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Abstract: Objectives: Tart cherries (TC) are rich source of phenolic compounds such as 

anthocyanins and flavonoids that can promote health by influencing the gut microbiota. 

This study investigated the effects of TC supplementation on gut health and metabolic 

parameters in mice fed a western diet (WD). 

Methods: Six-week-old male C57BL/6 mice were randomly assigned to dietary 

treatment groups in a 2x3 factorial design with diet (control [AIN-93M] or WD, 45% fat 

kcal and 26% sucrose kcal) and TC (0, 5, 10% wt/wt) as factors for 12 wks. At the end of 

dietary treatment, body composition was assessed, and tissues were collected to evaluate 

metabolic parameters and markers of gut health. Cecal content was used for bacterial and 

short chain fatty acid analyses. Data was analyzed using two-way ANOVA with Kruskal-

Wallis/Dunn‘s and Tukey‘s as post-hoc tests for the gut microbiota data and metabolic 

parameters, respectively. 

Results: TC at 10% dose significantly increased the abundance of the beneficial bacterial 

phylum, Actinobacteria, relative to the unsupplemented groups (p=0.018 and 0.010 vs 

control and WD, respectively).  Relative cecal weight (p=0.007) and cecal propionic 

(p=0.0212), i-butyric (p=0.0183), i-valeric (p=0.0126), n-valeric (p=0.0261), and n-

heptanoic acids were significantly increased with TC supplementation. Histological 

evaluation revealed reduced ileal villi height (p=0.0348), width (p=0.0042) and area 

(p=0.0132) with WD and TC did not alter this response. Overall, the expression of genes 

related to gut health was unaffected by both WD and TC supplementation. Body weight 

(p=0.0012), fat mass (p=0.007), fasting blood glucose (p=0.001), serum total cholesterol 

(p<0.0001), triglyceride (p=0.002), leptin (p=0.0011), plasminogen activator inhibitor 1 

(p=0.0344), and resistin (p=0.0012) were increased with WD and TC had no effect on 

these parameters. Despite modest effects on metabolic parameters, the homeostatic model 

assessment of insulin resistance, HOMA-IR, a commonly used tool for assessing insulin 

resistance, was significantly improved by 5% TC (p=0.0003).   

Conclusion: TC supplementation restored some beneficial bacteria and increased short 

chain fatty acid production altered by WD. However, these changes in the gut did not 

translate to improvement in metabolic outcomes except for HOMA-IR. The mechanism 

by which TC improve HOMA-IR needs to be investigated in future studies.



v 
 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. INTRODUCTION .................................................................................................. 1 

      

II. LITERATURE REVIEW ...................................................................................... 7 

  

 Prevalence of Obesity and Type 2 Diabetes Mellitus ............................................ 7 

 The Gut Microbiota ............................................................................................. 9 

 Methods for Assessing the Gut Microbiota ........................................................ 12 

      Effects of Diet on Gut Microbiota ...................................................................... 14 

 Role of Gut Microbiota in Nutrition and Health ................................................. 17 

 Metabolism and Benefits of Short Chain Fatty Acids ......................................... 19 

 The Gut Microbiota in Obesity and Type 2 Diabetes Mellitus ............................ 20 

 Nutrition and Health Value of Tart Cherry ......................................................... 22 

 

III. MATERIALS AND METHODS ....................................................................... 26 

 

 Animal and Treatment Groups ........................................................................... 26 

 Necropsy and Tissue Processing ........................................................................ 26 

 Gut Microbiota Analysis .................................................................................... 29 

 Short Chain Fatty Acids ..................................................................................... 30 

Gene Expression Analysis.................................................................................. 30 

Histology of Colon and Ileum ............................................................................ 32 

Glucose Tolerance Test and Insulin Resistance .................................................. 32  

Serum Lipids ..................................................................................................... 32  

Pancreatic-, Gut- and Adipose-derived Hormones .............................................. 33  

    Statistical Analyses ............................................................................................ 34 

 

IV. RESULTS ......................................................................................................... 35 

 

 Body Weight, Food intake, Body Composition and Tissue Weights ................... 35 

 Gut Microbiota Composition.............................................................................. 36  

 Cecal Content and Fecal Short Chain Fatty Acids .............................................. 38 

 Relative Expression of Genes Related to Gut Health .......................................... 38  

 Gut Structural Analysis ...................................................................................... 39  

      Glucose and Lipid Parameters ............................................................................ 39 

      Pancreatic and Adipose-derived Hormones ........................................................ 41



vi 
 

 

 

Chapter          Page 

 

V.  DISCUSSION .................................................................................................... 59 

 

REFERENCES ........................................................................................................ 70



vii 
 

LIST OF TABLES 

 

 

Table           Page 

 

1. Techniques for the Assessment of Gut Microbiota .......................................... 15 

2. Treatment Groups ........................................................................................... 27 

3. Diet Composition ............................................................................................ 28 

4. Primer Sequence List  ..................................................................................... 31 

5. Food Intake, Body Weight, Tissue Weight and Body Composition ................. 43 

6. Enriched or Depleted Cecal Bacterial Phyla in C57BL/6 Mice Fed a Control or 

Western Diet Supplemented with 5% or 10% Tart Cherry ............................... 46 

7. Enriched or Depleted Cecal Bacterial Genera in C57BL/6 Mice Fed a Control or 

Western Diet Supplemented with 5% or 10% Tart Cherry ............................... 48 

8. Cecal Content Weight and Short Chain Fatty Acids ........................................ 50 

9. Villi and Crypt Structural Parameters of the Ileum and Colon ......................... 55 

10. Fasting Blood Glucose, and Serum Lipids ....................................................... 56 

11. Pancreatic and Adipose-derived Hormones ..................................................... 58



viii 
 

LIST OF FIGURES 

 

Figure           Page 

 

1. Weekly Body Weights .................................................................................... 42 

2. Gut Microbiota Composition ........................................................................... 44 

3. Relative Expression of Genes Related to Barrier Integrity, Mucus Layer 

Formation, Antimicrobial Peptide, Short Chain Fatty Acids (SCFAs) Receptor 

and Inflammation in the Ileum ........................................................................ 51 

4. Relative Expression of Genes Related to Barrier Integrity, Antimicrobial 

Peptide, SCFAs receptor and Mucus Layer Formation in the Colon ................ 53 

5. Representative Images of Histological Sections of the Ileum and Colon .......... 55 

6. Glucose Tolerance Test and Glucose Total Area Under the Curve ……………57



1 
 

CHAPTER I 
 

 

INTRODUCTION 

Diabetes mellitus (DM) is a common public health issue around the world 

(Tabish; 2007). DM is defined as a metabolic disorder in which chronic hyperglycemia is 

present as a result of impaired insulin action (type 2 diabetes mellitus, T2DM) or 

impaired insulin secretion (type 1 diabetes mellitus, T1DM) or both (Goldenberg and 

Punthakee, 2013). Among diabetic patients, 90% to 95% people have T2DM and by the 

year 2030, 439 million people are estimated to be affected worldwide with T2DM (Wu et 

al., 2014). According to the National Health Interview Survey (NHIS) in 2016, 21 million 

U.S. adults (8.6%) are suffering from T2DM (Bullard et al., 2018). In 2015, diabetes was 

considered as the sixth leading cause of disability, and socioeconomic pressure is 

increasing among diabetics due to the management of diabetes (Chatterjee et al., 2017). It 

has been estimated that the global costs of diabetes will increase in the U.S. from $1.3 

trillion in 2015 to $2.1 trillion in 2030 (Bommer et al., 2018). These statistics indicates a 

need for preventative intervention.  

 Along with inherited factors, a number of lifestyle factors such as cigarette 

smoking, consuming alcohol, physical inactivity and sedentary lifestyle are also known to 

increase the likelihood of developing T2DM. Additionally, consumption of diet rich in fat
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and refined sugars increases obesity (Olokoba et al., 2012) (Cordain et al., 2005), a main 

risk factor for the development of T2DM. In obese individuals, there is an increase tissue 

inflammation such as in the adipose tissue, which contributes to insulin resistance and 

T2DM (Diamant et al., 2011). Among individuals with T2DM, 60% are obese (body-

mass index [BMI] ≥30 kg/m²) and showing signs of insulin resistance. Therefore, obesity 

and T2DM are closely linked (Chatterjee et al., 2017). 

 Recent findings have demonstrated that changes in the gut microbiota are 

associated to many chronic conditions including obesity, T2DM, colon cancer, 

inflammatory bowel disease (Young; 2012), and cardiovascular disease (Tang et al., 

2017). The gut microbiota is considered a "virtual organ" of the body because the 

metabolic activity performed by gut bacteria is equal to that of an organ (Clarke et al., 

2014). The human gastrointestinal (GI) tract contains about 100 trillion microorganisms 

and it has been reported that the gut microbiota plays an important role in digestion, 

absorption, nutrient metabolism and host‘s immune system maintenance (Valdes et al., 

2018). Previous studies reported that plant polyphenols are good substrates for gut 

microbiota and phenolic acids are produced from colonic fermentation of these 

polyphenols (Mansoorian et al., 2019). These metabolites have potential health benefits 

such as antimicrobial activity to pathogenic bacteria (Mansoorian et al., 2019).  

Additionally, the gut microbiota is responsible for the fermentation of non-digestible food 

substrates such as dietary polysaccharides and because of this fermentation, multiple 

groups of metabolites are produced including the short chain fatty acids (SCFAs). Among 

the SCFAs, acetate, propionate and butyrate are abundantly present (≥95%) in the 

colon (den Besten et al., 2013). Butyrate has been shown to improve gut barrier function 
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by stimulating the production of intestinal mucus as well as reducing inflammation of the 

adipose tissue (Bakker and Nieuwdorp, 2017). Increased production of SCFAs is 

involved in maintaining glucose homeostasis because SCFAs has been shown to increase 

the secretion of pancreatic insulin by stimulating the release of incretins through its 

interaction with the receptor GPR43 (Tolhurst et al., 2012). Vilsbøll and Holst (2004) 

reported that incretin production increases the postprandial response of insulin to glucose.  

 Diet plays a major role in determining the composition of the gut microbiota and 

improper nutrition can lead to imbalance in bacterial population leading to dysbiosis. It 

has been reported that alterations in the gut microbiota due to western diet (45% fat kcal; 

22.8 % sucrose kcal) is associated with obesity and increased risk of chronic diseases 

(Murphy et al., 2015). Cani and colleagues (2008) reported that cecal microbial dysbiosis 

due to WD was observed together with glucose intolerance, increased body weight, fat 

accumulation and low-grade inflammation. The alteration in gut microbiota due to WD 

diet may also induce local (i.e. gut) and systemic inflammation due to increased 

production of inflammatory cytokines (Guo et al., 2017). Therefore, obesity and its 

adverse outcomes may be reduced by preserving the balance of the gut microbiota (Cani 

et al., 2008). 

 Contrary to the effects of WD, a good quality diet preserves the balance of good 

bacterial population (Walsh et al., 2014). Food components such as dietary fiber and 

polyphenols play an important role in the preservation of the gut microbiota (Ercolini and 

Fogliano, 2018). Dietary polyphenols, like fiber, are reported to exert prebiotic effects 

and increase the growth of good bacteria while preventing the growth of pathogenic 

bacteria, resulting to reduced risk of chronic diseases like T2DM (Ercolini and Fogliano, 
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2018) and obesity (Wang et al., 2014). Both fiber and polyphenol-rich diet can counter 

the effects of WD diet that is known to disrupt epithelial mucosal barrier and cause low-

grade inflammation (Zmora et al., 2018).  

 Tart cherry (TC) is one of such foods, which are rich in polyphenols and 

fructooligosaccharides (FOS), that have been reported to be beneficial to health and may 

modulate the negative effects of WD (Mayta-Apaza et al., 2018). TC (Prunus cerasus) is 

a stone fruit that belongs to the Rosaceae family. Worldwide, the production of TC 

increased from 2,154,000 to 3,057,000 metric tons due to its higher resistance to 

environmental factors as well as increased customer demand due to reported therapeutic 

properties (Mayta-Apaza et al., 2018). The US is one of the top five producers of TC 

(Mayta-Apaza et al., 2018). TC is rich in polyphenols such anthocyanins and flavonols 

(Mayta-Apaza et al., 2018). Studies have reported that the polyphenols from TC have 

antidiabetic, antioxidant, cardioprotective and anti-inflammatory effects (Mayta-Apaza et 

al., 2018). In addition to these health effects, TC polyphenols have also been reported to 

inhibit oxidative damage, colon cancer and symptoms of osteoarthritis (Thomas, 2017). 

Moreover, Seymour and colleagues (2008) reported that supplementation of high fat diet 

with freeze-dried TC powder (1% wt/wt) reduced hyperlipidemia and modulated blood 

glucose (Seymour et al., 2009). From these studies, it can be concluded that TC is a 

functional food that may be beneficial to maintain a healthy gut microbiota (Mayta-

Apaza et al., 2018) and improve the health of the host. 

 Despite reports that polyphenols are important for maintaining a balance in gut 

microbiota, our current knowledge is lacking on how the consumption of TC in the 

context of WD diet helps in maintaining the balance of gut microbiota and in improving 
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markers of glucose homeostasis. Therefore, the objective of this study is to evaluate the 

effects of TC supplementation on the gut (i.e., microbiota, markers of gut integrity and 

structural changes, SCFAs production) and its impact on glucose homeostasis, body 

composition, and blood lipids and pancreatic and adipose-derived hormones in mice fed a 

WD. The hypothesis of this study is that TC supplementation, because of its many 

bioactive components, will dose-dependently maintain the balance of the gut microbiota 

and retain gut integrity, which will improve blood glucose, and body composition in 

C57BL/6 mice fed a WD. The specific aim of study is to investigate the dose-dependent 

effects of TC supplementation in the context of control and WD on:  

Aim 1: the gut microbial populations and production of SCFAs, 

Working hypothesis: TC reported as a potential source of fiber particularly FOS as well 

as phenolic compounds. Due to these bioactive components, TC will prevent the loss of 

beneficial bacteria, which is commonly associated with consumption of WD. These 

microbial changes in the gut will increase the production of SCFAs.  

Aim 2: the gut structural changes and expression of genes related to gut barrier integrity,  

Working Hypothesis: The increase in the beneficial bacteria due to TC supplementation 

will help maintain the health of intestinal epithelial cells and gut barrier integrity, in part, 

by providing nutrients such as SCFAs to the intestinal epithelial cell.  

Aim 3:  markers of glucose homeostasis, and  

Working Hypothesis: The increase production of SCFA due to TC supplementation will 

stimulate the production of gut hormones that can maintain glucose homeostasis. 
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Additionally, there will be a decrease in inflammation because TC will maintain gut 

integrity and prevent entry of inflammatory molecules such as lipopolysaccharides 

through the gut (i.e. metabolic endotoxemia). This metabolic endotoxemia is known to 

alter glucose homeostasis and will be prevented by TC. 

Aim 4: body composition and serum lipids and pancreatic and adipose-derived 

hormones. 

Working hypothesis: The increase in SCFAs production due to TC supplementation will 

modulate body composition and serum lipids and hormones. SCFAs acts as signaling 

molecule and stimulates fatty acid oxidation and inhibits lipogenesis. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

This literature review includes an overview of the growing trend of obesity and type 2 

diabetes mellitus (T2DM), the gut microbiota and influence of nutrition on gut microbial 

composition, the relationship among gut microbiota, obesity and T2DM, and the 

nutritional composition and health effects of tart cherry (TC). 

Prevalence of Obesity and T2DM 

 Obesity, defined as having a body mass index (BMI≥30 kg/m²), is a major public 

health concern worldwide.  In the past decades, overweight and obesity has increased in 

different parts of the world. Two billion individuals were reported to be overweight or 

obese worldwide and 62% of these individuals were living in developing countries (Ford 

et al., 2017). Among Asian countries, the magnitude of obesity is reported to be high in 

Thailand and lowest in India and the Philippines (Ramachandran and Snehalatha, 2010). 

According to the Working Group for Obesity in China, the prevalence of obesity in 2015 

among Chinese boys and girls was recorded as 10.5 % and 7.1 %, respectively (Zhang et 

al., 2018). In Southern and Eastern part of Europe, women are more affected with obesity 

(Seidell, 1995). In the past few decades, the global percentage of men and women with 

BMI greater than 25 kg/m2 increased from 28.8 % to 36.9 % and 29.8% to 38.0 %, 

respectively (Ford et al., 2017). Nowadays, obesity is also prevalent in poor countries
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such as Nepal, India and Bangladesh, where undernutrition is also common (Balarajan 

Villamor, 2009). In Great Britain, the number of adults with obesity increased from 6% 

men and 8% women in 1980 to 23% men and 25% women in 2002 (Rennie and Jebb, 

2005).  

The United States is one of the western countries where obesity is prevalent 

(Lobstein, 2011) and is continually increasing (Ogden et al., 2006).  A study conducted 

by Hales and colleagues (2017) showed that in the US in 2015-2016, 42.8% of adults 

aged 40-59 years old, 35.7% of adults aged 20-39 years old and 41.0% of adults aged 60 

and older were obese. Among women in 2015-2016, 44.7% of women aged 40-59 years 

old and 36.5% of women aged 20-39 years old were also suffering from obesity (Hales et 

al., 2017). The prevalence of obesity was 20.6% among adolescents (aged 12-19 years), 

18.4% among school-aged children (aged 6-11 years) and 13.9 % among pre-school 

children. There was no gender difference in prevalence of obesity and it was significantly 

increased in both youth and adults from 1992-2000 through 2015-2016 (Hales et al., 

2017). Results from these studies support that obesity is a growing global health problem 

particularly in the US where it is prevalent in all age groups. 

Obesity has detrimental effects on individual‘s health. One effect of obesity is an 

increase likelihood of developing T2DM. Ogden and colleagues (2006) reported that 

obesity and T2DM are correlated and obesity is responsible for accelerating the 

development of T2DM. A meta-analysis of twenty studies demonstrated that more than 

85% of individuals with T2DM are overweight or obese (Gao et al., 2018). A report by 

Wild and colleagues (2004) showed that in 2000, the worldwide prevalence of T2DM 

was 2.8% and they estimated that it would increase up to 4.4 % in 2030. Similarly, 
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Forouhi and Wareham (2010) also reported that prevalence of T2DM would increase 

from 328 million in 2013 to 592 million in 2035. T2DM is more prevalent in men 

compared to women and in people over the age of 60 years compared to other age groups 

(Wild et al., 2004). 

Similar to the worldwide trend, a significant growing trend over the years in 

T2DM has been reported in the US. According to the Centers for Disease Control and 

Prevention, 29.1 million adults (9.3% of total population) in the US were affected by 

diabetes in 2012 and it is predicted that diabetes will affect one in every three Americans 

in 2050 (Chaudhury et al., 2017). Rowley and his colleagues (2017) also reported that the 

number of individuals with diabetes would raise by 54% from 2015 to 2030. According 

to National Health Interview Survey in 2016, 21.0 million or 90.9% adults among all the 

diabetic adults were living with T2DM (Bullard et al., 2018).  Due to unfavorable 

outcomes associated with obesity and T2DM, there is an urgent need for intervention 

strategies to limit the health effects of obesity and T2DM. Researchers and health 

professionals are continuing to investigate prevention strategies for obesity and T2DM, 

which will improve the quality of life of many individuals. 

The Gut Microbiota 

The gastrointestinal (GI) tract is considered the largest interface between the host, 

environmental factors, and antigens present in the human body (Thursby and Juge, 2017). 

It also contains plenty of microorganisms and acts as a passage for approximately 60 tons 

of food throughout the lifespan of an individual. The complex and dynamic population of 

microorganisms in the human GI tract is known as the ―gut microbiota‖ (Thursby and 

Juge, 2017). It has been estimated that more than 10
14

 microorganisms are present in the 
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human GI tract (Bäckhed et al., 2005) and a recent study suggested that the ratio of 

human cells to bacterial cells is 1:1 (Sender et al., 2016). The gut microbiota species are 

complex and highly diverse, and only 30% of the species can be enumerated by 

microscopic observation via culture-based characterization (Moore and Holdeman, 1974). 

The growth of human gut microbiota usually starts right after birth and over the 2 

to 3 years after birth form a complex adult-like population of organisms that act as a gut 

barrier against pathogens (Doré and Corthier, 2010). At the early stages of life, the 

diversity of the gut microbiota is usually low, with Actinobacteria and Proteobacteria 

being the dominant phyla. The diversity of the gut microbiota increases in the first year of 

life and grows towards a distinct adult-like microbial profile (Palmer et al., 2007). The 

composition, functions, and diversity of infant gut microbiota starts to resemble the adult 

microbial profile at the age of 2.5 years. The composition of the gut microbiota is 

generally stable in adulthood but it can be altered by life events such as illness, dietary 

changes, and medication use such as antibiotic treatment (Thursby and Juge, 2017).  

 Manson et al. (2008) reported that more than 400 bacterial species have been 

observed in the fecal matter of an individual. Before the development of anaerobic 

culture-based techniques, only 10-20% of gut microbiota have been identified using 

culture-based techniques and scientists were not able to isolate anaerobic microorganisms 

(Jandhyala et al., 2015). In recent years, other microorganisms have been identified with 

the improvements in anaerobic culture-based techniques and molecular approaches such 

as metagenomics and single gene approach based on ribosomal RNA. Subsequently, 

Bacteriodes, Eubacterium, Ruminococcus, Clostridium and Bifidobacterium were 

identified as the dominant genera in the gut (Jandhyala et al., 2015).  
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 The human gut microbiota is reported to contain bacteria that belong to the phyla 

Firmicutes, Bacteriodetes, Actinobacteria, Proteobacteria, Fusobacteria, Cyanobacteria 

and Verrucomicrobia (Fraher et al., 2012). The phyla Firmicutes and Bacteriodetes 

constitute about 90% of the gut microbiota followed by Actinobacteria and 

Verrucomicrobia (Fraher et al., 2012). The phylum Firmicutes is composed of more than 

200 different genera with the predominant species Faecalibacterium prausnitzii, 

Ruminococcus albus and Ruminococcus flavefaciens (Rinninella et al., 2019). The 

phylum Actinobacteria is less dominant (Jandhyala et al., 2015) and include the genus 

Bifidobacteria and Collinsella-Atopobium group (Doré and Corthier, 2010). Bacterial 

species ocassionally found in the gut include Eubacterium cylindroides, Sporomusa, 

Verrucomicrobium, Clostridium ramosum, Selenomona and Clostridium ramosum (Doré 

and Corthier, 2010).  

The presence and function of the microbiota vary in each segment of the 

gastrointestinal tract with over 70% of all the microorganisms in the human body are 

present in the large intestine (Jandhyala et al., 2015). Besides the beneficial bacteria, the 

colon also contains pathogenic species such as Escherichia coli, Salmonella, Bacteroides 

fragilis, Vibrio cholera and Campylobacter, but these are present in very low amount 

(0.1% or less of the total gut microbiota) (Gevers et al., 2012). 

 There is a mutual relationship between diet and the gut microbiota. Colonization 

of the gut begins from birth. The initial development of the gut microbiota is influenced 

by numerous factors such as, breast-feeding vs. formula feeding, mode of delivery, 

timing of the introduction of solid foods and termination of milk feeding (Fallani et al., 

2011). Pediatric studies showed that during lactation, Bifidobacterium is the dominant gut 
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bacteria of an infant (Tanaka and Nakayama, 2017). Fats, proteins, carbohydrates and 

immunoglobulins are the major components of human milk. The oligosaccharides such as 

galactooligosaccharides in human milk have potential role in the growth of beneficial 

microbes in the gut of infants. With the introduction of solid food in the diet, adult-like 

complex and more stable gut microbiota is established and the Bacteroidetes and 

Firmicutes become dominant. Different components of the diet such as non-digestible 

food components and polyphenols influence the gut bacterial population (Tanaka and 

Nakayama, 2017). The ability to isolate and assess the bacterial populations in our gut is 

important in building our knowledge about their role in health and disease. 

Methods of Assessing the Gut Microbiota 

 Gut mucosal and stool samples are most commonly used for the analysis of the 

gut microbiota. Previous studies showed that the biodiversity of fecal and gut mucosal 

microbiota is different from each other (Panek et al., 2018). Feces, which is an easily 

available metabolic waste, is found to have more potential for determining disease risk 

and therapeutic intervention in both human and animal models (Panek et al., 2018). One 

advantage with using fecal sample is ease of collection compared to biopsy samples of 

the gut mucosal surface and cecum content (Panek et al., 2018). One more advantage of 

fecal sample is that it is easy to obtain series of sample from one animal over time, unlike 

the case with cecal samples where the samples can be obtained only single time-point by 

sacrificing that animal (Panek et al., 2018). Early approach to assessing gut microbial 

population used bacterial culture, but this method provided only limited information 

about the structure of the gut microbiota. Cost effectiveness is a major advantage of 

culture-based approaches for identification of bacteria but these methods are time 



13 
 

consuming (Jandhyala et al., 2015). One limitation of using bacterial culture is its 

inability to identify anaerobic bacterial population that are difficult to culture (Jandhyala 

et al., 2015). However, recent advances in novel techniques make it possible to identify 

previously uncultured species.  

Recently, new approaches that are culture-independent have been developed to 

analyze the composition of the gut microbiota in a given sample. These methods involve 

16S ribosomal RNA-based sequencing of bacterial gene. The 16S ribosomal RNA region 

is a small and most conserved region with higher variable sites that are enough to 

differentiate several bacterial species than the 5S and 23S rRNA genes. The V3, V4, V6 

and V8 regions of 16S rRNA are common for the identification of bacteria (Hamady et 

al., 2008). Although 16S rRNA is an advanced and commonly used technique to analyze 

the composition of gut microbiota, it cannot explain biological or clinical significance of 

the association between a disease and a particular microbial pattern. To overcome this 

limitation of 16S rRNA technology, metagenomics is the latest advancement to study the 

gut microbiota. This technique is able to explain the next step of detecting which 

microbes are present and what they do (Table 1) (Fraher et al., 2012). These culture-

independent approaches deliver further comprehensive information of the gut microbiota 

such as microbial diversity, quantitative and qualitative knowledge of microbes and 

alteration in gut microbiota due to diseases.  

The denaturing gradient gel electrophoresis (DGGE), fluorescence in situ 

hybridization (FISH), temperature gradient gel electrophoresis (TGGE) and DNA 

microarray and sequencing techniques are defined as culture-independent approaches 



14 
 

(Fraher et al., 2012). The description with advantages and disadvantages of these 

techniques are highlighted in Table 1. 

  Effects of Diet on Gut Microbiota 

Non-digestible food components are beneficial for the host's health because these 

stimulates the growth of beneficial bacteria (Carlson et al., 2018). Non-digestible food 

components are resistant to digestive enzymes but can be metabolize by colonic bacteria. 

These components pass through colon very slowly and interacts with the microbiota, 

which stimulates fermentation (Jacobs et al., 2009). Thus, slow transit time, favorable pH 

and readily available nutrients provide favorable environment for the growth of bacteria 

in the colon (Slavin, 2013). Non- digestible plant food components provide food for 

microbiota with complete or partial fermentation in the colon. Non-digestible food 

components include non-digestible carbohydrates such as oligosaccharides, 

polysaccharides, resistant starch and non-carbohydrate compounds such as polyphenols 

and lignin (Saura-Calixto et al., 2009). 

Bacterial fermentation of non-digestible food components in the colon produces 

short-chain fatty acids (SCFAs) such as butyrate, acetate and propionate. SCFAs plays an 

important role in the physiology of the host (Baxter et al., 2019). Additionally, these 

SCFAs serves as energy source for the gut microbiota and improve the growth of many 

beneficial bacteria, which can produce other nutrients such as vitamins (Sivaprakasam et 

al., 2016).  The SCFA butyrate has been described to improve the beneficial bacteria in 

the gut, while acetate and propionate can be used for energy by the liver and adipose 

tissue (Roy et al., 2006).  
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Table 1: Techniques for the assessment of gut microbiota (Fraher et al., 2012) 

Technique Description Advantages Disadvantages 

Culture-based Selective media used for bacterial isolation Cost-effective, semi-quantitative Labor intensive, limited 

culturable organisms 
qPCR 16S rRNA amplification and quantification. 

Reaction mixture contains a compound that 

fluoresces when it binds to dsDNA 

Phylogenetic identification, fast, 

quantitative 

PCR bias, unable to 

identify unknown species 

DGGE/ 

TGGE 

Gel separation of 16S rRNA amplicons using 

denaturant/temperature 

Fast, semi-quantitative, bands can be 

excised for further analysis 

No phylogenetic 

identification, PCR bias 

T-RFLP Fluorescently labelled primers are amplified and 
then restriction enzymes are used to digest the 

16S rRNA  hybridization occurs, fluorescence 

can be enumerated using flow cytometry 

Fast, semi-quantitative, cheap No phylogenetic 
identification, PCR bias, 

low resolution 

FISH Fluorescently labelled oligonucleotide probes 
hybridize complementary target 16S rRNA 

sequence with DNA probe. When hybridization 

occurs, fluorescence can be quantified using 
flow cytometry 

Phylogenetic identification, semi-
quantitative, no PCR bias 

Dependent on probe 
sequences, cannot 

identify unknown species 

DNA microarrays Fluorescently labelled oligonucleotide probes 

hybridize with complementary nucleotide 

sequences. Fluorescence detected with a laser 

Phylogenetic identification, semi 

quantitative, fast 

Cross hybridization, PCR 

bias, species present in 

low levels can be difficult 
to detect 

Cloned 16S rRNA 

gene sequencing 

Cloning of full-length 16S rRNA amplicon, 

Sanger sequencing and capillary electrophoresis 

Phylogenetic identification, 

quantitative 

PCR bias, laborious, 

expensive, cloning bias 
Direct sequencing 

of 16S rRNA 

amplicons 

Massive parallel sequencing of partial 16S 

rRNA amplicons 

Phylogenetic identification, 

quantitative, fast, identification of 

unknown bacteria 

PCR bias, expensive, 

laborious 

Microbiome 

shotgun 

sequencing 

Massive parallel sequencing of the whole 

genome (e.g. 454 pyrosequencing or Illumina) 

Phylogenetic identification, 

quantitative 

Expensive, intense 

computational data 

analysis 

Abbreviations: qPCR: quantitative polymerase chain reaction, DGGE: denaturing gradient gel electrophoresis., TGGE: 

temperature gradient gel electrophoresis, T-RFLP: terminal restriction fragment length polymorphism, FISH: fluorescence in 

situ hybridization 
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The increase production of SCFAs by the gut microbiota also results in decrease 

in the pH of the colon. Thus, high fiber intake could decrease the pH of the colon. Flint 

and his colleagues (2012) reported that a major shift in the configuration and metabolic 

output of human gut microbiota has been observed in pH between 5.5 and 6.5. One unit 

decrease in pH (6.5 – 5.5) has been shown to have a potential effect on gut microbiota 

with tendency to suppress Bacteroides spp. and to increase gram-positive bacteria, which 

are responsible to produce butyrate (Flint et al., 2012). 

Nowadays, people are consuming western diet (WD) that is high in fat and simple 

sugar and dietary fiber intake that is not sufficient to meet the recommended dietary 

allowance. A low-fiber diet is known as fiber gap and it can cause alterations in the 

composition of the gut microbiota and other beneficial metabolites such as SCFAs, which 

are important in the host's intestinal mucosal immunity (Rinninella et al., 2019). A low 

fiber diet can cause significant decrease in the proportion of Bifidobacteria and butyrate-

producing bacteria of the family Lachnospiraceae. The loss of gut microbial diversity and 

beneficial metabolites has negative effects on host health. Thus, non-digestible food 

components, changes in pH and transit time can influence the composition of the gut 

microbiota (Rinninella et al., 2019).  

Polyphenols are naturally present in plants as secondary metabolites. These 

chemical compounds contain more than one hydroxyl group attached to a benzene ring 

(Scalbert and Williamson, 2000).  Polyphenols are generally classified as phenolic acid, 

flavonoids, stilbenes and lignans. These classes of polyphenols are different in their 

carbon skeleton and among these polyphenols, the flavonoids are the most abundant in 

our diet (Scalbert and Williamson, 2000). Flavonoids can be further classified as 
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anthocyanin, isoflavones, flavonols, flavanones, flavanols and flavones. Many studies 

have shown that polyphenols play an important role as antioxidants, which helps in the 

prevention of many diseases such as cancers, diabetes, cardiovascular diseases, 

neurodegenerative diseases and osteoporosis (Scalbert et al., 2005).  

 Just like dietary fiber, plant polyphenols are good substrates for the gut 

microbiota. A small portion of polyphenols is absorbed in the small intestine and most of 

the polyphenols (over 90%) reach the colon along with dietary fiber (Mansoorian et al., 

2019). Unlike dietary fiber, polyphenols are not used for the production of SCFAs. 

Instead, phenolic acids are produced from polyphenols by colonic fermentation and these 

acids are available for colonic absorption. These metabolites have potential health 

benefits such as antimicrobial activity to pathogenic bacteria (Mansoorian et al., 2019). 

Phenolic acids can be determined in both urine and plasma after dietary intake of foods 

rich in polyphenols (Edwards et al., 2017). 

 Several studies have reported that polyphenols play an important role in the 

development of the gut microbiota (Ozdal et al., 2016). Some phenolic compounds have 

been considered as antimicrobial agents due to their bacteriostatic or bactericidal 

activities. Ozdal and colleagues (2016) reported that quercetin supplementation reduce 

the growth of bacterial species, which are responsible for diet-induced obesity such as 

Bacillus spp., Erysipelotrichaceae and Eubacterium cylindroides. Hostetler and 

colleagues (2017) reported that the growth of pathogenic bacteria could be inhibited by 

flavonoids such as diosmetin, which are present in citrus fruits. Thus, polyphenols can 

influence gut bacterial population and influence the health of the host. 

Role of the Gut Microbiota in Nutrition and Health 
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 Various potentially bioactive components are released and transformed by the gut 

microbiota. For example, SCFAs are produced from microbial fermentation of non-

digestible carbohydrates in the colon (Flint et al., 2012). An additional energy is provided 

to the host from the absorption of these SCFAs and serves as a substrate for the survival 

of the gut microbiota. Thus, the gut microbiota contributes in ‗energy harvest‘ from the 

diet, and this condition might be beneficial under conditions of food scarcity (Flint et al., 

2012). The host‘s energy supply from microbial contribution depends on the amount of 

non-digestible carbohydrates in the diet and the extent of microbial fermentation and 

absorption of SCFAs (Blaut and Klaus, 2012).  

In addition to fermentation of non-digestible carbohydrates, the gut microbiota is 

also responsible for the biotransformation of polyphenols into their simpler metabolites, 

thus affecting polyphenol absorption and bioavailability. Braune and Blaut (2016) 

reported that Clostridium and Eubacterium have been identified as involved in the 

metabolism of some phenolic compounds such as isoflavone, flavonol, flavonone and 

flavan-3-ol. In addition to this, fermentation of polyphenols by colonic bacteria yield a 

broad spectrum of biotransformation products such as phenylbutyric acid, phenyl-

propionic acid, valeric acid, phenylacetic acid, phloroglucinol, urolithin A and urolithin B 

(Hervert-Hernandez and Goñi, 2011). Thus, the biotransformation and promotion of 

polyphenol absorption by the gut microbiota may be vital in assessing the extensive 

health benefits of these plant chemicals.  

 The dominance of beneficial bacteria in the gut provides health benefits to the 

host while other bacterial species are linked to diseases (Hervert-Hernandez and Goñi, 

2011). For example, Bacteroides, Clostridium and Eubacterium has been found to be 
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increased in gastrointestinal disorders (Saito et al., 1992). On the other hand, some 

species such as Lactobacillus and Bifidobacterium are considered beneficial bacteria due 

to their ability to modulate the gut microbiota. These species inhibit pathogens and are 

commonly used as probiotics (Hervert-Hernandez and Goñi, 2011). Other health 

properties attributed to the beneficial bacteria in the gut include improvement of lactose 

digestion, reinforcement of intestinal epithelial cell tight junctions, reduction of serum 

cholesterol, stimulation of anti-inflammatory cytokine production, and increased mucus 

secretion (Hervert-Hernandez and Goñi, 2011). 

Metabolism and Benefits of Short Chain Fatty Acids (SCFAs) 

 SCFAs are carboxylic acids with aliphatic tails of 1-6 carbons and its production 

largely depends on dietary intake of non-digestible carbohydrates such as resistant starch 

and fiber (Venegas et al., 2019). Acetate, propionate and butyrate are the major SCFAs 

produced from colonic fermentation of dietary fiber. The production of these SCFAs also 

depends on microbiota composition and environmental conditions such as availability of 

substrate and pH (Venegas et al., 2019).  

Butyrate is mainly produced by bacteria belonging to the phylum Firmicutes, in 

particular Faecalibacterium prausnitzii and Clostridium leptum of the 

family Ruminococcaceae (Louis and Flint, 2009). Propionate is produced by colonic 

bacteria using different pathways such as succinate pathway, acrylate pathway and 

propanodiol pathway and several Firmicutes are involved in the production of propionate 

(Ríos-Covián et al., 2016).   

 SCFAs have a wide range of beneficial effects both within and outside the gut. 

Fermentation of carbohydrates producing 400-600 mmol SCFAs per day can provide 
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approximately 10% of the daily caloric requirements (den-Besten et al., 2013). Microbial 

production of SCFAs may play a vital role in the regulation of plasma glucose levels by 

increasing the gut hormones, peptide YY (PYY) and glucagon like peptide-1 (GLP-1) via 

activation of the free fatty acid receptor (Ffar)-2 and Ffar-3 (Karaki et al., 2008, Tazoe et 

al., 2009). GLP-1 regulates blood glucose levels by increasing the secretion of insulin and 

decreasing the secretion of glucagon by the pancreas (Barrera et al., 2011). Previous in 

vitro studies showed that propionate decreases the activity of hepatic 3-hydroxy-3-

methylglutaryl-CoA synthase (HMGCS) and 3-hydroxy-3-methylglutaryl-CoA reductase 

(HMGCR), thus it reduces the rate of cholesterol synthesis (den-Besten et al., 2013). 

SCFAs such as acetate, propionate and butyrate are associated with activation of G-

protein coupled receptor 43 (GPR43) on immune cells and mediates anti-inflammatory 

activity (Li et al., 2018). 

The Gut Microbiota in Obesity and T2DM 

 Obesity is one of the world's fastest growing health challenges and it is prevalent 

in both developed and developing countries. Obesity may increase the risk of many 

health problems, including T2DM, cardiovascular diseases and certain cancers (Segula, 

2014). Gut microbes impact host metabolism by affecting signaling pathways and it has 

been reported that obesity is associated with alteration of gut microbiota including higher 

Firmicutes/Bacteroidetes ratio (Kinlen et al., 2017). However, the exact mechanism 

linking gut microbiota to obesity and T2DM is not very clear mainly due to the diversity 

and complexity of the gut microbiota. Baothman and collegues (2016) reported that the 

composition of the gut microbiota is different in obese as compared to lean individual. 

The bacteria from phyla Firmicutes is increased and the bacteria from phyla 
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Bacteroidetes is decreased in obese individuals. This change in bacterial ratio has been 

shown to increased low-grade inflammation (Baothman et al., 2016).  

 Diet-induced obesity has been reported to increase the proportion of Eubacterium 

dolichum, belonging to the Firmicutes phylum (Turnbaugh et al., 2008). Obese Zucker 

rats had reduced Bifidobacterium counts as compared to lean rats (Waldram et al., 2009). 

Similar alteration in proportions of Firmicutes and Bacteriodetes have been found in the 

feces of obese humans. After the consumption of hypoenergic diet (low carbohydrates 

and low fat)  for a year, fecal proportion of Bacteroidetes were significantly increased 

with weight loss (Ley et al., 2006). A large-scale intervention trial demonstrated that 

consumption of hypoenergic diet and increased physical activity could change the 

composition of the gut microbiota of obese adolescents (Ley et al., 2006). After 

intervention, the proportion of Clostridium histolyticum, Clostridium lituseburense and 

Eubacterium rectale was significantly decreased, while the proportion of the 

Bacteroidetes–Prevotella group increased with significant weight reduction (8.1% of their 

body weight) (Nadal et al., 2009). Alteration in gut microbiota due to excess weight may 

be seen in early life as Kalliomäki and colleagues (2008) reported that during infancy, 

children maintaining normal weight had higher number of Bifidobacterium, whereas 

overweight children had an increased number of Staphylococcus aureus in their feces. 

 WD-induced obesity is characterized by low-grade inflammation, which has been 

related to alteration in the composition of the gut microbiota and increased plasma 

lipopolysaccharide (LPS) (Sanz et al., 2010). The transit of LPS into circulatory system 

known as metabolic endotoxemia, reflects the passage of bacterial fragments across the 

intestinal epithelial layer into the systemic circulation due to increased intestinal 
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permeability. Endotoxemia is associated with the reduction of Bifidobacterium, which 

helps in maintaining mucosal barrier function against pathogens (Sanz et al., 2010). A 

mouse model chronically infused with a dose of LPS to reach the same plasma LPS level 

as those measured in the WD-fed mice, was characterized with fasting hyperglycemia, 

obesity, steatosis, hepatic insulin resistance and hyperinsulinemia (Cani and Delzenne, 

2009). 

 Previous studies reported that T2DM is also associated with gut dysbiosis (Adachi 

et al., 2019). The concentration of butyrate-producing bacteria such as Roseburia 

intestinalis and Faecalibacterium prausnitzii has been found to be lower in T2DM, 

while Lactobacillus species and some pathogens such as Clostridium hathewayi, 

Clostridium ramosum, Clostridium symbiosum, and E. coli were higher in T2DM. 

Yassour and colleagues (2016) reported that lower concentration of Akkermansia 

muciniphila in gut could be a marker of glucose intolerance. In support of this finding, 

Zhang and colleagues (2013) found that there was decreased abundance of Akkermansia 

muciniphila in individuals with prediabetes. Individuals with T2DM showed an 

increased amount of Lactobacillus and reduced amount of Prevotella in feces as 

compared to healthy individuals (Sircana et al., 2018). The results of these studies 

reveal that the gut microbiota might play a significant role in the pathogenesis of 

obesity and T2DM. 

Nutrition and Health Value of Tart Cherry 

Tart cherry (TC), also known as Prunus cerasus, is a stone fruit belonging to the 

Rosaceae family (Kelley et al., 2018). Although, there are more than a hundred cultivars 

of cherries, they are grouped into two major types, the sweet and sour tart cherries. 
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Montmorency is the most commonly grown cultivar of TC in the US (Kelley et al., 

2018). The main characteristics related to cherry fruit are sweetness, color, sourness 

and firmness. Sweetness in cherries is mainly due to glucose and fructose, while 

sourness is primarily due to the presence of malic acid (Ferretti et al., 2010). Unlike 

flavonoid-containing green tea, TC has excellent palatability and familiarity to U.S. 

consumers due to its popularity in foods, such as pie, pastry fillings and juice products 

(Jayarathne et al., 2018). 

 The nutritional composition of cherries depends on the varieties of cherries 

(Commisso et al., 2017). The total fiber content of TC is approximately 1.1 g fiber per 

100 g of edible portion while its fructoologosaccaride (FOS) content of TC has been 

reported to be approximately 0.32 g per 100 g of edible portion (Jovanovic-Malinovska 

et al., 2014) and (USDA, 2014). Cherries contain both fat-soluble and water-soluble 

vitamins and some carotenoids such as beta-carotene (Ferretti et al., 2010). TC contains 

significantly higher amount of vitamin A and beta-carotene as compare to sweet 

cherries. Cherries also contain minerals such as magnesium (10 mg/100 g), calcium (14 

mg/100 g), potassium (200 mg/100 g) and phosphorous (20 mg/100 g) (Ferretti et al., 

2010).  

 During ripening, cherry changes from the initial green color to red with the 

accumulation of polyphenolic compounds (Serrano et al., 2005). Polyphenols are mainly 

concentrated in the skin and contribute to sensory and organoleptic qualities such as taste 

(Serrano et al., 2005). Polyphenols as previously discussed are considered as bioactive 

compounds that play an important role in maintaining the balance of gut microbiota, thus 

preventing immune dysregulation. Both sweet and sour cherries contain phenolic 
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compounds such as peonidin 3-rutinoside, cyanidin 3-glucoside, pelargonidin 3-

rutinoside, cyanidin, 3-sophoroside, pelargonidin 3-glucoside and cyanidin 3-rutinoside 

(Ferretti et al., 2010).  Sour cherries contain two to three times higher phenolic content 

compare to sweet cherries (Jayarathne et al., 2018). A study which investigated the total 

anthocyanins in sweet and sour cherries reported that total anthocyanins of sweet cherries 

were between 30 and 79 mg cyanidin-3-glucoside equivalents (CGE)/100 g, whereas total 

anthocyanins of sour cherries were between 45 and 109 mg CGE/100g (Serrano et al., 

2005).  

 The antioxidant capacity of sour cherry extract has been investigated using an 

ORAC (oxygen radical absorbance capacity) assay and it has been reported that the 

antioxidant capacity ranges from 1,145 to 1,916 μmol Trolox equivalents/100 g of sour 

cherry. These values are comparable to some berry fruits such as strawberry and are 

higher than apple and kiwi fruit (Ferretti et al., 2010).  In vivo, an animal model given 

sour cherry juice showed an increased activity of the antioxidant enzymes superoxide 

dismutase and glutathione peroxidase and a decrease in lipid peroxidation (Šarić et al., 

2009). In addition to this, a human study reported that consumption of TC juice (240 ml 

twice daily for 14 days) decreases the level of F(2)-isoprostane, a marker of oxidative 

damage (Traustadottir et al., 2009).  

 Obesity and T2DM is associated with low grade inflammation. In an animal 

model, TC-enriched diet reduced tissue inflammation and plasma level of pro-

inflammatory molecules such as interleukin-6 (IL-6), tumor necrosis factor-  (TNF- ) 

(Seymour et al., 2009). These alterations were associated with reduced levels of serum 

glucose, cholesterol and triglycerides (Seymour et al., 2009). Another study also reported 
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that consumption of TC juice by overweight and obese subjects for 4 weeks decrease 

very low density lipoprotein (VLDL) and triglyceride/high density lipoprotein (TG/HDL) 

ratio (Martin et al., 2011). In diabetic women, hemoglobin A1C and fasting blood 

glucose significantly decreased with consumption of TC juice at 40 ml/day for 6 weeks 

(Ataie-Jafari et al., 2008). Another study reported that TC extract prevents alloxan-

induced diabetes in rat and mice (Lachin, 2014). Due to these reported health benefits of 

TC, this study will further investigate the effects of TC on body composition, markers of 

glucose homeostasis, insulin resistance, and gut integrity in WD- fed mice. We will 

explore whether TC is able to prevent the adverse health effects of WD. If our findings 

are positive, TC will be an affordable alternative in managing WD-induced obesity and 

T2DM. 
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CHAPTER III 
 

 

MATERIALS AND METHODS 

Animals and Treatment Groups 

 Seventy-two 6-week old male C57BL/6 mice were purchased from Charles River 

Laboratory (Portage, MI). Mice were housed (3 mice per cage) at Oklahoma State 

University‘s environmentally controlled Laboratory Animal Research Facility. Following 

a 1-week acclimatization period, mice were randomly assigned to the following treatment 

groups (Table 2) in a 2 x 3 factorial design with diet (AIN93-M control diet or Western 

Diet, WD) and tart cherry (TC) (0 %, 5% and 10% TC, wt/wt) for 12 weeks 

(n=12/group). For the TC diet, Montmorency TC powder was provided by Cherry 

Marketing Institute and added at 5% and 10% wt/wt. The macronutrient as well as fiber, 

calcium and phosphorus contribution of TC was accounted for such that all TC diets have 

the same amounts of these nutrients to either control or WD (Table 3). Mice had access 

to food and deionized water ad libitum. Food intake was monitored daily and body 

weights were recorded on weekly basis. 

Necropsy and Tissue Processing 

 At the end of the 12 weeks‘ treatment, mice were fasted for 3 hours but mice had 

access to water. After fasting, body composition (i.e., lean mass, fat mass and body fat) 

was assessed using a whole body Piximus scan (GE Medical System Lunar, Madison,
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Table 2: Treatment groups 

  

 

 

 

 

WI) and blood was collected from the carotid artery. Blood was allowed to clot and 

serum samples were obtained by centrifugation of whole blood samples at 4
o
C for 10 

minutes at 1500 x g. An aliquot of each serum sample was transferred into 

microcentrifuge tubes and stored at -80
o 
C for further analyses. 

 The intestines, liver, white adipose tissue, pancreas, spleen, cecum, heart and 

thymus were collected, weighed and snapped-frozen. Colon length was measured with a 

ruler. The ileum and colon were flushed with ice-cold saline (0.9% NaCl), and a small 

portion of ileum and colon was cut and stored in 10 % neutral buffered formalin (NBF) 

for histological analysis. From the remaining ileum and colon, the lamina propria was 

removed and collected in microcentrifuge tubes and stored at -80
o 
C for gene expression 

analyses. In addition, the cecum was harvested and its content was flushed with ice-cold 

saline into pre-weighed 15 ml centrifuge tubes. Cecal tissue was weighed and snap-

frozen. Flushed cecal content was centrifuged at 4
o
C for 5 minutes at 1200 rpm, 

supernatant was discarded, weighed and kept frozen at -80
o 
C for analysis of cecal 

microbiota. 

 

Group Dietary Treatment (n=12 mice/group) 

1 Control diet (C ) (AIN-93M) 

2 C +5% (wt/wt) Tart cherry (TC) 

3 C +10% (wt/wt)  TC  

4 Western  diet (WD) (45% fat kcal and 35% sucrose kcal) 

5 WD  + 5% (wt/wt) TC  

6 WD + 10% (wt/wt) TC  
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Table 3. Diet composition 

1
Tart cherry composition (TC, %): moisture, 14.2; carbohydrates, 65.4; protein, 3.82; fat, 

0.545; fiber, 1.07; ash, 16.0; calcium, 0.0403; phosphorus, 0.0754; (NP Analytical 

Laboratories, St. Louis, MO).
2
Complete mineral mix (TD94049, Harlan-Teklad 

Laboratories) was used for the control diet and a calcium and phosphorus deficient 

mineral mix (TD 98057, Harlan-Teklad Laboratories) was used for the TC and WD diets.   

 

 

Ingredients Control 

 (C) 

C+ 

5%TC 

C+ 

10%TC 

Western 

diet  

(WD) 

WD + 

5%TC 

WD +  

10% TC 

   g/kg diet    

Tart cherry
1 

- 50 100 - 50 100 

Corn Starch 466 433.3 400.6 34 34 34 

Sucrose 100 100 100 308.5 308.5 308.5 

Dextrinized  

Cornstarch 

155 155 155 123.5 90.8 58.1 

Casein 140 138.09 136.18 173 171.09 169.18 

Soybean Oil 40 39.728 39.45 49.4 49.128 48.855 

Lard 0 0 0 188.9 188.9 188.9 

Cellulose 50 46.9 49.46 61.7 61.165 60.63 

Mineral Mix
2 

 35 35 35 16.54 16.54 16.54 

Vitamin 

Mix(AIN 

93VX)
 

10 10 10 12.3 12.3 12.3 

Calcium 

carbonate  

12.5 12.45 12.399 15.42 15.37 15.32 

Tertbutylhydro

quinone 

 (TBHQ)  

0.008 0.008 0.008 0.008 0.008 0.008 

L-cystine 1.8 1.8 1.8 2.2 2.2 2.2 

Sucrose 1.1 1.19 1.28 1.37 1.45 1.54 

Choline 

bitartrate 

2.5 2.5 2.5 3.1 3.1 3.1 

Sodium 

phosphate, 

monobasic 

5.6 5.528 5.461 6.905 6.837 6.77 

Potassium 

phosphate, 

monobasic 

2.4 2.378 2.349 2.97 2.941 2.912 
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Gut Microbiota Analysis 

For the determination of possible changes in the gut microbiota affected by TC 

supplementation, frozen cecal samples were shipped on dry ice to University of 

California at Davis‘ Mouse Metabolic Phenotyping Center (MMPC) and Host Microbe 

Systems Biology Core. Total DNA was extracted using Mo-Bio (now Qiagen) 

PowerFecal kit. Sample libraries were prepared and analyzed by barcoded amplicon 

sequencing. In brief, the purified DNA was amplified on the V4 region of the 16S rRNA 

genes via PCR using the following primers: F319 (5‘ACTCCTACGGGAGG 

CAGCAGT-3‘) and R806 (5‘GGACTACNVGGGTWTCTAAT-3‘). High-throughput 

sequencing was performed with Illumina MiSeq paired end 250-bp run. The data derived 

from sequencing was processed using QIIME2 for 16S based microbiota analyses. 

Demultiplexed paired end sequences that already had barcodes and adapters removed 

were analyzed using Qiime 2 version 2018.4. For quality filtering and feature 

(operational taxonomic unit; OTU) prediction, we used DADA2 (Callahan et al., 2016). 

Upon reviewing the sequence quality data, we trimmed 0 nucleotides (nts) from the 5‘ 

end of the forward and 0 nts from the reverse reads. Forward reads were truncated to 270 

nts and reverse reads to 220 nts. Representative sequences were aligned using MAFFT 

(Katoh and Standley., 2013).  

A phylogenetic tree of the aligned sequences was made using FastTree 2 (Price et 

al., 2010). OTUs/features were taxonomically classified using a pre-trained Naive Bayes 

taxonomy classifier. The classifier was trained using the Silva 128 97% OTUs (Quast et 

al., 2013) for the 319F-806R region. Tables of taxonomic counts and percentage (relative 

frequency) were generated. Diversity analyses were run on the resulting OTU/feature 
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.biom tables to provide both phylogenetic and non-phylogenetic metrics of alpha and beta 

diversity (Lozupone et al., 2011).  

Short Chain Fatty Acids (SCFAs)  

 Cecal and fecal SCFAs (i.e., acetic, propionic, butyric, isobutyric, valeric, 

isovaleric, caproic and heptanoic acids) content were determined according to a 

previously published method (Ojo et al., 2016). Cecal samples and fecal samples were 

suspended in ice-cold Millipore water. An internal standard (10 mM of 2-ethylbutyric 

acid in 12% formic acid) was spiked into the sample suspension resulting in a final 

concentration of 1 mM internal standard. The pH of the resulting cecal and fecal 

homogenates was adjusted to 2 -3 using 5M hydrochloric acid. Samples were incubated 

at room temperature for 10 min followed by centrifugation. The resulting supernatants 

were filtered using 0.45 mm polytetrafluoroethylene syringe filters. Gas chromatographic 

analyses was done at Robert M. Kerr Food and Agricultural Products Center (Oklahoma 

State University, Stillwater, OK). Gas chromatographic (GC) analysis was performed 

using an Agilent 6890N GC system with a flame ionizable detector and an automatic 

liquid sampler (Agilent Technologies) as previously described (Ojo et al., 2016). A 5-

point calibration was done by use of standard solutions of acetic, propionic, butyric, 

valeric, isovaleric, isobutyric, caproic and heptanoic acids (Sigma-Aldrich). 

Gene Expression by Real-time Quantitative Reverse Transcription Polymerase 

Chain Reaction (qRT-PCR) 

 Relative expression of genes related to gut barrier integrity (zonulin-1, ZO-1; 

claudin; occludin), SCFAs receptor (G-protein coupled receptor, GPR43), mucus layer 

formation (mucin2, MUCN2), antimicrobial peptide (regenerating islet-derived protein 3-
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gamma, Reg3- γ; regenerating islet-derived protein 3-beta, Reg3‐) and pro-

inflammatory cytokines (tumor necrosis factor-α, TNF-a; interleukin-6, IL-6) in each 

treatment group was determined from the colon and ileum lamina propria using qRT-

PCR. Total RNA was extracted from the colon and ileum lamina propria using Trizol 

reagent (Sigma-Aldrich). The concentration of the extracted RNA was verified using a 

nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE) and agarose gel 

electrophoresis was used to verify the quality of the 18S and 28S rRNA. The qRT-PCR 

analysis was performed using SYBR green chemistry on an ABI 7900HT sequence-

detection system instrument and 2.4 SDS software (Applied Biosystems, CA). The 

relative mRNA abundance was calculated by use of the 2−
ΔΔCt

 method, and the invariant 

control gene was cyclophilin. Primer sequence used are shown in Table 4. 

 Table 4: Primer Sequence List for qRT- PCR 

Symbol Name Sequence 

Cyclo Cyclophilin QF 5‘- GGTCTTTGGGAAGGTGAAAGAA -3‘ 

QR 5‘- GCCATTCCTGGACCCAAAA -3‘ 
 

IL-6 Interleukin 6 QF 5‘- GAGGATACCACTCCCAACAGACC -3‘  

QR 5‘- AAGTGCATCATCGTTGTTCATACA -3‘ 
 

Cldn Claudin QF 5‘- CTGACCAAGAGCGAACACAA -3‘ 

QR 5‘- CATGACTGGAGGCAACTGGA -3‘ 
 

Muc2 Mucin-2 QF 5‘- ACCCGAAGAAAGATGGATCG-3‘ 

QR 5‘- CATAGTCAGATGGGGGTGGA -3‘ 
 

Ocln Occludin QF 5‘- AGCCTGGTTGTTTAGGAGCA -3‘ 

QR 5‘- CAGAATACGGCTCCTTCCTG -3‘ 
 

ZO-1 Zonula occluden 1 QF 5‘- TGGGAATGGAGTAACAAT -3‘ 

QR 5‘- GGCAACTTCACCTCACAT-3‘ 
 

Reg3-β Regenerating islet derived 

protein 3 beta 
QF 5‘- CCATCTTCACGTAGCAGC -3‘ 

QR 5‘- CAAGATGTCCTGAGGGC -3‘ 
 

Reg3-γ Regenerating islet derived 

protein 3 gamma 

QF  5`- CTTCCCGGTGCAGTACAAGT-3` 

QR  5 - GCTCTTGGGTGAAGTTCTCG-3` 

GPR43 G-protein-coupled receptor-
43 

QF 5‘- CTGAGGTCAATCTGCCCAAGTAC -3‘ 
QR 5‘- CTTCACAGAGCAATGACTCCAAAG -3‘ 

TNF-α Tumor necrosis factor alpha QF 5‘- CTGAGGTCAATCTGCCCAAGTAC -3‘ 
QR 5‘- CTTCACAGAGCAATGACTCCAAAG-3‘ 
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Histology of Colon and Ileum 

  Ileum and colon tissues fixed in 10% neutral buffered formalin were dehydrated 

(Shandon Citadel 2000 Waltham, MA) with 70% ethanol, 80% ethanol, 95% ethanol, 

100% ethanol, and toluene using an automated tissue processor (Shandon Citadel 2000 

Waltham, MA). Next, tissues were embedded in paraffin blocks and 5 μm paraffin 

section was cut using a microtome (Leica Biosystems Wetzlar, Germany) followed by 

H&E staining for structural analysis. Image j software (Schneider et al., 2012) was used 

to analyze villi height, villi width, villi area, and crypt depth.   

Glucose Tolerance Test (GTT) and Homeostatic Model Assessment of Insulin 

Resistance (HOMA-IR) 

 Fasting blood glucose was determined from tail blood following food deprivation 

for six hours. GTT was performed prior to necropsy. Mice were fasted for 6 hours prior 

to GTT. Each mouse was injected intraperitoneally with a 20% glucose solution at a dose 

of 2 g/kg body weight. Blood glucose was measured from tail blood samples at 0, 5, 15, 

30, 60, and 120 minutes after glucose injection. To examine glucose tolerance, total area 

under the curve (tAUC) for glucose was calculated (Lucas et al., 2011).  

 Insulin resistance was calculated by the HOMA-IR equation described previously 

(Matthews et al., 1985).  

HOMA-IR = (fasting insulin (µU/ml) * fasting glucose (mmol/l)/22·5 

Serum Lipids 

 The concentrations of total cholesterol, triglycerides, and non-esterified fatty 

acids (NEFA) was determined from serum samples using an automated chemistry 

analyzer (BioLis 24i, Carolina Chemistry, Winston-Salem, NC) following the 
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manufacturer‘s instructions. For total cholesterol determination, cholesterol esters are 

hydrolyzed to free cholesterol and fatty acids by cholesterol esterase. The free cholesterol 

generated is subsequently oxidized by cholesterol oxidase to cholesterol-4-en-3-one and 

hydrogen peroxide, which upon the action of peroxidase, forms a quinone dye, whose 

absorbance can be read at 505 nm giving a proportional value to the total cholesterol 

present in the sample. The principle of triglyceride determination involves lipase 

hydrolysis of triglycerides to glycerol and free fatty acids. This is followed by 3 coupled 

enzymatic steps which uses glycerol kinase, glycerophosphate oxidase and peroxidase, 

resulting in the formation of a colored complex which forms a red quinoneimine dye 

whose absorbance can be read at 520 nm with the value directly proportional to the 

triglyceride concentration in the sample. 

NEFA measurement follows the principle of formation of acyl-CoA when NEFA 

is exposed to acyl-CoA synthetase in the presence of ATP and CoA. Acyl-CoA is 

oxidized by acyl-CoA oxidase to produce hydrogen peroxide, which allows for the 

condensation of 3-methyl-N-ethyl-N-(bhydroxyethyl)- aniline with 4-aminoantipyrine in 

the presence of an added peroxidase to form a purple-colored product whose absorbance 

can be measured at 550 nm, correlating to the amount of NEFA present in the sample. 

Pancreatic-, Gut- and Adipose-derived Hormones 

Concentrations of serum hormones (ghrelin, gastric inhibitory peptide (GIP), 

glucagon, insulin, leptin, plasminogen activator inhibitor 1 (PAI-1) and resistin) were 

determined using a mouse 8-plex assay kit according to the manufacturer‘s instructions. 

Fluorescently dyed nanobeads with unique individual spectral address were used to allow 

multiple detection of different molecules in a single well of a 96-well plate (Houser, 
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2012). Analytes were quantified using a Bio-Plex MAGPIX Multiplex Reader (Bio-Rad 

Laboratories Inc., Hercules, CA). Concentrations of analytes were determined using the 

Bio-Plex Manager (6.1) software.          

Statistical Analyses 

 For the microbiome data, beta diversity analyses were carried out using the Bray- 

Curtis matrix. Principal coordinate analyses (PCoA) of the first two coordinates were 

plotted and comparison between groups was performed in R software (v.3.6.1) with 

permutational multivariate analysis of variance (PERMANOVA). Using the generated 

tables of relative phylum and genus abundance, differences between the dietary treatment 

groups were determined using the Kruskal-Wallis test (SAS version 9.4, NC, USA). 

Statistically significant results were further subjected to a post-hoc analysis using Dunn‘s 

test (Dunn.test package in R software). P-values were false discovery rate (FDR)-

corrected with the Benjamini-Hochberg procedure (p.adjust function in R software).  

For all other data, a Shapiro Wilks test was performed to assess whether data for 

continuous variables was normally distributed. After this, normally distributed data was 

analyzed using 2-way ANOVA, with WD and TC as factors and Tukey was used as a 

post-hoc test. Analyses were conducted using SAS 9.4 software (SAS Institute, NC, 

USA). Data presented are means ± SEM and a P- value <0.05 was considered statistically 

significant. The P-value for interaction (WD x TC) and main effect P-values (WD, TC) 

were given.
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CHAPTER IV 
 

 

RESULTS 

This study evaluated the effects of tart cherry (TC) supplementation in the context 

of normal (control) and western diet (WD) on changes in the gut (i.e., microbiota, short 

chain fatty acids (SCFAs) production and markers of gut integrity) and its impact on 

body composition, blood glucose, lipid profile, and hormones in C57BL/6 mice. 

Body Weight, Food Intake, Body Composition and Tissue Weights  

Body weights were similar prior to the initiation of dietary treatments (Table 5 

and Figure 1). After only 2 weeks of dietary treatment, the body weight of mice fed the 

WD was significantly higher (p<0.05) as compared to control groups until the end of the 

12-week study (Figure 1). TC was not able to prevent the increase in body weight due to 

consumption of WD. The average food intake per day for the entire duration of the study, 

showed that there was significant reduction of food intake with WD (p<0.0001, Table 5) 

which is most likely due to the higher caloric density of the WD. There was also a 

significant interaction effect (p<0.0001, Table 5) on average daily food intake with the 

addition of TC to the control diet increasing food intake while decreasing if added to the 

WD.  

Relative weight of the spleen, heart, pancreas and thymus were unaffected by WD 

and TC supplementation (Table 5). Similarly, the length of the colon was unaffected by 
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WD and TC supplementation. However, relative liver weight was significantly lower in 

the WD-fed groups (p=0.001) while relative cecum weight was significantly increased 

(p=0.007) with TC supplementation in both control and WD-fed groups (Table 5). As 

expected, the relative weights of the abdominal (p=0.0003) and peri-renal fat (p=0.017) 

fat were significantly higher in the WD-fed mice compared to those fed the control diet 

(Table 5). Addition of TC to the WD was not able to prevent fat accumulation. 

Whole body composition was also assessed by a densitometer (PixiMus) at the 

end of dietary treatment. WD and TC has no effect on lean mass; however, WD 

significantly increased total fat mass (p=0.007) and percentage body fat (p=0.045), but 

no main effect of TC on these parameters (Table 5). There tends to be an interaction 

effect of WD and TC on lean mass (p=0.087), fat mass (p=0.091) and % body fat 

(p=0.073). TC tend to increase lean mass in the control group but decrease in WD while 

decreasing fat mass in the control group and decreasing in the WD-fed groups. 

Gut Microbiota Composition  

 The effect of 12 weeks TC supplementation in preventing gut dysbiosis due to 

WD feeding was assessed on the cecal content. β-diversity using the Bray-Curtis distance 

metrics revealed a notable clustering among the TC supplemented groups and the non-

supplemented groups (Figure 2A). Addition of 5% TC to the control diet did not cause 

significant alteration in bacterial phylum (data not presented) but increased the lactate-

producing phyla, Actinobacteria at 10% dose (p=0.018) (Table 6B). WD significantly 

decreased the bacterial phyla Proteobacteria (p=0.017) and Bacteroidetes (p=0.033) 

while increasing the ratio of Firmicutes to Bacteroidetes (p=0.038) in comparison to the 

control group (Table 6A). Bacteriodetes, an acetate and propionate-producing phylum, 
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was 42% lower (p=0.033) in WD group as compared to control (Table 6A) and TC 

tended (p=0.055) to further decreased (74% reduction) these bacterial phyla when added 

to the WD (Table 6D). Similarly, WD significantly increased Firmicutes/Bacteriodetes 

ratio (p=0.038) compared to the control (Table 6A). This change is associated with low-

grade inflammation and reduction in barrier function, but was further increased 

(p=0.048) by the addition of 10% TC to the WD (Table 6D). TC added at 10% level 

significantly increased the lactate-producing phyla, Actinobacteria, in both the control 

(p=0.018) and WD (p=0.010) (Table 6B and 6D). The pro-inflammatory bacterial phyla, 

Deferribacteres, tended to be increased by WD (p=0.094) (Table 6B) which was 

significantly reduced by approximately 86% (p=0.005) with 10% TC supplementation 

(Table 6D). Saccharibacteria, responsible for mucosal inflammatory response in T2DM, 

tended to increase (p=0.059) in WD as compared to control (Table 6A) which was 

reduced by the addition of 5% TC (p=0.039) (Table 6C). 

 Similar to the phylum level, there is no significant alterations in bacterial genus 

with the addition of 5% TC to the control diet (data not presented) but the 10% TC dose 

significantly reduced Bacteroides (p=0.028) (Table 7B). Bacteroides was not affected by 

WD (Table 7A) or 5% TC (Table 7C) but the addition of 10% TC to the WD 

significantly reduced this genus (p=0.019) (Table 7D). The Intestinimonas tended 

(p=0.073) to be increased by WD (Table 7A) and was significantly reduced by both 

doses of TC in WD (p=0.037 and p=0.0003 for 5% and 10% TC, respectively) (Table 

7C and 7D). Similarly, WD tended (p=0.094) to elevate Mucispirillum (phylum 

Deferribacteres) as compared to control, but was only significantly reduced with 10% TC 

in both control and WD (p= 0.093 and p= 0.005) (Table 7B and 7D). Lastly, the 
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WD+10% TC but not the WD+5% TC group had a higher abundance (p=0.037) of the 

Ruminococcaceae UCG-014 genus compared to the WD group (Table 7D). 

Cecal Content and Fecal Short Chain Fatty Acids 

 After 90 days of treatment, weight of the cecal content was significantly increased 

with TC supplementation (p=<.0001) in both control and WD (Table 8). The SCFAs 

concentrations of the cecal content and feces were assessed by gas chromatography. TC 

supplementation was able to increase SCFAs production both in the cecal content and in 

the feces. In general, WD has no effect on SCFAs of the cecal content but tended to 

increase n-butyric (p=0.0778), i- valeric (p=0.0893), and n-valeric (p=0.0735) acids. 

Addition of TC significantly increased propionic (p=0.0212), i-butyric (p=0.0183), i-

valeric (p=0.0126) n-valeric (p=0.0261), n-heptanoic (p=0.0485) acids and tended to 

increased n-butyric (p=0.0608) and n-caproic (p=0.0942) acids in the cecal content of 

both control- and WD-fed groups (Table 8).  

Fecal SCFAs analysis showed that WD significantly reduced fecal propionic acid 

(p=0.0149) by approximately 25% but this SCFA was not affected by TC (Table 8). 

Fecal concentrations of n-butyric (p=0.0001) and n-valeric (p=0.0011) acids were 

reduced by WD and was increased by TC (p=0.0177 and p=0.0561 for n-butyric and n-

valeric acids, respectively). A significant interaction was observed in fecal n-butyric acid 

content, with TC supplementation increasing n-butyric acid more in the control group 

(p=0.0286) (Table 8).  

Relative Expression of Genes Related to Gut Health 

The effects of WD and TC on the expression of genes related to gut health were 

examined by qRT-PCR in both the ileum and colon. Ileal expression of intracellular 
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scaffolding protein, zonulin-1 (ZO-1) and the short chain fatty acid receptor (G-protein 

coupled receptor, GPR43) were unaffected by treatments (Figure 3A). Similarly, genes 

encoding for mucus layer formation (MUCN2) and antimicrobial peptide (regenerating 

islet-derived protein 3 beta, Reg3-β) were unchanged in the ileum relative to the control 

group (Figure 3B). To determine if WD contributed to a local inflammatory response in 

the gut and whether TC affected this response, gene expression of inflammatory 

mediators was evaluated in the ileum lamina propria. Ileal gene expression of cytokines 

considered pro-inflammatory (tumor necrosis factor-α, TNF-α and interleukin-6, IL-6) 

were unaffected by both WD and TC treatments (Figure 3C).  

No statistical differences were detected with WD and TC, on the relative 

expression of genes related to the tight junction proteins (ZO-1, occludin, and claudin), 

SCFAs receptor (GPR43), antimicrobial peptides (Reg3-γ) and mucus layer production 

(MUCN2) in the colon (Figure 4A-C). 

Gut Structural Analysis 

 Histological analysis of villi and crypt structures were performed on the ileum and 

colon. Representative histological images for each of this region of the intestine are 

shown in Figure 5. WD significantly reduced ileal villi height (p=0.0348), width 

(p=0.0042) and area (p=0.0132), but no change in crypt depth was observed (Table 9). 

TC supplementation has no effect on villi parameters and crypt depth of the ileum. 

Similar with the ileum, there was no significant effect of TC on colonic crypt depth but 

WD tended (p=0.0804) to increase this colonic parameter (Table 9). 

Glucose and Lipid Parameters  
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To determine the effects of TC supplementation on glucose homeostasis, a 

glucose tolerance test was conducted. Additionally, HOMA-IR was calculated from the 

fasting glucose and insulin concentrations. In a similar pattern to the results of body fat 

mass and % body fat by densitometry, fasting blood glucose level (p=0.001) was 

significantly increased with WD diet and TC doses were unable to modulate fasting 

blood glucose (Table 10). To further assess the effects of treatment on glucose 

homeostasis, a glucose tolerance test (Figure 6A) and the glucose total area under curve 

(tAUC) was calculated (Figure 6B). Data from glucose tolerance test showed that WD-

fed mice had approximately 24 % higher (p=0.0007) blood glucose compare to control 

prior to glucose injection (baseline, 0 minutes) and 38% higher (p=0.0053) blood glucose 

after 30 minutes of injection as compare to control (Figure 6A). There was a main effect 

of WD increasing (p=0.012) the glucose tAUC after as glucose tolerance test with TC not 

exerting any effects (Figure 6B). Additionally, insulin resistance was estimated by 

utilizing the homoeostatic model assessment of insulin resistance (HOMA-IR). Similar to 

the effects in glucose tAUC, WD significantly increased (p=0.005) HOMA-IR and TC 

significantly improved (p=0.0003) this marker of insulin resistance (Table 10). There 

also tended (p=0.061) to be an interaction effects of the WD and TC treatment (Table 

10). The 5% TC supplementation tends to be more effective in lowering HOMA-IR both 

in the control and WD. 

Furthermore, the effects of dietary treatment on lipid parameters were assessed by 

measuring serum cholesterol, triglycerides and non-esterified fatty acids (NEFA) (Table 

10). Serum triglycerides (p=0.002) and cholesterol (p<0.0001) were significantly 

increased with WD diet and TC supplementation was not able to reduce serum 



41 
 

cholesterol and triglycerides due to WD diet feeding. TC tends (p=0.062) to increase 

serum triglycerides. Surprisingly, TC supplementation significantly increased serum 

NEFA (p=0.025)  as compare to control and WD diet group (Table 10).  

Pancreatic-, Gut- and Adipose-derived Hormones  

 In order to determine the effect of TC supplementation on pancreatic-, gut- and 

adipose-derived hormone, Bioplex Multiplex assay was used to assess the level of these 

markers in serum. In this study, dietary treatments had no effect on insulin, ghrelin, 

gastric inhibitory peptide (GIP) and glucagon (Table 11). However, serum concentrations 

of leptin (p=0.0011), plasminogen activator inhibitor 1 (PAI1) (p=0.0344) and resistin 

(p=0.0012) were significantly increased with WD diet as compared to control group 

(Table 11). TC had not effects on these parameters except for tending to increase 

(p=0.0827) PAI1. 
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Figure 1. Weekly body weights  

 

 

Body weights over the course of the 12-week study. Animals (n=12/group) were 

assigned to six different treatment groups in a 2x3 factorial design. Factors were 

diet (control or WD diet) and tart cherry (TC, 0 %, 5%, and 10 % wt/wt). Groups 

with the same color line had the same level of tart cherry. Baseline weights are 

indicated by week 0 while final indicates weight at necropsy. Asterisk denote 

main effect (p< 0.05) by WD diet. 
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Table 5. Food intake, body weight, tissue weight and body composition  

 Control (C) C + 5% TC C + 10% TC WD WD + 5% TC WD + 10% TC P-value 

WD 

P-value 

TC 

P-value 

TC*WD 

Food Intake 

(g/day/mice) 
2.97±0.05c 3.36±0.06ab 3.47±0.06a 3.27±0.06b 2.70±0.04d 2.83±0.08cd 

<0.0001 0.1273 <0.0001 

Body weights 

Baseline (g) 22.52±0.34 22.35±0.37 22.63±0.43 22.84±0.28 22.69±0.38 22.47±0.27 0.5627 0.8912 0.7139 

Final (g) 32.55±0.85 31.29±0.91 30.55±0.85 34.40±1.15 34.35±1.19 35.60±1.98 0.0012 0.8947 0.4513 

Tissue weights (% of total body weight) 

Liver 4.86±0.11 4.60±0.11 4.65±0.09 4.20±0.08 4.24±0.23 4.35±0.24 0.001 0.759 0.469 

Thymus 0.13±0.01 0.15±0.02 0.13±0.02 0.15±0.02 0.13±0.02 0.16±0.02 0.540 0.867 0.300 

Spleen 0.31±0.03 0.35±0.02 0.37±0.02 0.29±0.02 0.34±0.04 0.41±0.10 0.884 0.212 0.807 

Pancreas 0.45±0.03 0.50±0.03 0.47±0.01 0.48±0.02 0.48±0.03 0.46±0.02 0.818 0.465 0.639 

Heart 0.39±0.02 0.43±0.02 0.48±0.02 0.41±0.02 0.43±0.02 0.41±0.03 0.434 0.186 0.144 

Cecum 0.15±0.02 0.15±0.02 0.24±0.02 0.14±0.02 0.16±0.02 0.16±0.02 0.104 0.007 0.199 

Colon Length 7.12±0.20 7.50±0.27 7.70±0.02 7.09±0.24 7.08±0.31 7.36±0.29 0.21 0.229 0.705 

Abdominal fat  3.62±0.30 3.59±0.34 2.68±0.35 4.93±0.30 4.56±0.75 4.74±0.58 0.0003 0.4530 0.4752 

Perirenal fat  1.78±0.18 1.82±0.20 1.33±0.21 2.19±0.21 2.08±0.40 2.26±0.34 0.017 0.754 0.417 

Body composition 

Lean mass(g) 22.70±0.59 22.79±0.49 23.91±0.57 24.01±0.60 24.11±0.57 23.14±0.42 0.166 0.947 0.087 

Fat mass (g) 10.79±0.91 9.40±0.84 7.39±0.68 11.40±1.03 11.46±1.67 13.58±2.13 0.007 0.853 0.091 

% body fat 31.82±2.19 28.78±1.96 23.22±1.79 31.42±1.97 31.20±3.48 34.83±3.91 0.045 0.6235 0.073 

Values are mean ± S.E (n=12/group). Within a row, values with unlike superscript letters are significantly different (p ≤ 0.05) from each other. TC, tart 

cherry; WD, Western diet. 
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Figure 2.  Gut microbiota composition (n=6 animals per group) 
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Table 6. Mean percent relative abundance of cecal bacterial phyla in C57BL/6 mice fed a C or WD supplemented 

with 5% or 10% TC 

 A 

 
 

Control(C) Western diet (WD) C vs WD  

 mean SEM mean SEM Changes (%) Padjusted 

Actinobacteria 0.17 0.06 0.28 0.09 65 0.256 

Deferribacteres 0.80 0.14 1.96 0.39 145 0.094 

Proteobacteria 0.48 0.12 0.14 0.03 -71 0.017 

Saccharibacteria 0.47 0.11 1.72 0.44 265 0.059 

Firmicutes 84.08 1.38 87.14 1.01 4 0.152 

Bacteroidetes 13.11 1.14 7.65 0.97 -42 0.033 

Firmicutes/Bacteriodetes  ratio 6.75 0.79 12.83 2.41 90 0.038 

Values are mean percent ± S.E (n=6/group). Padjusted values are based on Kruskal-Wallis rank sum test followed by post-hoc 

analysis using Dunn‘s test. 

B 

 

 

 

 

 

 

 

 

 

 

Values are mean percent ± S.E (n=6/group). Padjusted values are based on Kruskal-Wallis rank sum test followed by post-hoc 

analysis using Dunn‘s test. No significant changes were observed at phylum level between C and C + 5% TC. TC, tart cherry; 

WD, western diet 

 

 Control(C) C+10 %TC C vs C+10% TC  

 mean SEM mean SEM Changes (%) Padjusted 

Actinobacteria 0.17 0.06 0.56 0.11 229 0.018 

Deferribacteres 0.80 0.14 0.54 0.36 -33 0.093 

Proteobacteria 0.48 0.12 0.19 0.04 -60 0.135 

Saccharibacteria 0.47 0.11 1.33 0.57 182 0.221 

Firmicutes 84.08 1.38 85.76 1.13 2 0.325 

Bacteroidetes 13.11 1.14 10.03 0.85 -23 0.187 

Firmicutes/Bacteriodetes  ratio 6.75 0.79 8.96 0.95 33 0.187 
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C 

 Western diet (WD) WD + 5% TC WD vs 

WD+5%TC 
 

 mean SEM mean SEM Changes (%) Padjusted 

Actinobacteria 0.28 0.09 0.45 0.12 61 0.163 

Deferribacteres 1.96 0.39 1.24 0.40 -37 0.178 

Proteobacteria 0.14 0.03 0.11 0.04 -21 0.265 

Saccharibacteria 1.72 0.44 1.45 0.29 -16 0.039 

Firmicutes 87.14 1.01 91.82 1.25 5 0.107 

Bacteroidetes 7.65 0.97 4.30 1.12 -44 0.194 

Firmicutes/Bacteriodetes ratio 12.83 2.41 28.77 5.93 61 0.194 

Values are mean percent ± S.E (n=6/group). Padjusted values are based on Kruskal-Wallis rank sum test followed by post-hoc analysis 

using Dunn‘s test. TC, tart cherry 

 

D 

 Western diet (WD) WD +10% TC 
WD vs 

WD+10%TC  

 mean SEM mean SEM Changes (%) Padjusted 

Actinobacteria 0.28 0.09 1.04 0.21 271 0.010 

Deferribacteres 1.96 0.39 0.27 0.08 -86 0.005 

Proteobacteria 0.14 0.03 0.05 0.02 -64 0.101 

Saccharibacteria 1.72 0.44 2.45 0.72 42 0.404 

Firmicutes 87.14 1.01 90.11 1.83 3 0.199 

Bacteroidetes 7.65 0.97 1.98 0.48 -74 0.055 

Firmicutes/Bacteriodetes ratio 12.83 2.41 59.83 13.10 366 0.048 

Values are mean percent ± S.E (n=6/group). Padjusted values are based on Kruskal-Wallis rank sum test followed by post-hoc 

analysis using Dunn‘s test. TC, tart cherry 
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Table 7. Mean percent relative abundance of cecal bacterial genera in C57BL/6 mice fed a C or WD 

supplemented with 5% or 10% TC 

A 

 Control (C) Western diet (WD)  C vs WD  

 mean SEM mean SEM Changes (%) Padjusted 

Lactobacillus 4.09 1.09 2.64 1.64 -35 0.171 

Parasutterella 0.38 0.11 0.08 0.03 -79 0.028 

Bacteroides 3.81 0.56 2.23 0.53 -41 0.116 

Mucispirillum 0.80 0.15 1.96 0.39 145 0.094 

Intestinimonas 5.21 1.05 11.02 1.58 112 0.073 

Ruminococcaceae UCG-014 1.05 0.33 1.00 0.19 -5 0.456 

Values are mean percent ± S.E (n=6/group). Padjusted values are based on Kruskal-Wallis rank sum test followed by post-hoc analysis 

using Dunn‘s test. 

 

B 

 Control (C) C +10% TC 
C vs 

C+10%TC  

 mean SEM mean SEM Changes (%) Padjusted 

Lactobacillus 4.09 1.09 2.66 0.46 -35 0.438 

Parasutterella 0.38 0.11 0.15 0.03 -61 0.179 

Bacteroides 3.81 0.56 1.41 0.27 -63 0.028 

Mucispirillum 0.80 0.15 0.54 0.36 -33 0.093 

Intestinimonas 5.21 1.05 4.44 1.20 -15 0.389 

Ruminococcaceae UCG-014 1.05 0.33 6.27 3.59 499 0.224 

Values are mean percent ± S.E (n=6/group). Padjusted values are based on Kruskal-Wallis rank sum test followed by post-hoc 

analysis using Dunn‘s test. No significant changes were observed at genera level between C and C + 5% TC.TC, tart cherry; WD, 

western diet 
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C 

 Western diet (WD) WD+5 % TC  
WD vs 

WD+5%TC  

 mean SEM mean SEM Changes (%) Padjusted 

Lactobacillus 2.64 1.64 1.80 0.40 -32 0.400 

Parasutterella 0.08 0.03 0.05 0.02 -38 0.246 

Bacteroides 2.23 0.53 1.19 0.45 -47 0.135 

Mucispirillum 1.96 0.39 1.25 0.40 -36 0.178 

Intestinimonas 11.02 1.58 4.17 0.96 -62 0.037 

Ruminococcaceae UCG-014 1.00 0.19 1.57 0.42 57 0.298 

Values are mean percent ± S.E (n=6/group). Padjusted values are based on Kruskal-Wallis rank sum test followed by post-hoc analysis 

using Dunn‘s test. TC, tart cherry 

 

D 

 Western diet (WD) WD +10% TC 
WD vs 

WD+10%TC  

 mean SEM mean SEM Changes (%) Padjusted 

Lactobacillus 2.64 1.64 1.44 0.38 -45 0.489 

Parasutterella 0.08 0.03 0.03 0.02 -67 0.149 

Bacteroides 2.23 0.53 0.32 0.13 -86 0.019 

Mucispirillum 1.96 0.39 0.27 0.08 -86 0.005 

Intestinimonas 11.02 1.58 1.73 0.79 -84 0.0003 

Ruminococcaceae UCG-014 1.00 0.19 3.86 0.59 287 0.037 

Values are mean percent ± S.E (n=6/group). Padjusted values are based on Kruskal-Wallis rank sum test followed by post-hoc analysis 

using Dunn‘s test. TC, tart cherry  
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Table 8. Cecal content weight and short chain fatty acids (SCFAs) 

Cecal 

content (mg) 
215.0±17.0 228.0±17.0 290.0±17.0 208.0±14.0 231.0±15.0 277.0±12.0 0.672 <.0001 0.889 

Cecal content SCFAs (nmol/g) 

acetic 2185.0±799.2 2742.4±271.7 2998.4±452.6 1367.3±216.6 3258.5±585.9 2891.9±967.9 0.7885 0.1313 0.5955 

propionic 144.35±28.19 333.39±57.16 460.64±106.80 77.64±12.30 567.31±168.72 417.74±167.89 0.6709 0.0212 0.3820 

i-butyric 13.66±4.78 26.91±6.26 39.33±7.53 6.46±0.69 78.27±25.24 48.48±21.16 0.1193 0.0183 0.1141 

n-butyric 59.22±6.13 150.39±24.33 284.52±71.67 38.81±9.88 671.97±203.53 447.41±286.98 0.0778 0.0608 0.2117 

i-valeric 21.37±0.63 55.77±9.86 69.67±12.42 22.51±3.93 134.58±43.36 83.39±32.06 0.0893 0.0126 0.1808 

n-valeric 21.55±1.51 56.25±8.37 93.70±23.07 15.42±4.50 204.98±75.04 124.78±58.95 0.0735 0.0261 0.1334 

n-caproic 5.74±1.20 5.13±0.70 7.44±1.28 9.39±2.07 3.91±1.25 5.55±0.81 0.8659 0.0942 0.1077 

n-heptanoic 5.22±2.83 2.19±1.39 8.73±2.02 6.30±3.17 4.24±0.43 8.36±1.59 0.6043 0.0485 0.8290 

Fecal SCFA (umol/g) 
acetic 6756.00 

±1470.83 

9715.54 

±1886.92 

9779.63 

±2101.67 

4843.36 

±1255.69 

7738.59 

±2762.81 

6725.40 

±996.77 

0.1414 0.2465 0.9440 

propionic 545.78±130.38 620.15±126.19 1081.65±302.50 344.83±106.03 492.11±148.19 339.15±28.23 0.0149 0.2861 0.1473 

i- butyric 65.88±16.71 82.55±17.92 153.19±53.77 63.00±0.02 88.75±25.54 55.88±4.59 0.1788 0.3639 0.1414 

n-butyric 274.76±95.68c 374.83±36.71b 643.84±92.35a 111.93±37.19c 237.26±68.60bc 159.75±23.52c 
0.0001 0.0177 0.0286 

i-valeric 143.40±35.34 148.41±30.26 301.40±98.13 145.29±37.93 197.84±46.96 132.08±11.23 0.3567 0.3791 0.1058 

n-valeric 132.34±34.88 164.33±21.05 251.03±36.71 74.74±22.79 121.28±26.16 96.09±11.88 0.0011 0.0561 0.1058 

n-caproic 10.17±2.78 10.65±1.06 15.82±1.84 6.61±0.88 10.53±1.87 11.63±3.84 0.1759 0.0900 0.6387 

n-heptanoic 9.90±6.91 21.63±11.52 19.63±10.99 13.16±3.67 12.74±5.11 24.29±9.82 0.9651 0.5292 0.7030 

Values are mean ± S.E (n=6/group). Within a row, values with unlike superscript letters are significantly different (p ≤ 0.05) from each other. TC, tart 

cherry; WD, Western diet. 

 

 Control C + 5% TC C + 10% TC WD WD + 5% TC WD + 10% 

TC 

P-value 

WD 

P-value 

TC 

P-value 

TC*WD 
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Figure 3. Relative expression of genes related to barrier integrity, short chain fatty 

acids (SCFAs) receptor, antimicrobial peptide, mucus layer formation and 

inflammation in ileum 
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Figure 4. Relative expression of genes related to barrier integrity, short chain fatty 

acids (SCFAs) receptor, antimicrobial peptide and mucus layer formation in colon 
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Figure 5. Representative images of histological sections of the ileum and colon (n=6/group) 

 

 

                        

                                        

Table 9. Villi and crypt structural parameters of the ileum and colon 

 Control C + 5% TC C + 10% 

TC 

WD WD + 5% 

TC 

WD + 10% 

TC 

P-value 

WD 

P-value 

TC 

P-value 

TC*WD 

Ileum 

Villi height (μm) 129.73±10.03 117.83±7.58 100.42±3.96 95.012±5.81 108.14±13.91 99.16±5.04 0.0348 0.2265 0.1365 

Villi width (μm) 60.81±3.67 56.22±4.96 59.46±4.76 46.06±3.02 52.68±2.89 50.12±1.07 0.0042 0.9276 0.3194 

Villi area (mm2) 7.04±1.15 6.31±0.97 5.15±0.50 3.76±0.35 5.13±1.11 4.16±0.60 0.0132 0.4409 0.3329 

Crypt depth (μm) 47.81±1.29 46.39±1.31 50.75±2.00 46.64±3.98 47.11±6.39 41.63±2.40 0.2616 0.9551 0.3234 

Colon 
Crypt depth (μm) 62.92±3.06 51.75±3.40 49.97±2.36 60.03±6.47 67.41±4.93 55.79±3.59 0.0804 0.1161 0.1039 

Values are mean ± S.E. (n=6/group) TC, tart cherry; WD, Western diet; 

 

 

Ileum 

  Colon 

WD  C+5%TC C+10%TC WD+5%TC WD+10%TC Control 
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Table 10.  Fasting blood glucose, and serum lipids 

Values are mean ± S.E. (n=10-12/group) Within a row, values with unlike superscript letters are significantly different (p ≤ 0.05) from each other. TC, 

tart cherry; WD, Western diet; HOMA-IR= Homeostatic model assessment of insulin resistance, NEFA= Non-esterified fatty acids 

 

 

 

 

 

 

 

 

 

 Control C + 5% TC C + 10% 

TC 

WD WD + 5% 

TC 

WD + 10% TC P-value 

WD 

P-value 

TC 

P-value 

TC*WD 

Fasting blood 

Glucose 

(mg/dL) 

113.55±2.57 108.27±5.56 102.83±7.89 131.67±5.66 121.50±4.73 139.55±13.95 0.001 0.576 0.278 

Insulin (pg/ml) 781.10 

±178.31 

352.79 

±63.21 

466.34 

±109.83 

603.74 

±89.70 

537.38 

±198.68 

721.23 

±168.67 
0.4657 0.2346 0.2887 

HOMA-IR 4.05±0.41 2.16±0.35 2.50±0.59 4.77±0.57 2.41±0.40 5.14±0.64 0.005 0.0003 0.061 

Serum Lipids  

Cholesterol 

(mg/dL) 
116.50±7.59 108.91±9.53 107.18±5.68 169.58±10.29 161.00±9.25 180.73±10.55 <.0001 0.560 0.414 

Triglyceride 

(mg/dL) 
51.0±2.96 57.10±3.77 57.22±3.02 64.73±9.30 64.10±5.57 90.67±11.95 0.002 0.062 0.166 

NEFA (mEq/L) 1.12±0.05 1.36±0.07 1.27±0.07 1.21±0.09 1.29±0.06 1.43±0.07 0.273 0.025 0.287 
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Figure 6. Glucose tolerance test and glucose total area under the curve (tAUC) 
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Table 11.  Pancreatic-, gut- and adipose-derived hormones  

 Control C + 5% TC C + 10% TC WD WD + 5% TC WD + 10% 

TC 

P-value 

WD 

P-value 

TC 

P-value 

TC*WD 

Ghrelin (pg/ml) 1323.86 

±84.39 

1298.20 

±92.49 

1115.98 

±98.78 

1214.51 

±122.32 

1220.51 

±252.18 

1053.28 

±59.41 
0.4505 0.3104 0.9843 

GIP (pg/ml) 132.19 

±7.88 

113.61 

±7.55 

123.68 

±22.24 

127.13 

±11.74 

132.02 

±13.37 

155.58 

±15.01 
0.1904 0.4822 0.4111 

Glucagon 

(pg/ml) 

248.21 

±82.47 

209.98 

±47.21 

227.15 

±45.59 

242.42 

±48.91 

248.35 

±39.52 

405.93 

±127.72 
0.2449 0.4538 0.4338 

Insulin (pg/ml) 781.10 

±178.31 

352.79 

±63.21 

466.34 

±109.83 

603.74 

±89.70 

537.38 

±198.68 

721.23 

±168.67 
0.4657 0.2346 0.2887 

Leptin (pg/ml) 2984.94 

±638.66 

1528.41 

±434.89 

1333.23 

±276.25 

3790.69 

±567.92 

3509.91 

±917.87 

4962.14 

±1231.29 
0.0011 0.4928 0.1780 

PAI1 (pg/ml) 437.92 

±42.40 

472.61 

±32.17 

537.33 

±58.69 

516.15 

±28.11 

552.98 

±30.00 

624.83 

±68.56 
0.0344 0.0827 0.9944 

Resistin (pg/ml) 25446.8 

±1927.93 

19319.43 

±2058.60 

18306.82 

±937.92 

32084.54 

±3579.36 

28840.45 

±4875.31 

29705.10 

±4224.79 
0.0012 0.2553 0.7627 

Values are mean ± S.E. (n=8/group) Within a row, values with unlike superscript letters are significantly different (p ≤ 0.05) from each 

other. TC, tart cherry; WD, Western diet;GIP, gastric inhibitory peptide; PAI1;plasminogen activator inhibitor 1.
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CHAPTER V 

 

 

DISCUSSION 

This study was conducted to determine the dose-dependent effects of TC 

supplementation in preventing gut dysbiosis, the loss of beneficial bacteria and increase 

in harmful bacteria, due to consumption of WD. Moreover, we also evaluated if TC 

supplementation will maintain gut integrity and consequently improve body composition 

and glucose and lipid parameters that was altered by WD. The findings of this study 

showed that addition of TC to the WD prevented the loss of some beneficial bacteria at 

both 5% and 10% level of supplementation. However, TC supplementation was not able 

to modulate the increased body weight and fat accumulation caused by WD. Similarly, 

body composition, gut morphological parameters and fasting glucose were unaffected by 

TC supplementation. Although body composition seems to not be affected by TC in the 

context of WD, it seems to improve lean and fat mass when taken in the context of 

normal diet. Despite TC not affecting markers of gut barrier integrity and fasting blood 

glucose, HOMA-IR, a marker of insulin resistance was improved by TC particularly the 

5% dose. Additionally, TC-fed mice in the context of both control and WD had higher 

cecal and fecal SCFAs compared to mice that did not received TC.   

 It has been demonstrated in several studies in human and animal models that gut 

microbial dysbiosis contributes to the development of obesity and obesity-related 

diseases such as T2DM (Muscogiuri et al., 2019). Davis (2016) reported that a high-fat  
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and high-sugar WD increases the relative abundance of Firmicutes as compared to 

Bacteroidetes in animal models. Obese individuals have been reported to have higher 

concentrations of bacteria that belongs to the phylum Firmicutes and lower 

concentrations of bacteria that belong to the phylum Bacteroidetes as compared to 

healthy individuals (Muscogiuri et al., 2019). Larsen and colleagues (2010) also showed 

that the proportion of bacteria in the phylum Firmicutes was increased in the gut of 

T2DM adults as compared to non-diabetic adults. Faecalibacterium prausnitzii, bacteria 

belonging to the phylum Firmicutes and one of the most abundant species in the human 

gut with anti-inflammatory properties, is found to be decreased in people with T2DM 

(Furet et al., 2010). Bacteria that belong to Lactobacilli and Bifidobacteria are considered 

good for gut health and they are the usual target for dietary intervention studies to 

improve health. Elderly individuals that consumed prebiotics such as 

fructooligosaccharides (FOS) and galactooligosaccharides (GOS) have higher 

proportions of Bifidobacteria and Lactobacilli (Toward et al., 2012). In addition to this, 

Colantonio et al (2019) reported that high-fat diet induced loss of Lactobacillus and 

Bifidobacteria, which was normalized upon prebiotic feeding resulting to a reversal of 

symptoms and disease progression of T2DM. These studies demonstrate that dietary 

intervention that modulate gut bacteria improves health outcome. 

 In our study, we observed an increase in the phylum Actinobacteria with TC 

supplementation specifically with the 10% dose. The phylum, Actinobacteria is a recently 

characterized phylum capable of exerting anti-oxidant properties (Dholakiya et al., 2017). 

It is reported that Actinobacteria increases the production of lactate from carbohydrate 

fermentation and this lactate can be converted into butyrate by other colonic bacteria 
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(Rivière et al., 2016). In support of our findings, Actinobacteria was also reported to 

increase after consumption of 8 oz. TC juice daily for 5 days by healthy adults (Mayta-

Apazaet al., 2018). One component of TC that may be responsible for this increase in 

Actinobacteria is its fiber content such as FOS. Mao and colleagues (Mao et al., 2018) 

showed that mice fed diets with FOS had increased Actinobacteria. The FOS content of 

TC has been reported to be approximately 0.32 g per 100g of edible portion (Jovanovic-

Malinovska et al., 2014) and the total fiber content of TC is approximately 1.1 g fiber per 

100g of edible portion (USDA, 2014). The concentration of FOS in our 10% TC might be 

sufficient to induced the increase in Actinobactera that we observed in our study. 

In addition to Actinobacteria, we also observed an 8-fold decrease in the pro-

inflammatory phylum, Deferribacteres with 10% TC supplementation. Deferribacteres is 

considered pro-inflammatory because it is positively correlated with pro-inflammatory 

cytokines production such as IL-6 and TNF- (Li et al., 2019). Li and colleagues (2019) 

demonstrated that the prebiotic inulin treated diabetic mice significantly reduced 

Deferribacteres as compared to untreated diabetic mice. The decreased abundance in 

Deferribacteres we have observed might also be partly attributed to the fiber content of 

TC. In addition to the production of pro-inflammatory cytokines, one genus that belonged 

to the Deferribacteres phylum is Mucispirillum that can inhabit the mucus layer of the 

colon and the capacity to degrade mucus layer (Berry et al., 2012). Thus, the genus 

Mucispirillum could potentially lead to a significant alteration in the intestinal 

permeability and can cause gut inflammation (Berry et al., 2012). In this study, the 

relative abundance of Mucispirillum was significantly reduced in WD+10% TC group as 

compared to WD, which might indicate gut-protective capacity of TC.  
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Another bacterial genus that was modulated by the 10% dose of TC is 

Ruminococcaceae UCG-014. The genus Ruminococcaceae UCG-014, which is related to 

the family Ruminococcaceae, has been reported to increase the production of acetate with 

colonic fermentation of resistant starch (Xie et al., 2018) and enhanced proportion of 

Ruminococcaceae species has been reported in FOS treated C57BL/6J mice after 6 weeks 

of intervention (Zhu et al., 2017). Thus, the increase in abundance of Ruminococcaceae 

UCG-014 with the addition of 10% TC to the WD, might be due to the FOS content of 

TC. Despite the positive changes in certain bacterial phyla and genus with TC 

supplementation, we observed that TC further increased the ratio of Firmicutes to 

Bacteroidetes due to WD. Our findings on the increased ratio of Firmicutes and 

Bacteriodetes due to consumption of WD were in agreement with previous studies 

(Turnbaugh et al., 2008) and this was reported to be due to the overgrowth of Firmicutes 

(Marcobal et al., 2006). Increased ratio of Firmicutes and Bacteriodetes is associated with 

intestinal and systematic inflammation. Firmicutes are reported to extract more calories 

from the diet leading to obesity (Turnbaugh et al., 2008). At this time, we could not offer 

any explanation on why TC would further increase the ratio of Firmicutes to 

Bacteroidetes.  

 Because changes in gut microbiota results in alteration in SCFAs production, we 

assessed the concentrations of cecal and fecal SCFAs. We found that TC supplementation 

enhanced the production of SCFAs in both cecal and fecal samples. The SCFAs, 

propionic, i-butyric, i-valeric and n-valeric acids were increased with TC 

supplementation in both the control and WD groups. Increased cecal SCFAs was also 

reported with 10% TC supplemented control diet as compared to unsupplemented, 
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control diet-fed obese diabetic (db/db) mice (Garcia-Mazcorro et al., 2018). These 

SCFAs are reported to have many physiological roles and considered important for 

gastrointestinal health due to their preferential use by intestinal epithelial cells as energy 

source, act as signaling molecules and for their anti-inflammatory properties (Rivera-Piza 

and Lee, 2020). The production of SCFAs is reported to be suppressed by WD 

(Brinkworth et al., 2009), while prebiotics prevented changes in the gut microbiome and 

promote the production of SCFAs. In this study, we speculate that the fiber in TC acts as 

prebiotics, which increased colonic fermentation and hence increased SCFAs production. 

Rivera-Piza and Lee (2020) reported that propionate activates the G protein-coupled 

receptors, GPR43 and GPR41. Activation of GPR43 which is found in the ileum and 

colon, improves glucose tolerance by promoting the secretion of incretins such as 

glucagon-like peptide-1 (GLP-1) from L-cells and gastric inhibitory peptide (GIP) from 

K cells (Kimura et al., 2013). However, in our study, ileal and colonic expression of 

GPR43 and GIP as well as glucose tolerance which was assess by glucose tolerance test 

was not affected by TC. Therefore, TC may improve glucose homeostasis not by 

affecting the gut through stimulation of incretin but may be by other mechanisms and 

should be investigated in future studies. 

In addition to the fiber content, TC is also known to be rich in phenolic 

compounds (Mayta-Apaza et al., 2018). The phenolic compounds present in TC include 

flavonols, anthocyanins and phenolic acids (Mayta-Apaza et al., 2018). Anthocyanins are 

one of the major classes of polyphenols present in TC and it has been reported that 100 g 

of fresh TC contain 12.5-25.0 mg of anthocyanins (Wang et al., 1999). These 

anthocyanins are reported to improve glucose homeostasis by increased insulin secretion 
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from β-cell of pancreas (Belwal et al., 2017). After WD consumption, increased plasma 

free fatty acids (FFA) result in lipotoxicity and increased oxidative stress, which  can 

contribute to β-cell dysfunction and decrease the production of insulin (Oh et al., 2018). 

Bolleddula and colleagues reported that addition of anthocyanins extracted from TC with 

high fat diet (1g/kg of high fat diet) prevented the loss of β-cell architecture and increased 

insulin secretion. The anthocyanins isolated from TC also exhibited in vitro antioxidant 

and anti-inflammatory activities (Wang et al., 1999). Anthocyanins were also reported to 

improve carbohydrate metabolism by upregulating the translocation of insulin-regulated 

glucose transporters and increasing the activation of peroxisome proliferator activated 

receptor-γ (PPARγ) (Różańska et al., 2018). In addition to upregulation of glucose 

transporters and β-glucokinase, activation of PPARγ plays a vital role in regulating the 

expression of mitochondrial antioxidants including superoxide dismutase 2 (Sod2) in β-

cells and restoring the function of β-cells (Grieco et al., 2019). Thus, activation of PPARγ 

positively correlates with increased insulin sensitivity. A previous study conducted by 

Seymour et al (2009) reported that 1% TC supplementation with high fat diet increased 

PPARγ expression and this could potentially help to decrease insulin resistance. These 

protective effects of TC were attributed to its anthocyanin content. Although, we did not 

measure the expression of PPARγ, we assessed insulin resistance by using HOMA-IR, 

which is a commonly used model for assessment of insulin resistance in laboratory 

animals (Tomie-Furuya et al., 2005). We observed an improvement in HOMA-IR by TC 

particularly with 5% dose. Tsuda et al., (2003) reported that TC anthocyanin extract 

supplementation with high fat diet reduced hyperglycemia and hyperinsulinemia, which 

are the major characteristics of insulin resistance. Perez and colleagues (2007) also 
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reported that Aloe vera gel, as a good source of polyphenols, improves insulin resistance. 

The decreased insulin resistance observed in our study might be partly due to the 

anthocyanins content of TC. However, other components of TC might act synergistically 

with anthocyanins to improve insulin resistance and this needs to be explored in future 

studies. 

 We also investigated the effects of TC on maintaining gut barrier integrity. 

Intestinal epithelia functions as a biological barrier and maintain homeostasis. Impaired 

functioning of the gut barrier has been implicated in a variety of disease states including 

insulin resistance (Bischoff et al., 2014). Tight junction proteins and mucus layer are both 

important in maintaining gut barrier integrity (Bischoff et al., 2014). Tight junction 

associated proteins such as ZO1, occludin and claudin acts as gut epithelial paracellular 

barrier, which prevents the entry of pathogenic bacteria into mucosa and stimulation of 

inflammatory response (Feng et al., 2018). SCFAs have been reported to protect 

intestinal barrier functions (Cishing et al., 2015). SCFAs especially butyrate and acetate, 

are important for regulation of mucus layer by upregulating the transcription of various 

MUCN genes (Hedemann et al., 2009). Even though, we observed an increase in SCFAs 

with TC supplementation, TC has no effects on gene expression of tight junction 

proteins, mucus production as well as structural parameters of the ileum and colon.  

Structural changes of the ileum and colon were also investigated to determine the 

effects of dietary treatments. Villi contain cells specialized for nutrient absorption and 

crypts contain stem cells such as Paneth cells. These Paneth cells support continual 

regeneration of epithelium and secretion of antimicrobial peptides (Bevins and Salzman, 

2011). Systemic and local inflammation can influence the gut absorptive area, epithelial 
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cell lining and barrier function by increased production of pro-inflammatory cytokines. 

With respect to WD consumption, gut structure such as villi height, width and area was 

negatively altered in ileum as compared to control diet. This is similar to previous study 

where consumption of 40% fat diet based on saturated fat for 8 weeks significantly 

reduced villi height in both ileum and jejunum (Goda and Takase, 1994). The evidence 

provided by a recent study (Yang et al., 2019) also support these results as high fat diet 

fed mice had reduced villus height in ileum as compared to mice fed with control diet. In 

our study, TC was unable to modify these effects of WD.  

Although TC supplementation restored the loss of beneficial gut bacteria such as 

Actinobacteria due to WD similar to what has been reported on prebiotics (Everard et al., 

2014), TC was not able to prevent weight gain. The highest body weight was recorded in 

10% TC supplemented WD group. In support of our findings, a previous study conducted 

by Chrisfield (2017) showed that addition of 1% TC powder to high fat diet was unable 

to modify weight gain and increased adiposity in mice fed a high fat diet for 18 weeks. 

Jayarathne and his colleagues (2018) also reported that 4% TC powder supplemented diet 

had no effect on body weight of Zucker fatty rats after 8 weeks of dietary treatment. In 

our study, the increase in body weight of the WD+10% TC group may have been due to 

some genera from the family Ruminococcaceae, which have been reported to possess 

strong energy-harvesting capabilities from starch in the colon (Li et al., 2017).  

 This study also investigated the effects of TC supplementation on serum lipids. 

Serum NEFA was significantly increased with TC supplementation in both control and 

WD group. This effect of TC on NEFA might be partly attributed to the increase in 

SCFAs. A previous study on 3T3-L1 adipocytes reported that propionate and butyrate 
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increased the rate of lipolysis approximately 2-3 fold (Rumberger et al., 2014). In support 

of this concept, consumption of propionate-containing bread also increased adipose tissue 

lipolysis (Triosh et al., 2019). These studies support our finding of increased serum 

NEFA with TC and that the increased SCFAs particularly propionate may partly be 

responsible for this effect.  

Unlike our findings with NEFA, TC supplementation did not have any significant 

effect on serum cholesterol. In support of this finding, Martin et al., (2010) reported that 

daily consumption of TC juice did not have any significant effect on total cholesterol  in 

obese adults as compared to placebo. This observation might be partly explained with 

changes in SCFAs, particularly acetate and propionate. Gut microbial-produced 

propionate and acetate are quickly absorbed and metabolized in our body (Louis et al., 

2014). Wolever et al (1991) provided rectal infusion of acetate to healthy subjects, and 

increased levels of acetate and cholesterol were observed. This study supports the 

evidence that increased acetate metabolism in the liver may increase serum cholesterol as 

acetate is a precursor of cholesterol synthesis (Bloch, 1965). On the other hand, 

propionate is considered an inhibitor of incorporation of acetate into cholesterol in liver 

(Demigné et al., 1995). Our observation that TC did not affect serum cholesterol may be 

a result of TC‘s ability to produce sufficient propionate that is capable of decreasing 

acetate incorporation into cholesterol in the liver. 

 In our study, serum triglyceride tended to increase with TC supplementation. This 

again, may partly be attributed to TC‘s ability to increase SCFAs production and further, 

these SCFAs might increase the expression of fatty acid synthase. Fatty acid synthase 

plays an important role in de novo lipogenesis and thus increase accumulation of 
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triglycerides (Yurina et al., 2016). Yu et al (2008) evaluated the effects of the SCFAs 

acetic, propionic and butyric acids on 3T3-L1 cells and their finding showed that SCFAs 

promote lipid accumulation by modulating the expression of enzymes related to 

lipogenesis such as fatty acid synthase. Propionic acid and butyric acid treated cells 

significantly increased the triglyceride content as compared to control group (Yu et al., 

2008). Future studies should measure the effects of TC on enzymes related to lipogenesis 

such as fatty acid synthase 

 The current study provides evidence that TC supplementation altered microbial 

population and increased production of cecal and fecal SCFAs. However, despite these 

changes within the gut, TC has no effects on markers of gut health and has modest effects 

on markers of glucose homeostasis. Other physiological effects of TC supplementation 

such as its effects on serum concentrations of SCFAs, pancreatic beta cells functions as 

well tissues important in glucose homeostasis including the adipose, liver, and skeletal 

muscle needs to be explored in future studies. Furthermore, the implication of increased 

propionate production due to TC supplementation may be further investigated in a model 

of liver cancer, since previous mice study (Bindels et al., 2012) has shown that 

propionate counteract malignant cell proliferation in the liver tissue. To our knowledge, 

this is the first study to show the ability of TC (at 10 % wt/wt dose) to increase the 

abundance of beneficial gut bacteria due to WD feeding. Leaning on the knowledge that 

TC is a potential source of various polyphenols (Wang et al., 1999, Mayta-Apaza et al., 

2018), it will be interesting to study the possible impact of TC anthocyanins as 

antioxidant and potential physiological benefits that may be derived from it. Future 

studies in humans are also needed. 
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 In conclusion, this study showed that TC supplementation modulated gut bacteria 

by increasing the beneficial bacterial phyla, Actinobacteria and Deferribacteres; b) 

enhanced SCFAs production; and c) improved the marker of insulin resistance, HOMA-

IR particularly the 5% TC dose. However, TC supplementation was not able to modify 

the adverse effect of WD on gut structure parameters (i.e., villi height, width and area) 

and improve body weight gain, accumulation of fat, and increased fasting glucose level 

induced by WD. The increase in bacterial population and SCFA due to TC 

supplementation in WD may have other potential health benefits that needs to be 

investigated in future studies.  
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