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Abstract: Recently, collaborative robots have begun to train humans to achieve complex 
tasks, and the mutual information exchange between them can lead to successful robot-
human collaborations. In this thesis we demonstrate the application and effectiveness of a
new approach called mutual reinforcement learning (MRL), where both humans and 
autonomous agents act as reinforcement learners in a skill transfer scenario over 
continuous communication and feedback. An autonomous agent initially acts as an 
instructor who can teach a novice human participant complex skills using the MRL 
strategy. While teaching skills in a physical (block-building) or simulated (Tetris) 
environment , the expert tries to identify appropriate reward channels preferred by each 
individual and adapts itself accordingly using an exploration-exploitation strategy. These 
reward channel preferences can identify important behaviors of the human participants, 
because they may well exercise the same behaviors in similar situations later. In this way,
skill transfer takes place between an expert system and a novice human operator. We
divided the subject population into three groups and observed the skill transfer 
phenomenon, analyzing it with Simpson”s psychometric model. 5-point Likert scales 
were also used to identify the cognitive models of the human participants. We obtained a 
shared cognitive model which not only improves human cognition but enhances the 
robots cognitive strategy to understand the mental model of its human partners while 
building a successful robot-human collaborative framework. 
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CHAPTER I

INTRODUCTION

Daily experiences influence our learning and change the way we think and act. 

Sometimes we are not even aware that we are learning from our surroundings, which is a very 

informal way of perceiving things. On the other hand, we can also learn in a formal way from a a 

structured classroom environment. Learning is not limited to acquiring knowledge or facts; we 

also learn skills and attitudes. This can happen in different ways. We learn new ideas and 

concepts from a lecture or a discussion, whereas skills must be acquired via continuous practice 

and receiving simultaneous feedback from an instructor. In a planned environment, learning is 

reinforced by teachers who expect students to memorize the content and later reward them for it. 

In contrast, researchers or scientists learn by investigating things themselves, over time. But in 

any form of learning, motivations and rewards play a very important role, as people derive 

satisfaction from the feeling of competence. In the case of learning a new skill, people can be 

strongly motivated by the incentives they are given, which might lead them to acquire new 

knowledge which they can use in future.

Teachers are entrusted with the job of determining what the student will learn. They are 

not only instrumental to the students’ learning, but also make sure that they have learnt the 

subject properly. Teaching must be planned very carefully, taking the learning styles and the 

background of the students into account. Teachers also need to assess students often to determine
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how well they are progressing and simultaneously attend to their weaknesses. Hence teaching and 

learning are constructed over a series of intrinsic and extrinsic social interactions which influence the 

cognitive models of both the teacher and the learner. The learning can be improved if the facilitator 

can teach each individual, possessing some understanding of the subtleties of the student’s mind, 

behavior and learning style, and regulating the motivational strategies accordingly (Prozesky, 2000).

Phase-I

In this work, we not only explore the use of building a human-understandable representation 

of a complex task through active learning and a conversational interface to improve the LfD process, 

but we explore the problem of robotic teaching as well. A set of American Sign Language (ASL) 

motions is taught to the humanoid robot Baxter, which learns to communicate the sentence “Hello, 

please listen to me” using its left arm. During the learning process, Baxter can request information 

from the human expert using label and demonstration queries. While learning, the robot is able to 

segment and hierarchically construct the components of the demonstrated task using expert feedback. 

This enables the human expert operator to understand the learning activity of the robot and jointly 

guide the teaching process, depending on the input the robot receives from the end-user. While 

learning from demonstration, the robot improves its learned model by interacting with its human 

teacher and cooperatively building a structure of hierarchical semantic labels (Kaelbling & Lozano-

Pérez, 2011; Wu, Lenz, & Saxena 2014 ; Roy, Maske, Chowdhary, & Crick, 2017 ), as illustrated by 

our experimental results. The goal of the work described here is to create robots with sufficient 

human-accessible task understanding so that they can act as successful tutors or coaches for complex 

skill learning. Compared to experts, novice learners are often unsuccessful at noticing important 

information and task patterns. They fail to prioritize subtasks in terms of their importance to the 

overall goal, and hence tend to attend inappropriately to distracting or irrelevant aspects of the task 

environment. If the entire task can be segmented into well-organized subtasks with meaningful labels 
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(Figure 1.), the novice should be better able to distinguish relevant relationships, and should learn 

better. In this work we quantified the performance of Baxter as a learner and a teacher using the root-

mean square error (RMSE) of the robots arm trajectories, compared to a standard task demonstration. 

When Baxter is employed as a learner, the RMSE is calculated comparing the task success under 

traditional LFD versus query-driven active learning which jointly builds a semantic structure with a 

human expert. Participants are recruited to act as experts and novice human operators. The 

participants allotted in the novice group are taught by Baxter with and without this semantic 

scaffolding. The RMSE is calculated comparing the performances of these two groups to evaluate 

their performance.

Figure 1. An example of a learned semantic hierarchical structure.
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It is obtained by task segmentation, change point detection, and label and demonstration queries 

obtained in conversation with an expert demonstrator.

Phase-II

In this research, the humanoid robot Baxter motivates an individual extrinsically during the 

learning process using several positive reinforcers. During the interactions, the robot initially 

demonstrates several tasks to the participant, in ascending order of difficulty, involving the assembly 

of augmented-reality-tagged blocks into various patterns (Roy, Kieson, Abramson, & Crick 2018, 

March). If a candidate is successful in every task, external motivation has negligible effect in 

changing anything, because people feel comfortable and they are in a familiar situation. Thus, people 

who are happier will sometimes be less motivated to push themselves toward action compared to 

someone in a negative mood, who will be more motivated to exert effort to change their unpleasant 

state. Hence a negatively-valanced mood can increase, and positively-valanced mood can reduce, 

perseverance with difficult tasks. This may be because people are less motivated to exert effort when 

they are already satisfied with their performance. Frustration, in turn, may increase perseverance as 

people see greater potential benefits of making an effort. Thus if people in a negative mood get some 

positive reinforcer to overcome their challenge, their learning rate is expected to increase (Wong & 

Csikszentmihalyi 1991). Block diagram showing the human-robot interaction. In this research, the 

humanoid robot Baxter uses a reinforcement learning strategy to understand the effect of its 

reinforcement presentation on its human subjects, attempting to increase their performance over time.

Here the subject pool is divided into sets of participants who receive no reinforcements, random 

reinforcements, or learned reinforcements respectively during their task performance. We compared 

the number of people committing more than three mistakes in each group, because we expect our 

reinforcement strategies to be more effective for subjects who are performing somewhat poorly. We 

also look at the overall number of mistakes committed by each subject group. We discovered that 
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participants in the learned group were more likely to perform well and committed comparatively 

fewer mistakes with respect to the other experimental conditions. We also learned that the robot’s 

regret strongly correlates with the probability that a test subject makes more versus fewer mistakes.

Figure 2. Block diagram showing mutual reinforcement learning.

Phase-III

In this research, the humanoid robot Baxter and a computer system (depending on the 

experiment) motivate an individual extrinsically during the learning process using several positive 

reinforcers. During the interactions, the robot or the system initially demonstrates the task to the 

participant, and then provides learned reinforcers to make sure the skill is transferring properly, using 

Simpson’s psychometric model (Simpson 1972), and concurrently learns about their cognitive 

models. The expert uses a reinforcement learning strategy to understand the effect of its 

reinforcement presentation on its human subjects, attempting to increase their performance over time 
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(Roy, Crick, Kieson, & Abramson, 2019, Roy, Crick, Kieson, & Abramson, 2018). To identify the 

success of MRL-guided skill transfer, we divided the subject population into three groups where 

participants get no reinforcement, random reinforcement, or individually-tailored learned 

reinforcement (MRL) respectively. We compared the number of mistakes in each group, because we 

expect MRL to be more effective for subjects who are performing somewhat poorly. We discovered 

that participants in the learned group were more likely to perform well and committed comparatively 

fewer mistakes with respect to the other experimental conditions (p < 0.05 for Baxter) and (p < 0.05 

in random group for the computer-based Tetris skill learning). We also determined information gain 

over time and how a machine’s regret strongly correlates with the probability that a test subject makes

more versus fewer mistakes. In addition, we produced confusion matrices demonstrating the 

effectiveness of MRL in the experiments using 5-point Likert scale data.

Figure 3. Mutual Reinforcement Learning.
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CHAPTER II

RELATED WORK

Many contemporary researchers are working on identifying appropriate reward channels 

in human-robot collaborative frameworks to maximize performance. The following section 

briefly discusses this work along with the influence of positive reinforcer on motivating humans 

in skill transfer procedures. 

Robot learning from demonstration

               Konidaris (Konidaris, Kuindersma, Grupen, & Barto 2012 ) describes robots that can 

learn from trajectory demonstrations by constructing skill trees (CST). Chains from multiple 

human expert demonstrations can be merged into a single skill tree with a policy learning 

algorithm which efficiently increases robot learning rate. Crick (Crick, Osentoski, Jay,  & 

Jenkins, 2011) and Knox (Knox, Breazeal,& Stone, 2013) illustrate that human experts directly 

teaching a robot is usually a better option than the same robot learning virtually, as humans have 

better understanding of the environment and a better decision making ability than unsophisticated

robotic controllers. Similar work has been performed by Grizou (Grizou, Lopes, & Oudeyer, 

2013) ,  where unknown human teaching instructions are utilized by the robot to improve its 

learning. This work addresses how a robot can use unfamiliar and noisy teaching instructions to

7



acquire knowledge to generate new tasks, and use that knowledge to improve its learning policy 

in an inverse reinforcement learning domain. While interacting, the robot tends to ask different 

questions to the end-user. Cakmak (Cakmak, & Thomaz, 2012 ; Cakmak, Chao & Thomaz, 

2010 )describes different platforms where the robot is trained to ask good questions and how their

performance is improved via human feedback.

Robots Learning to Teach

               Many scientists have started exploring this new area of robotics, where along with robot

teaching we can gain other useful information about robot and human behaviors from their 

interaction. Spaulding (Spaulding, Chen, Ali, Kulinski, Cynthia Breazeal, 2018) introduced an 

integrated system for autonomously analyzing and assessing children’s speech and pronunciation 

in the context of an interactive word game between a social robot and a child. This approach used

Gaussian Process Regression (GPR), augmented with an active Learning protocol that informed 

the robot’s behavior. Scassellati (Ramachandran, & Scassellati, 2015 ; Litoiu, & Scassellati, 2015

) and Park (Park, Rosenberg-Kima, Rosenberg,  Gordon, & Breazeal, 2017) have presented 

feedback-based human-robot interaction, demonstrating that if humans are guided by a robot at 

an interpersonal level, it increases the robot’s perceived social reliability and makes humans more

eager to interact with it. A robot learning from human feedback tends develop a mental model 

(Lee, Lau, Kiesler, & Chiu, 2005, April ; Scassellati, 2001) of its own which positively influences

human cognition. Fasola et al. (Fasola, & Matarić, 2013) used socially assistive robots (SAR) to 

train elderly humans in physical fitness by motivating them. Yin et al. (Yin, Billard, & Paiva, 

2015 ) described intelligent robot systems acquiring human-like writing style and then exploiting 

it to teach children. Fan (Fan, Tian, Qin, Li, & Liu, 2018) used neural network models to evaluate

teaching strategies when one intelligent system is trying to teach another. Leite (Leite, Castellano,

Pereira, Martinho, & Paiva, 2012) used robots to socially support children in a game scenario. 
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The robot not only increased the performance accuracy of the human learner, but also connected 

with them emotionally and provided social assistance throughout their learning process. This 

social support helped the children to build their self esteem and encouraged them to perform 

better. Humans have distinct teaching strategies (Khan, Mutlu, & Zhu, 2011) which can be 

effectively utilized in human-robot communication to build effective robot learners. A robot 

learning from human feedback tends develop a mental model of its own which can be later 

utilized to teach novice human operators. Scassellati (Strohkorb & Scassellati, 2016 ; Scassellati, 

Admoni, & Matarić, 2012) discusses human-robot collaboration for social good. If robots and 

humans can interaction an interpersonal level, achieving complex tasks is easier. In this work, 

feedback-based human-robot interaction demonstrates that if humans are guided by the robot or 

vice-versa, relevant questions are addressed, and with continuous collaboration the task becomes 

easier. If robots are able to teach human novice operators, this can improve their social reliability 

and enhance people’s eagerness to interact with them. In this work, we describe human-robot 

interaction where the robot acts a teacher to guide humans to achieve complex sets of tasks. 

Cakmak (Cakmak, DePalma, Thomaz,  & Arriaga, 2009) demonstrated how social learning 

strategies vary with the particular environment when robots are allowed to explore and learn from

their surroundings. In this work, along with the effectiveness of MRL, we are also concerned with

the idea of robots learning to be good teachers. We use a robot’s own predicted regret and 

confusion matrices to evaluate its own cognitive model.

Reinforcement Learning Techniques to Identify Better Reward Channels

               Rewards play a crucial role in both identifying and shaping a person’s behavior. They 

not only tell us about a person’s personality, but provide an influence channel when used 

effectively. Hence, recently many scientists are interested in researching appropriate reward 

channels that might increase task performance. Lopes (Clement, Roy, Oudeyer, & Lopes, 2013) 
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upgraded Multi-Arm Bandit techniques using different motivational resources to maximize skills 

and learning activities. He also researched the recovery of reward functions Rxa(p) from expert 

demonstrated policies πi (Lopes, Melo, & Montesano, 2009) to ensure active learning. The 

modification of traditional reinforcement learning algorithms using reward shaping produced 

important insights into how skill and accuracy can be improved for a particular task. Cooperative 

inverse reinforcement learning (CIRL) uses a human reward function R : S × AH × AR × Θ −→ R 

that maps world states, joint actions, and reward parameters to real numbers to establish useful 

human robot collaboration, where the robot is unaware of the initial reward. CIRL can be used in 

various platforms like active teaching, active learning, and communicative actions that are more 

effective in achieving value alignment (Hadfield-Menell, Russell, Abbeel, & Dragan, 2016). 

These researchers are also using multi-arm bandit techniques (MAB) to address the problems 

with assistive agents who can help human participants to select appropriate channels to maximize

the cumulative reward (Chan, Hadfield-Menell,  Srinivasa, & Dragan, 2019). Here the human 

does not know the reward function but can learn it through several interactions, whereas the robot

only observes the human interactions and not the reward associated with it. Tabrez et al. used 

their Reward Augmentation and Repair through Explanation (RARE) framework for estimating 

task understanding where the autonomous agent detects potential causes of system failures and 

uses human-interpretable feedback for model correction (Tabrez, Agrawal,  & Hayes, 2019 ). 

Nikolaidas et al. described a human-robot cross-training framework using reinforcement learning 

techniques where humans and robots switch roles to improve the overall performance (Nikolaidis 

& Shah, 2013) . Li et al. used MRL in automatic poetry generation using two models (local and 

global) which have some predefined criteria as rewards, and they learn from each other to pursue 

higher scores (Yi, Sun, Li, & Li, 2018). Griffith (Griffith, Subramanian, Scholz, Isbell, & 

Thomaz, 2013) discussed novel policy shaping algorithms and how motivations and reward 

signals can be used as a channel to impact human-robot partnerships in an HRI setting, 

simultaneously improving the future learning process of both humans and robots. Knox et al. 
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( Knox, & Stone, 2008 ; Knox, & Stone, 2009 ) designed a novel framework named TAMER 

which allows a human to train a learning agent to perform a complex tasks over continuous 

interaction. In our previous papers (Roy, Kieson, Abramson, & Crick 2018, March) we have also 

discussed how the robot updates its own cognitive model with each human interaction, improving

the overall task performance through exploration-exploitation strategies. In this work we are not 

only extending the goal of our previous work, but also updating the MRL technique for better 

results.

Empathy and Positive Reinforcers

Empathy is based in the social-cognitive and behavioral ability to vicariously experience 

another person or animal’s affect, and is critical in the social interactions of humans and some 

animals (Keskin, 2014 ; Lockwood, 2016) . Empathy plays a vital role in social interaction in all 

stages of human life and many contemporary researchers are working on empathetic robots that 

are designed to respond to human behavior and emotion with appropriate social cues. Empathy 

and adaptation may not be enough, however, since social responses are only one component of 

effective human-robot interactions. Instead, robot interactions that facilitate mutual learning with 

the human counterpart may prove more effective in a teaching environment due to the ability to 

learn, adapt, and create reinforcement feedback tailored to the individual.

Hence the ability to empathize has also been found to be a critical characteristic of 

effective teachers. In one study, teachers demonstrating more empathy were able to adapt the 

structure, behavior, and manifestation of empathy based on the group or individual and provide 

more effective teaching strategies ( Mihaela, 2013). In our research, we used several positive 

reinforcers as reward channels to interact with the human participant. In order to effectively study

human-robot interactions and learning, scientists have incorporated other socially-inspired tools 
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in addition to empathy. For example, auditory and visual cues are important in learning 

exchanges between humans and robots, especially when learning through demonstration (Koenig,

Takayama, & Matarić, 2010). Furthermore, modeling demonstration learning using robots and 

humans has shown to be effective and the closer the demonstration technique was to typical 

social learning, the more rapport the participant felt with the robot and the more he or she learned 

(Sauppé,  & Mutlu, 2015). Humans also demonstrate a need to share intentions with their social 

partners, and in order to mimic this with robots, the robot partner needs to mimic the social skills 

necessary to interact with humans and demonstrate shared intention (Dominey, & Warneken, 

2011). The robot, in this case, demonstrated the ability to learn a goal and intentional actions 

linked to the goal through cooperative learning (Dominey, & Warneken, 2011). In these cases, 

behavioral interactions and social acceptance are critical components to the human-robot 

interaction. It is possible for humans to respond to perceived empathy from robot and computer 

interactions. Research shows that individuals perceive empathy through digital devices and 

computer-mediated interactions, and additional studies are developing robot-human interactions 

that more closely mimic human-human interactions using touch and visual interactions (Powell, 

& Roberts, 2017). Furthermore, empathy increases rapport between humans and robots, which is 

important for user comfort (Leite, Pereira, Mascarenhas, Martinho,  Prada, & Paiva, 2013). This 

suggests that, while empathy is important for contextual comfort, it may not be the only 

component of a learning environment and does not indicate a human response for the robot. 

While scientists may have developed robots to mimic empathy that can be detected by 

participants, humans have yet to respond with equal attachment or empathy towards robots 

(Konok, Korcsok, Miklósi, & Gácsi, 2018). In other words, while adaptive empathetic robots may

build some rapport with humans, the communication is only from the robot to the human; the 

robot is not necessarily responding in ways that may be necessary for human learning. A few 

researchers have explored various areas where positive reinforcement from robots had a large 

impact on children. Boccanfuso et al. (Boccanfuso,  Barney, Foster, Ahn, Chawarska, Scassellati, 
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& Shic, 2016, March) investigated the difference in responses between children with or without 

autism with an emotion-stimulating robot using positive reinforcement in an interactive 

environment. Nunez et al. ( Nunez, Matsuda, Hirokawa, & Suzuki, 2015 ) described the use of 

positive reinforcers to overcome the underlying challenges in motivating a child to continue 

learning and to share the experience with others. Kim (Kim, Berkovits, Bernier, Leyzberg, Shic,  

Paul, & Scassellati, B. 2013) addressed the unique positive effects and advantages a robot can 

have on autistic children, exploring areas where robots play an important role in the lives of 

specific individuals. We wish to investigate how a robot can develop an understanding of the 

underlying motivations and cognitive traits of individual people, so that it can shape its teaching 

strategies appropriately and enhance the learning process.

Positive Reinforcers in MRL

Mutual feedback between robot and human has become increasingly important in human-

robot interactions. Interactivism (Bickhard, 2009) and process-oriented robots have been 

challenging in the past since there is a necessary balance between environmental stimuli and 

feedback and the adaptation of software and processes that can adapt and change with them 

(Stojanov, Trajkovski, & Kulakov, 2006). Robots using socially-inspired reinforcement including

verbal and behavioral feedback have only shown modest results, and studies have suggested that 

a more targeted approach tailored to the individual would be better suited for future robot-human 

interactions (Ferreira & Lefevre, 2015). To better facilitate natural social interactions and engage 

with the learning environments of humans, robots need to adapt and respond appropriately to 

each individual. Positive reinforcement increases learning in all animals and promotes voluntary 

behaviors of animals, but the reinforcement tools need to be species-specific and based on 

individual preferences and experiences. In this sense, if robot-human interactions are to use 

socially-derived reinforcements as teaching tools, researchers need to take into account not just 

13



human social interactions, but individual differences as well. This means that the robots need to 

be programed with an understanding of individual-specific approaches to interactions based on 

principles of learning and be able to adapt and respond in ways that are tailored based on the 

individual’s unique responses. The scientists in this study have developed a novel approach using 

mutual reinforcement learning where both the robot and human act as individual empathizers who

can act as reinforcement learning agents to achieve a particular task. Thus in this paper the 

humanoid robot Baxter and a personal computer not only adapts or empathizes with its human 

participant but also takes a step forward to encourage them and achieve their goal.

Exploration Exploitation Strategy

The exploration/exploitation dilemma ( Audibert, Munos, & Szepesvári, 2009 ; Baranes, 

& Oudeyer, 2009 ) is a common problem, where decision makers can either jump to a conclusion 

and make a decision on the basis of the partial knowledge they currently possess, or rather wait 

and invest more time and effort in accumulating further information, with the hope that a broader 

perspective will lead to a better decision in future. In our research, Baxter attempts to probe and 

understand a specific aspect of a human minds cognitive orientation toward particular 

reinforcement strategies, on the basis of this exploration and exploitation trade-off, where human 

performance acts as the reward. 
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CHAPTER III

TECHNICAL DESCRIPTION

Mutual reinforcement learning (MRL) deals with the scenario where both humans and 

autonomous agents act as reinforcement learners for each other, identifying the path to achieve 

maximum reward. In this instance, the robot initially acts as an expert and its human counterpart 

as a novice. In MRL, one agent’s action is mapped as a reward to another. Here the agents, as 

they are unaware of each other’s incoming actions, discover the appropriate reward channel over 

continuous communications with one another. The autonomous agent acting as an expert learns 

about the appropriate reward channel through an exploration-exploitation tradeoff (Audibert, 

Munos, & Szepesvári, 2009). The action of the novice agent (judged in terms of the agent’s 

performance) not only affects the immediate rewards but also the expert’s next action. The expert 

does not immediately jump to a conclusion about the decision to be made, but rather invests more

time and effort in accumulating further information, with the hope that a broader perspective will 

lead to a better decision in the future. On the other hand, the humans interpret the actions of the 

robot (or computer) agent as a reward, which influences their performance in learning the task. In 

this paper, MRL is implemented in a skill transfer scenario, where the autonomous agent is trying

to teach a human some complex task, while updating its own mental model (Sutton & Barto 2018

) at the same time. 

MRL is a tuple {S, A(A'), T, R(R')} where S is a set of states; A and A' are sets of
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actions; T is the set of state transition probabilities p (s, a) upon taking action a € A or A' in state 

s, and r € R and R' : (S, A) or (S, A')  R and R⇒ ' are the reward functions. Since, in MRL, the 

action of an agent is the reward to another and vice versa, the tuple can be simplified as follows: 

Novice={S, A' , T, R}, Expert={S, A, T, R'} where if the novice executes action A', reward R' is

received by the expert. This helps the expert to execute action A using an exploration/exploitation

strategy, which at the same time acts as a reward R to the participant. If the action A' is 

successful, then the robot realizes that the participant is fonder of reward R, which acts at the 

same time as reward R' for the robot to understand its own performance or action A. Here the 

reward for the novice r € (r 1 , r 2 , r 3 ...) is selected by an exploration-exploitation tradeoff where r  

1 , r 2 , r 3 are all different kinds of reinforcers mentioned in Chapter 4. In the case of MRL, we 

have a verbal, hint, gesture and simple feedback for the robot whereas there are seven different 

reinforcers in case of Tetris. Therefore the expected rewards in both the cases in a state action 

pair can be written as a two-argument 

function r : SXA  r⇒ €R and r : A'XS  r⇒ €R' .

r(s, a)  E[R t |S t = s, A t = a]  (3.1)

r(s, a) = E[R' t |A't = a, St+1 = s] (3.2)

The above equations imply that whenever a novice makes a mistake at time t, the robot 

takes an action a t in that state s t to positively reinforce the participant, who on the other hand 

takes an action a't and rectifies the mistake moving to the next state. Here the state is the pattern-

making task in the case of Baxter, while in the case of Tetris, the players are asked to restart the 

game rectifying the mistake. Hence the reinforcement learning agents give rise to a sequence or 

trajectory that looks like the following if the novice keeps on making a mistake: S  t , A t(R t ), A't 
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(R't ), S t+1 , A t+1 (R t+1), A't+1 (R't+1), S t+2 . The above sequence denotes the condition if a 

participant keeps on making a mistake at one point. The sequence will stop with the correct action

of the novice learner. However, the robot keeps on evaluating the other sections and if a mistake 

occurs again, the same behavior is repeated.

Therefore the state transition probability T :

p(s' |s, a) = Pr(S t+1 = s'|S t = s, A t = a, A't = a)  (3.3)

Robotic mutual reinforcement is based on psychological principles of social 

reinforcement and inclusion and is intended to improve skill transfer by adapting to the reward 

value systems of an individual. In order to effectively teach a skill, the instructor relies on the 

principles of learning theory and basic operant conditioning and positive reinforcement. 

Reinforcement, whether through the addition of a reward (positive reinforcement) or the removal 

of something aversive (negative reinforcement) refers to techniques used by trainers and 

instructors whose goal is to increase the likelihood of the behavior being repeated. 

Behavioral psychologists rely on the principles of positive reinforcement as the primary 

means through which to teach and shape behaviors in both humans and animals. This type of 

shaping is considered ideal since the individual participant or subject is rewarded for the correct 

behavior and associates a specific behavior with a specific reward. The subject is therefore more 

likely to repeat the desired behavior in the future (as opposed to negative reinforcement when the 

subject is trialing behaviors to avoid an aversive stimulus). In the case of mutual reinforcement, 

the robot engages in activities and behaviors that positively reinforce the correct behavior of the 

participant. Learning theory dictates, however, that the value of rewards in positive reinforcement

are subjective in nature and highly dependent upon the individual. This means that a reward (R) 

may be of high value to one individual and of no value to another. For adequate learning to occur,

the reward must therefore be tailored to each individual. In the case of mutual reinforcement, the 
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robot is equipped with a range of rewards that might be of value to the subject. Given that all the 

subjects are human, the programmed rewards are tailored to humans and were designed based on 

the species, culture, and potential individual differences of the target population. Humans are 

social and, in performance environments, are highly responsive to social inclusion and exclusion 

(Cheung,  & Gardner, 2015 ), making social signals of high value to almost every human. The 

social rewards are designed to mimic culturally-appropriate interactions to which the participants 

are accustomed, which promotes comfort and relaxation and builds rapport. The ability to adapt 

and read the human through behavioral feedback establishes a baseline of communication and 

language that is novel and unique between the robot and the human, effectively mimicking 

normal social relationships and social learning paradigms. When a autonomous machine is 

equipped with various means of social reinforcement in combination with algorithms that allow 

for adaptations to individuals, there is a greater chance of finding a reward that is of high 

subjective value for each participant. This can only be done if the machine is first equipped with 

these tools and then programmed in a way that allows it to perceive, adapt, and adjust 

rewardsbased on the feedback from participant progress. Mutual reinforcement is therefore a 

promising approach to skill transfer between a robot and human.

Initially, the robot assigns a uniform prior across its potential reinforcement behaviors, 

and they begin with equal weights. When a subject is given a particular reinforcement, the robot 

evaluates her performance on the immediately following subtask, and reweights its reinforcement

strategy appropriately. 

S t = {νφs +
 t−1 , ν (1 − φ)s t−1/(|S| − 1) s  S∀ ∈ s s+ }                                                                     (3.4)

where S t is the weight distribution over all reinforcement strategies at time t, s +
t−1 is

the particular reinforcement strategy chosen at time t − 1, φ is 1 if the subject successfully 

completed the subtask immediately following the previous reinforcer, and 0 otherwise, and ν is a 
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learning rate parameter. In our experiments, ν was taken to equal 0.03. Thus after several 

iterations, the robot can conclude which particular reinforcements are inducing the candidate to 

perform well; in other words, after receiving particular reinforcers, the candidate does not 

underperform. The two experiments use the reinforcers differently. In the first experiment, 

reinforcements are provided when the human is performing well, but the results of that 

experiment led us to the robot providing reinforcement when a candidate was disappointed by his 

performance. The following sections illustrate Algorithm 1 and the notations associated with it. It

also explains the choice of selection of certain parameters and their impact in the experiment.

Optimization of Reinforcers

The above algorithm is implemented in both robot and computer gaming platforms 

inducing MRL. This method is directly applied to the problem of searching for an appropriate 

reward channel preferred by individual human participants during the skill transfer task. Here 

each reinforcer is influenced by the participant’s cognition and performance, and this evaluation 

directs which reinforcer will be considered next. Hence, in this method, the robot and the human 

are successively generating and evaluating attempts to obtain incremental improvements for each 

other. 

Figure 4. Algorithm 1: Mutual Reinforcement Learning Algorithm 1
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Figure 3. refers to the MRL concept where the participant rectifies  the mistake after 

getting a positive reinforcer. In the particular studies reported here, Baxter has four distinct 

reinforcers at its disposal, whereas for Tetris there are seven. V n denotes the weight vector 

assigned to n reinforcers, which are initially a uniform probability distribution summing to 1. The

reinforcers are given out on the basis of weighted random selection to meet the exploration-

exploitation criteria, but since all the reinforcers are uniformly weighted at the 

beginning,weighted reinforcement in the first step is of no significance. If the reinforcer Vn ith 

given out from the set is a success then Vnith + α. Here i represents the particular reinforcer thatis

provided by the robot or the machine to motivate people. α is a small positive fraction called the 

step-size parameter, which influences the rate of learning. The value of α is chosen empirically 

based on the observed performance of exploration and exploitation. Figure 5. and Figure 6 

denotes the entropy fluctuation of the system with the suitable alpha value. Selection criteria for 

the value of α are discussed in detail in the next subsection. The value of α adds to the present 

weight of the reinforcer denoting its success. (n − 1) denotes the number of remaining 

reinforcement strategies, and the value of α is equally distributed among them. If V n ith is 

successful, α is added to it and (n−1)/α is subtracted from all the rest of the reinforcers. In 

contrast, if Vnith is a failure, then α is subtracted from it and (n−1)/α is added to the rest of the 

reinforcer. After this step the weights of Vn are updated. The mutual information shared among 

them is obtained from several interactions and the values of the reinforcers get updated every 

time with probabilities associated with faster skill transfer. The robot tries to learn about the 

person’s behavior and performance level and then applies this knowledge to motivate the 

individual. We used an exponential weighted movingaverage (EWMA) to gain information about 

the most recent interactions. For Baxter, since the number of reinforcers is fewer, we used the 

past three interactions and for Tetris we used five. EWMA only provides information about 

recent interactions, but we need to understand the variability of the reinforcers’ success over a 

longer term. Hence we maintain the value of two standard deviations σ(Vn ) over the EMWA 
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values in order to better notice and interpret success. Then again the probabilities of all the 

reinforcers in the set are updated and prepared for the next interaction. The robot stops giving out 

the reinforcers when the participant stops making mistakes. MRL, an implementation of which 

we have described in the above algorithm, is a novel concept in the field of traditional 

reinforcement learning and can be implemented in several algorithmic approaches to get 

significant results.

Choice of Parameters

In Algorithm 1 we used several parameters whose values are tailored depending on the 

experimental requirements. The parameter α is chosen on an empirical basis. We used numbers 

ranging from 0.01 to 0.07 in case of Tetris and 0.01 to 0.04 in case of Baxter. The range of 

numbers are selected on the basis of the number of reinforcers used in the experiment. We 

calculated entropy Ĥ depending on the weight of α to determine the mutual information gain over

interactions and whether the autonomous agent is optimally exploring and exploiting. Using the 

maximum entropy principle, we know (Shannon, 1948 ) that entropy reduces over time with the 

information gain. We calculated the entropy using values chosen from the ranges given above to 

determine the most suitable α value.

Figure 5. Rates of entropy decrease in Baxter for different α values.

21



Figure 6. Rates of entropy decrease in Tetris for different α values.

The lines in lighter color show different α values we considered for Baxter and Tetris and

and the dark blue line exhibits the one we selected for our experiments, namely 0.015 for Baxter 

and 0.05 for Tetris. These values not only gain information linearly over time but also trade off 

satisfactorily between exploration and exploitation. In the process of information gain, the rate of 

decrease of entropy is not always perfectly linear; all the graphs of different α values are 

accompanied by spikes due to exploration-exploitation tradeoffs. We designed the above 

algorithm not to behave greedily because exploring different reinforcers is necessary while 

breaking the monotony of the task. From these figures we can see that at the beginning of the 

experiment the entropy is maximum for all α values and gradually decreases over interactions.

The value of φ is selected in such a fashion that the robot considers the last three 

interactions of Baxter and five for Tetris. φ is denoted as the multiplier. In our previous work 

(Roy, Crick, Kieson, & Abramson, 2018 , we used the robot’s experience from the beginning to 

the task for the reinforcer selection and found out that sometimes people prefer more than one 

reinforcer. We theorized that their preference might have changed over interactions, and hence 

focused on recent interactions for better performance.
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MRL and cognitive models

In traditional reinforcement learning designing an appropriate reward signal is a critical 

part of the application process. Various researchers have coined novel techniques to solve this 

issue (Abbeel, & Ng, 2004). In contrast, processes like inverse reinforcement learning (IRL) learn

from a expert’s behavior, where an agent tries to infer the reward signal to achieve a particular 

goal. In neither of these cases does any two-way interaction between the expert and the agent take

place, and therefore they do not gain the advantage of situational feedback which is important 

19during a learning process. To achieve a particular task, both expert and novice both should 

exchange feedback through appropriate reward channels. In practice, designing appropriate 

reward signals is often an informal trial-and-error search for a reward signal that produces 

acceptable results. In MRL, the expert explores and exploits the reward signals in the course of 

judging the novice’s actions and performance while accomplishing the task. Hence if the novice 

learns slowly, fails to lean or learns incorrectly the expert cooperates to improve the student’s 

learning during the process. This is a sophisticated way to find good reward signals, since 

feedback is given while accomplishing a subgoal and the expert can slowly guide the agent 

towards the overall goal. Hence unlike other reinforcement learning strategies, MRL is a 

complete model that supports task learning with human-robot interaction simultaneously learning 

about the reward preferences. In MRL, since the expert cooperates with the novice during the 

learning process, it also becomes aware of the cognitive models involved, which in turn leads to 

the design of better reward signals. To explore the efficiency of the process, we calculated the 

machine’s regret and the mutual information shared between the agents using Shannon’s entropy 

Ĥ. Regret is defined as the difference between the reinforcer with maximum weight and the 

reinforcement strategy selected, i.e. R = smax − s + .
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Property 1: In MRL, an autonomous agent fails to identify the cognitive orientation of a 

participant if it crosses k time steps as after k steps no change in entropy occurs, which 

means no information gain.

The above matrix M is a transition matrix with state space S, where |S| = X is possibly 

infinite. N denotes the number of reinforcers used and α and β are the weights that are added to 

the system depending on the exploration-exploitation tradeoff. The above matrix is prepared on 

the basis of Algorithm 1. Now let π T be a row vector denoting a probability distribution on S: so 

each element π i denotes the probability of being in state i,

and ΣX
i=1 π i = 1, where π i ≥ 0 for all i = 1, . . . , X. The probability distribution πT is an 

equilibrium distribution for the above matrix if π T M = π T . That is, π T is an equilibrium

distribution if (π T M )j = Σ X
i=1 π i p ij = π j for all j = 1 . . . X

That is, π T , π T +1 will have the same values and so on. This is because the values achieve 

numeric stability after π T . That means M t converges to a fixed matrix with all rows equal as t → 

∞. At this point, no further change in the Shannon entropy Ĥ for π T , π T +1 will be observed. 

Entropy in a system denotes its information gain: a decrease in entropy means more information 

gain. Here  π 1 has the maximum entropy 1 which decreases linearly over time with information 

gain. Now if Ĥ does not change with time t, that means the robot is not gaining any further 
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information about the participant’s cognitive orientation. Hence we can conclude that cognitive 

orientation of a participant can only be found ≤ k steps in the transition matrix.

Property 2: If MRL converges to stationary distribution over time (equilibrium), it is 

independent of the reinforcers used during the interaction.

From property 1, we determined the convergence criteria of M . Hence we know P that 

matrix M converges to π T , ΣX
i=1 π i = 1 for a large value of t. Now the stationary or equilibrium 

distribution can be found out by solving π(M − I) = 0, where I is the identity matrix. If a matrix M

reaches equilibrium at t → ∞, we know that the cognitive orientation of the candidate is 

undetermined. Hence we assume that when equilibrium is achieved all the reinforcers (r  1 , r 2 , r 3 ,

....) are utilized and they failed to affect the human cognition. Hence we can conclude that if MRL

converges to the equilibrium distribution, then it is independent of the reinforcers used during the 

interactions.
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CHAPTER IV

REINFORCERS

Motivation and reinforcers

The human mind is a cognitive structure that consists of memory, decision making, 

perception, thoughts, emotions, and so on. These features act differently when they are influenced

by external factors like stress or negativity on a regular basis. Thus, understanding the needs of a 

human mind under particular circumstances can be difficult (Wong & Csikszentmihalyi 1991 ), 

especially when those needs are dynamic or specific to a certain individual. In this research, 

Baxter attempts to identify the reward orientation of the particular human with which it is 

interacting, depending on the task performance. In this section, we first describe the robot’s 

evaluation procedure used to assess the learning performance of its partner. We then describe 

how the robot tries to identify the best course of action to improve its own teaching performance. 

The exploration/exploitation dilemma (Audibert, Munos, & Szepesvári, 2009) is a common 

problem, where decision makers can either jump to a conclusion and make a decision on the basis

of the partial knowledge they currently possess, or rather wait and invest more time and effort in 

accumulating further information, with the hope that a broader perspective will lead to a better 

decision in future.

In our research, Baxter attempts to probe and understand a specific aspect of a human 

mind’s cognitive orientation toward particular reinforcement strategies, on the basis of this
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exploration and exploitation trade-off, where human performance acts as the reward. The robot 

employs random selection among potential reinforcement behaviors, weighted by its current 

mental model of its human partner’s motivation. When Baxter is trying to motivate an individual, 

it provides a positive reinforcer. Four different kinds of positive reinforcement are used in this 

process: verbal, reward, gesture and none . The autonomous agents weigh several positive 

reinforcers in this research to motivate the students if they commit any mistakes. In this section 

we discuss the reinforcers used by the robot and the computer during the experiment and the 

effectiveness of Simpson’s psychometric model.

Reinforcers used with Baxter

When mistakes are made, Baxter forms a sad face and gives out the positive reinforcer to 

encourage participants (Fitter & Kuchenbecker, 2016), and when they perform correctly after the 

correction it forms a smiling face. Other than that, Baxter maintains a neutral face throughout the 

task. The following reinforcers are given out depending upon the subject’s assigned experimental 

group.

Verbal reinforcer: When using this reinforcer, the robot asserts that it is trying to encourage the 

subject with some positive feedback. Since Baxter does not have its own audio interface, we used

speakers to produce the robot voice. In our experiment, if the subject makes a mistake, the robot 

will verbalize something like, “Sorry dear, don’t worry. You can do it”.

Hint-based reinforcer: This takes the form of a hint given to the participant during a task. The 

hint does not provide the correct answer but tries to influence the subject’s thought process so 

that it increases the learning rate of the participant. For example, during the pattern making 

process, if a candidate places an incorrect marker, Baxter suggests flipping the marker box and 
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trying the other side, before rejecting the block entirely. Thus people can track the blocks they 

have already tried to place in a particular spot.

Simple-feedback reinforcer: In this case, the robot only identifies the correct or the incorrect 

marker. It doesn’t attempt to induce any kind of positivity or motivation in the participant. This is

because some people are not fond of external motivations and only a rectification in the task can 

influence them to perform better.

Gesture-based reinforcer: In this case, the robot adds a consoling gesture by patting at the 

student’s back and also provides positive verbal feedback as referenced above.

Reinforcers used with Tetris

In the case of Tetris, seven different positive reinforcers are used during the interactions. 

We increased the number of reinforcers because in a fast-moving gaming scenario, we anticipated

more interactions per session. All the positive reinforcers are displayed in an audio-visual setting 

whenever a participant makes a mistake. Here all of the reinforcers provided some sort of hint for

the player to perform better. For example, whenever a player is playing for too long without 

scoring any points, reinforcers are provided such as “Clear the lines quickly for faster score” or 

guiding the player to check for the upcoming blocks to plan the next move ahead. The type of 

incentives are manipulated according to the platforms we employed to demonstrate the 

effectiveness of MRL.

Simpson’s psychometric model

In both of the above platforms, Simpson’s psychometric model (Simpson, 1972 ;  Simpson, 

1966 ) is used to identify the skill transfer. This model characterizes the principles of skill 
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evaluation, which are closely linked with important aspects of human cognition. It is widely used 

by teachers, professional specialists and scientists to evaluate curricular problems with greater 

precision. Simpson’s psychometry domain is defined in form of a taxonomy which gives us a 

clear idea about how knowledge is acquired by an individual and how that is later applied to 

execute tasks. Simpson’s psychometric model is broadly classified into Perception, Set, Guided 

Response, Mechanism, Complex Overt Response, Adaptation and Origination. Perception is 

related to the awareness of the present situation. Set is the eagerness of the human participant to 

volunteer for the task. Guided Response is the early stage of learning a complex skill with the 

help of an instructor. After the participant has learned the task, the later stages of the 

psychometric domain involve applying the training. Mechanism is the immediate step to 

demonstrate basic proficiency with respect to a simple application. Complex Overt Response is 

associated with skillfully applying complex versions of the same task with greater proficiency.

Adaptation signifies complete learning, where individuals can respond to uncertain 

events, while Origination is the last phase of learning where humans can generate new ideas from

their knowledge. Here the experiments are designed to confirm the feasibility of Simpson-based 

skill evaluation. Since the tasks are designed in a lab setting, we only used a few of the above 

categories to determine the skill transfer process. The following section discusses the

Figure  7.  The mistake is rectified by the participant and Baxter forms a happy face
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Figure  8.  Participants make a mistake and Baxter forms a sad face while providing a positive

reinforcer to encourage the participant

Figure  9. A reinforcer is provided to rectify the mistake. experimental models and the findings

associated with them.
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Figure  10. The participant has made a mistake in the Tetris game (allowed a gap to form in a

line) 
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CHAPTER V

EXPERIMENTAL PROCEDURE

The following section describes the experiment conducted so far in learning and teaching domain.

Experimental design: robot teaching via demonstration I

This experiment involves performance analysis of participants when they are taught by 

the robot acting as an expert. The robot taught them the language motion ‘Hello, Please listen to 

me’ used for the experiment involving experts. In this experiment, the subjects are asked to 

imitate the same task they are taught by the robot, and return to demonstrate the task again after 

an interval of at least three days. The goal of the experiment was to evaluate the teaching action 

of a robot while interacting with a novice. If the novice human operator successfully manages to 

imitate the task taught by the robot, then we can infer that the robot has taught that person well, 

especially if the skill persists over time. Since semantics play a great role in providing useful 

information, we used our learned semantic model for teaching with semantic labels along with the

corresponding gesture. The experiment is a between-subjects study where one group receives the 

benefit of semantic structure, while the other only receives demonstrations.
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Procedure

In this experiment n = 38 subjects were involved. There were 20 people in the semantic 

labeling group and 18 in the control group. Participants in these groups learned to control the 

robots arm using a joystick controller to produce the ‘Hello, please’ sign language phrase which 

the robot had learned from expert demonstrators. The self-reported joystick proficiencies of the 

participants were noted at the beginning of the experiment and used as a control. The robot 

performs a motion and the participant attempts to duplicate that motion using the controller 

device. During the experiment the participants were provided with necessary information 

regarding the robot and the functionality of the joystick controller. They were allowed to take 

notes for their convenience. On the first day of the experiment, both groups of participants were 

allowed to see Baxter demonstrating the task as many times as they wished, and could practice 

for half an hour to get acquainted with the robot. Since this group of participants were intended to

be novice human operators, they were not given any human guidance from the researchers and 

were only allowed to learn from the robot. Subjects in the semantic structure group were ‘taught’ 

using semantic labels assigned to each movement, which were previously developed through 

active engagement with an expert. These labels were broken down to indicate the smaller actions 

that make up the entire task. Participants followed the robots instructions to learn the movements 

necessary for using the joystick controller to perform the same actions, thereby mimicking the 

motions of ‘expert’. The participants in this group can see the labels and task structure on the 

monitor during the task and are also given out handouts containing necessary information about 

Baxter. During the experiment, since Baxter is teaching them a new motion, no other human 

guidance is involved. Participants in the no semantic structure group were ‘taught’ without 

semantic labels, so that there are no associations between each smaller movement and any 

assigned categorization or word. Participants are expected to follow the robot’s demonstrations to
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learn the movements necessary for using the joystick controller to perform the sign language task.

Participants in this group were only provided with the handout containing important information 

about Baxter and the joystick controller.

Figure 11.  Performance analysis of the participants on the first day of the experiment.

Figure 12. Performance analysis of the participants on the second day of experiment.

 All of the participants in both groups were asked to return after at least two days and 

were asked to perform the same movements on the robot. They were only given one chance to 

perform the movement and were not allowed to practice or see any demonstration, although they 
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did first have the opportunity to practice random movements with the controller. The subjects in 

the no semantic structure group were asked to move certain joints to perform their motion, 

whereas the people in the semantic group were provided the semantic labels with which they 

were taught, as instructions to execute the corresponding motion. No significant difference 

between groups (p≈0.5) Difference is suggestive but not significant (p= 0.18) The above figures 

shows the RMSE values of both the group of participants scaled on the basis of their joystick 

proficiency.

Subjective performance evaluation

In Figure 11., which represents the initial training session where the robot demonstrates 

the task, there is almost no difference between the performances of the two groups. This is 

because the subjects were allowed to see the task demonstration as many times as they wished 

and to practice it several times to achieve adequate performance. Subjectively, we observed that 

subjects in the semantic structure condition asked for fewer demonstrations than those of the 

group without such structure. Since we determined that joystick proficiency played an important 

role in subject performance, and subjects were randomly assigned to the two groups, we found 

that the mean self-reported joystick proficiency of the non-semantic structure group (mean of 

3.13 on a 5-point Likert scale) was significantly higher than that of the semantic structure group 

(2.51). Even when controlling for this, however, no significant difference in task performance 

was found. Figure 12. demonstrates that the subjects in the semantic structure group may have 

been able to retain their task expertise over a period of several days, compared to the subjects 

who were not provided with the same level of semantic assistance by the robot. A t-test shows a 

p-value of 0.18, suggestive but not a significant difference. Again, this data is after controlling for

self-reported joystick proficiency. Subjects in the semantic structure condition may have had a 
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more thorough understanding of the task, but participants in both groups had access to their notes,

taken during the initial teaching encounter, and this may have muted the effect. Even so, the non-

semantic group did perform less well, and a larger fraction had larger errors than in the semantic 

group just not to the level of statistical significance.

Experimental Procedure II

n = 110 participants were recruited for the experiment (aged 18-20, 28 male, 82 female). 

The no-reinforcer group contains n = 35, the random reinforcer group contains n = 22 and the 

learned model group contains n = 53 participants. The blocks that are used in this experiment are 

two-faced having different markers on each side. During task 1, Baxter initially demonstrates 

seven markers, explaining their numbers and markings to the 29candidate. They are then 

randomly asked to identify two markers out of seven. A participant proceeds to the next task only

if the first is finished successfully. Accordingly, the markers the candidates study in task 1 may 

not be repeated in task 2, as they are all shuffled before each task. The robot is only responsible 

for placing the markers in their respective positions. Since markers are shuffled randomly, each 

participant is given different patterns.

In task 2, subjects are asked to solve some general math questions as a distraction while 

the robot constructs the pattern, in order to reduce the available observation time for the 

participant. When the robot is finished making the pattern, they are asked to turn back and 

observe the pattern for 30 seconds. The blocks are shuffled again and the students are asked to 

recreate the pattern in 50 seconds. After each task, the robot inquires if they require more time. 

During task 3, the subjects are allowed to observe the pattern making process, but are not given 

any additional observation time. Baxter’s pick-and-place manipulation is fairly slow, and it takes 
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almost a minute for it to create the larger pattern. Out of the three subject groups, substantially 

more participants in the learned  reinforcement strategy group were able to advance to task 3.

Positive reinforcer on success

Initially an experiment was carried out where Baxter uses positive reinforcers as 

appreciation if the person performs well in a task. n = 19 participants are invited to the laboratory 

where they are allowed to interact with Baxter. However, the different groupsof people (none, 

random and learned) did not show any significant performance difference, judging from the 

number of mistakes they made in each condition. The median number of mistakes is the same 

across all conditions, although their overall range of mistakes varied somewhat. The subjects 

indicated in conversation with the researchers that when each participant is performing so well in 

all the tasks, they barely cared about the reinforcer from the robot because they are performing 

well anyway. Hence we redesigned the experiment in such a manner that the reinforcers can 

influence the subjects during their performance and the robot can help them better to accomplish 

the task.

Positive reinforcement on failure

In this experiment, the positive reinforcements are provided by the robot if the candidate 

has unsatisfactory performance at any point. Chapter 3, explains how the reinforcement strategies

are adjusted according to the human orientation uncovered by the robot’s exploration and 

exploitation of effective strategies. Here, the candidates are divided into three categories, where 

they receive no reinforcement at all, a random reinforcement, or a reinforcement selected 

according to Baxter’s understanding of what motivates the particular individual. In the no-

reinforcement group, Baxter only demonstrates the task and declares ‘Right’ or ‘Wrong’ 
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depending upon the performance of the participant. In the case of the random and learned model 

categories, the robot gives out positive reinforcers in the form of a reward, gesture, verbalization 

or just simply saying ‘You are right’. Baxter also changes its facial expression (Fitter & 

Kuchenbecker, 2016 )on the basis of the candidate’s performance. Generally, Baxter puts up a 

neutral face while demonstrating the task, but if a candidate performs correctly, Baxter’s face 

turns green with a smile, while it makes a sad face and turns red when wrong. The facial 

expressions are also applied as a form of reinforcer. The goal of this experiment was to determine

if, when the robot has lower regret, whether the learner makes correspondingly fewer mistakes 

with time.

Subjective performance evaluation

Figure 13 shows the number of mistakes made by each participant, used as a metric to 

evaluate performance. Out of all the participants who performed the experiment, there are some 

within each experimental group who did not make any mistakes. Those participants did not 

receive any reinforcements regardless of which group they were assigned to, so are not 

considered as a part of the mistake data. Also there are cases where the participants responded to 

more than one reinforcer or made so many mistakes that the robot could not determine their 

reward  orientation. From within the learned model group, out of 53 participants 18.87 percent of 

people did not commit any mistakes, and the orientation of 35 percent of the participants could 

not be determined by the robot under the experimental conditions. This means that the robot 

successfully learned a good teaching strategy for slightly fewer than half of the participants.

Figure 13 considers those participants of the learned group whose orientation can be 

understood by the robot. We can see that there is a suggestive difference between the different 

group of participants. Although the median performance is almost same in the none vs. the 

learned group, the range of the mistakes differ. From the data, we can see that more than a quarter
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of the participants in the no-reinforcement group made more mistakes than almost anyone in the 

learned group. Besides that, in spite of having a larger population, the overall range of mistakes 

of the learned group is smaller than any other group of participants. The group receiving no 

reinforcement has the largest magnitude of mistakes. To measure the standardized difference we 

calculated the Cohens D = 1.93 on the 28% of these two populations which signifies that only 

there is approximately 32% similarilty between both the populations. To show the maximum 

effectiveness of reinforcers on the learned group only 28% of the data is considered. The 

reinforcement strategy is considered to be working for a participant when the participant starts 

making fewer mistakes with same kind of reinforcer, and this also leads to a lower computed 

regret for the robot.

In the case of the random group, the range of mistakes is smaller than first group because 

some kind of positive motivation is given out, even if it isn’t the most appropriate for the 

individual. Hence the number of mistakes are also smaller than the first group. From Figure 13 

we can tentatively conclude that the people in the learned model condition performed better than 

the people in the other groups.

Figure 14 shows the fraction of people in all the three populations who made more than 

three mistakes. Since subjects who performed close to perfectly received little feedback 

regardless of their experimental category, we would not expect to see much of an effect among 

those subjects. In this figure, we restrict our attention to subjects who received significant 

feedback. In this case, a z-test performed between the no-reinforcement and the learned group 

shows a p-value of 0.03. Thus subjects who made mistakes in the learned group received helpful 

feedback and improved their performance significantly more than the others.
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Reinforcer evaluation

To measure the effectiveness of reinforcers, we calculated the interactions elapse before 

Baxter realizes which reinforcer is working for a participant. In a few cases it discovered the best 

reinforcer in the first interaction, but this is not usually the case. 

Figure 13. Performance of participants in experiment positive reinforcers with failure.

starts with a random interaction, as they all have equal prior weights. But fairly quickly, one 

interaction tends to stand out among the others as the strategy which works best for Baxter 

initially interacts with the participant. We considered cases where Baxter realized in the very first 

interaction which reinforcer will be working for the participant. Here we also considered the case 

where subjects received only one reinforcement strategy, which induced them to perform very 

well through out the rest of the task without making any further mistakes. There are also cases 

where Baxter identified multiple reinforces which work equally well for a participant after several
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interactions. The mean and the standard deviation for the various reinforcers are as follows: 

Gesture: μ = 3.0, σ = 0.76, None: μ = 2.4, σ = 1.5, Reward: μ = 3.67, σ = 3.01, and Verbal: μ = 

2.75, σ = 3.19. We see that the least effective reinforcement strategy, or at least the one that took 

the longest to learn for the largest number of participants, was gesture-based. The experiment was

performed on college-age subjects. Gestures are usually popular among young children; here it is 

assumed that the subjects lack emotional engagement, so gestures had less effect than other 

reinforcement strategies. In case of verbal reinforcement, more interactions were required by the 

robot to understand the orientation of human participants. This is because Baxter narrates the 

reinforcer in a machine voice, which is sometimes difficult to comprehend. Subjects encountered 

some difficulty in understanding and obtaining motivation from verbal interaction. Participants 

had similar responses to reward and verbal motivations. 

Figure 14. Fraction of participants making more than three mistakes.

41



Regret analysis

As mentioned in Chapter 3, regret is calibrated on the basis of the decision making ability

of the robot. It depends upon the subject’s performance, which helps in characterizing the most 

appropriate reinforcement learning strategy. We correlated the number of mistakes made by the 

human participants (Figure 15) and the total regret felt by the robot and found a linear 

relationship between the number of mistakes and the robot’s regret. The value of the coefficient is

r = 0.88; thus the robot’s regret is strongly correlated and the reinforcement learning strategy used

by the robot to understand human responses and improve their performance is appropriately 

working. For the participants who had several interactions with the robot or made many mistakes,

Baxter tried to explore different reinforcement strategies at different times, trying to increase their

learning rate. Hence we can derive that Baxter can

Figure 15. Regret analysis of the robot.

successfully train people to achieve complexes task using their preferred motivations.
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Experimental Procedure III

n = 34 (age : μ = 19.69, σ = 3.47, male=13, female=21, none=11, random=11, 

learned=12) participants were recruited for the experiments with Baxter, which ran for a time t (μ 

= 18.47,σ = 5.60 in minutes). Among the subjects, 75% had never interacted with a robot, 8.30% 

interacted a year ago, and 5.50% each a month and a week ago. The task involved in the 

experiment was divided into two large sections that was further divided into two smaller 

subsections. The tasks are designed to observe successful skill transfer from robot to human using

Simpson’s psychometric model, where each category in the taxonomy transitions to another with 

the goal of skill transfer. In this experiment we only used Guided Response, Mechanism and 

Adaptation. Guided Response I and II occur in the first half of the experiment where the robot 

first teaches the participant about the augmented markers and then motivates them throughout the

learning process. During this the robot also evaluates the performance of the participants. In the 

second half of the first section the robot teaches the participant a complex pattern with dual-faced 

augmented markers and asks the student to reconstruct it. Again, during this process, the robot 

positively reinforces the learner with simple yes-or-no, random or learned MRL feedback 

depending upon their assigned experimental group. Participants are allowed to observe the pattern

making process and then the markers are immediately shuffled and they are asked to start the 

reconstruction immediately. Baxter transitions its left hand camera from one spot to another for 

evaluation. Baxter does not progress to the next position until the participant rectifies any 

mistakes. During this process the participants get hint, simple, verbal or gesture feedback 

depending upon their group and Baxter with their performance tries to identify their cognitive 

orientation. Figure 7 and Figure8 (top frames) corresponds to the experimental procedure with 

Baxter.

In the second half of the experiment the participants are asked twice to reconstruct the 
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pattern, this time without any motivation, to observe how well the skill transfer succeeded. In the 

last half of the experiment participants are asked again to identify two random markers from the 

set they were taught at the beginning of the experiment to analyze adaptation. Each participant in 

the experiment was assigned different complex patterns for reconstruction. The marker placement

at each position depends upon the robot. At the end of the experiment, the subjects were given 

questionnaires to answer using a 5-point Likert scale. The results section is further divided into 

subsections discussing the performance of the participants, the mutual information shared, the 

robot’s regret and the mental model of the participants during the task. 

Subjective performance evaluation

To quantify the skill transfer procedure, we calculated the number of mistakes made by 

each participant in all of the groups in different phases of the experiment. Figure 16 and Figure 

17 shows the number of mistakes according to Simpson’s psychometric model. There are 

participants (≈ 8.82%) who didn’t commit any mistake throughout the experiment, so their results

are not included in the mistakes data. From Table , Figure 16 and Figure 17 we can see that the 

number of mistakes made during the Mechanism and Adaptation phases are significantly less 

than during the Guided Response phases irrespective of the groups, which shows the effect of 

robot feedback during the task. Again if we compare the skill transfer among the groups in the 

figure, we can see that the number of mistakes in the learned MRL group is comparatively.
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Figure 16. Skill transfer is analyzed different levels of Simpson’s psychometric model.

Figure 17. Mistakes by  participants before and after the skill transfer with Baxter. 

MRL improves skill transfer (p < 0.05) lower than the other two. Table 1 presents the 

performance of the participants in all the phases of the experiment. Figure 17 also plots the 
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number of mistakes in each group before (Guided Response I and II) and after (Mechanism and 

Adaptation) the skill transfer procedure; we see that the participants made comparatively fewer 

mistakes in the learned group than in the other two. Using a t-test for skill transfer outcomes 

while comparing the learned group with random reinforcers we get a significant p value < 0.05. 

Table 1.  Performance of the participants in different phases

Group None Random Learned

M SD M SD M SD

Guided 
Response I

0.4 0.84 0.8 1.17 2.08 3.92

Guided 
Response II

2.08 3.92 7.45 8.37 4.5 4.80

Mechanism 1.8 3.65 1.33 3.04 0.64 1.80

Adaptation 1.2 0.63 1.18 0.87 0.83 0.94

Figure 18. Entropy (green) of the information of robot interacting with participants.
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Thus we can conclude that MRL has successfully worked in terms of the skill transfer procedure 

viz. Guided Response I , Guided Response II, Mechanism and Adaptation using Simpson’s 

psychometric model in the skill transfer scenario in Baxter.

Entropy analysis

Entropy denotes the randomness of a system. In Figure 18, we can see that the entropy of 

the information of the robot obtained by interactions goes down monotonically along with each 

interaction with its human participant in MRL. With each interaction, the robot is gaining more 

information about the participants’ performance and their cognitive orientation towards each 

reinforcer. The pale green lines show the entropy of the information of the each participant 

obtained by interactions with Baxter, and the blue line is their mean performance. Not every 

participant had an equal number of interactions with Baxter, but regardless, using Algorithm 1, 

the machine manages to gain information steadily about their performance. For each participant, 

the value of entropy varied depending on the exact pattern of the robot’s choices of exploration 

and exploitation, but we can conclude that for each participant it has gained some information at 

each interaction which later helped it to construct a successful mental model.

Regret analysis

As mentioned in Chapter 3, regret is calibrated on the basis of the decision making ability

of the robot. It depends upon the subject’s performance, which helps in characterizing the most 

appropriate reinforcement learning strategy. We correlated the number of mistakes  made by the 

participants and the total regret felt by the robot (Figure 19) and found a  linear curve
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Figure 19. Regret analysis of Baxter.

shows the best fit with coefficient r = 0.85. linear relationship between the number of mistakes 

and the robot’s regret. The value of the coefficient is r = 0.85; thus the robot’s regret is strongly 

correlated and the reinforcement learning strategy used by the robot to understand human 

responses and improve their performance, is working appropriately. For the participants who had 

several interactions with the robot or made many mistakes, Baxter tried to explore different 

reinforcement strategies at different times, trying to increase their learning rate. This illustrates 

that Baxter can successfully train people to achieve complex task using their preferred 

motivations.

Mental model analysis

At the end of the experiment, those participants in the learned model group were asked to choose 

their preferred reinforcers. Baxter could correctly identify the preferred reinforcers in half of the 
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cases (twice as effectively as a random baseline). Thus, MRL allowed the robot successfully to 

identify the cognitive orientation of the participants to a large extent (accuracy score = 0.50). 

During the task, since the number of interactions was limited, the robot did not have sufficient 

opportunity to engage in the exploitation aspect of the reinforcement learning, and thus its ability 

to identify preferred reinforcers was limited (but still reasonably successful). In these 

experiments, Baxter explored more than exploited, which impacted the types of reinforcers given 

out by the robot.

At the end of each experiment we probed participants with a 5-point Likert scale(1: 

Strongly disagree; 2: Disagree; 3: Neutral; 4: Agree; 5: Strongly agree). Participants 39in the no 

reinforcer group (μ=3.54 , σ=0.68 ), random reinforcer group (μ=4 , σ=0.77 ), learned reinforcer 

group (μ=3.25 , σ=1.22 ) wanted to play with Baxter again and again in no reinforcer group 

(μ=4.0 , σ=0.63), random reinforcer group (μ=3.63 , σ=0.92) and learned reinforcer group 

(μ=2.6 , σ=0.89) thought it is useful as a teacher. Interestingly, the people who performed poorly 

during the experiment neither found Baxter to be useful nor thought it was a good teacher. In 

other words, people who enjoyed the interaction also found it helpful and wanted to come again 

to learn from the robot, whereas those were not fond of the robot were not interested in the 

experiment and ended up performing poorly.

Experimental Procedure IV

n = 31 (age μ = 19.77, σ = 5.07, male=9, female=22, none=11, random=10, learned=10) 

participants were recruited for the experiments with Tetris for 15 minutes. We conducted an 

experiment in a gaming scenario to observe the performance of MRL across different platforms. 

Among all the participants, 74.19% of the subjects had played the game but not within the last 
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year, 12.19% had played within the last year but not the last month, and the rest had played the 

game within the last month. Like with the Baxter scenario, participants were also being trained to 

be better Tetris players. The skill transfer scenario is also analyzed with Simpson’s psychometric 

model (Guided Response and Adaptation). 

As is common in Tetris games, during each move, the next block is shown alongside the 

10x20 game board so that players plan their move ahead. As in the previous experiment, the 

teaching process is divided into two phases. Initially the participants are asked to play the game 

for 15 mins with reinforcers provided depending upon their assigned  experimental group 

(simple, random, MRL).

Whenever the participant makes a mistake, the machine alerts them, provides are 

reinforcer, and then they are allowed to continue. For Tetris, mistakes are considered to be placing

a block in such a way to hinder fast scoring. Wrong placement is associated with forming a gap 

between lines which will make it difficult to eliminate the line of blocks in the future. Also, if a 

player places blocks several times in a row without eliminating any lines, that is also considered 

as a mistake as the towers of blocks build up and get closer to ending the game. During the first 

experiment task, if the game is lost, participants are allowed to restart, so that all subjects 

received the same time to learn properly. In the second portion Figure 20. Scores acquired by 

participants per minute before and after skill transfer during Tetris. In the random group, subjects 

showed significant progress after skill transfer p<0.05. of the experiment (Adaptation), 

participants are asked again to play the game, this time without reinforcement training, to assess 

the quality of their learning. They are asked to play until losing, or until 5 minutes elapsed 

(μ=2.68 σ=0.88 minutes). Since the experiment had only two phases, we used Guided Response 

and Adaptation to analyze the skill transfer. After the game, the subjects were also given 

questionnaires probed with a 5-point Likert scale. Similarly to the Baxter experiment, our 
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analysis of the Tetris scenario is divided into subjective and entropy evaluation, regret and mental

model analysis.

Subjective performance evaluation

For Tetris, we computed the skill transfer on the basis of Simpson’s psychometric model. 

Since, in a game like Tetris, people are expected to make a large number of mistakes, we 

computed the scores per minute of the participants of different groups. Figure 20 denotes the 

scores of the participants before (Guided Response) and after (Adaptation) the skill transfer 

procedure. The subjects in the random group score significantly better than the 

Figure 20. Scores by participants per minute before and after skill transfer during Tetris.

 Here in case of the random models the participants got some sort of feedback 

which reinforced them to perform better at the task. The random group showed 

significant improvement than the none group ( p≈0.01). Hence although the participants 
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responded to feedbacks , there is not much difference between the random and the 

learned models. Since in this task may people have already played Tetris before the MRL 

didn't have salutary effect on the participants.

Entropy analysis

Like Baxter, this shows that the computer is gaining information about the participant’s 

performance and its cognitive orientation towards each reinforcer with each interaction.

Figure 21. Entropy (green) of information of Tetris while interacting with participants.

The entropy of the gaming device’s information monotonically decreases with each 

interaction with its human participant in MRL. Like Baxter, this shows that the computer is 

gaining information about the participant’s performance and its cognitive orientation towards 
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each reinforcer with each interaction. The pale green lines show the entropy of each participant 

over each interaction with the machine and the blue line shows the mean performance.

Regret analysis

Like Baxter, here also we tried to calibrate the regret of the gaming system. The 

correlation coefficient in this case is r < 0.50. Although the system tried to explore different 

reinforcement strategies at different times, trying to increase the learning rate, the results are 

suggestive and not conclusive. Figure. 22 is the best fit curve to analyze the relation between  

integral of regret and number of mistakes in Tetris. 

Figure 22. Regret analysis of Tetris.
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The linear curve shows the best fit with coefficient r < 0.50 regret of the system and the 

integral of the number of mistakes made by the participants. This is because the participants 

utilized all the reinforcers given to them without distinguishing between them very much.

Mental model analysis

At the end of the experiment, those participants in the learned model were asked to 

choose their preferred reinforcers. The machine could partially identify the preferred reinforcers 

in Tetris. For example, reinforcer a is often misclassified as e in many cases. In Tetris, since all 

the reinforcers were fairly similar to one another, in spite of the fact that they guided participants 

differently, the subjects often failed to distinguish the efficacy of one versus another(accuracy 

score < 0.50). Hence they were able to make use of all of the provided reinforcers successfully, 

without much differentiation between them. It was difficult for the system to determine the 

preferred reinforcer of the participant, and only it occasionally successfully identified the best 

reinforcers. Hence there is not much difference between the performance of the learned group 

with that of the random group of participants. At the end of each experiment we probed 

participants with a 5-point Likert scale (1:Not all helpful; 2: Moderately helpful; 3: Neutral; 4: 

Helpful; 5: Extremely helpful). The subjects wanted to play Tetris again with (μ=3.0, σ= 0.70) 

none, (μ=3.2, σ= 0.78) with random and (μ=3.3, σ= 0.82) with MRL. They thought it was useful 

(μ=2.1, σ= 0.75) with none, (μ=2.5, σ= 0.85) with random and (μ= 2.5, σ=0.97) with MRL. 

Overall, more than half the subjects found the reinforcers useful and therefore thought the system 

was a good teacher. These statistics show significant results.
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CHAPTER VI

DISCUSSION

The subjects provided with semantic structure happened to have lower mean joystick 

proficiency than the other group. We hypothesized that subjects learning with semantic labels 

would retain the task better than the other group, although we did not quite confirm this to a 

statistically significant level, though we can still say that the robot made a decent teacher. Since 

all of the subjects in both groups were allowed to take copious notes and use them during the 

experiment, we believe that the task execution challenge became too easy, accounting for the 

relative success of the non-semantic structure group. In addition, the chosen sign language phrase

may not have been sufficiently complex to differentiate the learning process. Even so, the 

subjects in the no semantic structure group did indeed perform less well than those with access to 

human-accessible semantic guidance. Subjectively, participants without semantic labels more 

often skipped trajectories and chose incorrect motions more often. Since they were novice 

operators, they were not precise about their movements. For example, in the first two movements,

the robot’s arm is aligned perpendicularly with its shoulder in the ideal motion. However, the 

participants sometimes failed to achieve this pose, which caused significant deviation since the 

shoulder joint influences the subsequent position of all other joints. The subjects had little 

understanding of how precise various actions needed to be, and this was true for both groups. 
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During the experiment, displayed on a monitor placed beside each candidate.  It is likely the case 

that the learning and  teaching would have gone better with a more audiovisual interaction. 

Without any audio, it was difficult for some participants to  keep track of the labels on the screen 

and Baxter’s movement at the same time. Especially during fine trajectory adjustments, it was 

very difficult to look at both the robot and the monitor  simultaneously. These are a few of the 

factors which might have influenced the performance of the participants during the experiment 

irrespective of their group.

In the experiment, the results are sometimes not as strong as we might hope for several 

reasons. If the robot’s grippers were closed, they occasionally hindered the camera, blocking the 

robot from identifying the markers, since we used the left hand camera for detection and 

evaluation purposes. The Baxter arm and gripper are not extremely dextrous; it is sometimes very

unsophisticated in its attempts to pick up the blocks whenever they not lying perpendicularly to 

the camera. The markers, after several tasks and the degradation which resulted from repeated 

handling by both human and robot, became unclear and difficult for the marker tracking 

algorithm to recognize, which also contributed to system crashes. Again, many of the young 

adults who participated in the experiment failed to connect to the robot emotionally and lacked 

engagement. Some subjects paid very little attention to the robot’s attempts to communicate a 

reinforcement strategy, to the point that the subjects attempted to interact with the researchers 

conducting the experiment rather than the robot. Some participants simply produced iteration 

after iteration of patterns until they happened upon the correct one, without paying attention to 

the robot gamely attempting to help. Rather, they simply tried each block at each position to 

figure out the right approach. Hence Baxter on its end was confused in providing the 

reinforcement strategy. For this reason, we see that Baxter was only able to identify a successful 

motivational strategy for half the participants in the learned group.
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Another potential point of alienation came from the fact that Baxter’s voice did not issue 

from the robot itself, but rather a speaker off to the side (since the robot hardware lacks sound 

capability). The students had to turn to their right side and interact with a computer console to 

give Baxter their feedback in form of yes or no, which is unsophisticated; verbal interaction 

would have been a better option. However, participants in the experiment came from different 

national backgrounds and language abilities, so it was very hard for the robot to understand their 

pronunciation, and we were therefore forced to keep the human feedback in that format.

Seven blocks with 14 markers can be placed in many, many ways, but no participants 

required nearly that many attempts to figure out the correct pattern. Thus, even when they did not 

directly engage with the robot’s attempts to teach, it still had some impact on them. We used the 

spatial arrangement of markers as our complex task. Some people who performed better in all the 

groups might simply be good at this style of task and would fail at some other complex task. The 

difference in performance between the groups might be different in different complex task 

scenarios. Our MRL theory applies to the people who have performed poorly in the task, and 

therefore received appropriate motivations. They might be better at a different complex task, and 

therefore engage differently with the reinforcement behavior. In the case of Tetris, people are 

well acquainted with the game, so the reinforcer might only have a little effect on them. Although

the autonomous agents successfully developed a teaching strategy for only half of the 

participants, it is enough to suggest that such feedback does have impact on human behavior and 

learning. Furthermore, this approach allows the autonomous agent to assess its own success and 

learn to calibrate its own interactions in ways that lead to successful teaching.
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CHAPTER VII

CONCLUSION

In this work, we studied the problem of skill transfer from a robot to human, where the 

autonomous agent is not only learning about the human mental model but also trying to adapt its 

own accordingly. In this shared environment, the robot is trying to maximize the cumulative 

reward by learning about human behavior and simultaneously improving its own cognitive 

model. We highlighted mutual information communicated between the robot and the human, and 

validated their interaction in skill transfer using real-time experiments in both robot and gaming 

platforms. The subjective performance, information gain over time and the confusion matrices 

give us a conclusive idea how robots and computer systems can successfully transfer skills from 

themselves to humans. In our future work we would like to implement MRL across different 

platforms. Heavy construction equipment like excavators and backhoes are required to perform 

complex tasks like digging, truck loading and ditch crossing, requiring a series of complex 

manipulations. Learning appropriate manipulations for these different situations is a hard task. We

want to implement MRL in these scenarios where humans can learn the subtlety of control 

manipulations with robot assistance. In addition, we intend to investigate the necessary 

behavioral changes required to be adapted by the robots to become better trainers over time. We 

would also like to involve robots in guiding students towards correct actions and simultaneously 

identifying their mental models in a robot-human interaction.
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	Figure 12. Performance analysis of the participants on the second day of experiment.
	All of the participants in both groups were asked to return after at least two days and were asked to perform the same movements on the robot. They were only given one chance to perform the movement and were not allowed to practice or see any demonstration, although they did first have the opportunity to practice random movements with the controller. The subjects in the no semantic structure group were asked to move certain joints to perform their motion, whereas the people in the semantic group were provided the semantic labels with which they were taught, as instructions to execute the corresponding motion. No significant difference between groups (p≈0.5) Difference is suggestive but not significant (p= 0.18) The above figures shows the RMSE values of both the group of participants scaled on the basis of their joystick proficiency.
	Subjective performance evaluation
	In Figure 11., which represents the initial training session where the robot demonstrates the task, there is almost no difference between the performances of the two groups. This is because the subjects were allowed to see the task demonstration as many times as they wished and to practice it several times to achieve adequate performance. Subjectively, we observed that subjects in the semantic structure condition asked for fewer demonstrations than those of the group without such structure. Since we determined that joystick proficiency played an important role in subject performance, and subjects were randomly assigned to the two groups, we found that the mean self-reported joystick proficiency of the non-semantic structure group (mean of 3.13 on a 5-point Likert scale) was significantly higher than that of the semantic structure group (2.51). Even when controlling for this, however, no significant difference in task performance was found. Figure 12. demonstrates that the subjects in the semantic structure group may have been able to retain their task expertise over a period of several days, compared to the subjects who were not provided with the same level of semantic assistance by the robot. A t-test shows a p-value of 0.18, suggestive but not a significant difference. Again, this data is after controlling for self-reported joystick proficiency. Subjects in the semantic structure condition may have had a more thorough understanding of the task, but participants in both groups had access to their notes, taken during the initial teaching encounter, and this may have muted the effect. Even so, the non-semantic group did perform less well, and a larger fraction had larger errors than in the semantic group just not to the level of statistical significance.
	Experimental Procedure II
	In task 2, subjects are asked to solve some general math questions as a distraction while the robot constructs the pattern, in order to reduce the available observation time for the participant. When the robot is finished making the pattern, they are asked to turn back and observe the pattern for 30 seconds. The blocks are shuffled again and the students are asked to recreate the pattern in 50 seconds. After each task, the robot inquires if they require more time. During task 3, the subjects are allowed to observe the pattern making process, but are not given any additional observation time. Baxter’s pick-and-place manipulation is fairly slow, and it takes almost a minute for it to create the larger pattern. Out of the three subject groups, substantially more participants in the learned reinforcement strategy group were able to advance to task 3.
	Positive reinforcer on success
	Initially an experiment was carried out where Baxter uses positive reinforcers as appreciation if the person performs well in a task. n = 19 participants are invited to the laboratory where they are allowed to interact with Baxter. However, the different groupsof people (none, random and learned) did not show any significant performance difference, judging from the number of mistakes they made in each condition. The median number of mistakes is the same across all conditions, although their overall range of mistakes varied somewhat. The subjects indicated in conversation with the researchers that when each participant is performing so well in all the tasks, they barely cared about the reinforcer from the robot because they are performing well anyway. Hence we redesigned the experiment in such a manner that the reinforcers can influence the subjects during their performance and the robot can help them better to accomplish the task.
	Positive reinforcement on failure
	In this experiment, the positive reinforcements are provided by the robot if the candidate has unsatisfactory performance at any point. Chapter 3, explains how the reinforcement strategies are adjusted according to the human orientation uncovered by the robot’s exploration and exploitation of effective strategies. Here, the candidates are divided into three categories, where they receive no reinforcement at all, a random reinforcement, or a reinforcement selected according to Baxter’s understanding of what motivates the particular individual. In the no-reinforcement group, Baxter only demonstrates the task and declares ‘Right’ or ‘Wrong’ depending upon the performance of the participant. In the case of the random and learned model categories, the robot gives out positive reinforcers in the form of a reward, gesture, verbalization or just simply saying ‘You are right’. Baxter also changes its facial expression (Fitter & Kuchenbecker, 2016 )on the basis of the candidate’s performance. Generally, Baxter puts up a neutral face while demonstrating the task, but if a candidate performs correctly, Baxter’s face turns green with a smile, while it makes a sad face and turns red when wrong. The facial expressions are also applied as a form of reinforcer. The goal of this experiment was to determine if, when the robot has lower regret, whether the learner makes correspondingly fewer mistakes with time.
	Subjective performance evaluation
	Figure 13 considers those participants of the learned group whose orientation can be understood by the robot. We can see that there is a suggestive difference between the different group of participants. Although the median performance is almost same in the none vs. the learned group, the range of the mistakes differ. From the data, we can see that more than a quarter of the participants in the no-reinforcement group made more mistakes than almost anyone in the learned group. Besides that, in spite of having a larger population, the overall range of mistakes of the learned group is smaller than any other group of participants. The group receiving no reinforcement has the largest magnitude of mistakes. To measure the standardized difference we calculated the Cohens D = 1.93 on the 28% of these two populations which signifies that only there is approximately 32% similarilty between both the populations. To show the maximum effectiveness of reinforcers on the learned group only 28% of the data is considered. The reinforcement strategy is considered to be working for a participant when the participant starts making fewer mistakes with same kind of reinforcer, and this also leads to a lower computed regret for the robot.
	Figure 14 shows the fraction of people in all the three populations who made more than three mistakes. Since subjects who performed close to perfectly received little feedback regardless of their experimental category, we would not expect to see much of an effect among those subjects. In this figure, we restrict our attention to subjects who received significant feedback. In this case, a z-test performed between the no-reinforcement and the learned group shows a p-value of 0.03. Thus subjects who made mistakes in the learned group received helpful feedback and improved their performance significantly more than the others.
	Reinforcer evaluation
	To measure the effectiveness of reinforcers, we calculated the interactions elapse before Baxter realizes which reinforcer is working for a participant. In a few cases it discovered the best reinforcer in the first interaction, but this is not usually the case.
	Figure 13. Performance of participants in experiment positive reinforcers with failure.
	starts with a random interaction, as they all have equal prior weights. But fairly quickly, one interaction tends to stand out among the others as the strategy which works best for Baxter initially interacts with the participant. We considered cases where Baxter realized in the very first interaction which reinforcer will be working for the participant. Here we also considered the case where subjects received only one reinforcement strategy, which induced them to perform very well through out the rest of the task without making any further mistakes. There are also cases where Baxter identified multiple reinforces which work equally well for a participant after several interactions. The mean and the standard deviation for the various reinforcers are as follows: Gesture: μ = 3.0, σ = 0.76, None: μ = 2.4, σ = 1.5, Reward: μ = 3.67, σ = 3.01, and Verbal: μ = 2.75, σ = 3.19. We see that the least effective reinforcement strategy, or at least the one that took the longest to learn for the largest number of participants, was gesture-based. The experiment was performed on college-age subjects. Gestures are usually popular among young children; here it is assumed that the subjects lack emotional engagement, so gestures had less effect than other reinforcement strategies. In case of verbal reinforcement, more interactions were required by the robot to understand the orientation of human participants. This is because Baxter narrates the reinforcer in a machine voice, which is sometimes difficult to comprehend. Subjects encountered some difficulty in understanding and obtaining motivation from verbal interaction. Participants had similar responses to reward and verbal motivations.
	Figure 14. Fraction of participants making more than three mistakes.
	Regret analysis
	Experimental Procedure III
	In the second half of the experiment the participants are asked twice to reconstruct the pattern, this time without any motivation, to observe how well the skill transfer succeeded. In the last half of the experiment participants are asked again to identify two random markers from the set they were taught at the beginning of the experiment to analyze adaptation. Each participant in the experiment was assigned different complex patterns for reconstruction. The marker placement at each position depends upon the robot. At the end of the experiment, the subjects were given questionnaires to answer using a 5-point Likert scale. The results section is further divided into subsections discussing the performance of the participants, the mutual information shared, the robot’s regret and the mental model of the participants during the task.
	Subjective performance evaluation
	MRL improves skill transfer (p < 0.05) lower than the other two. Table 1 presents the performance of the participants in all the phases of the experiment. Figure 17 also plots the number of mistakes in each group before (Guided Response I and II) and after (Mechanism and Adaptation) the skill transfer procedure; we see that the participants made comparatively fewer mistakes in the learned group than in the other two. Using a t-test for skill transfer outcomes while comparing the learned group with random reinforcers we get a significant p value < 0.05.
	Table 1. Performance of the participants in different phases
	Figure 18. Entropy (green) of the information of robot interacting with participants.
	Thus we can conclude that MRL has successfully worked in terms of the skill transfer procedure viz. Guided Response I , Guided Response II, Mechanism and Adaptation using Simpson’s psychometric model in the skill transfer scenario in Baxter.
	Entropy analysis
	Entropy denotes the randomness of a system. In Figure 18, we can see that the entropy of the information of the robot obtained by interactions goes down monotonically along with each interaction with its human participant in MRL. With each interaction, the robot is gaining more information about the participants’ performance and their cognitive orientation towards each reinforcer. The pale green lines show the entropy of the information of the each participant obtained by interactions with Baxter, and the blue line is their mean performance. Not every participant had an equal number of interactions with Baxter, but regardless, using Algorithm 1, the machine manages to gain information steadily about their performance. For each participant, the value of entropy varied depending on the exact pattern of the robot’s choices of exploration and exploitation, but we can conclude that for each participant it has gained some information at each interaction which later helped it to construct a successful mental model.
	Regret analysis
	As mentioned in Chapter 3, regret is calibrated on the basis of the decision making ability of the robot. It depends upon the subject’s performance, which helps in characterizing the most appropriate reinforcement learning strategy. We correlated the number of mistakes made by the participants and the total regret felt by the robot (Figure 19) and found a linear curve
	Figure 19. Regret analysis of Baxter.
	shows the best fit with coefficient r = 0.85. linear relationship between the number of mistakes and the robot’s regret. The value of the coefficient is r = 0.85; thus the robot’s regret is strongly correlated and the reinforcement learning strategy used by the robot to understand human responses and improve their performance, is working appropriately. For the participants who had several interactions with the robot or made many mistakes, Baxter tried to explore different reinforcement strategies at different times, trying to increase their learning rate. This illustrates that Baxter can successfully train people to achieve complex task using their preferred motivations.
	Mental model analysis
	At the end of the experiment, those participants in the learned model group were asked to choose their preferred reinforcers. Baxter could correctly identify the preferred reinforcers in half of the cases (twice as effectively as a random baseline). Thus, MRL allowed the robot successfully to identify the cognitive orientation of the participants to a large extent (accuracy score = 0.50). During the task, since the number of interactions was limited, the robot did not have sufficient opportunity to engage in the exploitation aspect of the reinforcement learning, and thus its ability to identify preferred reinforcers was limited (but still reasonably successful). In these experiments, Baxter explored more than exploited, which impacted the types of reinforcers given out by the robot.
	At the end of each experiment we probed participants with a 5-point Likert scale(1: Strongly disagree; 2: Disagree; 3: Neutral; 4: Agree; 5: Strongly agree). Participants 39in the no reinforcer group (μ=3.54 , σ=0.68 ), random reinforcer group (μ=4 , σ=0.77 ), learned reinforcer group (μ=3.25 , σ=1.22 ) wanted to play with Baxter again and again in no reinforcer group (μ=4.0 , σ=0.63), random reinforcer group (μ=3.63 , σ=0.92) and learned reinforcer group (μ=2.6 , σ=0.89) thought it is useful as a teacher. Interestingly, the people who performed poorly during the experiment neither found Baxter to be useful nor thought it was a good teacher. In other words, people who enjoyed the interaction also found it helpful and wanted to come again to learn from the robot, whereas those were not fond of the robot were not interested in the experiment and ended up performing poorly.
	Experimental Procedure IV
	n = 31 (age μ = 19.77, σ = 5.07, male=9, female=22, none=11, random=10, learned=10) participants were recruited for the experiments with Tetris for 15 minutes. We conducted an experiment in a gaming scenario to observe the performance of MRL across different platforms. Among all the participants, 74.19% of the subjects had played the game but not within the last year, 12.19% had played within the last year but not the last month, and the rest had played the game within the last month. Like with the Baxter scenario, participants were also being trained to be better Tetris players. The skill transfer scenario is also analyzed with Simpson’s psychometric model (Guided Response and Adaptation).
	As is common in Tetris games, during each move, the next block is shown alongside the 10x20 game board so that players plan their move ahead. As in the previous experiment, the teaching process is divided into two phases. Initially the participants are asked to play the game for 15 mins with reinforcers provided depending upon their assigned experimental group (simple, random, MRL).
	Whenever the participant makes a mistake, the machine alerts them, provides are reinforcer, and then they are allowed to continue. For Tetris, mistakes are considered to be placing a block in such a way to hinder fast scoring. Wrong placement is associated with forming a gap between lines which will make it difficult to eliminate the line of blocks in the future. Also, if a player places blocks several times in a row without eliminating any lines, that is also considered as a mistake as the towers of blocks build up and get closer to ending the game. During the first experiment task, if the game is lost, participants are allowed to restart, so that all subjects received the same time to learn properly. In the second portion Figure 20. Scores acquired by participants per minute before and after skill transfer during Tetris. In the random group, subjects showed significant progress after skill transfer p<0.05. of the experiment (Adaptation), participants are asked again to play the game, this time without reinforcement training, to assess the quality of their learning. They are asked to play until losing, or until 5 minutes elapsed (μ=2.68 σ=0.88 minutes). Since the experiment had only two phases, we used Guided Response and Adaptation to analyze the skill transfer. After the game, the subjects were also given questionnaires probed with a 5-point Likert scale. Similarly to the Baxter experiment, our analysis of the Tetris scenario is divided into subjective and entropy evaluation, regret and mental model analysis.
	Subjective performance evaluation
	For Tetris, we computed the skill transfer on the basis of Simpson’s psychometric model. Since, in a game like Tetris, people are expected to make a large number of mistakes, we computed the scores per minute of the participants of different groups. Figure 20 denotes the scores of the participants before (Guided Response) and after (Adaptation) the skill transfer procedure. The subjects in the random group score significantly better than the
	Figure 20. Scores by participants per minute before and after skill transfer during Tetris.
	Here in case of the random models the participants got some sort of feedback which reinforced them to perform better at the task. The random group showed significant improvement than the none group ( p≈0.01). Hence although the participants responded to feedbacks , there is not much difference between the random and the learned models. Since in this task may people have already played Tetris before the MRL didn't have salutary effect on the participants.
	Like Baxter, this shows that the computer is gaining information about the participant’s performance and its cognitive orientation towards each reinforcer with each interaction.
	Figure 21. Entropy (green) of information of Tetris while interacting with participants.
	The entropy of the gaming device’s information monotonically decreases with each interaction with its human participant in MRL. Like Baxter, this shows that the computer is gaining information about the participant’s performance and its cognitive orientation towards each reinforcer with each interaction. The pale green lines show the entropy of each participant over each interaction with the machine and the blue line shows the mean performance.
	Regret analysis
	Mental model analysis
	CHAPTER VI
	DISCUSSION
	CHAPTER VII
	CONCLUSION
	In this work, we studied the problem of skill transfer from a robot to human, where the autonomous agent is not only learning about the human mental model but also trying to adapt its own accordingly. In this shared environment, the robot is trying to maximize the cumulative reward by learning about human behavior and simultaneously improving its own cognitive model. We highlighted mutual information communicated between the robot and the human, and validated their interaction in skill transfer using real-time experiments in both robot and gaming platforms. The subjective performance, information gain over time and the confusion matrices give us a conclusive idea how robots and computer systems can successfully transfer skills from themselves to humans. In our future work we would like to implement MRL across different platforms. Heavy construction equipment like excavators and backhoes are required to perform complex tasks like digging, truck loading and ditch crossing, requiring a series of complex manipulations. Learning appropriate manipulations for these different situations is a hard task. We want to implement MRL in these scenarios where humans can learn the subtlety of control manipulations with robot assistance. In addition, we intend to investigate the necessary behavioral changes required to be adapted by the robots to become better trainers over time. We would also like to involve robots in guiding students towards correct actions and simultaneously identifying their mental models in a robot-human interaction.
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