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ABSTRACT

Existence Results for a Class of Even-Order

Boundary Value Problems

Daniel Brumley

Advisor: Britney Hopkins, Ph.D.

This thesis focuses on establishing the existence of positive solutions to even-order

boundary value problems of the form

u

(2n)(t) = �h

�
t, u(t), u00(t), . . . , u(2n�2)(t)

�
,

↵i+1u
(2i)(0)� �i+1u

(2i)(0) = (�1)i+1
ai+1, i = 0, 1, . . . , n� 1,

�i+1u
(2i+1)(1)� �i+1u

(2i+1)(1) = (�1)i+1
ai+1, i = 0, 1, . . . , n� 1,

where n � 2, h : [0, 1] ⇥
Qn�1

j=0 (�1)j[0,1) ! (�1)n[0,1) is continuous, and � > 0. In

particular, for i = 0, 1, . . . , n� 1, we let ↵i+1, �i+1, �i+1, �i+1 > 0 and consider in tandem

the cases where either ai+1 > 0 or ai+1 < 0.

Similar problems have been considered by other authors. What distinguishes this work

is the method employed: Beginning with a transformation of the problem into a system

of second-order di↵erential equations satisfying homogeneous boundary conditions, the
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work culminates in successive applications of the Guo-Krasnosel’skii Fixed Point Theorem

giving at least three positive solutions. This method is based on the work of Marcos,

Lorca, and Ubilla, who developed the technique to establish existence results for a class

of fourth-order boundary value problems; however, the general framework under which

this thesis operates is more accurately attributed to Hopkins, who extended the method

to even-order problems on both continuous and discrete domains. Future work could

seek to further demonstrate the broad applicability of the method by considering more

challenging boundary conditions, by generalizing the results to time scales, or by utilizing

di↵erent fixed point theorems in order to characterize solutions further.
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CHAPTER 1

Introduction

This thesis focuses on establishing the existence of positive solutions to even-order

boundary value problems of the form

u

(2n)(t) = �h

�
t, u(t), u00(t), . . . , u(2n�2)(t)

�
, (1.1)

↵i+1u
(2i)(0)� �i+1u

(2i)(0) = (�1)i+1
ai+1, i = 0, 1, . . . , n� 1, (1.2)

�i+1u
(2i+1)(1)� �i+1u

(2i+1)(1) = (�1)i+1
ai+1, i = 0, 1, . . . , n� 1, (1.3)

where n � 2, h : [0, 1] ⇥
Qn�1

j=0 (�1)j[0,1) ! (�1)n[0,1) is continuous, and � > 0.

In particular, for i = 0, 1, . . . , n � 1, we require ↵i+1, �i+1, �i+1, �i+1 > 0 and consider in

tandem the cases (i) ai+1 > 0 and (ii) ai+1 < 0. We refer to the system (1.1)–(1.3) coupled

with (i) as the positive case; the system (1.1)–(1.3) paired with (ii) we call the negative

case.

The method that we use to demonstrate existence of multiple positive solutions begins

with a transformation of the problem into a system of second-order di↵erential equations

satisfying homogeneous boundary conditions. An operator T is then defined in such a

way that the fixed points of T (if any) correspond to positive solutions to the system. To

establish the existence of fixed points of T , a sequence of lemmas is constructed that lead

to contraction and expansion estimates of T over nested subsets of a cone. This allows

for successive applications of the Guo-Krasnoselskii Fixed Point Theorem giving multiple
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fixed points of the operator T and, hence, multiple positive solutions to the system of

boundary value problems. The multiplicity of positive solutions to (1.1)–(1.3) follows by

corollary.

The rest of this chapter is devoted to a brief survey of the relevant history surrounding

our particular problem and boundary value problems more generally. Definitions and

results needed for the remainder of the work will also be presented. In Chapter 2, we

prove the existence of positive solutions to systems of the form (1.1)–(1.3) in the special

case where n = 2. The purpose of studying this lower-order problem is to provide a

concrete setting in which to motivate the method above. Special attention is given to the

di↵erences between the positive and negative cases. Utilizing the insights of the preceding

chapter, we turn to establishing the existence results for the general, even-order problem

in Chapter 3. We close with a discussion considering possible avenues for future work in

Chapter 4.

1.1. History

From a practical standpoint, the study of multiple solutions to boundary value prob-

lems is important to the modeling of various physical phenomena. For instance, Cohen

[10] studied the multiplicity of solutions to the boundary value problem

�u

00 � u

0 + f(u) = 0, 0  t  1,

u

0(0)� ↵u(0) = 0, u0(1) = 0,
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which occurs in the modeling of a certain chemical reactor. Argawal addressed uniqueness

issues to boundary value problems of the form

u

(4) = f(t, u, u0
, u

00
, u

000), a  t  b

u(a) = A, u

0(a) = B, u(b) = C, u

00(b) = D,

motivated by problems arising in beam analysis in [1]. Additional examples may be found

in [2], [3], [11], [12], [14], [20], [21], [22] and the references therein.

A number of diverse methods exist to establish the existence of multiple solutions to

boundary value problems. A particularly fruitful approach hinges on transforming a higher

order problem into a system of second-order di↵erential equations of the form u

00(t) =

f(t, u(t)) satisfying homogeneous boundary conditions and observing that solutions to

this problem are just fixed points of the operator

Tu =

Z 1

0

G(t, s)f(s, u(s))ds,

where G is the Green’s function corresponding to the specified homogeneous boundary

conditions. As a result, various fixed point theorems have been utilized or proposed

to address existence and uniqueness issues, such as the Leggett Williams Fixed Point

Theorem [19] and its many o↵shoots ([4], [5], [6]).

One of the more important fixed point theorems to arise in the past sixty years in the

study of solutions to boundary value problems is attributed to Krasnosel’skii. In [18], he

established a fixed point result for operators acting on cones (see Definition 1.2.1). An

extension was later formulated by Guo in [13] that held for less restrictive open subsets
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within a cone. This more general result is known as the Guo-Krasnosel’skii Fixed Point

Theorem (see Theorem 1.2.3).

By utilizing the Guo-Krasnosel’skii Fixed Point Theorem, Marcos, Lorca, and Ubilla

[17] demonstrated the existence of at least three positive solutions to the boundary value

problem

u

(4) = �h(t, u, u00), t 2 (0, 1),

u(0) = u

00(0) = 0, u(1) = a, u

00(1) = �b.

Their method of proof was essentially the approach outlined above. Hopkins later ex-

panded upon this work in [15], [16] by generalizing the system above to arbitrary order

and considering analogous problems on both continuous and discrete domains. Brumley,

Hopkins, et al. investigated further the existence of solutions to several classes of bound-

ary value problems in [7], [9], including the positive case of (1.1)–(1.3) when n = 2 in

[8]. This thesis is an outgrowth of these investigations into the multiplicity of solutions

of even-order boundary value problems.

1.2. Definitions and Theorems

We now state the major definitions and theorems that will be used throughout this

work. As noted above, the Guo-Krasnosel’skii Fixed Point Theorem gives fixed points

within open subsets of a cone. This motivates the following definition:

Definition 1.2.1. A nonempty, closed, convex subset C of a Banach space X is called

a cone if
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(i) for all x 2 C and � > 0, we have �x 2 C;

(ii) if x 2 C and �x 2 C, then x = 0.

We will restrict our attention to a particular class of operators, namely, completely

continuous operators, which are defined as follows:

Definition 1.2.2. Let X and Y be Banach spaces and {xn} a weakly convergent

sequence in X. A bounded linear operator T : X ! Y is called completely continuous

if {Txn} is norm-convergent in Y .

With these preliminary definitions out of the way, we now state the fixed point result

upon which all of our later work rests.

Theorem 1.2.3 (Guo-Krasnosel’skii Fixed Point Theorem). Let (X, k·k) be a Banach

space, and let C ⇢ X be a cone. Suppose ⌦1,⌦2 are open subsets of X satisfying 0 2

⌦1 ⇢ ⌦1 ⇢ ⌦2. If T : C \ (⌦2 � ⌦1) ! C is a completely continuous operator such that

either

(i) kTuk � kuk for u 2 C \ @⌦1 and kTuk  kuk for u 2 C \ @⌦2 or

(ii) kTuk  kuk for u 2 C \ @⌦1 and kTuk � kuk for u 2 C \ @⌦2,

then T has a fixed point in C \ (⌦2 \ ⌦1).

We will refer to cases (i) and (ii) of the Guo-Krasnosel’skii Fixed Point Theorem as

the compression (or contraction) and expansion forms of the theorem, respectively.

We conclude this section with a lemma that will be of tremendous use in establishing

the various contraction and expansion estimates in the next three chapters. A proof is

supplied in [15].
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Lemma 1.2.4. Suppose u : [0, 1] ✓ R ! R is nonnegative, concave, and continuous.

Then, for all ↵, � 2 (0, 1) with ↵ < �, we have

inf
t2[↵,�]

u(t) � ↵ (1� �) kuk1,

where kuk1 = supt2[0,1] u(t).



16

CHAPTER 2

The Fourth-Order Problem

In this chapter, we prove the existence of positive solutions to systems of the form

(1.1)–(1.3) in the special case when n = 2. That is, we consider a boundary value problem

of the form

u

(4)(t) = �h (t, u(t), u00(t)) , (2.1)

↵1u(0)� �1u(1) = �1u
0(0)� �1u

0(1) = �a1, (2.2)

↵2u
00(0)� �2u

00(1) = �2u
000(0)� �2u

000(1) = a2, (2.3)

where h : [0, 1] ⇥ [0,1) ⇥ (�1, 0] ! [0,1) is nonnegative and continuous, � > 0, and

↵i, �i, �i, �i > 0 for i = 1, 2. Like their even-order counterparts, the fourth-order systems

di↵er only with respect to the constraints placed on the parameters ai. In Section 2.1,

we establish existence results for (2.1)–(2.3) in the negative case, that is, when ai < 0 for

i = 1, 2. We prove analogous results for the positive case (ai > 0) in Section 2.2.

We emphasize that the purpose of studying the lower-order cases is to provide a

concrete setting in which to motivate the framework that, in the end, leads to the estab-

lishment of the general even-order results. In particular, we draw attention in this chapter

to how changes in the parameters lead to modifications of the underlying hypotheses and

the core sequence of four lemmas leading up to the main existence results.
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2.1. Negative Case

In this section, we the establish existence of at least three positive solutions to sys-

tems of di↵erential equations of the form (2.1)–(2.3) when ai < 0 for i = 1, 2. In line with

[15], [16], [17], Section 2.1.1 begins with a series of substitutions and transformations

that converts the problem into a system of second-order di↵erential equations satisfying

homogeneous boundary conditions. We then define a cone C and an operator T in such a

way that the fixed points of T (over C) correspond to positive solutions to a more gener-

alized version of the second-order homogeneous system just obtained. In Section 2.1.2, a

sequence of four lemmas is constructed that leads to various expansion and compression

estimates of T over nested subsets of the cone C. This allows for a triple application of the

Guo-Krasnosel’skii Fixed Point Theorem in Section 2.1.3 giving the existence of at least

three fixed points of T and, hence, at least three positive solutions to the general system.

The existence of multiple positive solutions to the original system is then established by

corollary.

2.1.1. Preliminaries

Consider the boundary value problem

u

(4)(t) = �h (t, u(t), u00(t)) , (2.4)

↵1u(0)� �1u(1) = �1u
0(0)� �1u

0(1) = �a1, (2.5)

↵2u
00(0)� �2u

00(1) = �2u
000(0)� �2u

000(1) = a2, (2.6)
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where h : [0, 1]⇥[0,1)⇥(�1, 0] ! [0,1) is nonnegative and continuous, �,↵i, �i, �i, �i >

0, and ai < 0 for i = 1, 2.

Let u1 = u, u2 = �u

00
1, g(t, u1, u2) = u2, and h(t, u1,�u2) = f(t, u1, u2). Then (2.4)–

(2.6) becomes

� u

00
2(t) = �f (t, u1, u2) , (2.7)

� u

00
1(t) = g (t, u1, u2) , (2.8)

↵1u1(0)� �1u1(1) = �1u
0
1(0)� �1u

0
1(1) = �a1, (2.9)

↵2u2(0)� �2u2(1) = �2u
0
2(0)� �2u

0
2(1) = �a2. (2.10)

Notice that the choice of substitutions combined with the sign changing properties of h

implies that f and g are nonnegative, from which it follows that u1 and u2 are concave.

These facts will be important later as the cone we define will be equipped with concavity

and nonnegativity conditions.

We now proceed to transform the above system into one satisfying homogeneous

boundary conditions. To accomplish this, let u

0
1(t) ⌘ u

0
1(t) � a1

�1
t and observe that this

satisfies �1u
0
1(0)� �1u

0
1(1) = 0. Integrating both sides of the former equation with respect

to t, we obtain u1(t) = u1(t)� a1
2�1

t

2+k for some k 2 R. We would like to choose k so that



19

the remaining boundary condition ↵1u1(0)� �1u1(1) = 0 is satisfied. That is, we need

0 = ↵1u1(0)� �1u1(1) = ↵1 [u1(0) + k]� �1


u1(1)�

a1

2�1
+ k

�

= [↵1u1 (0)� �1u1 (1)] +
a1�1

2�1
+ (↵1 � �1) k

= �a1 +
a1�1

2�1
+ (↵1 � �1) k,

and so we must have k = a1(2�1��1)
2�1(↵1��1)

. Thus, by setting u1(t) = u1(t) � a1
2�1

t

2 + a1(2�1��1)
2�1(↵1��1)

,

we obtain a function that simultaneously satisfies the homogeneous boundary conditions

↵1u1(0)� �1u1(1) = �1u
0
1(0)� �1u

0
1(1) = 0. A similar argument can be used to obtain the

function u2(t) ⌘ u2(t)� a2
2�2

t

2+ a2(2�2��2)
2�2(↵2��2)

satisfying ↵2u2(0)��2u2(1) = �2u
0
2(0)��2u

0
2(1) =

0.

We can therefore transform (2.7)–(2.10) into the equivalent homogeneous system

� u

00
2(t) = �f(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2), (2.11)

� u

00
1(t) = g(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2), (2.12)

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = 0, (2.13)

where Qi =
ai
2�i

and Ri = � ai(2�i��i)
2�i(↵i��i)

for i = 1, 2. After integrating twice, solutions to

(2.11)–(2.13) can be shown to be of the form

u2(t) = �

Z 1

0

G2(t, s)f(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

u1(t) =

Z 1

0

G1(t, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds,
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where Gi(t, s) is the Green’s function

Gi(t, s) =
1

MiNi

8
><

>:

�iNit+ �iMis+ �i�i, 0  t  s  1,

�iNit+ ↵iMis+ �i�i, 0  s  t  1,

and Mi = �i � �i, Ni = ↵i � �i for i = 1, 2.

Recall that we are ultimately interested in establishing the existence of positive solu-

tions to (2.4)–(2.6). Of course, solutions to this system correspond to solutions of (2.11)–

(2.13) given the one-one relationship established above. Yet, it is clear from the above

definitions that, without additional constraints on the parameters ↵i, �i, �i, �i, the Green’s

functions are unrestricted in sign and, in turn, so too are any solutions of (2.4)–(2.6)—

assuming such solutions even exist. With this in mind, we now make the assumption that

↵i < �i and �i < �i for i = 1, 2 so that

�iNit+ �iMis+ �i�i � �iNi + �iMi + �i�i = ↵i�i > 0

and

�iNit+ ↵iMis+ �i�i � �iNi + ↵iMi + �i�i = ↵i�i > 0,

from which it follows thatGi(t, s) is positive. As a result, solutions to (2.4)–(2.6), provided

they exist, would have to be positive as well.

With the general form of positive solutions to the homogeneous system known, we

now proceed to set up the cone and operator that will be utilized in the main existence

results. Let (X, k · k) be the Banach space X = C([0, 1];R) ⇥ C([0, 1];R) endowed with

the norm

k(u1, u2)k = ku1k1 + ku2k1,
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where kuk1 = sup
t2[0,1]

|u(t)|. Define C ⇢ X to be the cone

C = {(u1, u2) 2 X | ui is nonnegative and concave;

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = 0 for i = 1, 2},

and let ⌦⇢ denote the open set ⌦⇢ = {(u1, u2) 2 X : k(u1, u2)k < ⇢}. Finally, we define

T : X ! X to be the operator

T (u1, u2) = (A1(u1, u2), A2(u1, u2))

with

A2(u1, u2)(t) = �

Z 1

0

G2(t, s)f(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

and

A1(u1, u2)(t) =

Z 1

0

G1(t, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds,

where G1, G2 are defined as above, (Q1, Q2, R1, R2) 2 (�1, 0]2 ⇥ [0,1)2, and f, g are

assumed to satisfy the following hypothesis:

(A0) f, g : [0, 1]⇥ [0,1)2 ! [0,1) are continuous functions that are nondecreasing in

their last two variables.

By design, the fixed points of T (over C), if any, are solutions to a system that is

similar to (2.11)–(2.13) in form but in which the only constraints on Q1, Q2 and R1, R2
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are nonpositivity and nonnegativity, respectively. To avoid any confusion, we refer to this

more general system as (2.11*)–(2.13*).

Now, notice that the addition of (A0) introduces constraints on the functions f, g and

the constants Q1, Q2, R1, R2 in (2.11*)–(2.13*) that may or may not hold for their coun-

terparts in (2.11)–(2.13). As a result, it is possible the natural correspondence between

the two systems will be compromised, unless we appropriately constrain the function h

and parameters ↵i, �i, �i, �i of (2.4)–(2.6). Incidentally, the continuity and nonnegativity

properties of the functions f, g of (2.11)–(2.13) follow directly from the continuity and

sign changing properties of h coupled with the choice of substitutions and transforma-

tions made earlier. The nondecreasing properties cannot be similarly deduced, so we

make the following assumption on (2.4)–(2.6): h is nondecreasing in its second variable

and nonincreasing in its third.

More subtle are the assumptions needed on the parameters. We note that all of our

subsequent results will take place in the cone C defined above, where the functions u1

and u2 are assumed nonnegative. Combining this with the fact that (Q1, Q2, R1, R2) 2

(�1, 0]2 ⇥ [0,1)2 and f, g : [0, 1]⇥ [0,1)2 ! [0,1), we must therefore have

0  min
ui2C,
s2[0,1]

�
ui(s) +Qis

2 +Ri

 
= Qi +Ri

for i = 1, 2. In the transformed system (2.11)–(2.13), this amounts to

0  Qi +Ri =
ai (↵i � 2�i)

2�i (↵i � �i)
,

from which we get the requirement in (2.4)–(2.6) that 2�i  ↵i for i = 1, 2.
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We close this section with a lemma that establishes the cone preserving and completely

continuous properties of the operator T , both of which are required in order to apply the

Guo-Krasnosel’skii Fixed Point Theorem. We note the following bounds, which will be

useful not only in the immediate proof but also in the proofs of the lemmas in the next

section:

max
t2[0,1]

1Z

0

|Gi(t, s)| ds =
�i (�i + �i)

2MiNi
, i = 1, 2, (2.14)

and

max
t2[0,1]

1Z

0

����
@

@t

Gi(t, s)

���� ds =
����
�i

Mi

���� =
��i

Mi
, i = 1, 2. (2.15)

Lemma 2.1.1. Suppose (A0) holds. Then T : X ! X is a completely continuous

operator such that T (C) ✓ C.

Proof. We begin by showing T (C) ✓ C. Let (u1, u2) 2 C. That T (u1, u2) is nonneg-

ative follows immediately from the fact f, g � 0 and �, G1, G2 > 0. Moreover, since

A

00
1(u1, u2)(t) = �g(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2)  0

and

A

00
2(u1, u2)

00(t) = ��f(s, u1(t) +Q1t
2 +R1, u2(t) +Q2t

2 +R2)  0
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for all t 2 [0, 1], we have that A1 and A2 are concave. To show T (u1, u2) satisfies the

boundary conditions of the cone, we consider A1 and A2 individually. Note first

↵1A1(0)� �1A1(1) = ↵1

Z 1

0

G1(0, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds�

�1

Z 1

0

G1(1, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

=

Z 1

0

↵1 (�1M1s+ �1�1)

M1N1
g(s, u1(s) +Q1s

2 +R1, u2(s) +Q2s
2 +R2)ds�

Z 1

0

�1 (�1N1 + ↵1M1s+ �1�1)

M1N1
g(s, u1(s) +Q1s

2 +R1, u2(s) +Q2s
2 +R2)ds

= 0.

Next, because G1 is continuously di↵erentiable on each of the regions s < t and t < s, we

are justified in di↵erentiating under the integral sign on each region to obtain

�1A
0
1(0)� �1A

0
1(1) = �1

Z 1

0

@

@t

G1(t, s)

����
t=0

g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds�

�1

Z 1

0

@

@t

G1(t, s)

����
t=1

g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

= �1

Z 1

0

�1N1

M1N1
g(s, u1(s) +Q1s

2 +R1, u2(s) +Q2s
2 +R2)ds�

�1

Z 1

0

�1N1

M1N1
g(s, u1(s) +Q1s

2 +R1, u2(s) +Q2s
2 +R2)ds

= 0.

The proofs for A2 proceed similarly. Thus, T is cone preserving.

To prove T is a completely continuous operator, it is enough to show that each

Ai : X ! C([0, 1];R) is completely continuous. Because the Ai are linear operators

between Banach spaces, it su�ces to demonstrate compactness of the Ai. So, define
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Br = {(u, v) 2 X | k(u, v)k  r} . Since g is continuous, there exists kr > 0 such that

��
g(t, u(t) +Q1t

2 +R1, v(t) +Q2t
2 +R2)

��
< kr

for all (u, v) 2 Br and t 2 [0, 1]. Let {(un, vn)} be a sequence in Br. Then, for all n and

all t 2 [0, 1],

|A1(un, vn)(t)| 
Z 1

0

|G1(t, s)g(t, un(s) +Q1s
2 +R1, vn(s) +Q2s

2 +R2)|ds

< kr

Z 1

0

|G1(t, s)| ds

 kr
�1 (�1 + �1)

2M1N1
,

where the last inequality follows from (2.14). Thus, {A1 (un, vn)} is uniformly bounded.

Now, let ✏ > 0, and set ⌘ = �✏M1
kr�1

> 0. Then, for all n and for all t1, t2 2 [0, 1] satisfying

0 < t2 � t1 < ⌘, we can apply the Mean Value Theorem to obtain ⌧ 2 (t1, t2) such that

|A1(un, vn)(t2)� A1(un, vn)(t1)| =
����
d

dt

A1(un, vn)(⌧)

���� |t2 � t1|

< ⌘

Z 1

0

����
@

@t

G1(⌧, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)

���� ds

< ⌘kr

Z 1

0

����
@

@t

G1(⌧, s)

���� ds.

Combining the above result with the bound in (2.15) gives |A1(un, vn)(t2)�A1(un, vn)(t1)| <

✏. Thus, {A1 (un, vn)} is also uniformly equicontinuous. By the Arzelà-Ascoli Theorem,

it follows that {A1 (un, vn)} has a convergent subsequence. Therefore, A1 is compact and
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therefore completely continuous. A similar argument can be applied to A2. Thus, T is a

completely continuous operator. ⇤

2.1.2. Lemmas

In this section, we prove a sequence of four lemmas that give various compression and

expansion estimates for the operator T . Each estimate will hold on the boundary of a

particular subset of the cone C. By strategically nesting these subsets, we will be able

combine the estimates to apply one of the two forms of the Guo-Krasnosel’skii Fixed

Point Theorem to obtain a fixed point for T . As previously noted, this, in turn, will yield

a positive solution to the general system (2.11*)–(2.13*). For reference, we restate this

system and its current constraints:

� u

00
2(t) = �f(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2), (2.11*)

� u

00
1(t) = g(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2), (2.12*)

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = 0, (2.13*)

where (Q1, Q2, R1, R2) 2 (�1, 0]2 ⇥ [0,1)2 such that Qi + Ri � 0 for i = 1, 2, f and g

are assumed to satisfy hypothesis (A0), 0 < �i < �i, and 2�i  ↵i < �i for i = 1, 2.

We now move to the first two lemmas, each of which gives expansion estimates on the

operator T . The following hypothesis will be needed in the proofs of both lemmas:

(A1) There exists ↵, � 2 (0, 1), ↵ < �, such that, given (x1, x2) 2 [0,1)2 with x1+x2 6=

0, there exists  > 0 such that f(t, x1, x2) >  for t 2 [↵, �].
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As mentioned in the preceding section, we must be sure that any assumptions we place

on (2.11*)–(2.13*) are reflected in the original system (2.4)–(2.6). In the case of (A1),

the corresponding hypothesis on h is obvious: There must exist ↵, � 2 (0, 1), ↵ < �, such

that, given (x1, x2) 2 [0,1) ⇥ (�1, 0] with x1 � x2 6= 0, there exists  > 0 such that

h(t, x1, x2) >  for t 2 [↵, �].

Lemma 2.1.2. Suppose (A0) and (A1) hold, and let ⇢

⇤
> 0. Then there exists ⇤

such that, for every � � ⇤ and (Q1, Q2, R1, R2) 2 (�1, 0]2 ⇥ [0,1)2, we have

kT (u1, u2)k � k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢⇤.

Proof. Let ⇢⇤ > 0 and let (u1, u2) 2 C \ @⌦⇢⇤ . Assume ↵ and � are as in (A1) and

set r = ↵(1� �). Define

K = inf

⇢
f(t, rc1, rc2)

r(c1 + c2)
: c1, c2 � 0, c1 + c2 = p

⇤
, t 2 [↵, �]

�
.

The existence of a positive K follows from assumption (A1).

Now set ⇤ �
h
Kr

R �

↵ G2(1, s)ds
i�1

. Utilizing Lemma 1.2.4, we know that

ui(t) +Qit
2 +Ri � inf

t2[↵,�]
ui(t) � rkuik1
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for i = 1, 2. Pairing this with the nondecreasing properties of f , it follows that

kT (u1, u2)k � kA2(u1, u2)k1

� �

Z 1

0

G2(1, s)f(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

� �

Z �

↵

G2(1, s)f(s, rku1k1, rku2k1)ds

= �rk(u1, u2)k
Z �

↵

G2(1, s)
f(s, rku1k1, rku2k1)

rk(u1, u2)k
ds

� �Krk(u1, u2)k
Z �

↵

G2(1, s)ds

� ⇤Krk(u1, u2)k
Z �

↵

G2(1, s)ds

� k(u1, u2)k

for � � ⇤, which completes the proof. ⇤

Lemma 2.1.3. Fix ⇤ > 0, and suppose (A0) and (A1) hold. Then, for every � � ⇤

and (Q1, Q2, R1, R2) 2 (�1, 0]2 ⇥ [0,1)2, there exists positive ⇢1 = ⇢1(⇤, Q1, Q2, R1, R2)

such that, for every ⇢ 2 (0, ⇢1], we have

kT (u1, u2)k � k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢.

Proof. By (A1) and the nondecreasing property of f , there exists ↵, � 2 (0, 1) with

↵ < � and  > 0 such that, for all (u1, u2) 2 C and all t 2 [↵, �], we have

f(t, u1(t) +Q1t
2 +R1, u2(t) +Q2t

2 +R2) � f(t, Q1�
2 +R1, Q2�

2 +R2) > .
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Take ⇢1 = ⇤
R �

↵ G2(1, s)ds. Then, for all (u1, u2) 2 C \ @⌦⇢ where ⇢ 2 (0, ⇢1], we have

kT (u1, u2)k � kA2(u1, u2)k1

� �

Z 1

0

G2(1, s)f(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

� �

Z �

↵

G2(1, s)f(s,Q1�
2 +R1, Q2�

2 +R2)ds

> �

Z �

↵

G2(1, s)ds

= �k(u1, u2)k
Z �

↵

G2(1, s)

k(u1, u2)k
ds

� ⇢1

⇢

k(u1, u2)k

� k(u1, u2)k.

⇤

So far, we have found subsets C \ @⌦⇢⇤ and C \ @⌦⇢1 on which

kT (u1, u2)k � k(u1, u2)k.

Note that we have no explicit relationship between ⇢

⇤ and ⇢1 at the moment. However,

suppose we were to find ⇢2 2 (0, ⇢⇤) such that

kT (u1, u2)k  k(u1, u2)k
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for all (u1, u2) 2 C \ @⌦⇢2 . The existence of such a ⇢2 combined with the fact that

Lemma 2 holds for all positive ⇢  ⇢1, would entail ⇢1 < ⇢2 < ⇢

⇤. As a result, the Guo-

Krosnoselskii Fixed Point Theorem would be satisfied twice: Once over C\(⌦⇢⇤�⌦⇢2) via

the expansion form of the theorem; a second time over C\(⌦⇢2 �⌦⇢1) by the compression

form of the theorem. This is the stacking method alluded to earlier.

We find exactly such a ⇢2 in Lemma 2.1.4. To do so, we assume the following hy-

potheses hold:

(A2) Let z = x1 + x2. Then

lim
z!0+

f(t, x1, x2)

z

= 0

uniformly for t 2 [0, 1].

(A4) For all ⇣ 2
⇣
1, 2M1N1

�1(�1+�1)

⌘
, there exists q > 0 such that, for all (x1, x2) 2 [0,1)2

with 0 < x1 + x2 < q, we have g (t, x1, x2)  ⇣ (x1 + x2) for each t 2 [0, 1].

It is clear from the statement of (A2) what its parallel should be in the original system;

however, gleaning the corresponding hypothesis from (A4) is less straightforward. In the

proof below, we utilize (A4) to obtain the inequality

g(t, ku1k1 +R1, ku2k1 +R2)  ⇣(ku1k1 + ku2k1 +R1 +R2),

where u1, u2 are appropriately chosen. Recall that in transforming (2.4)–(2.6) into (2.11)–

(2.13), the function g ultimately takes the form of a projection onto its last coordinate.

Thus, we can recast the above inequality in terms of the the original system as

ku2k1 +R2  ⇣(ku1k1 + ku2k1 +R1 +R2).
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To ensure the above bound can be obtained in (2.4)–(2.6), we assume ai,↵i, �i, �i, �i

satisfy 0 < R2 < R1 and 2M1N1
�1(�1+�1)

> 1 where Ri,Mi, Ni are defined as above for i = 1, 2.

It should be noted that the first constraint serves a dual purpose in that it also prevents

any conflict in the definition of ⇣ in the proof below.

As a final aside, it is worth mentioning that (A4) is stated more strongly than needed

to prove Lemma 2.1.4 for the general system (2.11*)–(2.13*). It would su�ce in this more

general case to require only the existence of ⇣ 2
⇣
0, 2M1N1

�1(�1+�1)

⌘
; the specification that ⇣ > 1

is needed for the corresponding assumption on the original system only. However, we have

opted for the current form of (A4) in order to maintain a certain continuity between the

hypotheses of the two systems.

Lemma 2.1.4. Suppose (A0), (A2), and (A4) hold, and let ⇢

⇤
> 0 be fixed. Then

given � > 0, there exists ⇢2 2 (0, ⇢⇤) and ⇣ > 0 such that for every (Q1, Q2, R1, R2) 2

(�1, 0]2 ⇥ [0,1)2 with R1 +R2 < ⇣, we have

kT (u1, u2)k  k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢2.

Proof. Given � > 0, pick ✏ > 0 so that �✏ <

M2N2
�2(�2+�2)

. From (A2), there exists

⇢2 2 (0, ⇢⇤) such that for x1 + x2 = ⇢2 with (x1, x2) 2 [0,1)2 and for R1 + R2 < ⇢2, we

have

f(t, x1 +R1, x2 +R2)  ✏ [(x1 +R1) + (x2 +R2)]
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for t 2 [0, 1]. Also, pick ⇣ 2
⇣
1, 2M1N1

�1(�1+�1)

⌘
. Then, by (A4), there exists q > 0 such that

for (x1 +R1, x2 +R2) 2 [0,1)2 with x1 +R1 + x2 +R2 < q we have

g(t, x1 +R1, x2 +R2)  ⇣ [(x1 +R1) + (x2 +R2)]

for t 2 [0, 1].

Let 0 < ⇢2 < min (q/2, ⇢2). Take (u1, u2) 2 C \ @⌦⇢2 , and R1 + R2  ⇢2. Then, by

(A0) and above, we have

A2(u1, u2) = �

Z 1

0

G2(t, s)f(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

 �

Z 1

0

G2(t, s)f(s, ku1k1 +R1, ku2k1 +R2)ds

 �✏ [k(u1, u2)k+R1 +R2]

Z 1

0

G2(t, s)ds

 2�✏k(u1, u2)k
Z 1

0

G2(t, s)ds

 �✏

�2 (�2 + �2)

M2N2
k(u1, u2)k

for t 2 [0, 1].

Note that ku1k1 + ku2k1 +R1 +R2  2⇢2 < q, so it follows

g(t, ku1k1 +R1, ku2k1 +R2)  ⇣(ku1k1 + ku2k1 +R1 +R2).
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Pick ⇣

0
< 1, and suppose R1 +R2 < ⇣

0
⇢2. Let ⇣ = ⇣

0
⇢2. We have, by (A0) and above,

A1(u1, u2) =

Z 1

0

G1(t, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

 ⇣ [k(u1, u2)k+R1 +R2]

Z 1

0

G1(t, s)ds

 ⇣ (1 + ⇣

0) k(u1, u2)k
Z 1

0

G1(t, s)ds

 ⇣ (1 + ⇣

0)
�1 (�1 + �1)

2M1N1
k(u1, u2)k

for t 2 [0, 1].

Thus,

kT (u1, u2)k 

⇣ (1 + ⇣

0)
�1 (�1 + �1)

2M1N1
+ �✏

�2 (�2 + �2)

M2N2

�
k(u1, u2)k

for (u1, u2) 2 C\⌦⇢2 and (Q1, Q2, R1, R2) 2 (�1, 0]2⇥ [0,1)2 with R1+R2 < ⇣. Picking

✏ and ⇣

0 small enough gives the desired result. ⇤

A third fixed point can be obtained by establishing a compression estimate for T on

C \ @⌦⇢3 , where ⇢3 > ⇢

⇤, and then combining this estimate with the one secured by

Lemma 2.1.2. Notice that, in this case, we would apply the compression form of the

Guo-Krasnosel’skii Fixed Point Theorem on the set C \ (⌦⇢3 � ⌦⇢⇤).

This is the purpose of Lemma 2.1.5. The proof of this will require the addition

of hypotheses (A3) and (A5) below. Note that the parallel of (A5) in (2.4)–(2.6) is

guaranteed to be satisfied as a result of the constraints given prior to Lemma 2.1.4. The

corresponding hypothesis to (A3) is evident from the definitions.
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(A3) Let z = x1 + x2. Then

lim
z!1

f(t, x1, x2)

z

= 0

uniformly for t 2 [0, 1].

(A5) For all ✓ 2
⇣
1, 2M1N1

�1(�1+�1)

⌘
, there exists r > 0 such that, for all (x1, x2) 2 [0,1)2

with x1 + x2 > r, we have g(t, x1, x2)  ✓(x1 + x2) for each t 2 [0, 1].

Lemma 2.1.5. Let (Q1, Q2, R1, R2) 2 (�1, 0]2 ⇥ [0,1)2, and suppose R1 + R2 < ⇣,

where ⇣ > 0 is given. Suppose further that assumptions (A0), (A3), and (A5) hold. Then,

for every � > 0, there exists ⇢3 = ⇢3(⇣,�) such that for every ⇢ � ⇢3, we have

kT (u1, u2)k  k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢.

Proof. Let ⇣ > 0 be given, and let R1 + R2 < ⇣. Pick ✓ 2
⇣
1, 2M1N1

�1(�1+�1)

⌘
. Then, by

(A5), there exists r > 0 such that for all (x1+R1, x2+R2) 2 [0,1)2 with x1+R1+x2+R2 >

r, we have g(t, x1 +R1, x2 +R2)  ✓(x1 +R1 + x2 +R2) for t 2 [0, 1]. Let ✏ > 0 and pick

q1 large enough so that q1 + (R1 +R2) > r and ✏ >

✓⇣
q1
. Then, for (u1, u2) 2 C \ @⌦q1 ,

g(t, ku1k1 +R1, ku2k1 +R2)  ✓ [(ku1k1 +R1) + (ku2k1 +R2)]

= ✓(ku1k1 + ku2k1) + ✓(R1 +R2)

 ✓(ku1k1 + ku2k1) + ✏(ku1k1 + ku2k1)

= (✏+ ✓)k(u1, u2)k.
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Applying the above with the nondecreasing property of g, we see that, for t 2 [0, 1],

A1(u1, u2) =

Z 1

0

G1(t, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds


Z 1

0

G1(t, s)g(s, ku1k1 +R1, ku2k1 +R2)ds

 (✏+ ✓)k(u1, u2)k
Z 1

0

G1(t, s)ds

 (✏+ ✓)
�1 (�1 + �1)

2M1N1
k(u1, u2)k.

Now, let ⌘ > 0. Then by (A0) and (A3), there exists q2 > 0 such that for every

(x1, x2) 2 [0,1)2 with x1 + x2 � q2, we have

f(t, x1 +R1, x2 +R2)  ⌘ [(x1 +R1) + (x2 +R2)] .

Let q3 = max
�
⇣, q2

 
and (u1, u2) 2 C \ @⌦q3 . Recalling R1 +R2 < ⇣, it follows

f(t, ku1k1 +R1, ku2k1 +R2)  ⌘(ku1k1 + ku2k1) + ⇣⌘

 2⌘k(u1, u2)k.

Combining this with the nondecreasing properties of f , we have

A2(u1, u2)  2⌘�k(u1, u2)k
Z 1

0

G2(t, s)ds

 ⌘�

�2 (�2 + �2)

M2N2
k(u1, u2)k.
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Take ⇢3 = max {q1, q3}, and let ⇢ � ⇢3. Then, given (u1, u2) 2 C \ @⌦⇢, we have

kT (u1, u2)k 

(✏+ ✓)

�1 (�1 + �1)

2M1N1
+ ⌘�

�2 (�2 + �2)

M2N2

�
k(u1, u2)k.

Picking ✏ and ⌘ small enough gives kT (u1, u2)k  k(u1, u2)k as needed.

⇤

2.1.3. Main Results

We are now in a position to establish the main existence results of this section. Our

first result combines the lemmas above to show that the general system (2.11*)–(2.13*)

contains at least three positive solutions.

Theorem 2.1.6. Suppose hypotheses (A0)–(A5) are satisfied for functions f and g.

Suppose additionally that 0 < �i < �i and 2�i  ↵i < �i for i = 1, 2. Then there exists

⇤ > 0 such that, given � � ⇤, there exists ⇣ > 0 such that for every a1, a2 < 0 satisfying

a1 (2�1 � �1)

2�1 (�1 � ↵1)
+

a2 (2�2 � �2)

2�i (�2 � ↵2)
< ⇣

and every (Q1, Q2, R1, R2) 2 (�1, 0]2⇥[0,1)2 satisfying R1+R2 < ⇣, the system (2.11*)–

(2.13*) has at least three positive solutions.

Proof. Suppose that f and g satisfy hypotheses (A0)–(A5) and that 0 < �i < �i and

2�i  ↵i < �i for i = 1, 2. Let ⇢⇤ > 0 be fixed. By Lemma 2.1.2, there exists ⇤ > 0 such

that, for every � � ⇤ and a1, a2 < 0, we have

kT (u1, u2)k � k(u1, u2)k
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for each (u1, u2) 2 C \ @⌦⇢⇤ .

Fix � � ⇤. By Lemmas 2.1.3 through 2.1.3, there exists ⇣ > 0 and ⇢1, ⇢2, ⇢3 > 0

satisfying ⇢1 < ⇢2 < ⇢

⇤
< ⇢3 such that for every a1, a2 < 0 satisfying

� a1 (2�1 � �1)

2�1 (↵1 � �1)
� ai (2�i � �i)

2�i (↵i � �i)
< ⇣

and every (Q1, Q2, R1, R2) 2 (�1, 0]2 ⇥ [0,1)2 satisfying R1 +R2 < ⇣, we have

kT (u1, u2)k � k(u1, u2)k, for (u1, u2) 2 C \ @⌦⇢1 ,

kT (u1, u2)k  k(u1, u2)k, for (u1, u2) 2 C \ @⌦⇢2 ,

kT (u1, u2)k  k(u1, u2)k, for (u1, u2) 2 C \ @⌦⇢3 .

After applying the Guo-Krasnosel’skii Fixed Point Theorem three times, we get that there

exist three positive solutions (u1, u2), (v1, v2),(w1, w2) 2 C such that

⇢1 < k(u1, u2)k < ⇢2 < k(v1, v2)k < ⇢

⇤
< k(w1, w2)k < ⇢3.

⇤

By taking advantage of the one-one correspondence between (2.4)–(2.6) and (2.11)–

(2.13) and noting that the latter system is of the form (2.11*)–(2.13*), we obtain the

following corollary. Note that the addition of constraints (2.16) and (2.17) below ensures

that the assumptions of (A4) and (A5) are satisfied. These new constraints allow for the

removal of any hypotheses corresponding to (A4) and (A5).
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Corollary 2.1.7. Suppose the following hypotheses are satisfied for a function h :

[0, 1]⇥ [0,1)⇥ (�1, 0] ! [0,1):

(A0*) h is continuous, nondecreasing in its second variable, and nonincreasing in its

third variable.

(A1*) There exists ↵, � 2 (0, 1), ↵ < �, such that, given (x1, x2) 2 [0,1) ⇥ (�1, 0]

with x1 � x2 6= 0, there exists  > 0 such that h(t, x1, x2) >  for t 2 [↵, �].

(A2*) Let z = x1 � x2 > 0. Then

lim
z!0+

h(t, x1, x2)

z

= 0

uniformly for t 2 [0, 1].

(A3*) Let z = x1 � x2 > 0. Then

lim
z!1

h(t, x1, x2)

z

= 0

uniformly for t 2 [0, 1].

Suppose also that 0 < �i < �i and 2�i  ↵i < �i for i = 1, 2. Then there exists ⇤ > 0

such that, given � � ⇤ there exists ⇣ > 0 such that, for every a1, a2 < 0 that satisfies the

properties that after setting Qi =
ai
2�i

, Ri = � ai(2�i��i)
2�i(↵i��i)

, Mi = �i � �i, and Ni = ↵i � �i for

i = 1, 2 we have 0 < R1 +R2 < ⇣,

0 < R2 < R1, (2.16)

and

2M1N1

�1 (�1 + �1)
> 1, (2.17)



39

then the system (2.4)–(2.6) has at least three positive solutions.

2.2. Positive Case

We now turn our attention to boundary value problems of the form (2.1)–(2.3) when

ai > 0 for i = 1, 2. The structure of this section is similar to the previous one, however, the

presentation will be more compact given the significant overlap between the two cases—a

full treatment can be found in [8]. To reiterate, the main purpose of this chapter is to

highlight the di↵erences between the two cases, and so it is such details that we wish to

bring to the forefront in this section.

2.2.1. Preliminaries

Consider the boundary value problem

u

(4)(t) = �h (t, u(t), u00(t)) , (2.18)

↵1u(0)� �1u(1) = �1u
0(0)� �1u

0(1) = �a1, (2.19)

↵2u
00(0)� �2u

00(1) = �2u
000(0)� �2u

000(1) = a2, (2.20)

where h : [0, 1]⇥[0,1)⇥(�1, 0] ! [0,1) is nonnegative and continuous, �,↵i, �i, �i, �i >

0, and ai > 0 for i = 1, 2.
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Because (2.18)–(2.20) is identical to (2.4)–(2.6), excepting a change in sign of the

parameters a1 and a2, we can use the transformations of the preceding section to obtain

� u

00
2(t) = �f(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2), (2.21)

� u

00
1(t) = g(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2), (2.22)

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = 0, (2.23)

where Qi =
ai
2�i

and Ri = � ai(2�i��i)
2�i(↵i��i)

for i = 1, 2. Notice that Qi > 0, whereas the sign of

Ri is currently undetermined. Solutions to this system are of the form

u2(t) = �

Z 1

0

G2(t, s)f(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

u1(t) =

Z 1

0

G1(t, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds,

where Gi(t, s) is the Green’s function

Gi(t, s) =
1

MiNi

8
><

>:

�iNit+ �iMis+ �i�i, 0  t  s  1,

�iNit+ ↵iMis+ �i�i, 0  s  t  1,

and Mi = �i � �i, Ni = ↵i � �i for i = 1, 2. By making the assumptions that ↵i > �i and

�i > �i for i = 1, 2, we guarantee that the solutions (2.18)–(2.20) are positive. Note that

the inequalities on the parameters have flipped in comparison to the negative case.

For convenience, we note the following bounds:

max
t2[0,1]

1Z

0

Gi(t, s) ds =
↵i (�i + �i)

2MiNi
, i = 1, 2, (2.24)
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and

max
t2[0,1]

1Z

0

@

@t

Gk(t, s) ds =
�k

Mk
, i = 1, 2. (2.25)

It is interesting to point out the symmetry in the bounds above with those given in (2.14)–

(2.15). Given the key role the corresponding inequalities played in the proofs above, one

might anticipate that these di↵erences will lead to points of divergence in what follows.

This hunch would be well justified—see (2.27) in Corollary 2.2.7 for instance.

We now proceed to set up the cone and operator that will be utilized in the main

existence results. Let (X, k · k) be the Banach space X = C([0, 1];R) ⇥ C([0, 1];R)

endowed with the norm

k(u1, u2)k = ku1k1 + ku2k1,

where kuk1 = sup
t2[0,1]

|u(t)|. Define C ⇢ X to be the cone

C = {(u1, u2) 2 X | ui is nonnegative and concave;

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = 0 for i = 1, 2},

and let ⌦⇢ denote the open set ⌦⇢ = {(u1, u2) 2 X : k(u1, u2)k < ⇢}. Finally, we define

T : X ! X to be the operator

T (u1, u2) = (A1(u1, u2), A2(u1, u2))

with

A2(u1, u2)(t) = �

Z 1

0

G2(t, s)f(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds
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and

A1(u1, u2)(t) =

Z 1

0

G1(t, s)g(s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds,

where G1, G2 are defined as above, (Q1, Q2, R1, R2) 2 [0,1)4, and f, g are assumed to

satisfy the following hypothesis:

(B0) f, g : [0, 1]⇥ [0,1)2 ! [0,1) are continuous functions that are nondecreasing in

their last two variables.

The operator T (over C) was constructed so that its fixed points are solutions to

a system that is similar to (2.21)–(2.23) in form but in which the only constraints on

Q1, Q2, R1, R2 are nonnegativity. We adopt the same strategy as we did in the negative

case and refer to this more general system as (2.21*)–(2.23*).

Furthermore, the addition of (B0) brings with it the same problems that we faced in

the preceding section. We can address the nondecreasing property by making the same

constraint on the function h as we did in the negative case, that is, we require that h is

nondecreasing in its second variable and nonincreasing in its third variable. Our solution

to handling the parameters is slightly di↵erent, but the approach is the same as above. We

note that our later work will take place in the cone C defined above, where the functions

u1 and u2 are assumed nonnegative, and that we have (Q1, Q2, R1, R2) 2 [0,1)4 and

f, g : [0, 1]⇥ [0,1)2 ! [0,1). As a result, this leads to

0  min
ui2C,
s2[0,1]

�
ui(s) +Qis

2 +Ri

 
= Ri
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for i = 1, 2. Observe that Qi does not appear on the right-hand side, due to its nonneg-

ativity. This was not so in the negative case where Qi was assumed nonpositive. Since

Ri = � ai(2�i��i)
2�i(↵i��i)

in (2.21)–(2.23), this leads to the requirement 2�i  �i for i = 1, 2 in

(2.18)–(2.20). Notice that this leads to an altogether di↵erent inequality than the one

obtained in the negative case.

We end this section with the following preliminary lemma, which establishes the cone

preserving and completely continuous properties of T . The proof, which we omit here,

follows a standard Arzelà-Ascoli argument as seen in Section 2.1.

Lemma 2.2.1. Suppose (B0) holds. Then T : X ! X is a completely continuous

operator such that T (C) ✓ C.

2.2.2. Lemmas

We now establish the sequence of four lemmas that will allow us to obtain the fixed points

of the operator T . For reference, we restate the system (2.21*)–(2.23*) and its current

constraints:

� u

00
2(t) = �f(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2), (2.21*)

� u

00
1(t) = g(t, u1(t) +Q1t

2 +R1, u2(t) +Q2t
2 +R2), (2.22*)

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = 0, (2.23*)

where (Q1, Q2, R1, R2) 2 ⇥[0,1)4, f and g are assumed to satisfy hypothesis (B0), and

↵i > �i � 2�i > �i > �i > 0 for i = 1, 2.
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The first two lemmas give expansion estimates for T and depend on hypothesis (B1)

below. The corresponding hypothesis on h can be stated as follows: There must exist

↵, � 2 (0, 1), ↵ < �, such that, given (x1, x2) 2 [0,1)⇥ (�1, 0] with x1 + x2 6= 0, there

exists  > 0 such that h(t, x1, x2) >  for t 2 [↵, �].

(B1) There exists ↵, � 2 (0, 1), ↵ < �, such that, given (x1, x2) 2 [0,1)2 with x1+x2 6=

0, there exists  > 0 such that f(t, x1, x2) >  for t 2 [↵, �].

We state these lemmas without proof as their proofs can be modified from the ones

given for Lemmas 2.1.2 and Lemma 2.1.3 above. The key di↵erence between the two cases

has to do with how we utilize the nondecreasing properties of f . In the proof of Lemma

2.1.3, for instance, we appealed to (A0) and (A1) to obtain

f(t, u1(t) +Q1t
2 +R1, u2(t) +Q2t

2 +R2) � f(t, Q1�
2 +R1, Q2�

2 +R2) > 

for all (u1, u2) 2 C and all t 2 [↵, �] , where ↵, � are given as in (A1). This inequality

holds because of the nonpositivity of Q1 and Q2 combined with the fact that Qi +Ri � 0

for i = 1, 2. In the present case, we have Q1 and Q2 nonnegative, so the same argument

will not work. Instead, we argue that

f(t, u1(t) +Q1t
2 +R1, u2(t) +Q2t

2 +R2) � f(t, Q1↵
2 +R1, Q2↵

2 +R2) > 

making a similar appeal to the appropriate hypotheses but this time utilizing the non-

negativity of Q1 and Q2, as well as the sum Qi +Ri.
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Lemma 2.2.2. Suppose (B0) and (B1) hold, and let ⇢

⇤
> 0. Then there exists ⇤ such

that, for every � � ⇤ and (Q1, Q2, R1, R2) 2 [0,1)4, we have

kT (u1, u2)k � k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢⇤.

Lemma 2.2.3. Fix ⇤ > 0, and suppose (B0) and (B1) hold. Then, for every � � ⇤

and (Q1, Q2, R1, R2) 2 [0,1)4, there exists ⇢1 = ⇢1(⇤, Q1, Q2, R1, R2) such that, for every

positive ⇢  ⇢1, we have

kT (u1, u2)k � k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢.

The motivation for Lemma 2.2.4 is precisely the same as that given for Lemma 2.1.4 in

the preceding section. We want to find ⇢2 2 (0, ⇢⇤) for which we get a compression estimate

for T on C \ @⌦⇢2 . This then allows for a double application of the Guo-Krosnoselskii

Fixed Point Theorem: Once over C \ (⌦⇢⇤ �⌦⇢2) via the expansion form of the theorem,

and a second time over C \ (⌦⇢2 � ⌦⇢1) by the compression form of the theorem.

We assume the following hypotheses hold:

(B2) Let z = x1 + x2. Then

lim
z!0+

f(t, x1, x2)

z

= 0

uniformly for t 2 [0, 1].

(B4) For all ⇣ 2
⇣
1, 2M1N1

↵1(�1+�1)

⌘
, there exists q > 0 such that, for all (x1, x2) 2 [0,1)2

with 0 < x1 + x2 < q, we have g (t, x1, x2)  ⇣ (x1 + x2) for each t 2 [0, 1].
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The hypothesis corresponding to (B2) in the original system is clear, and the one corre-

sponding to (B4) follows from the same rationale given in the negative case. In partic-

ular, we assume ai,↵i, �i, �i, �i satisfy 0 < Q2 + R2 < Q1 + R1 and 2M1N1
↵1(�1+�1)

> 1 where

Qi, Ri,Mi, Ni are defined as above for i = 1, 2. Note that, in contrast to the negative

case, the first inequality involves Q1 and Q2, not just R1 and R2.

With these details out of the way, we now state Lemma 2.2.4. Again, we omit the

proof as it is similar to the one given for Lemma 2.1.4.

Lemma 2.2.4. Suppose (B0), (B2), and (B4) hold, and let ⇢

⇤
> 0 be fixed. Then given

� > 0, there exists ⇢2 2 (0, ⇢⇤) and ⇣ > 0 such that for every (Q1, Q2, R1, R2) 2 [0,1)4

with Q1 +Q2 +R1 +R2 < ⇣, we have

kT (u1, u2)k  k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢2.

In Lemma 2.2.5 below, we establish a compression estimate for T on C \ @⌦⇢3 , where

⇢3 > ⇢

⇤. This allows for a third and final application of the Guo-Krasnosel’skii Fixed

Point Theorem on the set C \ (⌦⇢3 � ⌦⇢⇤). The proof requires hypotheses (B3) and

(B5). Note that the bounds given prior to Lemma 2.2.4 will ensure any corresponding

hypothesis in (2.18)–(2.20) is satisfied, and the corresponding hypothesis to (B3) follows

with only slight changes. The proof itself is a straightforward modification of the one

given for Lemma 2.1.5; we omit the details here.
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(B3) Let z = x1 + x2. Then

lim
z!1

f(t, x1, x2)

z

= 0

uniformly for t 2 [0, 1].

(B5) For all ✓ 2
⇣
1, 2M1N1

�1(�1+�1)

⌘
, there exists r > 0 such that, for all (x1, x2) 2 [0,1)2

with x1 + x2 > r, we have g(t, x1, x2)  ✓(x1 + x2) for each t 2 [0, 1].

Lemma 2.2.5. Suppose Q1 + Q2 + R1 + R2 < ⇣, where ⇣ > 0 is given. Suppose

further that assumptions (B0), (B3), and (B5) hold. Then, for every � > 0, there exists

⇢3 = ⇢3(⇣,�) such that for every ⇢ � ⇢3, we have

kT (u1, u2)k  k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢.

2.2.3. Main Results

We now establish the main existence results of this section. Theorem 2.2.6 below combines

the work above to show that the general system (2.21*)–(2.23*) contains at least three

positive solutions.

Theorem 2.2.6. Suppose hypotheses (B0)–(B5) are satisfied for functions f and g.

Suppose additionally that ↵i > �i � 2�i > �i > �i > 0 for i = 1, 2. Then there exists

⇤ > 0 such that, given � � ⇤, there exists ⇣ > 0 such that, for every a1, a2 > 0 satisfying

a1

2�1


1� 2�1 � �1

↵1 � �1

�
+

a2

2�2


1� 2�2 � �2

↵2 � �2

�
< ⇣
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and every (Q1, Q2, R1, R2) 2 [0,1)4 satisfying Q1+R1+Q2+R2 < ⇣, the system (7)–(9)

has at least three positive solutions.

Proof. Suppose f and g satisfy hypotheses (Z0)–(Z5) and that ↵i > �i � 2�i > �i >

�i > 0 for i = 1, 2. Let ⇢⇤ > 0 be fixed. By Lemma 2.2.2, there exists ⇤ > 0 such that,

for every � � ⇤ and a1, a2 > 0,

kT (u1, u2)k � k(u1, u2)k

for each (u1, u2) 2 C \ @⌦⇢⇤ .

Fix � � ⇤. By Lemmas 2.2.3 through 2.2.5, there exists ⇣ > 0 and ⇢1, ⇢2, ⇢3 > 0

satisfying ⇢1 < ⇢2 < ⇢

⇤
< ⇢3 such that, for every a1, a2 > 0 satisfying

a1

2�1


1� 2�1 � �1

↵1 � �1

�
+

a2

2�2


1� 2�2 � �2

↵2 � �2

�
< ⇣

and every (Q1, Q2, R1, R2) 2 [0,1)4 satisfying Q1 +R1 +Q2 +R2 < ⇣, we have

kT (u1, u2)k � k(u1, u2)k, for (u1, u2) 2 C \ @⌦⇢1 ,

kT (u1, u2)k  k(u1, u2)k, for (u1, u2) 2 C \ @⌦⇢2 ,

kT (u1, u2)k  k(u1, u2)k, for (u1, u2) 2 C \ @⌦⇢3 .

After applying the Guo-Krasnosel’skii Fixed Point Theorem three times, we get that there

exist three positive solutions (u1, u2), (v1, v2),(w1, w2) 2 C such that

⇢1 < k(u1, u2)k < ⇢2 < k(v1, v2)k < ⇢

⇤
< k(w1, w2)k < ⇢3.
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⇤

Utilizing the one-one correspondence between (2.18)–(2.20) and (2.21)–(2.23) and not-

ing that the latter system is of the form (2.21*)–(2.23*), we obtain the following corollary.

Note that the addition of constraints (2.26) and (2.27) ensure that the assumptions of (B4)

and (B5) are satisfied, and, as a result, we drop any explicit hypotheses corresponding to

(B4) and (B5).

Corollary 2.2.7. Suppose the following hypotheses are satisfied for a function h :

[0, 1]⇥ [0,1)⇥ (�1, 0] ! [0,1):

(B0*) h is continuous, nondecreasing in its second variable, and nonincreasing in its

third variable.

(B1*) There exists ↵, � 2 (0, 1), ↵ < �, such that, given (x1, x2) 2 [0,1)2 with x1+x2 6=

0, there exists  > 0 such that f(t, x1, x2) >  for t 2 [↵, �].

(B2*) Let z = x1 + x2 > 0. Then

lim
z!0+

f(t, x1, x2)

z

= 0

uniformly for t 2 [0, 1].

(B3*) Let z = x1 + x2 > 0. Then

lim
z!1

f(t, x1, x2)

z

= 0

uniformly for t 2 [0, 1].

Suppose also that ↵i > �i � 2�i > �i > �i > 0 for i = 1, 2. Then there exists ⇤ > 0

such that, given � � ⇤, there exists ⇣ > 0 such that, for every a1, a2 > 0 that satisfies the
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properties that after setting Qi =
a
2�i

, Ri = � a(2�i��i)
2�i(↵i��i)

, Mi = �i � �i, and Ni = ↵i � �i for

i = 1, 2 we have 0 < Q1 +Q2 +R1 +R2 < ⇣,

0 < Q2 +R2 < Q1 +R1, (2.26)

and

2M1N1

↵1 (�1 + �1)
> 1, (2.27)

then the system (2.18)–(2.20) has at least three positive solutions.
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CHAPTER 3

The Even-Order Problem

In this chapter, we accomplish the primary goal of this thesis: establishing the exis-

tence of multiple positive solutions to boundary value problems of the form (1.1)–(1.3)

when either ai+1 > 0 or ai+1 < 0 for i = 1, 2. In contrast to our work above, we present

only the negative case and provide only the statements, not the proofs, of the various

lemmas. Our approach here also di↵ers in that we will state the required constraints on

the system upfront. The eager reader can fill in the missing details by adjusting the proofs

of Chapter 2 to account for the jump in order and, if necessary, noting the di↵erences

between the positive and negative cases.

3.1. Preliminaries

Consider the boundary value problem

u

(2n)(t) = �h

�
t, u(t), u00(t), . . . , u(2n�2)(t)

�
, (3.1)

↵i+1u
(2i)(0)� �i+1u

(2i)(0) = (�1)i+1
ai+1, i = 0, 1, . . . , n� 1, (3.2)

�i+1u
(2i+1)(1)� �i+1u

(2i+1)(1) = (�1)i+1
ai+1, i = 0, 1, . . . , n� 1, (3.3)

where n � 2, h : [0, 1] ⇥
Qn�1

j=0 (�1)j[0,1) ! (�1)n[0,1) is continuous, and � > 0.

Moreover, we require ai+1 < 0 < �i+1 < �i+1 and 2�i+1  ↵i+1 < �i+1 for i = 0, 1, . . . , n�1

such that, after setting Qi+1 = ai+1

2�i+1
, Ri+1 = � ai+1(2�i+1��i+1)

2�i+1(↵i+1��i+1)
, Mi+1 = �i+1 � �i+1, and



52

Ni+1 = ↵i+1 � �i+1, we have 0 < Ri+1 <

X

1jn�1,
j 6=i+1

Rj for all i = 1, 2, . . . , n � 1 and

2Mi+1Ni+1

�i+1(�i+1+�i+1)
> 1 for all i = 0, 1, . . . , n� 1.

For t 2 [0, 1], we apply the substitutions

ui+1(t) = (�1)iu(2i)(t), i = 0, 1, . . . , n� 1

ui+1(t) = gi(t, u1, u2, . . . , un), i = 1, 2, . . . , n� 1

f (t, u1, u2, . . . , un) = h

�
t, u1,�u2, . . . , (�1)n+1

un

�
,

which gives

� u

00
n(t) = �f (t, u1, u2, . . . , un) , (3.4)

� u

00
i (t) = gi (t, u1, u2, . . . , un) , i = 1, 2, . . . , n� 1 (3.5)

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = �ai, i = 1, 2, . . . , n. (3.6)

Notice that our particular choice of substitutions combined with the sign changing prop-

erties of h leave f and gi nonnegative for all i. The concavity of uj, j = 1, 2, . . . , n,

follows immediately from this observation. The above system can be transformed into

the equivalent homogeneous system

� u

00
n(t) = �f(t, u1(t) +Q1t

2 +R1, . . . , un(t) +Qnt
2 +Rn), (3.7)

� u

00
i (t) = gi(t, u1(t) +Q1t

2 +R1, . . . , un(t) +Qnt
2 +Rn), i = 1, 2, . . . , n� 1 (3.8)

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = 0, i = 1, 2, . . . , n (3.9)
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where Qj and Rj are as above for j = 1, 2, . . . , n.

Solutions to (3.7)–(3.9) are of the form

un(t) = �

Z 1

0

Gn(t, s)f(s, u1(s) +Q1s
2 +R1, . . . , un(s) +Qns

2 +Rn)ds

ui(t) =

Z 1

0

Gi(t, s)gi(s, u1(s) +Q1s
2 +R1, . . . , un(s) +Qns

2 +Rn)ds, i = 1, 2, . . . , n� 1,

where Gj(t, s) denotes the Green’s function

Gj(t, s) =
1

MjNj

8
><

>:

�jNjt+ �jMjs+ �j�j, 0  t  s  1,

�jNjt+ ↵jMjs+ �j�j, 0  s  t  1,

with Mj and Nj defined as above for j = 1, 2, . . . , n. Note that Gj is positive due to the

given constraints, and, therefore, solutions to (3.1)–(3.3) will be positive, provided they

exist. We also note the following bounds, which will be of use in the proofs of the lemmas

below:

max
t2[0,1]

1Z

0

Gi(t, s) ds =
�i (�i + �i)

2MiNi
, i = 1, 2, . . . , n, (3.10)

and

max
t2[0,1]

1Z

0

@

@t

Gi(t, s) ds =

����
�i

Mi

���� =
�i

�i � �i
, i = 1, 2, . . . , n. (3.11)

Now, let (X, k · k) be the Banach space X =
Qn

i=1 C([0, 1];R) endowed with the norm

k(u1, . . . , un)k =
nX

i=1

kuik1,
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where kuk1 = sup
t2[0,1]

|u(t)|. Define C ⇢ X to be the cone

C = {(u1, . . . , un) 2 X | ui is nonnegative and concave;

↵iui(0)� �iui(1) = �iu
0
i(0)� �iu

0
i(1) = 0 for i = 1, 2, . . . , n.},

and let ⌦⇢ denote the open set ⌦⇢ = {(u1, . . . , un) 2 X : k(u1, . . . , un)k < ⇢}. Finally,

define T : X ! X to be the operator

T (u1, . . . , un) = (A1(u1, . . . , un), . . . , An(u1, . . . , un))

with

An(u1, . . . , un)(t) = �

Z 1

0

Gn(t, s)f(s, u1(s) +Q1s
2 +R1, . . . , un(s) +Qns

2 +Rn)ds

and

Ai(u1, . . . , un)(t) =

Z 1

0

Gi(t, s)gi(s, u1(s) +Q1s
2 +R1, . . . , un(s) +Qns

2 +Rn)ds,

for i = 1, 2, . . . , n�1 and whereG1, . . . , Gn are defined as above, (Q1, . . . , Qn, R1, . . . , Rn) 2

(�1, 0]n ⇥ [0,1)n with Qj + Rj � 0 for j = 1, 2, . . . , n, and f, g1, . . . , gn�1 are assumed

to satisfy the following hypotheses:

(C0) For i = 1, 2, . . . , n�1 the functions f, gi : [0, 1]⇥ [0,1)n ! [0,1) are continuous

and nondecreasing in their last 2n variables.

(C1) There exists ↵, � 2 (0, 1), where ↵ < �, such that, given (x1, . . . , xn) 2 [0,1)n

with
Pn

i=1 xi 6= 0, there exists  > 0 such that f(t, x1, . . . , xn) >  for t 2 [↵, �].
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(C2) Let z =
Pn

i=1 xi. Then

lim
z!0+

f(t, x1, . . . , xn)

z

= 0

uniformly for t 2 [0, 1].

(C3) Let z =
Pn

i=1 xi. Then

lim
z!1

f(t, x1, . . . , xn)

z

= 0

uniformly for t 2 [0, 1].

(C4) For all ⇣i 2
⇣
1, 2MiNi

�i(�i+�i)

⌘
, there exists qi > 0 such that, for all (x1, . . . , xn) 2

[0,1)n with 0 <

Pn
j=1 xj < qi, we have gi(t, x1, . . . , xn)  ⇣i

Pn
j=1 xj for each

t 2 [0, 1] and i = 1, 2, . . . , n� 1.

(C5) For all ✓i 2
⇣
1, 2MiNi

�1(�i+�i)

⌘
, there exists ri > 0 such that, for all (x1, . . . , xn) 2

[0,1)n with
Pn

j=1 xj > ri, we have gi(t, x1, . . . , xn)  ✓

Pn
j=1 xj for each t 2 [0, 1]

and i = 1, 2, . . . , n� 1.

As a reminder, we note that the fixed points of T , if any, are solutions to a system that is

similar to (3.7)–(3.9) in form but in which Q1, Q2, . . . , Qn and R1, R2, . . . , Rn are not fixed;

instead, they need only be nonpositive and nonnegative, respectively, with the additional

restriction that Qj + Rj � 0 for j = 1, 2, . . . , n. We refer to this more general system as

(3.7*)–(3.9*).

The following preliminary lemma establishes the cone preserving and completely con-

tinuous properties of the operator T , both of which are needed in order to apply the

Guo-Krasnosel’skii Fixed Point Theorem.
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Lemma 3.1.1. Suppose (C0) holds. Then T : X ! X is a completely continuous

operator such that T (C) ✓ C.

3.2. Lemmas

We now state the sequence of four lemmas that will allow us to establish the fixed

points of the operator T . As noted above, we omit the proofs of the lemmas as they are

constructed similarly to those in the preceding chapter.

Lemma 3.2.1. Suppose (C0) and (C1) hold, and let ⇢

⇤
> 0. Then there exists ⇤ such

that, for every � � ⇤ and (Q1, . . . , Qn, R1, . . . , Rn) 2 (�1, 0]n ⇥ [0,1)n, we have

kT (u1, . . . , un)k � k(u1, . . . , un)k

for each (u1, . . . , un) 2 C \ @⌦⇢⇤.

Lemma 3.2.2. Fix ⇤ > 0, and suppose (C0) and (C1) hold. Then, for every

� � ⇤ and (Q1, . . . , Qn, R1, . . . , Rn) 2 (�1, 0]n ⇥ [0,1)n, there exists positive ⇢1 =

⇢1(⇤, Q1, . . . , Qn, R1, . . . , Rn) such that, for every ⇢ 2 (0, ⇢1), we have

kT (u1, . . . , un)k � k(u1, . . . , un)k

for each (u1, . . . , un) 2 C \ @⌦⇢.

Lemma 3.2.3. Suppose (C0), (C2), and (C4) hold, and let ⇢

⇤
> 0 be fixed. Then given

� > 0, there exists ⇢2 2 (0, ⇢⇤) and ⇣ > 0 such that for every (Q1, . . . , Qn, R1, . . . , Rn) 2
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(�1, 0]n ⇥ [0,1)n with

Pn
i=1 Ri < ⇣, we have

kT (u1, . . . , un)k  k(u1, . . . , un)k

for each (u1, . . . , un) 2 C \ @⌦⇢2.

Lemma 3.2.4. Let (Q1, . . . , Qn, R1, . . . , Rn) 2 (�1, 0]n⇥[0,1)n, and suppose
Pn

i=1 Ri <

⇣, where ⇣ > 0 is given. Suppose further that assumptions (C0), (C3), and (C5) hold.

Then, for every � > 0, there exists ⇢3 = ⇢3(⇣,�) such that for every ⇢ � ⇢3, we have

kT (u1, . . . , un)k  k(u1, . . . , un)k

for each (u1, . . . , un) 2 C \ @⌦⇢.

3.3. Main Results

We now establish the main existence results of the chapter and, in fact, the thesis as a

whole. Theorem 3.3.1 combines the work of the previous section to show that the general

system (3.7*)–(3.9*) has at least three positive solutions.

Theorem 3.3.1. Suppose hypotheses (C0)–(C5) are satisfied for functions f, g1, g2, . . . , gn�1.

Suppose additionally that 0 < �i < �i and 2�i  ↵i < �i for i = 1, 2, . . . , n. Then there ex-

ists ⇤ > 0 such that, given � � ⇤, there exists ⇣ > 0 such that, for every a1, a2, . . . , an < 0

satisfying

nX

i=1

ai (2�i � �i)

2�i (�i � ↵i)
< ⇣

and every (Q1, . . . , Qn, R1, . . . , Rn) 2 (�1, 0]n ⇥ [0,1)n satisfying

Pn
i=1 Ri < ⇣, the

system (3.7*)–(3.9*) has at least three positive solutions.



58

Proof. Suppose f, g1, g2, . . . , gn�1 satisfy hypotheses (C0)–(C5) and that 0 < �i < �i

and 2�i  ↵i < �i for i = 1, 2, . . . , n. Let ⇢⇤ > 0 be fixed. By Lemma 3.2.1, there exists

⇤ > 0 such that, for every � � ⇤ and a1, a2, . . . , an < 0, we have

kT (u1, . . . , un)k � k(u1, . . . , un)k

for each (u1, . . . , un) 2 C \ @⌦⇢⇤ .

Fix � � ⇤. By Lemma 3.2.2 through Lemma 3.2.4, there exists ⇣ > 0 and ⇢1, ⇢2, ⇢3 > 0

satisfying ⇢1 < ⇢2 < ⇢

⇤
< ⇢3 such that, for a1, a2, . . . , an < 0 satisfying

nX

i=1

ai (2�i � �i)

2�i (�i � ↵i)
< ⇣

and (Q1, . . . , Qn, R1, . . . , Rn) 2 (�1, 0]n ⇥ [0,1)n satisfying
Pn

i=1 Ri < ⇣, we have

kT (u1, . . . , un)k � k(u1, . . . , un)k, for (u1, . . . , un) 2 C \ @⌦⇢1 ,

kT (u1, . . . , un)k  k(u1, . . . , un)k, for (u1, . . . , un) 2 C \ @⌦⇢2 ,

kT (u1, . . . , un)k  k(u1, . . . , un)k, for (u1, . . . , un) 2 C \ @⌦⇢3 .

After applying the Guo-Krasnosel’skii Fixed Point Theorem three times, we get that there

exist three positive solutions (u1, . . . , un), (v1, . . . , vn),(w1, . . . , wn) 2 C such that

⇢1 < k(u1, . . . , un)k < ⇢2 < k(v1, . . . , vn)k < ⇢

⇤
< k(w1, . . . , wn)k < ⇢3.

⇤
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Through the following corollary, we obtain the sought after existence results for (3.1)–

(3.3). The result is an immediate consequence of the one-one correspondence between

the two systems (3.1)–(3.3) and (3.7)–(3.9) and Theorem 3.3.1. Like the corresponding

corollaries of Chapter 2, the addition of constraints (3.12) and (3.13) below allow for the

removal of any hypotheses related to (C4) and (C5).

Corollary 3.3.2. Suppose the following hypotheses are satisfied for a function h :

[0, 1]⇥
Qn�1

j=0 (�1)j[0,1) ! (�1)n[0,1):

(C0*) h is continuous, nondecreasing in its (2j)th variables, and nonincreasing in its

(2j + 1)th variables for j = 1, 2, . . . , n.

(C1*) There exists ↵, � 2 (0, 1), where ↵ < �, such that, given (x1, . . . , xn) 2
Qn�1

j=0 (�1)j[0,1)

with

Pn
j=1 xj 6= 0, there exists  > 0 such that h(t, x1, x2, . . . , xn) >  for

t 2 [↵, �].

(C2*) Let z =
Pn

i=1(�1)i+1
xi > 0. Then

lim
z!0+

h(t, x1, . . . , xn)

z

= 0

uniformly for t 2 [0, 1].

(C3*) Let z =
Pn

i=1(�1)i+1
xi > 0. Then

lim
z!1

h(t, x1, . . . , xn)

z

= 0

uniformly for t 2 [0, 1].

Suppose also that 0 < �i < �i and 2�i  ↵i < �i for i = 1, 2, . . . , n. Then there exists

⇤ > 0 such that, given � � ⇤ there exists ⇣ > 0 such that, for every a1, a2, . . . , an < 0
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for which, after setting Qi =
ai
2�i

, Ri = � ai(2�i��i)
2�i(↵i��i)

, Mi = �i � �i, and Ni = ↵i � �i for

i = 1, 2, . . . , n, we have 0 <

Pn
i=1 Ri < ⇣,

0 < Ri <

X

1jn�1,
j 6=i

Rj, (3.12)

for all i = 2, 3, . . . , n and

2MiNi

�i (�i + �i)
> 1, (3.13)

for all i = 1, . . . , n, then the system (3.1)–(3.3) has at least three positive solutions.
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CHAPTER 4

Future Work

There are several possible avenues one could take with regard to future work. It is

apparent that the method, which plays a central not only in this thesis but also the re-

sults in [7], [9], [15], [16], [17], a↵ords a great deal of latitude in the classes of problems

considered, and the most obvious path would be to continue applying the transformation

technique to more challenging boundary value problems. For instance, one could inves-

tigate whether the method would be amenable to di↵erential equations with multipoint

boundary conditions.

Another possible direction would be to instead focus on ways of directly modifying

the di↵erential equation (1.1). The addition of odd-order derivatives is one possibility;

discretizing the domain of h is another. Both have precedent in [15]. If one chooses to

embark on the latter route, the question of whether analogous results might not also hold

on time scales seems only natural to explore.

A final option worth thinking about would involve altering the method itself. The

decision to use the infinity norm appears to be grounded more in tradition than in any

inherent merit. There is no reason to think another norm could not accomplish the same

job, and it interesting to consider the e↵ects that such a change could have on the various

estimates and bounds. A more far-reaching modification to the method would be to

exchange the Guo-Krasnosel’skii Fixed Point Theorem for another fixed point theorem.
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This would have the potential to not only a↵ect the construction of the existence results

but also the way solutions are characterized.
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