related disorders. Furthermore, intrastriatal inoculation of mice with
QA results in increased levels of phosphorylated a-synuclein and neurodegenerative pathological and behavioral
characteristics. However, the cellular and molecular mechanisms underlying the involvement of QA accumulationin
protein aggregation and neurodegeneration remain elusive. We recently established that self-assembled
ordered structures are formed by various metabolites and hypothesized that these “metabolite amyloids” may
seed amyloidogenic proteins. Here we demonstrate the formation of QA amyloid-like fibrillar assemblies and
seeding of a-synuclein aggregation by these nanostructures both in vitro and in cell culture. Notably, a-synuclein
aggregation kinetics was accelerated by an order of magnitude. Additional amyloid-like properties of QA
assemblies were demonstrated using thioflavin T assay, powder X-ray diffraction and cell apoptosis analysis.
Moreover, fluorescently labeled QA assemblies were internalized by neuronal cells and co-localized with a-
synuclein aggregates. In addition, we observed cell-to-cell propagation of fluorescently labeled QA assemblies in
a co-culture of treated and untreated cells. Our findings suggest that excess QA levels, due to mutations in the
kynurenine pathway, for example, may lead to the formation of metabolite assemblies that seed a-synuclein
aggregation, resulting in neuronal toxicity and induction of Parkinson's disease.

Introduction

Millions of people worlwide are afflicted with
neurodegenerative diseases, including Alzheimer's
disease (AD), Parkinson's disease (PD) and amyotro-
phic lateral sclerosis, which are characterized by
progressive dysfunction of the central nervous system
[1-4]. The pathology of these ailments is associated
with several amyloidogenic proteins and polypeptides,
including B-amyloid in AD [5,6], a-synuclein in PD [7]
and TDP-43 in amyotrophic lateral sclerosis [8], which

form deposits of B-sheet-rich neurotoxic amyloid aggre-
gates and oligomers in the central nervous system.
While not showing any sequence similarity, all of these
proteins self-assemble into cytotoxic amyloid structures,
suggesting a common underlying mechanism [9].
However, the initial steps leading to the formation and
accumulation of these protein aggregates remain
elusive [10,11].

Recently, we demonstrated that several metab-
olites, including phenylalanine, tyrosine, trypto-
phan, uracil and adenine, can self-assemble and
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form structures exhibiting amyloid-like character-
istics [12—16]. Each of these metabolites individ-
ually accumulates in specific inborn error of
metabolism disorders, which all manifest severe
neurological abnormalities [17,18]. For example,
phenylalanine deposits could be specifically de-
tected using antibodies raised against pre-formed
structures, demonstrating their presence in post-
mortem brain sections of phenylketonuria patients
[14]. Strikingly, it was recently demonstrated that
phenylalanine pre-formed fibrils initiated the ag-
gregation of several proteins under physiological
conditions [19]. These discoveries expanded the
“amyloid hypothesis” to include metabolites in
addition to proteins and peptides. The presence of
metabolite assemblies in inborn error of metabolism
disorders [14,20] and their ability to cross-seed
proteins in vitro [19] underscore their pathophysiolog-
ical importance in various diseases. Intriguingly,
several neurometabolites have been associated with
neurodegenerative pathologies [21-24]. However, no
common mechanism underlying the role of these
disease-related metabolites has so far been reported
[25].

-

Quinolinic acid (QA) or pyridine-2,3-dicarboxylic
acid is an endogenous neurometabolite that has been
previously reported to be involved in the pathology
of neurodegenerative diseases, including AD, PD and
Huntington's disease [26—31]. QA is an intermediate
metabolite of the kynurenine pathway that catalyzes
transformation of tryptophan into the end-product
nicotinamide adenine dinucleotide (NAD*) (Fig. 1).
Through processes that are not fully elucidated, QA
can disrupt cell physiology by cytoskeleton destabili-
zation, inducing inflammation, increasing oxidative
stress and influencing both autophagy and apoptosis
[31]. QA is produced by macrophages and activated
microglia [32—-34], whereas neurons appear unable to
synthesize QA [28,35,36] yet are able to catabolize it
[37]. The enzyme 2-amino-3-carboxymuconic semial-
dehyde decarboxylase (ACMSD) controls the cellular
levels of QA by converting a QA precursor metabolite
(2-amino-3-carboxymuconate-6-semialdehyde, or
ACMS) into the neuroprotective metabolite picolinic
acid (PA) [38,39] (Fig. 1). In the absence of ACMSD
activity due to mutations in the encoding gene, excess
QA precursor metabolite is spontaneously converted
to QA. In pathological conditions due to inflammatory
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Fig. 1. Simplified diagram of the kynurenine
pathway. TDO, tryptophan 2,3-dioxygenase; IDO,
indoleamine 2,3-dioxygenases; ACMSD, 2-amino-3-
carboxymuconic semialdehyde decarboxylase;
QPRTase, quinolinic acid phosphoribosyl transfer-
ase; NAD™, nicotinamide adenine dinucleotide.



responses and reduced ACMSD activity, the kynur-
enine pathway is over-activated and the production
of QA increases [40—42]. Excess QA is released by
macrophages and activated microglia and can be
internalized by neurons through an unknown molecu-
lar mechanism [28,43] leading to its accumulation both
inside and outside of neurons [44].

Interestingly, several genome-wide association
studies have identified ACMSD mutations to be asso-
ciated with increased risk of PD [25,45-47]. Moreover,
ACMSD was recently proposed as a novel therapeutic
target for PD based on genetic studies showing
variations in a locus proximal to the ACMSD gene.
Furthermore, it has been reported that mutations in
ACMSD are associated with neurological disease
having Parkinsonism-like features [48,49]. These
reports collectively suggest that some of the pathology
observed in PD pathologies might be initiated by
abnormalities in the kynurenine pathway metabolism
that give rise to accumulation of QA. These recently
identified ACMSD mutations may account for PD
cases that, until recently, were considered as sporadic
in origin. Despite these findings that point to ACMSD
playing a role as a regulator of PD, the molecular
mechanisms underlying its role in the development of
PD is still unknown.

Several studies have demonstrated a correlation
between QA and AD. In post-mortem brain sections
of AD patients, intracellular QA has been detected as
punctate structures that co-localize with tau-positive
fibrillary structures [28]. QA puncta were also detected
in granular deposits within the neuronal soma of cortex
from AD patients, which co-localized with neurofibrillary
tangles [27,50]. In addition, it has been demonstrated
that treatment of human primary neuronal cultures with
QA, increases both total and phosphorylated tau [28].
Interestingly, a broad screen of mouse brain samples
from an array of mouse strains identified inactivation of
QPRT as significantly increasing accumulation of (-
amyloid [51]. QPRT encodes quinolinate phosphor-
ibosyltransferase (QPRTase) (Fig. 1), a neuronal QA
catabolic enzyme that allows to maintain low levels of
this metabolite within neurons [37,52]. These data
suggest a possible mechanism, whereby inhibition
of QPRTase activity results in the accumulation of
aggregated proteins, possibly due to increased neuro-
nal QA levels.

In this study, we aimed to test our recently presented
hypothesis in which we propose that metabolite
accumulation and supramolecular structure formation
is a fundamental mechanism that may contribute to the
initial steps inducing toxicity of amyloids and conse-
quent neurodegeneration [53]. We postulate that these
metabolite assemblies can serve as nuclei that cross-
seed protein aggregation, thereby accelerating forma-
tion of pathological deposits of aggregation-prone
proteins such as tau, B-amyloid and a-synuclein.
Specifically, regarding the role of QA in PD, we
hypothesize that QA accumulation within neurons can

trigger its self-assembly and the formation of nucleation
seeds. These can, in turn, facilitate the recruitment of
soluble a-synuclein monomers into amyloidal aggre-
gates, thus initiating and accelerating the progression
and severity of PD and other synucleopathies.
Although protein cross-seeding by metabolite assem-
blies has been demonstrated in vitro [19,54], this
mechanism has never been explored as an initiator of
the neurodegenerative process. Our findings here link
a-synuclein pathology with QA accumulation, suggest-
ing a novel target for therapy and drug development.

Results

To demonstrate the formation of QA supramolecu-
lar structures and their association with a-synuclein,
we performed in vitro experiments and cell culture
studies. First, we examined whether QA can self-
assemble to form higher-order structures (Fig. 2). We
dissolved QA at 90 °C in PBS as a physiologically
relevant buffer to obtain a homogenous solution after
which gradual cooling of the solution resulted in the
formation of ordered fibrillary assemblies as assessed
by transmission electron microscopy (TEM) (Fig. 2a).
QA self-assembly at various concentrations was
analyzed using TEM, indicating that the metabolite
formed relatively short fibrillary assemblies, homoge-
neous in length and width and 3-6 nm in diameter
as determined from TEM micrographs (Fig. 2a). As a
negative control, we examined whether PA, another
metabolite of the kynurenine pathway (Fig. 1), can
self-assemble. We similarly dissolved and assessed
PA solutions using TEM. However, no PA structures
could be observed (Fig. S1). Some metabolite fibrillar
assemblies were recently reported to exhibit amyloid-
like properties, including thioflavin T (ThT) binding and
a supramolecular B-sheet-like conformation [12].
Thus, we wanted to test whether QA assemblies
display similar characteristics [56-59]. Using fluo-
rometric ThT binding assays, we found that ThT
bound to QA assemblies in a concentration-dependent
manner, while no detectable binding was observed
using a similarly prepared negative control solution
of PA (Fig. 2b). Furthermore, we measured the change
in quantum vyield, considering Rhodamine 6G as a
standard. Based on these measurements, we found
@ = 0.12 for blank ThT, which increased to 0.16 upon
binding to QA. Given these data, we believe that the
binding mechanism is likely an intercalating mecha-
nism, as was suggested for protein and polypeptide
amyloids [60—62]; however, this cannot be definitively
established without further study.

The powder X-ray diffraction (PXRD) pattern and
unit cell parameters of QA-dried fibrils [a = 7.413 (3) A,
b=12.704 (3) A, c=7.826 (3) A, B8 = 116.945° (6°)]
matched well with the simulated powder diffraction
patterns as well as the unit cell parameters obtained
from a single crystal structure of QA (a = 7.415 (5) A,
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Fig. 2. Characterization of QA assemblies in vitro. (a) TEM micrographs obtained 24 h after inducing self-assembly
by dissolving QA in PBS at 90 °C followed by gradual cooling. (b) ThT fluorescence emission of QA assemblies. QA
(0.5 to 2 mg/ml) and PA (2 mg/ml) were dissolved in PBS at 90 °C, followed by gradual cooling of the solutions. ThT was
added to a final concentration of 0.4 pM and emission data at 480 nm (excitation at 450 nm) was measured using
spectrofluorometer. AFU, arbitrary fluorescence units. The results represent three independent biological repeats. (c) PXRD
patterns and the structure of QA assemblies (2 mg/ml). The solution was centrifuged for 10 min at 6000 rpm and decanted,
and the assembled fibers were lyophilized and poured inside a glass capillary. Experimental PXRD pattern was collected for
QA fibrils (red) and compared to the simulated PXRD of the crystal structure (black). (d) Crystal structure of QA showing a
parallel B-sheet-like structural arrangement. (CCDC no. 1245597) [55].

b=12.396 (9) A, c = 7.826 (6) A, B = 117.050° (4°)].
These data suggest the presence of similar molecular
packing in both the fibrils and single crystals (Fig. 2c)
[55]. In the single crystal, each QA molecule was
connected through an N(1)-H(4)~O(4) hydrogen
bond with the adjacent molecule in the same plane,
forming unlimited repeating molecular chain in the
crystallographic a-direction. Adjacent molecular
chains were packed together only by van der Waals
interactions approximately along the crystallographic
c-direction. Each molecular chain can therefore be
considered as a single B-strand, reminiscent of a
peptide/protein B-strand, which leads one to view
the crystal packing of QA as resembling a supramo-
lecular parallel B-sheet-like structural arrangement
(Fig. 2d).

Previous studies demonstrated that protein amy-
loids and metabolite amyloids can be cytotoxic by
inducing apoptotic cell death of cultured neuronal

cells [12,13,63,64]. We therefore examined the
cytotoxicity and apoptotic effect of QA assemblies
on cultured human neuroblastoma cells (SH-SY5Y)
(Fig. 3). We prepared the assemblies by dissolving
various concentrations of QA in culture media,
followed by gradual cooling. To evaluate cytotoxicity
of QA assemblies, we used a wide range of concen-
trations of QA to determine their LCgo with SH-SY5Y
cells following 24 h treatment and using MTT cell
viability assay (Fig. 3a). To identify the change in
the absorbance resulting from changes in cell
viability and to exclude those driven by metabolite
assemblies, we used the same concentration of
QA assemblies in medium alone as a background
measurement that was subtracted from the cell-
based viability data. QA assemblies displayed dose-
dependent cytotoxicity and caused up to 100% cell
death (Fig. 3a). We determined the LCsq to be
approximately 1.4 mg/ml. We wanted to verify that
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Fig. 3. Cytotoxicity and apoptotic activity of QA assemblies. (a) Cytotoxicity of QA assemblies as determined by MTT
cell viability assay. Metabolites were dissolved at 90 °C in cell media followed by gradual cooling of the solution. The
control reflects medium without QA, which was treated in the same manner. Treated SH-SY5Y cells were incubated with
medium containing QA assemblies for 24 h, followed by the addition of the MTT reagent and extraction buffer. Absorbance
was determined at 570/680 nm. The results represent three independent biological repeats. (b) Cytotoxicity of QA
assemblies tested by using EGCG to block formation of QA assemblies (left) and evaluation of the effects of low-pH (right).
QA (final concentration of 1.5 mg/ml) was similarly dissolved in cell medium (as described in panel a) and mixed with
EGCG (0.1 mM) before gradual cooling. Low-pH medium was prepared by adding HCI to reach pH ~6 and was treated in
the same manner as the QA-containing medium. The control reflects medium with no metabolites, which was treated in the
same manner. The results represent three independent biological repeats. (**p < 0.01, ***p < 0.005). (c and d) Apoptotic
activity studied by annexin V and Pl assay. QA was dissolved at 90 °C in SH-SY5Y cell media followed by gradual cooling
of the solution. SH-SY5Y cells were incubated with media containing the metabolites at the stated concentrations for 24 h.
Control cells were incubated with medium without any addition of metabolites. After incubation, annexin V-FITC and PI
were added to the cells, followed by flow cytometry analysis using a single laser-emitting excitation light at 488 nm.
(c) Flow cytometry plots of the annexin V/PI double-staining assay. Q1, PI(+) (cells undergoing necrosis); Q2, annexin
V-FITC(+) PI(+) (cells in late apoptosis and undergoing secondary necrosis); Q3, annexin V-FITC(+) PI(-) (cells in early
apoptosis); Q4, annexin V-FITC(-) PI(-) (live cells). (d) Chart presenting quantification of flow cytometry results. Analyses
were performed using the FlowJo software (TreeStar, Version 14). Apoptosis is represented in blue (early + late apoptosis)
and necrosis in green. The results represent three independent biological repeats.

cell death was mediated by the QA assemblies and
not as a result of an osmotic effect conferred by the
high concentration of the metabolite or of pH change
of the cell medium. For this purpose, we used the
polyphenol epigallocatechin gallate (EGCG), an
aggregation inhibitor recently reported to prevent
not only protein aggregation but also fibril formation
by metabolites [16,65,66]. To verify the inhibition of
QA self-assembly by EGCG, the inhibitor (0.1 mM)
was added before the gradual cooling of QA solution
(1.5 mg/ml). Using TEM analysis, we confirmed
that no structures were formed in the mixture of QA
with EGCG (Fig. S1). We similarly added EGCG
(0.1 mM) to 1.5 mg/ml QA solution in cell medium
and treated SH-SY5Y cells for 24 h. MTT assay

indicated a significant increase in cell viability
compared to QA solution in the absence of EGCG
(Fig. 3b, left). Notably, since the addition of EGCG
actually increases the monomeric QA concentration,
osmotic effect or acidic pH could be ruled out as the
main toxic mechanism. Furthermore, since 1.5 mg/ml
QA decreases the cell medium pH to 6, we sought
to directly test the effect of this pH on cell viability by
treating the cells with equivalently low-pH medium
for 24 h, followed by MTT cell viability assay (Fig. 3b,
right). The viability of the cells grown in low-pH
medium was significantly higher compared to cells
treated with 1.5 mg/ml QA. Therefore, the presence of
QA assemblies in the cell medium is indicated to be
the main cause for cytotoxicity.



Next, to better define the mechanism of cytotoxicity
and distinguish between apoptosis and necrosis,
annexin V and propidium iodide (Pl) labeling were
used, followed by cell sorting (Fig. 3c, d). Different
concentrations of QA assemblies in cell media were
prepared as described above, and cultured SH-
SY5Y cells were treated with the different QA-
containing media for 24 h. As controls, we prepared
media without QA. We found similar data using this
assay as we had seen using the cytotoxicity assay.
The QA solutions caused cell death and stimulated
apoptotic activity in a concentration-dependent man-
ner, again up to 100% as indicated by annexin V and
Pl assay (Fig. 3c, d). These results demonstrate that
apoptosis, rather than necrosis, was the main
pathway causing SH-SY5Y cell death following treat-
ment with QA assemblies.
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We next set out to evaluate the ability of QA
assemblies to cross-seed the aggregation of
a-synuclein [67]. Monomeric a-synuclein (50 pM)
was co-incubated with pre-formed QA seeds for
48 h, and protein aggregation was monitored using a
ThT binding assay (Fig. 4a). We found that 30% v/v QA
seeds induced a-synuclein aggregation within several
hours, while 10% v/v QA seeds showed slower
kinetics that eventually reached the same fluores-
cence signal. Samples of 50 uM a-synuclein in the
absence of QA seeds showed significantly slower
aggregation kinetics and a weak fluorescence signal
(Fig. 4a). Seeding of amyloidogenic proteins by pre-
formed fibrils is well established, reporting that solution
conditions may affect a-synuclein aggregation [67].
Thus, we used an equivalent solution of low-pH PBS
and added it as a potential seeding inducer in the same
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Fig. 4. Cross-seeding of a-synuclein by QA assemblies. (a) Kinetic analysis of the aggregation of a-synuclein in the
presence of QA assemblies. a-Synuclein was dissolved in PBS to 70 uM and mixed with 30% or 10% v/v pre-formed QA
assemblies (taken from a 2 mg/ml stock sample) or with an equivalent volume of PBS for the “no seed” sample, to a final
concentration of 50 uM a-synuclein. Low-pH control was prepared by mixing an equivalent volume of low-pH PBS.
Aggregation was monitored using ThT (40 uM) binding assay, over the course of 48 h, at 37 °C with 850 rpm shaking.
Blank measurements of samples without a-synuclein were respectively subtracted. The results represent three
independent biological repeats. (b) TEM micrographs taken from QA monomers and QA assemblies solutions prepared by
dialysis. The scale bar represents 1 pym. (c) Kinetic analysis of a-synuclein aggregation (50 uM) in the presence of QA
monomers and QA assemblies (30% v/v taken from 2 mg/ml dialyzed samples). Aggregation was monitored in the same
way described in panel a. Blank measurements of samples without a-synuclein were respectively subtracted. The results
represent three independent biological repeats. (d) Far-UV CD spectra of a-synuclein (100 pM) in the presence and
absence of QA monomers and QA assemblies (10% and 30% v/v taken from 2 mg/ml dialyzed samples) and a-synuclein
seed (30% v/v) after 48 h incubation at 850 rpm and 37 °C. The results represent three independent biological repeats.



volume as QA solution in PBS. However, we found that
the equivalently low-pH conditions did not affect the
aggregation of a-synuclein monomers (Fig. 4a). Next,
to validate the cross-seeding effect of QA assemblies,
we aimed to examine the seeding of a-synuclein by QA
monomers. Since an EGCG control could not be used
in a protein aggregation assay [65,66], we used
dialysis to separate QA monomers from QA assem-
blies in a 2 mg/ml solution. The samples were
examined using TEM (Fig. 4b), verifying that the
monomers fraction did not contain any structures,
while the dialyzed fraction of QA assemblies showed
the presence of typical structures (Fig. 4b). We
examined the ability of dialyzed solutions of QA
monomers and QA assemblies (30% v/v) to cross-
seed the aggregation of 50 uM a-synuclein (Fig. 4c). In
comparison to non-dialyzed QA assemblies (Fig. 4a),
the dialyzed assemblies showed slower kinetics of
a-synuclein aggregation, while the monomers control
had a minor effect, similar to the low-pH control. The
slower kinetics may be explained by the fact that
during dialysis, small oligomers of QA (pentamers and
hexamers) can pass the dialysis pore. The absence of
these nucleation seeds in the dialyzed assemblies
solution may delay a-synuclein aggregation. To
assess potential non-specific effects of QA seeds on
protein aggregation in general, we used bovine serum
albumin (BSA) as a control protein. We observed no
change in the aggregation of BSA in the presence of
QA seeds measured using this assay (Fig. S2A). In all
cases, background ThT fluorescence in the presence
of the metabolites alone was subtracted from all
experiments. These observations were supported by
TEM imaging of the aggregation end-point (Fig. S2B).
We found that samples of a-synuclein exposed to QA
seeds that showed a high ThT fluorescence also
contained amyloid aggregates with characteristic
morphology [68] in electron microscopy experiments
(Fig. S2B, bottom), whereas samples that had not
been treated with seeds contained low numbers of
small amorphous aggregates (Fig. S2B, top). We also
evaluated the cross-seeding of a-synuclein by QA
assemblies using an independent method in which we
monitored the formation of B-sheet-like structures via
circular dichroism (CD) spectroscopy [69]. The con-
formational change from random coil to B-sheet-like
structure, a defining feature of a-synuclein fibrils
[70,71], was studied by monitoring the CD signal at
218 nm, which is characteristic of a B-sheet structure
[69,72] (Fig. 4d). We incubated a-synuclein monomers
for 48 h with QA assemblies, QA monomers (sepa-
rated by dialysis) or pre-formed fibrils of a-synuclein as
a positive control (Fig. 4d). We found that the CD
spectrum of a-synuclein in the absence of seeds was
typical of peptides with a random coil conformation
[73], showing an intense negative minimum at
~200 nm and a weak negative shoulder at ~218 nm.
Similarly, in the presence of QA monomers (30% or
10% v/v solutions obtained by dialysis), there was no

change in the random coil conformation of a-synuclein
even after 48 h incubation (Fig. 4d). However, in the
presence of QA assemblies (30% or 10% v/v) or
a-synuclein pre-formed fibrils (30% v/v), a-synuclein
monomers underwent fibrillization to form B-sheet-like
structures as indicated by the distinctive negative
maximum at ~218 nm (Fig. 4d). These data are
consistent with ThT binding assay results (Figs. 4a
and S2A) and TEM images (Fig. S2B) demonstrating
the cross-seeding of a-synuclein by QA assemblies
and the induced aggregation of a-synuclein into fibrillar
structures, which are composed of mostly -sheet-like
conformation.

Given these findings, we were curious to see whether
QA assemblies could seed the aggregation of intracel-
lular a-synuclein within cultured cells. A well-established
cell-based fluorescence protein-complementation
assay, H4/V1S-SV2, was used for these experiments
[74-77]. The H4/V1S-SV2 cell model is a H4
neuroglioma cell line that co-expresses two constructs
of a-synuclein, one tagged by the N-terminal half of
Venus YFP (V1S) and the other tagged by the
C-terminal half of Venus YFP (SV2), both under the
tetracycline-controlled transcriptional activation sys-
tem (Tet-Off induction) [74—77]. Cultures of these cells
were treated with QA assemblies and a-synuclein pre-
formed fibrils for 48 h. High-content fluorescence
imaging analysis was used to measure the extent
of a-synuclein aggregation upon treatment with either
type of seeds (Fig. 5a, b). We found that QA assemblies
strikingly increased the aggregation of intracellular
a-synuclein in a concentration-dependent manner.
The aggregation was imaged and quantified using
ImageXpress Molecular Devices and MetaXpress
software based on number, area and intensity of
a-synuclein aggregation in nine different non-
overlapping fields. Strikingly, we found that the extent
of seeding of intracellular a-synuclein aggregation
within cells by QA assemblies was comparable to that
seen when using the same concentration (0.5 mg/ml)
of a-synuclein pre-formed fibrils (Fig. 5a).

A prerequisite for QA assemblies acting directly to
seed a-synuclein fibrils within cells is the ability of cells
to internalize QA assemblies. Moreover, this seeding
hypothesis suggests that QA assemblies should co-
localize with cellular a-synuclein fibrils. To test this
proposal, we used the H4/V1S-SV2 cell line model
and treated these cells with Alexa-Fluor-647-labeled-
QA assemblies (QA-647) for 48 h, after which we
analyzed the cells by confocal microscopy and
observed co-localization of QA-647 and intracellular
a-synuclein aggregates (Fig. 5c). The uptake of
QA-647 and the co-localization with a-synuclein were
similarly observed via 3D analysis of treated cells
(Fig. S3). Moreover, fibrillation of a-synuclein mono-
mers by QA assemblies and their co-localization were
studied in vitro. a-Synuclein monomers labeled with
Alexa-Fluor-488 were incubated with QA-647 for 48 h,
followed by confocal microscopy analysis showing
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Fig. 5. Induced aggregation of a-synuclein by QA assemblies, co-localization and QA propagation in cell culture.
(a, b) High-content cellular analysis of a-synuclein aggregation. (a) Quantification of a-synuclein aggregation 48 h post-
treatment using a fluorescent protein-complementation H4/V1S-SV2 cell line (see Materials and Methods). These cells were
treated with QA assemblies (0.25 and 0.5 mg/ml) and a-synuclein pre-formed fibrils (0.5 mg/ml) for 48 h. Fluorescence
signals from Venus were quantified with automated methods using MetaXpress software (Molecular Devices). Error bars
represent +SD. (b) Representative images of high-content cellular analysis in panel a. The scale bar represents 100 pm. (c)
Co-localization of a-synuclein with labeled QA. Confocal images showing QA assemblies (red) and a-synuclein aggregates
(green) in H4/V1S-SV2 cell line model, a fluorescent protein-complementation cell line (Venus PCA), 48 h post-treatment with
labeled QA-647 at final concentration of 0.5 mg/ml. The scale bar represents 10 um. The results represent three independent
biological repeats. (d) Propagation of labeled QA-647 assemblies. FACS analysis of QA-647 assemblies propagation
between SK-N-SH cells. Cells were treated with 0.25 mg/ml of QA-647 assemblies for 24 h and re-plated after washing with
PBS and diluted trypsin. Treated and untreated cells were co-cultured for either 72 or 2 h, as a negative control, and Cy5

fluorescence intensity was measured. The results represent three independent biological repeats.

co-localization of QA-647 and a-synuclein-488 aggre-
gates (Fig. S4). This was further supported by the
absence of fibrillation or co-localization when labeled o-
synuclein was incubated alone, as well as when the
mixture of labeled a-synuclein with QA-647 was
examined at time zero. Next, we wanted to investigate
whether QA-647 assemblies could propagate between
cells, as is now well established for amyloids [78-82].
The propagation of QA-647 between cells was
measured by co-culturing washed QA-647-treated
SK-N-SH cells with untreated cells and monitoring the
fluorescence signal of the overall cell population by
FACS (Fig. 5d). In this experiment, we treated cells with
QA-647 for 24 h, washed and trypsinized them and
then co-cultured them with cells that have never been
exposed to QA assemblies. As a negative control, we
used cells co-cultured for only 2 h, which we judged to
be too short for potential spreading of QA assemblies.
While the 2 h co-culture showed two distinct separate
populations, each resembling the separate treated and
untreated populations, the 72 h co-culture showed a

broader peak, indicating that QA-647 was passing from
QA-treated cells into neighboring untreated cells (Fig.
5d).

Discussion

In this study, we demonstrated that QA, a neurome-
tabolite that has been previously reported to be
associated with the pathology of neurodegenerative
diseases, can self-assemble into amyloid-like struc-
tures. TEM analysis and ThT binding assays indicated
that QA forms supramolecular structures. PXRD of QA
fibrils supports the known crystal structure of QA single
crystals having a structure reminiscent of a supramo-
lecular parallel B-sheet. Furthermore, QA assemblies
induced apoptotic cell death and fluorescently labeled
QA assemblies were shown to propagate between
cells, a prion-like behavior that until now was attributed
solely to proteins and polypeptides. Finally, we found
that QA seeds facilitated the aggregation of soluble



a-synuclein monomers both invitro and in cell-culture,
similar to the extent seen upon seeding by a-synuclein
pre-formed fibrils. In summary, diverse findings have
suggested links between QA accumulation and the
enzymes involved in its metabolism to neurodegener-
ative diseases [28,49,51]. Specifically, in PD, the
concentration of QA in cells in pathological conditions
has not yet been reported. However, metabolomics
studies demonstrated the kynurenine pathway of
tryptophan metabolism to be elevated [23,83], consis-
tent with the observations of QA accumulation in
amyloid plaques [27,50]. Nevertheless, no specific
molecular mechanisms have been deciphered to
account for these disparate observations. Our results
provide strong support for the hypothesis that QA
accumulation may lead to QA assemblies that serve as
seeds that can induce the aggregation of a-synuclein,
offering a possible molecular mechanism to explain
these previous observations linking enzymes regulat-
ing QA levels and neurodegeneration. Accordingly, we
propose that excess QA, accumulated during dis-
turbed metabolism can form extra- or intra-cellular
assemblies, which are most likely not substrates of
QPRTase (Fig. 1), as the geometry of its active site
recognizes and supports binding of a single QA
molecule [84] and would most likely preclude binding
of a large assembly. In this mechanism, extracellular
QA assemblies are taken up by neurons (or rather
intracellularly formed) and serve as a seed to promote
a-synuclein aggregation, which is supported by co-
localization of QA assemblies with a-synuclein aggre-
gates. Moreover, we reason based on our observa-
tions that QA assemblies can propagate between
neurons, thereby contributing to the spreading of
pathology throughout the brain in a manner that is
similar to the phenomenon of prion-like spreading of
amyloidogenic fibrils in neurodegenerative diseases
[81,85]. Notably in this regard, intrastriatal inoculation
of mice with QA causes phosphorylation of
a-synuclein, a marker of a-synuclein aggregation, as
well as typical pathological and behavioral features of
striatonigral degeneration and multiple system atrophy
[26,29,86]. These data suggest that cell-to-cell prop-
agation of QA assemblies occurs and may further
contribute to cross-seeding of proteins, which in turn
drives neurodegeneration. Our proposed mechanism
of action for QA ultimately requires in vivo validation in
PD animal models. However, eventual validation of
this QA seeding hypothesis and its role in neurode-
generation will present new opportunities within the
field of neurodegeneration and expand our current
understanding of the mechanisms behind disease
progression. Such an advance may in turn enable new
opportunities for the development of therapeutics to
treat PD, such as increasing the activity of QPRTase
and ACMSD (Fig. 1) or blocking QA fibril formation and
its cellular uptake. Finally, this line of research may
offer a new paradigm regarding the molecular basis of
neurodegenerative diseases.

Materials and Methods

Materials

Recombinant wild-type a-synuclein was pur-
chased from Alexotech (AS-600-10). QA, PA and
EGCG were purchased from Sigma (purity >99%).
Fresh stock solutions of QA assemblies were
prepared by dissolving the metabolite at 90 °C in
PBS or in cell culture media at various concentra-
tions, to obtain monomeric solutions of the metab-
olite, followed by gradual cooling of the solution.

TEM

QA or PA was dissolved at 90 °C in PBS at various
concentrations followed by gradual cooling of the
solution. For EGCG control, QA solution was mixed
with the inhibitor (0.1 mM) before gradual cooling.
Samples prepared by dialysis were immediately
loaded. Subsequently, 10 pyl samples were placed
on 400-mesh copper grids. After 2 min, excess fluids
were removed. Samples were viewed using a JEOL
1200EX electron microscope operating at 80 kV.
Diameter calculation of metabolite amyloidal fibers
was performed by measuring five fibers from three
different QA assemblies images.

Separation of QA assemblies and QA monomers
by dialysis

QA assemblies and QA monomers were prepared
as previously described for chemical fibrils [87]. To
purify QA monomers, a high-throughput dialysis tube
(Sigma, 1 kDa MWCO) was filled with PBS and
incubated overnight at 4 °C in 1 L of pre-formed QA
assemblies (2 mg/ml). The sample inside the dialysis
tube was characterized as QA monomers. To purify
QA assemblies, the dialysis tube was filled with pre-
formed QA assemblies (2 mg/ml) and incubated
overnight at 4 °C in 1 L of PBS. The sample inside
the dialysis tube was characterized as QA assemblies.

ThT fluorescence

QA was dissolved at 90 °C in PBS at various
concentrations ranging from 0.5 to 2 mg/ml, and PA
was similarly dissolved to 2 mg/ml, followed by
gradual cooling of the solutions. One hundred
microliters of ThT solution (4 uM in PBS) was mixed
with 900 pl of QA or PA solution and immediately
transferred into a rectangular quartz fluorescence
cuvette with an optical path length of 10mm (Hellma
Analytics, Mullheim, Germany). Fluorescence was
measured using a Fluorolog-3 spectrofluorometer
(Horiba Jobin Yvon, Edison, NJ, USA). The excitation
wavelength was set to 450 nm, emission was record-
ed at 480 nm, with excitation, and emission slits of



5nm. Each experiment was repeated three times. The
data points are presented as mean = SD.

PXRD

QA (2 mg/ml) was dissolved at 90 °C in PBS
followed by gradual cooling of the solution. The
assembled fibers were lyophilized and poured inside
a glass capillary 0.5 mm in diameter. X-ray diffraction
was collected using Bruker D8 Discover theta/theta
diffractometer with liquid-nitrogen-cooled intrinsic Ge
solid-state linear position detector. The cell parame-
ters were determined using the GSAS-II software [88].
The diffraction pattern was analyzed using the
Rietveld method with a final RBragg = 5.8% [89].
The peaks were indexed by monoclinic unit cell with
a=7413 (3) A, b=12.7044 (3) A, c=7.826 (3) A
and 8 = 116.945° (6°).

Cell cytotoxicity experiments

SH-SY5Y cells (ATCC CRL-2266) (2 x 10° cells/ml)
were cultured in DMEM/Nutrient Mixture F12 (Ham's;
1:1; Biological Industries) supplemented with 10% fetal
bovine serum (FBS) in 96-well tissue microplates
(100 pl per well) and allowed to adhere overnight at
37 °C. Half of each plate was plated with cells, with the
other half later serving as a control for the solutions
alone. The treatment solutions were prepared as
follows: QA was dissolved at 90 °C in cell media
without FBS, at various concentrations ranging from
0.2 to 2 mg/ml, followed by gradual cooling of the
solutions. Cells media was replaced and cells were
treated with the solutions (100 pl per well), followed by
overnight incubation at 37 °C. Control cells were
incubated with medium that was treated in the same
manner without any addition of QA. For EGCG control,
QA (final concentration of 1.5 mg/ml) was similarly
dissolved in cell media and mixed with EGCG (final
concentration of 0.1 mM, stock solution dissolved cell
media) before gradual cooling. For pH control, 10 ml of
cell medium was supplemented with 15 pl HCI (32%;
same pH of 1.5 mg/ml QA in cell medium) to reach pH
~6. The low-pH medium was treated in the same
manner as QA samples in cell media. Cell viability was
evaluated using the 3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide (MTT) assay. Briefly,
10 pl of 5 mg/ml MTT dissolved in PBS was added
to each well. After a 4 h incubation at 37 °C, 100 pl of
extraction buffer [20% SDS dissolved in a mixture of
50% DMF and 50% DDW (pH 4.7)] was added to each
well, and the plates were further incubated at 37 °C for
30 min. Finally, color intensity was measured using an
ELISA reader at 570/580 nm. The data points are
presented as mean = SD. Each experiment was
repeated three times. For EGCG and pH controls,
two-tailed Student's t test was performed when two
groups were compared.

Flow cytometry for apoptosis studies

SH-SY5Y cells were seeded at 2 x 10° per well in
6-well plates and were allowed to adhere overnight at
37 °C. The treatment solutions were prepared as
follows: QA was dissolved at 90 °C in DMEM/Nutrient
Mixture F12 (Ham's; 1:1; Biological Industries) without
FBS at various concentrations ranging from 0.5 to
2 mg/ml, followed by gradual cooling of the solution.
Cells were treated with the solutions (3 ml per well),
followed by overnight incubation at 37 °C. Control cells
were incubated with medium that was treated in the
same manner without any addition of metabolites. The
apoptotic effect was evaluated using the MEBCYTO
Apoptosis kit (MBL International), according to the
manufacturer's instructions. Briefly, the adherent cells
were trypsinized, detached and combined with floating
cells from the original growth medium. Cells were then
centrifuged and washed once with PBS and once with
binding buffer. Cells were subsequently incubated with
annexin V=FITC and PI for 15 min in the dark,
resuspended in 400 pl binding buffer and analyzed
by flow cytometry using a single laser-emitting excita-
tion light at 488 nm. Data from at least 10* cells were
acquired using BD FACSort and the CellQuest
software (BD Biosciences). Analysis was performed
using the FlowdJo software (TreeStar, version 14). Each
experiment was repeated three times.

In vitro seeding of recombinant a-synuclein by
QA assemblies

QA (2 mg/ml) was dissolved at 90 °C in PBS
followed by gradual cooling of the solution. Recombi-
nant a-synuclein (Alexotech) was dissolved in PBS to
a concentration of 70 pM. The monomeric protein was
mixed with the pre-formed 30% v/v or 10% v/iv QA
assemblies (taken from 2 mg/ml stock solution), or
with an equivalent volume of PBS as a control, to a final
concentration of 50 yM a-synuclein. For low-pH
control, 10 ml of PBS was supplemented with 12 pl
HCI (32%) to reach pH ~3 (same pH of 2 mg/mI QA in
PBS). An equivalent volume of low-pH PBS was mixed
with a-synuclein to the same final concentration. As an
additional control, a-synuclein was mixed with QA
monomers or pre-formed QA assemblies (10% and
30% v/v taken from 2 mg/ml dialyzed samples, see
dialysis above). BSA solution (70 uM) was similarly
prepared and mixed with QA assemblies (30% v/v)
under the same conditions as a-synuclein. In all
experiments, the total sample volume was 140 pl
(100 pl protein solution +14/40 pl QA seed and +PBS
up to 140 pl). ThT was added to a final concentration of
40 pM and aggregation was monitored using Tecan™
SPARK 10 M fluorescence plate reader, over the
course of 48 h, at 37 °C with 850 rpm shaking. Blank
measurements of metabolite only (without a-synuclein
or BSA) were, respectively, subtracted. The data



points are presented as mean + SD. Each experiment
was repeated three times.

CD

CD spectra were recorded as previously described
[73,90]. Briefly, recombinant a-synuclein (Alexotech)
dissolved in PBS to a final concentration of 100 pM
was incubated with QA monomers or pre-formed QA
assemblies (10% and 30% v/v taken from 2 mg/ml
dialyzed samples, see dialysis above). As control,
30% (v/v) seed of a-synuclein pre-formed fibrils was
used. Samples were prepared on an Eppendorf
ThermoMixer® C at 37 °C with shaking at 850 rpm
for 48 h. In all experiments, the total sample volume
was 200 pl (100 pl protein solution +20/60 pl QA seed
and +PBS up to 200 pl). The final products were
diluted in 10 mM sodium phosphate buffer (pH 7.4) to
a final concentration of 5 pM of a-synuclein and their
CD spectra were collected on an Applied Photophy-
sics CHIRASCAN PLUS CD Spectrophotometer
equipped with a Quantum Northwest TC125 temper-
ature controller at 22 °C using a cell with a 0.2-cm path
length. Spectra of protein samples were recorded over
a range of 195-260 nm and corrected by subtracting
the spectrum of the corresponding solvent, including
blank samples of metabolites only. The results were
expressed as mean residue ellipticity in deg cm?
dmol~'. CD signal at 218 nm was monitored.

Fluorescent protein-fragment complementation
assay

The H4/V1S-SV2 fluorescent protein-complementation
assay was used as described previously [69-72].
Briefly, H4 neuroglioma cell line that co-expresses two
constructs of a-synuclein, one tagged by the
N-terminal half of Venus YFP (V1S) and the other
tagged by the C-terminal half of Venus YFP (SV2),
both under the tetracycline-controlled transcriptional
activation system (Tet-Off induction), was maintained
in OPTI-MEM (Gibco) medium supplemented with
10% FBS (Gibco), 200 pg/ml Hygromycin B (Gibco)
and 200 pg/ml geneticin (G418; Gibco) in the absence
(—Tet) or presence (+ Tet) of 2 pg/ml tetracycline (Tet).
Cultured cells in “+ Tet” media were used as baseline.
Cells (0.2 x 10°) were seeded into each well of a 96-
well plate (Corning 4680), with half of the plate cultured
in “~Tet” media and the other half in “+ Tet” media and
were allowed to adhere overnight at 37 °C. A subset of
the wells from both “+ Tet” and “~Tet” cultured media
were then treated with pre-formed QA assemblies (at
final concentrations of 0.25 and 0.5 mg/ml) and pre-
formed a-synuclein fibrils (at final concentration of
0.5 mg/ml) and incubated at 37 °C for 48 h. The
whole plate was then stained with Hoechst 33342
(Thermo Fisher Scientific, H3570). Live cells were
automatically imaged in the plate using high-content
imaging (ImageXpress Micro XLS, Molecular De-

vices). Nine different non-overlapping fields in each
well were automatically selected and imaged. Images
were automatically analyzed using the MetaXpress
(Molecular Devices) software to measure the number,
area and intensity of a-synuclein aggregation. Intensity
signals in both “-~Tet” and “+Tet” media were
normalized to the number of cells. Average intensities
for each condition (no treatment, 0.25 mg/ml of QA
assemblies, 0.5 mg/ml of QA assemblies and 0.5 mg/
ml of a-synuclein fibrils) in “~Tet” media were
normalized with the corresponding “+ Tet” wells. The
data points are presented as mean + SD. The
experiment was repeated three times.

Fluorescent labeling of QA assemblies and
a-synuclein monomers

QA (11 mg/ml) was dissolved in PBS at 90 °C
followed by gradual cooling of the solution. QA
assemblies were labeled with a fluorescent dye based
on the EDAC (1-ethyl-3-[3-dimethylaminopropyl]carbo-
diimide hydrochloride) coupling reaction [91]. Briefly,
Alexa Fluor 647 Cadaverine (ThermoFisher Scientific,
1 mg) was dissolved in 200 pl of endotoxin-free ultra-
pure water (Sigma), and 100 pl of resulting solution was
added to 570 pl of QA assemblies. Three hundred thirty
microliters of freshly prepared EDAC (Sigma) stock
solution in PBS was then added to a final concentration
of 0.1 M. The sample was incubated for 2 h at room
temperature, and the conjugate was purified by
overnight dialysis with PBS using a high-throughput
dialysis tube (Sigma, 1 kDa MWCO).

A freshly prepared solution of a-synuclein (5 mg/ml)
in PBS was labeled with amino-reactive Alexa Fluor
488 NHS Ester (ThermoFisher Scientific) as previ-
ously described [66], according to the manufacturer's
instructions. Briefly, Alexa Fluor 488 dye (1 mg) was
dissolved in 100 pl of DMSO (Sigma), and the
resulting solution was added to 500 pl of a-synuclein
monomers. Sixty microliters of freshly prepared 1 M
sodium bicarbonate buffer (pH 8.3) was then added to
the sample. The sample was incubated for 2 h at room
temperature, and the conjugate was purified by
overnight dialysis with PBS using a high-throughput
dialysis tube (Sigma, 1 kDa MWCO).

Co-localization and uptake analysis in
cell cultures

H4/V1S-SV2 cells were seeded at 5 x 10° into
35-mm glass-bottomed dishes (ibidi, p-Dish 35 mm,
high Glass Bottom) and cultured for 24 h. After
complete adhesion, cells were treated with 0.5 mg/ml
of QA-647 assemblies (see “Fluorescent labeling”) and
were then incubated at 37 °C for 48 h. After washing
with trypsin and cold PBS, live cells were stained with
Hoechst 33342 (Thermo Fisher Scientific, H3570).
Uptake and co-localization of fluorescently labeled QA
assemblies with a-synuclein aggregates in live cells



were examined using a Nikon A1R laser scanning
confocal system equipped with a 60x objective and
analyzed by a Nikon Advanced Research analysis
software. Each experiment was repeated three times.

In vitro co-localization

Fibrillization of a-synuclein monomers by QA
assemblies and their co-localization was studied by
confocal microscopy as previously described [66].
Briefly, a-synuclein monomers labeled with Alexa
Flour-488 at a final concentration of 100 uM were
incubated with 30% v/v QA-647 (taken from 2 mg/ml
stock samples; see “Fluorescent labeling”). In parallel,
a sample of a-synuclein alone was similarly incubat-
ed. Samples were incubated on an Eppendorf
ThermoMixer® C at 37 °C with shaking at 850 rpm
for 48 h (a time-point zero control was mixed before
the next step). The final products were diluted 1:10 in
PBS and 200 pl of the resulting sample were pipetted
on a poly-D-Lysine (PDL) coated coverslip (Neuvitro,
H-18-1.5-PDL) and incubated at room temperature for
30 min. The solution was then removed, and after
washing with PBS, the coverslip was mounted on a
microscope slide (Fisher Scientific) using a drop of
mounting medium (ibidi). The samples were exam-
ined using a Nikon A1R laser scanning confocal
system equipped with a 60 x objective and analyzed
by a Nikon Advanced Research analysis software.
Each experiment was repeated three times.

Flow cytometry

SK-N-SH cells were seeded at 1 x 10° per well in
12-well plates in EMEM media supplemented with
10% FBS and penicillin/streptomycin antibiotics and
were allowed to adhere overnight at 37 °C. Cells were
treated with 0.25 mg/ml of labeled QA-647 assemblies
for 24 h and re-plated after washing with trypsin and
PBS. Treated and untreated cells were co-cultured
for either 72 or 2 h (negative control) in 6-well plates.
The cells were then washed with trypsin and PBS,
re-suspended in the Live Cell Imaging Solution
(ThermoFisher Scientific) and collected in a 96-well
plate (300 pl/well). Cells were analyzed by flow
cytometry using a single laser-emitting excitation light
at640 nm. Datafrom5 x 10* cells were acquired using
Guava easyCyte 8HT Benchtop Flow Cytometer and
the InCyte Software (Millipore). Analyses were per-
formed using the FlowJo software (TreeStar, version
14). Each experiment was repeated three times.
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