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ABSTRACT

The complexity of the interaction between surface and down-hole equipment
has made accurate analysis of sucker rod pumping systems difficult at best.
Consequently, realistic predictions of performance are seldom, if ever, made
in advance of construction.

The petroleum industry has, over the years, compiled a substantial
catalog of case histories, in effect, as a data base from which general design
guidelines can be developed. However, the analytical work to date has been
either sketchy or without sufficient basis in published documentation.

The analysis to be presented here addresses the dynamic behavior of the
complete pumping system in, what is hoped to be, a complete and concise
manner. The viewpoint is that of the designer or manufacturer of this system.
That is, the total dynamic response will be derived based on a given set of
input parameters. Factors which are considered consist of, but are not
limited to, pumping unit kinematics, rod stress/strain relationships, imposed

torques and drive motor slip.
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Chapter 1

INTRODUCTION

1.1 Opening Comments

"The walking beam and sucker rod combination for pumping is a very
old method, so old in fact that the first date of its application is
not positively known. It is known that the Egyptians used the
walking beam principle for drawing water in 476 A.D. This device
consisted of a tripod made of poles which supported a wooden beam.

A goatskin filled with rocks served as a counterbalance while a
servant actuated a rope sucker rod string, as water was drawn in a
stone jar."!

1.2 Problem Development

One would hope that we have come a long way since those early days, and
if we look across the‘oil fields of the U.S., we see that indeed we have. It
is estimated that over 85% of all artificially pumped wells in this country
are pumped via the sucker rod method. Large corporations devote entire
engineering teams to the design, manufacture, and diagnosis of sucker rod
pumping installations.

Still, truly modern technology is only slowly finding its way into the
industry. The state of knowledge regarding the dynamic behavior of the
complete system exists mainly as a result of an effort by the American
Petroleum Institute to catalog as many case histories as possible in an
attempt to develop guidelines for proper system design, manufacture, and
operation (see ref. 1).

Shell 0il Co. scientists developed finite difference models for the
sucker rod string back in the middle 1960's which have been refined and still
exist today. Descriptions of their earliest efforts can be found in a report
patented under patent number 3,343,409, filed October 1966 and in reference

13, a paper presented at the Society of Petroleum Engineers' Rocky Mountain

TBethelehem Steel Company, Sucker Rod Handbook, 1958, page 6.




Regional Meeting in May 1963. However, the details of later work are
evidently of a proprietary nature and thus in limited distribution. Unlike
many engineering problems, where new solution techniques appear regularly as
journal articles, the sucker rod problem has either eluded or been ignored by
those who stand the most to gain from its development. Whichever is the case,

the problem is as current today as it was twenty years ago.

1.3 Problem Definition

Since the time of the Shell work, new strides have been made in the area
of finite elements. This method is well suited toward application in sucker
rod dynamics and is, in many ways, more straightforward than the familiar
finite difference methods (see chapter 2). For this reason, and in an attempt
to broaden the current state of the art, the purpose herein is to apply the
finite element method to the solution of the dynamic behavior of the sucker
rod string.

In order to familiarize the reader with the well pumping system as a
whole, figure 1.1 depicts a typical installation along with some of the more
commonly seen nomenclature.

Clearly, the behavior of the rod is but part of the overall problem. A
complete system analysis must also include a detailed study of the surface
equipment kinematics, torque characteristics, and subsurface pumping
equipment. All of these topics are covered in the sections which follow.

The problem at hand has essentially two avenues of approach. First we
can look at it from the designer's viewpoint. That is, we can aim the
solution toward satisfying the requirements of he who is either designing or
manufacturing the system. That person would like to know, given a set of
input parameters, what the nature of the behavior will be. What are the

maximum rod stresses and where do they occur, what size gearbox is required,
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what is the average pumping speed, etc? With this information he can
intelligently make comparisons among many systems without having to build even
one.

Secondly, we may wish to view the problem from the technician's
standpoint. That is, given the conditions of an operating well, what is
happening down-hole. Is the fluid pumped off (depleted), is the rod broken,
is the pump plunger sticking, what is the condition of the valves, etc.?

Both constitute valid viewpoints but are not the same problem. Granted,
similar in many ways, but not completely analogous. The work which follows

aims more toward the first approach, i.e., the designer's viewpoint.

1.4 Analysis Goals

In summary to the above comments, the goals of this report can be briefly
defined as follows:

1. Development of the kinematic relationships which describe the
motion induced on the rod by the surface pumping equipment.

2. Development of a finite element model for describing the dynamic
response of the sucker rod string.

3. Characterization of the torques imposed on the system by the
well loads and their effect on system components.

4. Description of the down-hole rod loads resulting from various
pumping and pump installation characteristics.

Additionally, a complete design tool would not be complete without the
following:
5. Comparison of results with currently existing models.

6. Validation of analysis techniques using simplified models for
which analytical results can be obtained.

Finally, in an attempt to expand even further upon existing techniques
the following introductions will be made:

7. Development of a theoretical basis for damping phenomena
occuring along the rod surface.



8. Development of effective forms of data reduction aimed at
clarification of system behavior.

These end those comments applicable to the introduction of the ensuing
report. The sections which follow will address, in an orderly manner, those

concepts outlined above.



Chapter 2

THE FINITE ELEMENT METHOD

2.1 Opening Comments

The scope of this work is not meant to include a rigorous appraisal of
the finite element method. Volumes of literature exist which accomplish that
end. References 7 and 12 are two excellent examples. Nor is it meant to
necessarily express superiority of this method over the more familiar finite
difference techniques. On the contrary, good agreement between solutions
utilizing each of the two would serve to strengthen both.

Owing, however, to the general unfamiliarity with finite elements, a
brief synopsis is appropriate here so that subsequent discussions will be more

fully understood.

2.2 Finite Difference Methods

Finite difference methods have been in widespread use for many years and
still find numerous applications throughout the numerical analysis field.
Essentially a function defined over a given region is expanded into the
appropriate Taylor-series to the degree of accuracy required. For example,
consider the function y = f(x) at (x4 + Ax). The Taylor-series expansions

about xj; are given by

Ax2 yi"'Ax3

Vi
Y(xi + Ax) = Yi + yi'Ax + - oY + 31 e S O (2.1)

and

Yi Ax2 Yi Ax3
( '
Y xi - AX) = yi - yi Ax + — + 5 o . (202)

Subtracting (2.2) from (2.1) yields



. ylx; +#p&x) - y(x;3 - 4x) 1 et asd
YJ_ = 2AX — (6 Yl AX Al Telli's )o (2.3)

Clearly, we can't deal with an infinite series such as this in the
solution of practical problems. Higher order terms are thus truncated past
some point deemed to cause little overall error. If we truncate, for example,

all terms of order three or higher in (2.3) we arrive at

y(x; + Ax) - y(x; - Ax)
2Ax

Ya, = . (2.4)

This is known as the central difference approximation to Yi' at x; of order

Ax2. Similarly, the comparable approximation is Yi" is

y(x; + AX) = 2y(x;) + y(x:; - Ax)
yill - 1 =L 5 (2‘5)
Ax2

Note that the above expressions require some knowledge of conditions both
ahead of and behind the current position, thus the term "central difference".
Similar expressions known as forward and backward differences may also be
derived if the problem is more suited to those conditions. However, accuracy

is generally sacrificed with either of these latter approximations.

2.3 Finite Element Methods

The finite element method, rather than containing Taylor-series
expansions of the required functions, relies on the definition of
approximating polynomials called shape functions which are defined over the
length of each member or element of the discretized space. To illustrate this
point, refer to figure 2.1.

The function y = f(x) for which the approximation is desired is given by

Yy = aq + asx ((2.+6))
for the element of length L, bounded by nodes i and j. In this example, y is
assumed to vary linearly in x although this is not necessary. Coefficients aq

and ap can be determined by using boundary conditions at the nodes as follows:
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Figure 2.1 - One Element in

a Discretized Space

y =yi at x = x5
and
y = Y4 at x = Xj
Then,
¥i = o3 + agX;
and
Solving for oy and ap yields
YiXy = ¥Y§X§
aq = L
and
Vi - Vi
ap = L2

Substituting these results into (2.6) and rearranging terms gives

(2.7)



Shape functions are generally denoted by ¢ and for this example are given

by
61 = (i';;x)

and (2.8)
05 = (1)

so that the final form of our approximation is now

Y = ¢ivi + ¢5v5 = [¢1{y} (2.9)

where

(6] = [6:45]

= ¥
{y} = éﬁ}

An examination of ¢; shows that it has the value of one at node i and

and

zero at node j. Similarly, ¢4 takes on the values of one at node j and zero
at node i. This is characteristic of shape function polynomials, i.e., they
are equal to unity at one node and zero at all others,

As hinted at by (2.9), the finite element method is, in essence, a matrix
formulation. Individual element matrices, when appropriately assembled,
combine to form a system matrix which can be manipulated using conventional
matrix procedures. For example, a tensile member consisting of N elements, of
the type in the preceding discussion, would be modeled using a set of (N+1) by
(N+1) matrices formed by the summation of the individual element matrices
previously defined. This point will be clarified in a subsequent section
where this assembly is illustrated.

The approximating polynomial defined for the preceding illustrative

example was of order one, i.e., linear in x. This need not have been the
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case. In fact, any degree polynomial could have been defined. Analogous to
the choice of the order of the approximation used for finite difference
methods, the degree of this polynomial is chosen such that it adequately
describes the physical situation. Generally, higher order equations decrease
the sparsity of the system matrices (produce fewer zeros in the off-diagonal
terms), but do not significantly increase the complexity of the formulation.

It can be shown that, if the shape function polynomial truly reflects the
actual physical situation, the resulting solution will be exact if the
boundary conditions are defined correctly. For example, the deflection of a
prismatic bar in tension is a linear function of the applied load. Thus, its
finite element equivalent which employs a linear shape function will yield
exact results for deflection versus load. Similarly, a beam element in
bending can be precisely modeled using a third order shape function (cubic
spline) (see ref. 12, page 37).

One of the advantages of the finite element method, at least from this
author's viewpoint, is the manner in which boundary condition terms are
incorporated into the model. 1In the finite difference method, boundary
condition expressions are reduced to their series expansions in a manner
analogous to the discussion in section 2.2. Satisfaction of these conditions
must be insured with each solution iteration. This is similarly true in the
finite element method, however, in this case, boundary condition coefficients
are simply added to the correct matrix positions. For this reason, the entire
problem can be formulated without regard to boundary conditions. Then after
matrix assembly, the appropriate corrections at the boundaries are
incorporated. This concept greatly simplifies the overall solution and
facilitates the use of a general formulation in the solution of many
individual problems. This too will be illustrated more completely in an

upcoming discussion.
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It can be additionally shown that the finite elements treat
non-homogeneous and anisotropic material properties with little difficulty
whereas finite difference techniques can not (at least not so easily). Also,
elements can be of varying shapes and forced to conform to irregular
boundaries. Although these two properties do not necessarily apply to the
problem at hand, they are nonetheless important considerations.

Finally, and again in this author's opinion, the finite element method
lends itself well to efficient, orderly implementation for computer generated
solutions, which, in this day and age, constitutes a distinct advantage.

with these thoughts in mind, we can turn our attention to the proposed
problem and hopefully, have some insight into the nature of the resulting

formulation.
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Chapter 3

SUCKER ROD MODEL FORMULATION

3.1 Opening Comments

As indicated in chapter one, the dynamic analysis of a sucker rod pumping
system actually consists of separate solutions to several problems, each of
which can essentially stand alone. There is the problem of pumping unit
kinematics, i.e., the derivation of the equations of motion for the surface
equipment. Then too, there is the torque analysis of the drive system
including both the gearbox and the prime mover and coupled with this, the
treatment of variations in pumping speed as a result of these applied torques.
Finally, and the subject of this section, there is the modeling of the sucker
rod string from the finite element standpoint.

In order to proceed with this development, we must first define a
coordinate system, some of the nomenclature, and the sign conventions to be
used in this and the following sections. Figure 3.1 depicts an arbitrary

element of the string and some required notation.

A 3

X .1

X-nf—-
AXx

X+AX —H— 7 S R

>

Figure 3.1 Model Development
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where:
u = displacement
du/at = velocity all "+" in "+" x-dir
Bzu/at2 = acceleration
A = rod cross-sectional area
d = rod diameter
w = rod material weight density
£f1,£5 = static/dynamic forces
fu = weight component
fa = damping force

3.2 Derivation of the Governing Equation

With figure 3.1 in mind we may proceed. The free body diagram shown at
the top right of the above depicts all of the terms required for a summation
of forces on the element of length Ax. From Newton's second law we have

LF = ma which, for this case yields

F, = f5 + £, - £, - £5 = m-g-32
X 5 =2 w 1 d = 3t2
or
fo + £, - £f4 - f5 = (—J AAX 332— (3.1)
2 \4 1 d g 52 G c

Recognizing that oy = f1/A (stress at x) and oy;px = f5/A and assuming an
elastic, Hookian material where, for the one dimensional case, Ee = E(9u/3x),

we may write immediately that

EA(u/3X) gipx + Fw - EA(dU/AX)y - £q = (%)AAX 3—12:‘2‘
or
EA[(%EJX+AX 5 (EEJX] + £, - fgq = QZ)AAX e (3.2)
X 90X g 9t2
The weight component, f,, is simply the weight of the element Ax and is
given by

fy = WAAX (3.3)
The damping force, f3, is somewhat more involved. If we imagine that the

damping force arises from the skin friction between the rod and the fluid
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column, we can view fq as being a function of the rod surface area, some
damping factor, c, and the rod velocity. We will see later that this damping
factor is actually related to the resulting shear stress acting at the rod

boundary. Using the above arguments gives

fq = crdlx %‘% :
Since d = 2/A/m we can rewrite this as
£q = 2c/AT Ax %— (3.4)

Now, substitution of (3.3) and (3.4) into (3.2) yields

) ] + wAAX - 2c/Am Ax-i— =

du du u
9x X+AX ax X ot

EA[ ( X — . (3.5)

Finally, dividing by Ax and taking the limit as Ax + 0 gives

EAr,9u du ou w 32y
lim — (= - = + WA - 2c/YAT — = — A ——
Ax>0 AX[(BX X+Ax (BXJX} It g jt2
or
2 2
Bi W o o g i O L W g @60 (3.6)
aX2 ot g 3t2

If we now define temporary replacements for the constant terms in (3.6) as

a = EA

B = 2cVAm

(357)
Y = =wWA
and

w

= (=)a
= (3)

we can rewrite (3.6) (after rearranging) as

32u 32u au _

which we recognize as the one-dimensional wave equation with damping and one
constant coefficient. This then defines the governing equation for the

dynamic behavior of the sucker rod string.



1.5

3.3 1Initial and Boundary Conditions

For solution of (3.8) we need a set of both initial and boundary
conditions applicable to the physical system. These are introduced here for
completeness but will be treated in detail in chapter seven.

At the start of the solution procedure the following initial conditions

apply:
u(x,0) = ug(x): displacement at t = 0
(3.9)

ou o ;

e (x,0) = uy(x): velocity at t =0

32u o .
-5—5-(x,0) = uy(x): acceleration at t = 0.

t

That is, at t = 0, the displacement of all nodes will be specified, as will
their respective velocities and accelerations. In this case, nodal
displacement will be determined from a static analysis, velocities and
accelerations will be set equal to zero (start from rest).

The boundary conditions which must be satisfied at each solution interval

are given by

u(o,t) = £(t): displacement at x = 0 is given as some
function of time {3.10)
and
a' %%(L,t) + b! %E%(L,t) + ¢! %% + d'u(L,t) - p(t) =0
where
a',b',c',d' = non-negative coefficients

p(t) = prescribed pump loading condition
The coefficients for the bottom boundary condition must be non-negative in
order to assure non-singularity of the system matrices. A complete discussion
of these coefficients and the loading function, p(t), will be given in chapter

sevene.
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3.4 Finite Element Adaptation

Using concepts outlined in chapter two, we now begin the development of
our finite element representation of (3.8).

The unknown functions to be determined are the displacements at points
along the rod as functions of time, i.e., u(x,t). The shape functions, ¢, are
functions of the space variable only. Thus, the unknown u(x,t) is
approximated as a linear combination of these and the function u(t),
displacement as a function time only. That is

N
u(x,t) = I uj(t) ¢4(x) (3.11)
i=1
where the space is discretized into N elements.

Substitution of (3.11) into (3.8) while dropping the (x) on ¢; for

convenience gives

N ( )d2¢i N d2u;(t) 5 N duy (t)
a w: e ...p Z —_¢._ —_¢._'Y=O
i=1 b ax j=1 dt i 4oy at 71

Multiplying through by (-¢j) to facilitate the steps which follow yields

N a2¢; N d2u; (t) N duj(t)
-a i£1 ui(t)—dx2 $5 + P i£1 __dt2 9505 + 8121 —ac  %i%5 * vé5 =0 .

Now, in order to account for the contribution of all points along each
element we need to integrate with respect to x along each element of length L.

This yields

L N d2¢' L N dzui(t)
[ [~z ujt)—=9s]ax + [ [p I ——— ¢;4:]ax +
g 4=y =g o gmy o GE2 Y

L N gu;(t) 3
{) [3.21_‘3t ¢104]ax + é [v¢5]ax = o. (3.12)
1=

Integration of all terms is straightforward except for



L N d2¢)
[ [~a T uj(t) = —L ¢]]

0 = %2

which must be integrated by parts. Rewriting this as

L N a do
1
f [-a I u;(t)ey = (E;(—)]dx
0 i=1
- s
and recognizing that ¢j = u and<a;— = v we have the standard form for

integration by parts
fudv = uv-fvdu

which, for this case, gives

L N a  de; N dg; b Tdg; d¢;
é [_ai£1ui(t)¢j-a; (dx )]dx = —aii1ui(t)f3;‘ ¢j|o g dx 'E;l dx]

The final result from (3.12) then is

N dés Ld(p dé- N d2y;(t) L
[-a £ ui(t)&g—i ¢j| - - ——ldx] + p I = f ¢; $5dx +
et x 0 i=1  4t2?
N dqu; (t) L
i
B.X % f ¢ip4dx + v f $5dx = 0
i=1
or in slightly different form
N Ld¢' do- dés dos
. Lo - L, L .
aiE1ul(t)[f dx dx e dx & dx ‘0)¢3(0)] ¥
N d2u;(t) L N guj(t) L L
p I ———— ] ¢i¢5dx + B L —or— ¢;¢+dx + Y [ ¢:dx = 0
i=1  at? flj fHn A élj o’

We now recognize (3.13) as being of the form

[MI1{u} + [Cl{u} + [KI{u} + {£} =

where

i

(3.13)

(3.14)
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N L
Ml =p I [ ¢;44ax
i=1 0
N L
[Cl =8 1L f ¢i¢3dx
i=1 0
(3.15)
N do: dd- dd dd s
[K] = ai£1[f dil E?%l dx - %(ij(m + d%(omj(o)J
0
L
{£} = v/ ¢5ax .
0

So using the approximation given in (3.11) we have transformed the second
order hyperbolic partial differential equation in (3.8) into a second order
system of ordinary differential equations. This sytem is that which now

governs our dynamic analysis.

3.5 Shape Function Determination

Before we can evaluate the integrals in (3.15) we must first define the
shape functions, ¢(x). It is worth noting here that the entire formulation
thus far has not relied on any knowledge of these functions, save for their

existence.

Refer to figure 3.2 below for the notation required in defining ¢(x).

r ] Ui0%y

u(x)=a1+a2x

e
I‘ il
F

Figure 3.2 - Shape Function Notation




For this analysis we shall assume a linear form for the nodal
displacements, u(x). This function is then given by
u(x) = aq + arx
which we recognize from chapter two. At the boundaries
u(0) = ay + ay * 0 = uy

or

and
u(L) = aq + oL = Uy
Substituting (3.17) into (3.18) yields
uj + agl = uy

or

Substituting (3.17) and (3.19) into (3.16) gives

X X
u&)=(1-fﬁi+6ﬂ%
which can be rewritten as
u(x) = ¢35 (x)u; + ¢5(x)uy
where
b3 (x) = (1 —-%)

$4(x) = f%) .

Again we may recall this form from chapter two.

1.9

(3.16)

(3.17)

(3.18)

(3.1:9)

(3.20)

(3+21)

Graphically, the shape functions can be depicted as in figure 3.3 below.
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Figure 3.3 - Graphical Illustration of Shape Functions

The first derivatives of ¢(x) also appear in (3.15).

simply
déy 1
dx L
and
d.
G
dx L

3.6 Element Matrix Derivation

These are given as

In order to determine the element matrices given by (3.15), we must

evaluate the integrals given there. Matrices [M] and [C] contain the term

L
f q>i¢>3dx .
0

Evaluation of this for all combinations of i and j yields

L % T
hO=ge-gaxr =3 =, 30
5 X\ (X L

Sl R
0

L

(=2, j=1)

===
o
a3
N
e
—
[
all
Nd”’
Q
»
I
ot
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[ @Bax =5 o L
0
Matrix [K] contains
dé; doy
rratrra
which gives
L
1 1 :
é (- E)(- l)dx = I (=1, 3=1)
L4 1
[-H@ex=-1 =, 5
0
L
[ (.;_‘)(_ Dax = _% (i=2, j=1)
0
L 1
[ (3 e = 1 (122, 322
0
Finally, {f} contains
L
| ¢5ax
0
which results in
L
/ (1 -%)dx=% (3=1)
0
L
| Bax = 3 (3=2)

In matrix form these may be represented as

L

) Lr2 1
[Mie = Dg ¢i¢jdx = %—[1 2]
() = 8f pepsax = EY2 1)

- L e T



where superscript (e) reminds us that these are element matrices.
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(3.22)

Note too

that in the above expression for [K](e), the right hand terms in (3.15) do not

appear.

element matrix.

These terms apply only at the boundary,

thus not entering the general

These then completely define the element mass matrix, damping matrix,

stiffness matrix,

3.7 System Matrix Assembly

and force vector,

respectively.

The summation or assembly of the element matrices given in (3.22) is a

simple process which is best explained through illustration.

Suppose we have a rod discretized into three elements as below.

®

®

nodes
-1

Figure 3.4 - Sample Rod Discretization

where (:), (:), and (:) denote element numbers. Recognize that elements

(:)and (:) share node 2 while (:) and (:) share node 3.

must then overlap at these points.

is assembled as below.

For example,

The element matrices

the mass matrix for the rod
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(M) (1) M) (2)
[2 0
L 1 0
[M] = %— I J%
0 1
0 i 2
M) (3)
The remaining three matrices are similarly given by
2 1 0 O]
L 1 4 i 0
(c) = £2
0 1 4 1
10 0 1 2]
1 =1 0 0
o1 =1 25 =i 0
[K] ==
O s 2 =il
{
o {0 -1 1
\
\~
and —{ =% z
1
gy =12 2 .
2

1
This procedure is identical for any degree of discretization desired. We
see that for a division into N elements the square matrices are of dimension

(N+1) by (N+1) while the column vector is (N+1) by (1).

3.8 Incorporation of Boundary Conditions

Only now does it become necessary to look in detail at the handling of
boundary condition terms. As we saw in (3.10), two equations exist, one for
each end of the rod. The first dictates that the displacement at the top of
the rod (x = 0) must be specified at each time step. As we will see in
chapter four, the displacement, velocity, and acceleration will all be known.

This being the case, we need only to solve for the uppermosﬁ component of the
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force vector, {f}. This is accomplished easily be rewriting (3.14) as

{£f} = -[M]{;} - [c]{;} - [Kl{u} . {3.23)
This is done only for the solution at node one and is, in fact, one of the
peculiarities in this analysis. But, as we can see, it poses no real
problems.
At the bottom of the rod, the latter of (3.10) applies. Looking at the
first term we have

du

v g2
a ™ (L, t)
which we rewrite as
Jdu d¢ d¢o
a' % (L,t) = u(t)y e + u(t) g+ I

using the shape functions defined previously. This may be written as

, ou
a ™ (L, t)

R

1 1
= E u(t)N + E u(t)N+1

where N is the number of elements. Using this we rewrite the latter of (3.10)
as
- %'_ u(t)y + -‘i; u(t)ysq + b’ 2—?; (L, t) + ¢ %% (L,t) + d'u(L,t) - p(t) =0
(3.24)
In effect this equation is superimposed on the existing equation at the
bottom boundary. We accomplish this by inserting coefficients a' through 4d'

into the proper position within the existing system matrices. For example,

recall that

)] |D
(ol
=
=Y
-
o

In (3.24) the coefficient on the {u} term is b' so, b' is simply added to the

lower right corner of [M] (the position associated with the bottom node).
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This gives the corrected [M] as

L 1 4 1 0
[M]=.p_
6 0 il 4 1
6b'
4 —
0 0 1 2 T

o -

where (6/pL) accounts for the (pL/6) out front. Similarly, the remaining

three matrices are

2 1 0 0
(C] =‘§£ 1 4 1 0
6 0 1 4 1
6c'
-O 0 1 2 + 5 |
(1 =1 0 0 1
(k] =2 =1 2 =1 0
6 0 -1 2 -1
a'lL a'L
-0 0 —T—F 1+F-
and
1
=YL )2
(£} =1
2
1 - 2p(t)
YL .

Clearly, such a treatment readily facilitates the use of any type of boundary
condition desired. The identification of coefficients a' through d' will be

left to a subsequent discussion.

3.9 Rod Buoyancy

Buoyant forces exerted on the rod have not been mentioned thus far, but
any complete analysis must take them into account.

Archimedes first proposed the law of buoyancy in the third century B.C.
It states simply that the buoyant force acting on a submerged body is the

difference between the vertical component of pressure acting below the surface
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and that acting above. No horizontal pressure component can exert a buoyant

force. Figure 3.5 depicts a typical lower rod section.

o —-———-:::::)/////———- A1

o)
¥
'f

Y
52

Figure 3.5 - Buoyancy Analysis Notation

From this figure we see that buoyant forces can exist only at the bottom
of the rod and at the junction between Aq and Ajy. These forces are simply
the product of the acting pressure and the exposed horizontal area. That is,
at the rod junction

fp1 = p2(Aq - Aj)
while at the bottom
fp2 = P3A2 .

As was the case in handling conventional boundary condition terms, the
buoyant forces are added to the appropriate existing matrix terms, this time,
to {f}. Note, however, that these forces exist only at nodes where a change

in cross section occurs.

3.10 Treatment of Tapered Rod Strings

As one might guess, particularly in light of the preceding discussion, it

is desirable to consider rods composed of several different section diameters.
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Recalling from (3.7) that

let's look at the complete description of the mass matrix [M]. Taking (p/6)

inside and substituting the above gives

w1Aq WiAq 0 0
3 6
YiB1ara¥aB1e Woho Wado 0
L 6
(Ml = = 3 3 6
9 5 W2A2 W2A2 N W3A3 W3A3
6 3 3 6
W3A3 W3A3 b'g
O ——t
0 6 3 L .
i |

Note that this is still the system matrix from the example of figure 3.4.
Now, however, WiAq,WyAy, and w3A3 are products of the weight density and cross
sections of elements 1 , 2 and 3 , respectively.

From the above it is clear that the incorporation of varying rod sizes
into our finite element model is only a matter of choosing the appropriate
coefficients for each of the individual element matrices. In fact, we could
just as easily handle rods assembled from different materials. Our only
restriction is that any change in geometry must occur at a nodal point.

Completely similar conditions exist for each of [C], [K], and {f}.

3.11 Differential Equation Solution

The sections thus far presented in chapter three have defined completely
that system of equations given in (3.14). Due to the nature of the boundary
conditions we take two approaches to its solution. From section 3.8 we saw

that for node one we rewrote (3.14) as

() <Siiad = (Ol HordZi (b o (3.23)
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Because we will know ;, ﬁ, and u at node one from the pumping unit kinematic
analysis (chapter four), the above can be solved immediately for {f(1)}. This
component consists of two terms, the body force and the force at the well head
known as polished rod load. That is

{£(1)} = £ + fpRL (3.25)
where f4,, is the body force contribution and fprr, is the polished rod load.
Body forces being constant, we are able to solve for the polished rod load at

each solution iteration.

For the remaining nodes we know the components of {f} but not of {u},{u}

or {u}. Multiplying (3.14) by the inverse of the mass matrix, [M]~', we have

(MI=T (M) {u} + [M]=T(CI{&} + [MI=V(K1{u} + [M]=1{f} = O

or, after rearranging,

fu} = - M17VCI{A)} - (M- [KI{W) - [(M1-M(E} . (3.26)
For simplicity we define

M1=1[c] = [c1*
M17T[K] = [K]*
and
(M17T{f} = {£}*
with which (3.26) may be written
{u} = -[C1*{&} - [KI*{u} - {£}* . (3.27)

Integrating (3.27) twice with respect to time yields both the velocity and

displacement at all remaining nodes. That is

ujpq = uy + fugat

and

uy + f&idt

Ui +1

where subscript i refers to values at the current time and i+1 to values at

t+At.
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A fourth order Runge-Kutta integration of u yields the required results
(error of order four) without the need for predictions and corrections as in

schemes such as Euler's method.

Given u;

ir ﬁi, and u;, the Runge-Kutta algorithm yields the following

(see ref. 5).

- 1
Xi41 = X3 +E (k1 + 2k2 =+ 2k3 + k4)

and
. At
Xig1 = X3 + XiAt ok 6—(k1+k2+k3)
where
kq = uluj,uj)At
s k
At » ° 1
ky = u(u; + S Uis vy o+ 3—0 At
o = Bl At o At e k2
3—uui+2—ui+4— 1,u+2—)At
and
K, = - . At .
A= u(ui + uiAt + 2— k2' u; + k3)At .
Thus we have a complete solution procedure for the dynamic equation,
(3isid) s

3.12 Closing Remarks

This completes the formulation needed to analyze the dynamic behavior of
the sucker rod string. Summarizing briefly, we began with the second order
partial differential equation, (3.8), developed from a free body diagram on an
arbitrary rod section (figure 3.1). Using the finite element approximation to
u(x,t) we reduced this to the set of ordinary differential equations given by
(3.14). To this system were added the appropriate boundary condition terms as

defined in (3.10) and the effects of rod buoyancy. Finally, rearrangement of

(3.14) and integration of {u} yielded a method of solution for all previously
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unknown physical and dynamical properties.
In order to utilize this model we must now address both the nature of the
motion applied via the surface equipment and the forces imposed at the pump.

The former constitutes the subject of chapter four.
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Chapter 4

PUMPING UNIT KINEMATICS

4.1 Opening Comments

If we are to effectively use the formulation developed in chapter three,
we need some mechanism by which to drive the sucker rod/pump combination.
This is the function of the surface pumping equipment. There exist
essentially two types of mechanisms in common use throughout the petroleum
industry. They are classified as the "conventional" and "Mark-II" types as

shown in figures 4.1 and 4.2, respectively.

(x5,Y3)

(0,0)

Figure 4.1 - "Conventional" Pumping Unit Schematic



(x,5Y5) 3
L, 2z e (X Y 2)
(—D:H) r_
//
0
(0,0)
Figure 4.2 - "Mark-II" Pumping Unit Schematic

Both mechanisms are classified as four-bar linkages if one considers the
fixed link as connecting (0,0) and (D,H) or (0,0) and (-D,H) for the two
linkages, respectively.

The change in sign on "wt" is due to the fact that, typically, the
conventional unit rotates CW while the Mark-II rotates CCW as viewed in
figqures 4.1 and 4.2. This is the convention used here and throughout the

remaining analyses.
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4.2 Derivation of the Equations of Motion

Our primary interest is in the motion at (x3,yY3), however, in the torque
analysis in chapter five we will need the positions of (xq,y1) and (x5,yp) so
the following derivation will detail these as well.

Consider first the conventional mechanism in figure 4.1. Immediately we

recognize that

Xq Rcos(-wt)
and
yq1 = Rsin(-wt) .

We can also see that (x,,yy) lies on circles described by the rotation of L,
about (x4,yq) and Lp about (D,H). The pivot location (D,H) is a known entity,
so from geometry we have

Xp2 = 2%p%q + Xq2 + y22 - 2ypyq + ¥12 = Ly2 (4.1)
and

x,2 - 2x5D + D2 + y 2 - 2ypH + H2 = L2 . (4.2)

Subtracting (4.2) from (4.1) and solving for x, yields

X12 - D2 - 2y2(y1—H) 2 e Y12 - H2 i L12 =4 L22

2(X1—D) ° (4.3)

X2=

If we define replacement terms

c1 =X12-D2+y12-H2-L12+L22
C2 = 2(y1"H)
cy = 2(x¢-D)
we can rewrite (4.3) as
S 50272
X2 R L &
=3 C3

Substituting this back into (4.1) and performing a great deal of manipulation

yields, upon solving for yj
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y2 =
2C1C2 2C2X1 // —2C1C2 2C1 2 Co C1q 2 2C1X1
vayg- 2L /(22002 gy 2 ) (2 ) [(ED) e 2oy - 1 - 142
C3 c3 c3 2ic 3 3 C3
CoH 2 2
(G2 +1]
~3
Defining additional replacement terms
<4
C4 = E;
2
CS = E;
and again performing some manipulation, y, can be expressed as
Z
g = C4Cg + ¥ - Cpxq + /v052L12 vy L12 - (cgyq + %q - cy)
2 (cg2 + 1)
Referring again to figure 4.1 we can also write
H-y
y3 = H + L3sin® = H + Lj( i 2)
2
and
D-x
x3 = D + Lacos® = D + Lg( e
L2
Summarizing all of the displacement relations for the conventional
mechanism we have
xq = Rcos(-wt)
Y1 = RSin(-UJt)
2. % Safs ¥2
Z
. Cy4Cg + Y1 - CgXq + / 052L12 e L12 = (c5y1 + Xq = C4) (44}
215 .
(052 + 1)
D=-x
2
=D
X3 + Ly( e )
H'YZ

Y3 = H3 + L3( L2 ) o
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Turning our attention to the Mark-II mechanism and referring to figure
4.2 we recognize that

Rcos(wt)

X1
and

Rsin(wt) .

Yq
An analysis completely similar to that for the conventional linkage results in
expressions for x, and y, that are identical to those in (4.4). However,

terms cy4 and cg are slightly modified and are given by

X12—D2+Y12-H2—L12+L22

C4=

2(X1 + D)
and
C5 - X1 + D °
From figure 4.2 we see that
X2 + D
X3 = Xo + L3cose = Xp + L3(_—ET—_-)
2
and finally,
: y2 - H
y3 = yp + L3Sln8 = yp + L3(——L2 ) .

Because we are interested in all aspects of the behavior at the end of L3
we need not only its position, but also its corresponding velocity and

acceleration. Owing to the fact that y3(t) is known to be well behaved this

writer elected to use finite difference approximations to both y3 and y3. As
illustrated in chapter two, these expressions are derived from the
Taylor-series expansions of y3 about (t{). For the sake of accuracy, fourth
order central difference expressions are used. These can be found in a number
of sources. Reference 5 contains the following:

-Yi+2 + 8Yi41 - 8Yi-q Yi-2

B 12(At)
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and

»  ~¥isp + 16¥34q - 304 + 16¥39 - Yio2

Yi 12(At) 2 i

Comparison of results using these approximations with analytical results on
equations similar in nature to those describing y3(t) indicate accuracy to

better than two decimal places, or a fraction of one percent.

4.3 Closing Remarks

Completion of the above analysis now allows us, given the physical
dimensions of the linkage, to describe completely not only the motion at all
joints, but the velocity and acceleration at the top of the rod as well. Upon
comparing the notation here with that in chapter three, we have complete
equivalence between

y3(t) and u(0,t)
o du
y3(t) and szio,t)
and between
2

o 525
y3(t) and ;;340,t).

We now proceed to considerations of the torque imposed on the gearbox and

prime mover via the load in the rod string.
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Chapter 5

APPLIED TORQUE CHARACTERISTICS

5.1 Opening Comments

The torque imposed on the system drive components arises from two primary
sources. First the well load acts through the equivalent pumping unit lever
arm and applies a torque directly to the gearbox output shaft. Second,
attached to the output shaft are counterweights which also produce an applied
torque. The resultant of these two components yields the net torque on the
gearbox which is that torque required from the drive motor (when modified by
the overall reduction ratio). It may help to refer back to figure 1.1 in

considering these effects.

5.2 Torque Factor Derivation

The equivalent pumping unit lever arm mentioned above is known as the
"torque factor" throughout the industry. Being a lever arm it has units of
length and varies continuously throughout a pumping cycle. Any investigation
into the torque characteristics of a given pumping system must begin with a
look at this parameter.

As in the discussion on kinematics, we must treat the conventional and
Mark-II units separately. Figures 5.1 and 5.2 illustrate the notation
required in the derivations which follow. The coordinate systems and
coordinate point designations are identical to those in figures 4.1 and 4.2.

Consider, first, the conventional unit. Dimension tqy, ty, and t3 are all
perpendicular distances from end or pivot points to their respective links.
By inspection we see that

= Rsin(180-Y) = Rsiny (5.1

ot
—
I

‘-'-
N
|

= Losing (5.2)



Figure 5.1 - Conventional Unit Torque Factor Notation

Figure 5,2 - Mark-II Torque Factor Notation

38
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and
t3 = x3 - D (553
Using the law of cosines and knowing the coordinate points from chapter four,
we can solve for y and ¢. Looking at the former yields
%52 + y52 = R2 + L2 - 2RLqcosy
or

3 R2 + L12 - (X22 + y22)
Y = cos 2RL, . (5.4)

Similarly for ¢ we have

L12 + Lp2 - (D-x4)2 - (H-y )2
2LqLy

1

¢ = cos” . (5.5

The torque factor, TF, is given simply by

£ o £
o g T (5.6)
t2

Looking now at figure 5.2 we see that for the Mark-II we again have

t7 = Rsiny
and
ty = Lpsinf .
This time, however,
t37= %3 '¢'D (5.7)

Angle Y is identical with (5.4) but ¢ is written as

| s B2 4 Lipf = (x4 #DYE = (y=H)2 o
= COSs . .
2L4L,y

Finally, TF is identical to (5.6). That is

ty ¢ t
T AL S
t2

It may not be obvious from the above expressions, but the torque factor
for any given unit is a periodic function taking both positive and negative
values. Since torque is defined by the "right hand rule", any well load which

produces a torque out of the page (ref. figures 5.1 and 5.2) is positive.
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Using this convention, the unit in figure 5.1 is shown in a positive torgue
factor position. Figure 5.2 shows a negative position. The sign of the
torque factor is governed by the angle y. 1In fact, for the conventional unit
TR >NO0Sfor¥ONS v < 180°
and
TE <0 for 180 <"y < 360°
whereas for the Mark-II
TF » 0 for 180 € y < 360°
and
TRPYS 0 "For 0" &y <180°
Figure 5.3 shows a typical plot of the torque factor as a function of

crank position.

TORQUE FACTOR V8.CRANK POSITION

Figure 5.3 - Typical Torque Factor Curve
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5.3 Torque Analysis

Figures 5.4 and 5.5 show the additional notation necessary in discussing
the torques applied to the system from all sources. Again, notation common to
earlier discussions is identical with these.

Briefly, the load applied at the end of L3 is the combination of the well
load, F, and the unbalance load, UNBAL. The latter is the structural
unbalance of the unit and is taken as positive for "horsehead heavy"
mechanisms. The counterbalance weight, CBW, are assumed to act at a distance,
R, from the crank centerline. The angle, B, allows the counterweights to be
"phased" with respect to the crank arm, and is defined as positive CCW from
the crank arm centerline.

With these thoughts in mind, we can now sum moments about the output

shaft center. For the conventional unit

IM = =T + (F + UNBAL)TF - (CBW)Rcos(-wt + B) = 0
or

T = (F + UNBAL)TF - (CBW)Rcos(-wt + B) =0 . {(5+9)
For the Mark-II

IM = T + (F + UNBAL)TF - (CBW)R(-cos(wt + B)) =0
or

T = -(F + UNBAL)TF + (CBW)Rcos(wt + B) =0 (5.10)

Figure 5.6 depicts a typical net imposed torque along with the
contributions from the counterweights and well load.

Note the torques in (5.9) and (5.10) are those torques acting on the
gearbox output shaft. To obtain the required torque from the drive motor, we
simply divide this by the overall speed reduction ratio. That is

it
= RATTO o1
Tm RATIO $5 )

where T, is the motor torque delivered. The above neglects losses through the

belt drive and gearbox.
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CBW

Figure 5.4 - Conventional Unit Torque Notation

Figure 5.5 - Mark-II Torque Notation
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Figure 5.6 - Typical Set of Torque Curves

5.4 Motor Speed Variation

We have seen in section 5.3 how the torque on the system varies over the
course of one pumping cycle. Assuming that the reduction ratio is constant,
we conclude that the torgque delivered by the motor must also vary. In order
to understand how this variation affects the motor speed, it is instructive to
look at a typical speed-torque curve. Figure 5.7 shows such a curve.

The portion of this curve of interest is roughly that from 100% to 80% of
synchronous speed. Over the course of this range the torque can be
approximated as a linear function of speed as shown by the dashed line. This

is common practice and allows us to readily compute the motor speed, given the
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Figure 5.7 - Typical Motor Speed - Torque Curve!

output torque. For example, suppose the instantaneous required torque is
18000 in-1b, the synchronous speed is 1200 RPM, and the torque at 1000 RPM is
20000 in-1lb. We want to know the instantaneous speed. A linear interpolation

gives the following:

Speed (RPM) Torque (in-1b)
1200 0
RPM? 18000
1000 20000
REM? = (12200=0)(1400-1200) + 1200

20000-0

or

RPM? = 1020 RPM .

1Courtesy of Westinghouse Electric Corp., Buffalo, NY
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Performing this calculation at each solution interval allows us to keep track

of the average pumping speed.

5.5 Closing Remarks

Armed with the concepts presented in these sections, we can now
characterize the torques on the system as well as their effect on the
dynamics. Coupled with the developments from chapters three and four they

provide another piece in the complete analysis.
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Chapter 6

FLUID DAMPING

6.1 Opening Comments

As outlined in chapter three, the damping force exerted on the rod by its
relative motion with the fluid column is developed by a skin friction effect
at the rod surface. 1In order to quantify this force, we look at the nature of
annular pipe flow, specifically the shear stress acting at the inner boundary.
Rather than flow through a conventional annulus, we will look at the case

where the center section has some velocity, v, relative to the outer wall.

6.2 Derivation of Shear Stress

Figure 6.1 depicts the model to be used and the required notation. We

look in detail at the fluid shell of thickness Ar.

£
B A G Tl ST S BT T A O BB W T B QB K7 I T A LTS

K bl g g p o gy Y Yy FFIyyyyyyy

- »
3 J L
s ¥Rt Y

Figure 6.1 - Annular Flow Model
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A momentum balance on the fluid shell yields

2
(2mrLty,) | = (27rLtr,) | penr + (2nrAryvz)| -
z=0
(6.1)
(2nrAer22)|z=L + 2mrArLyg + 2nrAr(py-p;,) = O
If we assume an incompressible fluid then v, at z = o0 and z = L are equal so

terms three and four drop out. Dividing by 2nILAr and taking the limit as

Ar +» 0 gives

lim (rTrz)|r+Ar =~ fxte) s _ (Po - Py, - 1i
Ar+0 Ar - 3
or
d(rTeir) Po -
B o Bk Yg)r . (6.2)

dr L
Taking p, = O (pressure at the surface) and recognizing that Pr, = YgL, we may

eliminate the right hand side of (6.2). We are left with

d(xrTye;)
dr

Integrating once with respect to r gives
B

Unfortunately, we know nothing about Ty, at the boundaries which would allow
us to determine Cq;. We do, however, know something about the velocities at

both R; and Ry. Newton's law of viscosity gives

dv,
dr

B = -y (6.4)

where p is the fluid viscosity. Substituting (6.4) into (6.3) gives us

i .

dr ur

Integrating once more with respect to r yields

Cy
Ve = = — 1ny + Co .

Recognizing that at r = R; we have Vz = Vv, and at r = Ry, v, = 0, we can

solve for Cy and C; as follows.



at R = R:

at r

Ro

or

Substituting

or finally

Recalling that v is the rod velocity,

position, r.

o
I
|

'——l
=
>

o
+
0

3]

e R
v = - —l-ln(ai)
(o)
Oyl = VU
R =
ln[R—o)

(6.7) into (6.6) and solving for c; we have

v 1n Rg
e s <

ln(§§J

ln(

)

2 °

)

évL? 31H

ln(
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(6.5)

(6.6)

(6.7)

(6.8)

(6.8) gives us the fluid velocity at any

Again referring to (6.4) we can derive an expression for T1,, based on

(6.8). This yields

or

r
l —
. =_ui_[i(3ol] -
rz dr ln(B.L)
Ro
uv
Ly R .
rln[§§J

At the rod surface where r = R; this gives

uv
N =0 128 .
R 1n(=)

(6.9)



In chapter three we derived

factor, c, as

fq

Using T,, and referring to figure

fq

Equivalence requires that

where we recall that-?--‘i

3t 1s simply

(6.9) into (6.11) gives the final

The required units on uy in (6.12)

6.3 Closing Remarks

It should be noted that the
for laminar flow. A quick check
configuration yields the followin

Let R;

i
Ro
Vz

Y

H
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the damping force in terms of a damping

(3.4)

du
2cY Am Axa—t .

3.1, the equivalent force will be given by

= 21,.,/AT Ax (6.10)
T
e 7 (6.11)
v
v from the above discussion. Substituting
form for c as
y
= - TR . (6.12)
Riln[g)

are 1bf—sec/in2.

momentum balance given by (6.1) is valid only
of the Reynolds number for a typical

g.

= 0.5 in

Te0 din

30 in/sec

8.2 x 1072 1lbp-sec?/in4

1.5 x 106 lbf-—sec/in2

(10cp) .

The Reynolds number is given by (see ref. 4, page 54)

Re

which yields

Rj

2Rg (1" E;J vzY

H
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Rg = 1640 .
This is well below the transition Reynolds number of 2100 so our assumption of

laminar flow is valid.
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Chapter 7

DOWN-HOLE CONSIDERATIONS

7.1 Opening Comments

Sections 3.3 and 3.8 served as introductions to the subject of the
boundary conditions which apply at the ends of the rod string. The surface
condition was treated adequately there when coupled with the developments in
chapter four. Several unaddressed questions remain regarding the bottom-hole
conditions. Specifically, we need to look in detail at the loading function,
p(t), and coefficients a' through d' in (3.10). This section expands upon
earlier discussions on this bottom boundary condition. Reiterating, the

latter of (3.10) is repeated here.

du 32u du
L] il e g S ] - = .
a's> (L,t) + b ) (Lyt) + ¢ 9T (L,t) + d'u(L,t) p(t) 0 (3.10)
where
a',b',c',d' = non-negative coefficients
p(t) = prescribed pump loading condition

7.2 Pump Action Analysis

In order to understand the loading function, p(t), it is helpful to look
at figure 7.1 which illustrates the four stages involved in rod loading.
Recall from figure 1.1 the existence of the standing and traveling values.

Figure 7.1a depicts the period at bottom dead center when the load is
being transferred from the tubing to the rod. The traveling valve is closing
causing the full weight of the fluid to bear on the tubing string. The
standing value is ready to open. 1In (b) the rod is moving up, bearing the
full weight of the fluid column. The traveling valve is closed, the standing

valve is open. It should be noted that while the standing valve is open, any



O
O

52

C}
} Q i ﬁ?l/ o () | ﬁ
p(t)
(a) (b) (d)

Figure 7.1 - Four Stages of Pump Action

pressure due to a fluid level in the casing acts directly on the underside of

the plunger. The net rod load, p(t), in (b) is given by

p(t) = TOPFOR - BOTFOR

where

TOPFOR = fluid pressure above plunger times plunger area
BOTFOR = bottom-hole pressure times plunger area

Figure 7.1c illustrates the top dead center position at which load begins

transferral back to the tubing. the

The traveling value begins to open,

standing valve begins to close. Finally, (d) shows the rod on its way down,

moving freely through the fluid. The traveling valve is open, the standing

valve is closed. 1In (d), p(t) =

0. Following (4) tﬁe cycle repeats.
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From this description of the cycle we see that p(t) is a periodic
function as illustrated in the lower half of fiqure 7.1. This nature is
another of the peculiarities associated with this analysis. The most direct
means of specifying this behavior is to specify the distance over which the
plunger travels during fluid load pickup and release. Figure 7.2 illustrates

the point for two sample cases.

short pickup/release long pickup/release

e
/ \
/ \
| / \
/ \

po— P —

p(t) p(t)

disp disp

Figure 7.2 - Bottom-Hole Load vs. Displacement

The value of p(t) at any point during pickup (or release) is obtained by
taking the ratio of Au for the current interval to the total pickup (or
release) distance, times the quantity (TOPFOR-BOTFOR). That whole quantity is
then added to the previous p(t) as an incremental change in pump load. During
the remainder of the up/downstrokes, the loads are as defined earlier.

The determination of these pickup and release distances is based upon
whether or tubing anchors are installed and, if not, on the tubing size, fluid
weight, etc.. For the anchored case, illustrated by the dashed curve, the
distances, which can be as great as 2 ft., are determined from the stafic tube

deflection due to fluid weight.

7.3 Boundary Condition Coefficients

As one of the last loose ends to tie up, we address coefficients a'

through d' in (3.10). Referring to the latter of (3.10), this explanation is
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best served by looking in detail at each term individually.
The first of these is

a' %E-(L,t) .

This is simply a stress generated force on any stiffness element added at the
pump. For example, stiffeners known as sinker bars are sometimes added to the
bottom of the sucker rod to counteract the effects of compressive loads due to
buoyancy. If this is the case, the resulting force is clearly EAe or
EA(9u/dx) where EA is the product of the modulus and cross section of the
sinker bars. Thus a' is EA of these stiffeners. If they are not used a' is
set to zero. Recall that the stiffness of the sucker rod itself is already
incorporated in [K].

The second term in (3.10) is given by

2
b' %E% (L,t) .

In this term b' is nothing more than the mass of the fluid column. The only
spectal consideration needed is the determination of when this term applies.
On upward acceleration it clearly exists. On deceleration the mass is
uncoupled and b' goes to zero. Likewise, on the downstroke the fluid weight,
and hence mass, is borne by the tubing. During this part of the cycle b' is
again set to zero.

The damping term

ou

y OO
¢ 3t

(L, %)

is probably the one for which we have the most intuitive feel. Fluid friction
exists at all points in the cycle. On the upstroke there is drag between the
plunger and pump body as well as a damping effect from fluid flow through the
standing valve. On the downstroke, plunger drag again exists as does damping

through the traveling valve. The combined factor c' takes these effects into

account.
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Finally, the last term
d'u(L,t)

allows one to apply a force as strictly a function of plunger displacement.
Frankly, it is not clear that d4' has immediate physical significance. In this
analysis it is set to zero but included to maintain generality. The intent of
this work was not to identify precisely all of these coefficients. It is
hoped that at some future time, experimental data will be available to either
corroborate or redefine their significance.

A similar argqument holds for c'. Although its meaning seems
straightforward, its magnitude is not known exactly. For this work it is
assumed to be related to fluid viscosity much like the rod damping discussed

previously.

7.4 Closing Remarks

With these thoughts, we close the bulk of the analysis required in the
solution to the problem posed in chapter one. The discussion which follows
addresses the implementation of solution techniques and results from selected

design situations.
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CHAPTER 8

DATA REDUCTION

8.1 Opening Comments

In any analysis with the scope of that presented in the previous
chapters, one is faced with thé task of selecting how one wishes to view the
results. The data selected should be both indicative of the behavior of the
system being analyzed and informative, Clearly, we don't want results which
are obscured by ambiguous display. The following discussions deal with those
forms of data reduction chosen for the analysis in chapters three through

sevene.

8.2 Forms of Data Presentation

As in most engineering problems, we would ultimately like some graphical
output from our solution. Numerical values, although sometimes more precise,
don't represent a visual picture of system behavior. Nor do they make
comparisons between various cases as meaningful as they might be. In the
output from the sucker rod dynamic analysis, we will display numerically only
some chosen extreme values for certain system characteristics, e.g., maximum
stregses, max/min torques and pumping speeds, etc. The bulk of the output
will be graphical.

The standard form of system response throughout the petroleum industry is
known as a dynagraph. Its origin dates back to the early days of modern
sucker rod pumping. A dynagraph is generated by attaching a load cell in line
with the polished rod. The output from the load cell, coupled with a means of
recording the position of the rod, produces a load Vs. displacement plot
analogous to a lissajous pattern common in electrical circuit analysis.

Figure 8.1 shows a typical dynagraph from an actual well study.
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MAX LOAD 16,200 LB
MIN LOAD 2,700 vs
RANGE 13,500 LB
SPEED 23 sPM
STROKE 64 IN.
PoL ROD HP 275
ENGINE RPM 940
Ti1ME 4:00 PM

ZERO.

Figure 8.1 - Dynagraph Card

It is not clear that the dynagraph form of data presentation is the most
useful way of displaying load results, but it is widely used and well
understood. Therefore, a dynagraph will be simulated in this analysis as a
means of bridging the technology gap in sucker rod dynamics.

One would also like to know the effects of pumping unit behavior on
induced rod stresses. Because two pumping mechanisms which generate the same
stroke length can do so in different ways, e.g., they may have different
durations for the up/down strokes. It is natural to assume that the resulting
rod stresses will also be different. As a result, we will plot the
acceleration at the top of the rod and the rod stress vs. position. Such
information could be used in optimization of minimum rod stress for a given
desired stroke.

Some interest has been proposed in developing the load transfer
characteristics of the sucker rod. Although this is not the intent of this

analysis, it is a simple matter to provide this information as a starting
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point for future investigations. Essentially this amounts to little more than
displaying the dynagraph data in a more conventional format.

Finally, because proper balancing of the pumping unit has a dramatic
effect on long term performance, we would like to know precisely its balance
condition. To study the effects of all of the various torque components, we
will plot the torque due to the well load and counterweights as well as their

resultant torque on the gearbox as a function of crank position.

8.4 Closing Remarks

The four forms of data presentation described should provide not only
some continuity with existing analysis but adequate information on which to
judge any proposed design as well. The various plots described will be
included in sample analyses in the following sections and in the appropriate

appendices.
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CHAPTER 9

SOLUTION DEVELOPMENT AND UTILIZATION

9.1 Opening Comments

It should be clear by now that the computations and analyses presented in
the preceding sections do not lend themselves to hand manipulation. For this
reason, a computer program called "DYNA1" has been written which performs the
required operations. DYNA1 is written in FORTRAN 77 and is presently being
run interactively on a VAX 11/780 computer. The source code occupies
approximately 100 blocks (50K) including the graphics subroutines. PLOT10
subroutines from Tektronix produce binary output which drives any of their

4000 series graphics terminals.

9.2 Program Synopsis

DYNA1 consists of a main routine and twenty-one subroutines each of
which handles one aspect of the previous analyses. The main routine acts as
the coordinator for these subroutines as well as variable initializer and
output controller. In addition, it keeps tabs on max/min values of pertinent
parameters. Below is a list of all subroutines and a brief description of
their function.

ASSEMB: assembles system matrices [M], [C], and [K] from individual

element matrices . . . entry ASSEMF assembles the force
vector {f}
DATGEN: 1interactively creates input data file "DATSET"

DYNAGR: plots surface and pump load data in dynagraph format

ECHO: echoes input data to file "SUMMARY"

INCOND: generates the initial conditions on u, ﬁ, u

INVERT: inverts [M] (or any square matrix)



LINK:

LOADGR:

MESH:

MSPEED:

MULT:

PLOAD:

RKUTT:

SHAPE:

SIGRAF:

SOLVE:

STRESS:

TORQF :

TORQGR :

TORQUE:

UPDATE:

60

calculates the displacement, velocity, and acceleration at
the top of the rod based on pumping unit geometry

plots surface and pump loads vs. crank position

generates the mesh connectivity data and the x-coordinates of
all nodal points

calculates the motor speed based on torque requirements

multiplies two matrices . . . entry VMULT multiplies a
matrix times a vector

determines pump plunger position and the corresponding load
p(t)

integrates u to find U and u (4th order Runge-Kutta)

defines and initializes shape function matrices [¢] and

[dé/dx]

plots rod stress and top acceeleration vs. crank position

solves the system of ODE's for {f(1)} and {u}

solves for element stresses at each iteration based on end
point displacements

calculates the torque factor of the pumping unit based on
its present position

plots the torques due to well load and counterweights and
their resultant vs. crank position

calculates gearbox and motor torques given polished rod
load, torque factor, and reduction ratio

adds boundary condition terms to system matrices and
updates (M]=1, [Cl*, and [K]* when necessary

It should be clear from the above that each point of the preceding

analyses has been suitably addressed. The liberal use of subroutines not only

tends to make a program more readable but also allows revisions to be made

more readily.

As mentioned in section 9.1, DYNA1 is an interactive program. If a data

file exists ("DATSET") the user responds with an "f" (file) when prompted.
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The program will then read the input data file and begin computations. If a
data file does not exist or if a new set of input is desired, the user
responds with an "i" (interactive) when prompted. DYNA1 will then prompt for
all required input. At the same time, a new file, "DATSET", will be written
automatically, superseding any that might have already existed.

In addition to the plotted output, there are potentially three output
data files generated. The first, called "DIAGNOS", is written only if
requested. It provides some diagnostic output should results be suspect for
some reason. The second output file, called "SUMMARY" is always written and
supersedes any that previously existed. It contains a list of the input data
as well as a summary of final results. A third file, "PLTDAT", is generated
when plotted output is desired. It is read by the various plot routines but
is otherwise transparent to the user.

When plotted output is desired, four binary files are written,
"DYNAPLOT", "LOADPLOT", "SIGPLOT", and "TORQPLOT". They contain the
dynagraph, load, stress, and torque plot, respectively. They must be output
to a Tektronix 4000 series graphics terminal. Otherwise, useless garbage will

be displayed on the screen (at best).

9.3 Input Data Requirements

As mentioned in section 9.2, DYNA1 will prompt for required input data.

Briefly, that data is listed below.

Well Identification: 20 characters, self explanatory
Diagnostics/Plot Flags: 1 = yes, 0 = no . . . one response for each
Rod Length: enter length in feet

Plunger Diameter: enter diameter in inches

No. of Different
Rod Diameters: enter 1 through 5 as required
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Diameter, Begin/End enter the diameter of each rod size plus
Element: the beginning and ending element number
(see discussion later in this section)

Tubing Anchor Flag: 1 = anchored, 0 = unanchored
Tubing OD: enter tube OD in inches if tubing is
unanchored

Fluid Height and

Specific Gravity: enter the casing fluid height above the
plunger in feet and the specific gravity of
the fluid

Linkage Parameters: enter linkage type, 1 = conventional, 2 =

Mark II, and the dimensions D, H, Lj, Lo,
L3 and R in inches (see figures 4.1 and

4.2)
Desired Strokes per
Minute: typically 5 through 20
Motor Speed
Variation Flag: 1 = variable speed, 0 = constant speed
Counterweights, enter the weight of the counterbalance in
Phase Angle, pounds, angle B in degrees (see figures 5.4
Unbalance: and 5.5, and the structural unbalance in

pounds ("+" for horsehead heavy units)

Synchronous Speed 1f motor speed is variable, enter the
and Slip Speed/ synchronous speed in RPM and a speed from
Torque: the motor curve with its associated torque

in inch-pounds

Motor Speed: if motor speed is constant, enter the motor
speed in RPM

Fluid Viscosity: enter the value in centipoises

Sinker Bars: if sinker bars are used, enter their
diameter in inches

The above completes the input data required by DYNA1. The prompts are
hopefully self explanatory in all cases. One area may, however, need some
elaboration here in order to be fully understood.

As we have seen from chapter three, the finite element method relies on a

discretization of the model being analyzed. Naturally, the finer the
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discretization, the better the simulation, but the longer the computation
time. Conversely, with few elements, we gain computation time but lose
resolution. In this analysis, a five element model was chosen as a compromise
between computation time and resolution. The resulting mesh is shown in

figure 9.1.

elem # node #

@

@ Fes OF ©

Figure 9.1 - Finite Element Mesh

Recall that changes in geometry can occur only at nodes, thus, referring
to the diameter input segment discussed earlier, a single taper 1" rod would
have a diameter of 1", the beginning element number is 1 and the ending
element number is 5. A two taper string with 2000' of 7/8" and 3000' of 3/4"
rod would have a diameter of 0.875 from elements 1 through 2 and a diameter of
0.750" from element 3 through 5.

Figures 9.2 and 9.3 are included to confirm the accuracy of a five

element model. Both are results from the same input data.
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9.4 Closing Remarks
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Examples of these plotted outputs and the form of the summary of results

will be illustrated in appendices B and C. Appendix B contains comparisons of
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of this analysis with currently available models. Appendix C illustrates
several examples of design exercises in an attempt to show how changes to some

of the input data affect the dynamic response of the system.
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CHAPTER 10

SUMMARY

It is difficult to summarize an analysis such as this. It is not as
though we have attempted to solve a singularly posed problem with a unique
solution. Rather, we have tried to develop a procedure by which we can
effectively analyze a family of design situations.

Conclusion is probably best served by looking back at the analysis goals
set forth in section 1.4. Items one through four, seven, and eight in that
section, outline the theoretical goals of our solution, i.e., development of
the pumping unit kinematics, the finite element model, torque
characterization, pump load simulation, fluid damping, and forms of data
reduction. All of these items have been fully described in chapters three
through eight. Verification of the procedure discussed in items five and six
of section 1.4 will be treated in appendices A through C. Hopefully, all of
these dicussions constitute a clear, well defined, and well documented outline
to the problem posed in chapter one.

In addition to our original goals, we have the unspoken goals which apply
to any report of this type. We would like to know that somehow we have added
to the existing body of knowledge with regard to the problem at hand. We can
feel confident that, in fact, we have. Modern mathematical techniques have
been successfully applied to a problem older than those techniques themselves.
Industry accepted "rules of thumb" and "dimensionless parameters" have not
been relied upon anywhere. Finally, the nature of the solution has been left
general enough to facilitate upgrading as experimental data becomes available
for more precise characterization of such things as boundary condition

coefficients.
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In short, we have addressed the problem from a new light and done so in
purely analytical fashion. The result being a solution which escapes some of
the pitfalls of previous analyses, most notably, instabilities in handling
shallow wells and difficulty in defining damping factors for heavy crudes.
Our approach thus takes us many steps forward in understanding and addressing

the dynamic behavior of sucker rod pumping systems.
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APPENDIX A

TESTING OF THE FINITE ELEMENT MODEL

To give us peace of mind, we would like to test some of the more complex
notions described in this report. Particularly, the solution to the system of
differential equations and the integration routine. We accomplish this by
comparing the results given by the developed model with those determined
analytically for a case which possesses an analytical solution.

Such a solution exists for the vibration of a prismatic bar of length L,

free at one end.

t A sinwt
l e

Figure A.1 - Test Case Model
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The general differential equation for longitudinal vibrations in this bar is

given by

82u 2 82u
—_— =l —
3t2 9x2

where a2 = E/p
u = displacement at any cross section.

The boundary conditions are

u(o,t) A sinwt

du
3;(L,t) 0

For steady state vibration, u(x,t) = U(x) sinwt is the general form of

solution. Substituting this into (A.1) yields

2,
-U(x)w2sinwt = a2 sinwt-g—g
dx2
or
d2u  w2x
—_— 4 °
dx2 a2

The solution to (A.2) is then
U(x) = Cq cos 2§-+ Co sin-25
a a
from which

wx . WX
- —— e t 2
ulx, t) (C1 cos — + Cy sin = ) sin w

From the first boundary condition
u(0,t) = A sin wt

SO

From the second boundary condition

EE-(L,t) = 9-[—Asin oL Co cos-gé] sin wt = 0
9x a a a

(R.1)

(A.2)

(A.3)



from which

The steady state vibration is thus given by

wx wL . ;
u(x,t) = A [cos ;—-+ tan — sin EEJ sin wt

wL

C2=Atana—

71

(A.4)

A plot of u(x,t) for an arbitrary set of conditions yields the following

figure.

Applying the same conditions to the finite element model yields the

figure below.

two figures.

Kol

DEEFLACEHENT 1Y

A PRl LA WA e

Sl ™A R s

AMALYTICAL CRSE

taragemm v

MO e MEsw

Figure A.2 - Analytical Solution Plot

The horizontal and vertical axis scales are identical in these



MBDEL TEST CRSE
i

S
——
—

DISFLACEHENT AT Xuwl

Figure A.3 - Finite Element Solution Plot

is valid.

in the above illustration.

time required by the numerical solution, approximately one and one-half cycles

&
Sl
—

—
..;—-"'—’-__
—

Clearly, we have good agreement between the analytical case and our
simulation.

We can, thus, be fairly well assured that our solution technique

The model test case also gives us some feel for the stabilization

2



73

APPENDIX B

COMPARISONS WITH CURRENTLY AVAILABLE MODELS

As noted in chapter one, the only known analysis that bears a resemblance
to this work is the result of an effort by Shell 0il Co. scientists in the
1960's and 70's. The following two sets of data show comparisons between the
Shell work and the present analysis. The first illustrates the case of
"normal" damping while the second depicts pumping of "heavy" crudes. It is
difficult to draw a direct comparison between the dimensionless damping factor
used in the Shell work and the viscosity used here but as we can see from the
dynagraphs and the summaries, the two solutions agree well. 1In most

instances, to better than 10%.
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Figure B.1-Shell Program Input - Case 1



SURFACE DYNAGRAPE PRELICTION FOR CONVENTIONAL GEOMETRY.
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Figure B.2-Shell Program Output - Case 1
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APPENDIX C

SAMPLE CASE STUDIES

It is probably most informative, in light of the emphasis placed on the
use of this method as a design tool, to simulate a few case studies to view

the effect on system response as the result of a change to one of the input

parameters.

Case 1

In the first example, we take two pumping units with equal strokes, one
conventional, the other a Mark II. These are labeled case 1-1 and 1-2,
respectively, and the following figures illustrate the significant output
results. This author has done some previous work indicating that the Mark II
has some distinct advantages over the conventional type, (in general) due
mainly to the decreased acceleration on the upstroke. As we can see from the
following figures, this manifests itself in reduced rod stress. Additionally,
all else being equal, the torque requirement on the gearbox has been reduced a

full 28% by using the Mark II.
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Case 2

Our second example illustrates two identical wells with different rod
strings. The first uses a single taper 7/8", 3/4", and 1/2" rod. As we might
expect, the stress at the top of the rod is reduced in the tapered case.
However, if we look closely at the summary, we find fairly high stress levels
at the bottom section. Note top, the effect of both cases on the stroke at
the pump. The single taper case yields a much more "springy" case, yielding a

stroke higher even than the surface stroke.
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Case 3

The third case illustrates the effect of considering motor speed
variations on the system response. As we can see from the figures which
follow, the effect of considering motor slip is effectively to "soften" the
system. Loads are reduced, rod stresses, and horsepower requirements are
reduced. But, so too is the pump stroke, indicating that a high slip motor

would likely yield reduced production.
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Figure C.19-Input Data - Case 3-1
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Case 4

Finally, case four illustrates the effect of balance on the torque
requirements of the drive train. In case 4-1, we see a unit in close
proximity to correct balance. A rule of thumb is that the weight of the
counterweights should be approximately equal to the sum of the rod weight in
fluid and one-half the fluid load on the plunger. In this case, for 4-1, the
resulting counterbalance weight is 11,150 lb.. For case 4-2, we take the same
system but overcounterbalance by 20%. As can be seen in the following
summaries, the resulting increase in gearbox torque is 34%. Were the system
sized for the former case, the life of the gearbox in the overcounterbalanced

state would clearly be significantly reduced.
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