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Abstract

Traffic management systems play a vital role in supporting the smooth flow of
traffic in road networks. By accurately predicting travel time, a traffic condition
parameter that is extensively used in such systems, we can significantly improve
the efficiency of these systems, decision-makers, and travelers. In this work, we
use a dataset from the Oklahoma Department of Transportation to compare the
accuracy of statistical and machine learning approaches to predicting travel time.

We establish baseline accuracy by constructing a traditional statistical model
using the seasonal autoregressive integrated moving average (SARIMA) approach.
We compare this baseline to two machine learning models: one-dimensional con-
volutional neural networks (1-D CNNs) and long short-term memory (LSTM)
networks. Our results show that our 1-D CNN and LSTM models have better
performance than the statistical model. As an example, in a 4-step architecture
(a model structure that simultaneously predicts travel time four periods ahead),
the median root means squared relative error (RMSRE) scores for our LSTM
and 1-D CNN models are 0.060 and 0.063, respectively. These compare to the
median RMSRE score of 0.12 for the corresponding 4-step SARIMA model. The
results also indicate that the machine learning approaches have significantly lower
computation time compared to SARIMA. In addition, the 1-D CNN model has

the least error variance across all architectures and among all modeling meth-



ods. Finally, the 1-D CNN approach is more consistent in terms of prediction
error across the experimented architectures compared to the LSTM appraoch.
Therefore, based on the results, we highly recommend using machine learning
approaches, specifically, 1-D CNNs, for estimating travel time in roadway sys-

tems and for other similar time-series prediction problems.
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Chapter 1

Introduction

Travel time is the time cost for a traveler to commute between any two points
of interest in a road segment. Travel time prediction refers to predicting and
calculating the experienced travel time before a vehicle has traversed the route
of interest (Billings and Yang, 2006). Travel time is an important roadway traffic
condition parameter, which is comprehensible both for motorists and transporta-
tion officials (Zhang and Haghani, 2015). Travelers can make better decisions
regarding the departure time, route selection, and mode choice by obtaining re-
liable travel time estimates from advanced traveler information systems (Zhang
and Haghani, 2015). Additionally, travel time prediction assists transportation
decision-makers in developing advanced traffic management system strategies
proactively (Zhang and Haghani, 2015). Researchers have explored various meth-
ods for travel time prediction. Typically, their work follows two main paradigms:
parametric approaches and non-parametric approaches (Ma et al., 2015). In para-
metric or model-based travel time prediction methods, the structure of the model
and its parameters are predetermined based on theoretical assumptions (Ma et al.,

2015). Traffic simulation models are examples of model-based approaches. These



models require building a virtual road network and performing dynamic traffic
simulation on it by utilizing theories such as traffic flow (Duan et al., 2016; Ma
et al., 2015). There are some shortcomings associated with theoretical models
that make them ineffective for the modern traffic systems. Developing models
for ideal situations without considering the dynamic nature of human behaviors
are instances of these weaknesses (Ma et al., 2015). Autoregressive integrated
moving average (ARIMA) models are time-series analysis models that are part of
the parametric approach family (Adhikari and Agrawal, 2013). ARIMA models
are proposed for travel time prediction with reasonable accuracy (Billings and
Yang, 2006). Also, a modified version of ARIMA is used to estimate traffic speed
and volume (Chandra and Al-Deek, 2009).

Non-parametric methods, on the other hand, do not consider fixed structures
or parameters for travel time predictive models (Ma et al., 2015). Machine learn-
ing models are non-parametric models that are widely used in travel time predic-
tion. Linear machine learning can provide effective modeling approaches to travel
time problems (Zhang and Rice, 2003; Rice and Van Zwet, 2004). Linear machine
learning models are model types that utilize a linear combination of features to
explain travel time. K-nearest neighbor is one of the linear machine learning
approaches that is used to predict travel time (Myung et al., 2011). Artificial
neural networks (ANNs) are machine learning-based models that have several
advantages such as flexible model structure, generalization, and learning capa-
bility (Ma et al., 2015). The power of ANNs have made them a model of choice
to address the travel time prediction problem (Ma et al., 2015). Long short-term
memory (LSTM) neural networks (Hochreiter and Schmidhuber, 1996) provide
a modeling approach suitable for sequence processing problems such as natural

language processing (Chen et al., 2016), machine translation, image and video



captioning (Vinyals et al., 2015; Gao et al., 2017), and time-series forecasting
(Sagheer and Kotb, 2019). LSTMs are applied to predict the travel time (Duan
et al., 2016) as well as travel speed (Ma et al., 2015), which are both important
traffic factors. The results indicate that LSTM networks are successful to model
and predict travel time due to their ability to capture long time dependencies
within travel time sequences. Convolutional neural networks (CNNs) (Albawi
et al., 2017) are another type of ANN that has outstanding performance in ma-
chine learning problems, specially for computer vision. Some examples are image
classification (He et al., 2016), object detection (Redmon et al., 2016), and im-
age reconstruction (Liu et al., 2018). A one-dimensional convolutional neural
network (1-D CNN) is a type of CNN for signal processing applications such as
electrocardiogram processing (Kiranyaz et al., 2015, 2017). 1-D CNNs are also
applied to sequence processing and time series problems (Chollet, 2017). One
study indicate that a combination of 1-D CNNs and LSTMs results in powerful
predictive models for travel time information (Petersen et al., 2019).

In this work, we compare and report the performance of three models both
from parametric and non-parametric approaches. We have chosen LSTMs and
1-D CNNs from the non-parametric models. To the best of our knowledge, this is
the first time that pure 1-D CNN architecture is used for travel time prediction.
For the parametric models, we have tested the predictive capabilities of seasonal
autoregressive integrated moving average (SARIMA) models these are equivalent

to ARIMA models equipped with seasonality factor.

1.1 Research Objectives

The objectives of this research are to:



1. Prepare travel time data to be used in three modeling processes: SARIMA,
LSTM, and 1-D CNN

2. Develop SARIMA, LSTM, 1-D CNN models to predict multi-step travel

time

3. Evaluate the accuracy of each modeling approach using the test data across

different architectures for different steps in future
4. Analyze the results for each modeling approach based on:

e Accuracy of the prediction across different architectures

e Sensitivity to large errors across different architectures

5. Compare the results within each modeling approach and determine the best

performing architecture

6. Compare the modeling approaches among themselves and determine the

best performing model(s) and/or architecture(s)

1.2 Contribution to the Research Community

In this work, I have experimented with three modeling approaches to predict
travel time in the highway network of Oklahoma. Theses approaches include two
machine learning techniques, namely 1-D CNN and LSTM, and one statistical
approach called SARIMA. The proposed LSTM method is based on a work for
travel time prediction from the literature (Duan et al., 2016). I ensured that the
1-D CNN has the same number of layers as the LSTM model. The result of this
work shows that both LSTMs and 1-D CNNs outperform the traditional time-

series modeling approach, SARIMA. This research shows that 1-D CNNs can

4



be utilized to solve the similar sequence-based or time series problems. Also, it
shows that applying appropriate feature engineering such as transforming travel

time to speed can be beneficial for having accurate travel time predictions.

1.3 Organization of the Thesis

This thesis is organized in 6 chapters. Chapter 1 overviews the travel time prob-
lem. Chapter 2 introduces the key technical terms and concepts required to
understand the approaches, results, and discussions and also it reviews the liter-
ature related to this work. Chapter 3 explains the travel time datasets used in the
modeling process as well as a transformation applied to them. Chapter 4 explains
the methodologies utilized in the modeling process including 1-D CNN, LSTM,
and SARIMA. Chapter 5 describes and compares the results of our experiments
on our models and analyzes the results. Finally, Chapter 6 concludes the thesis

and presents future work.



Chapter 2

Background

This chapter explains key terms and concepts, as well as previous work related
to traffic condition prediction, that are required to understand the rest of the
thesis. This chapter is divided into three sections. The first section is a glossary
introducing transportation and modeling terms. The second section explains the
terms and fundamental concepts of artificial neural networks. In the last section,

previous research related to traffic prediction is reviewed.

2.1 Glossary

The glossary is divided into two sections, one for transportation terms and one

for machine learning terms.

2.1.1 Transportation Terms

In this part, we define the transportation terms that are used throughout the

thesis.



NPMRDS

National Performance Management Research Data Set (NPMRDS) is the refer-
ence dataset designed to meet federal congestion and freight performance report-
ing requirements (Bitar, 2016). NPMRDS provides comprehensive and consistent
data for passenger and commercial freight roadway performance across the Na-
tional Highway System, as well as over 25 key Canadian and Mexican border

crossings.

Traffic Message Channel

According to Federal Highway Administration (FHWA)- Department of Trans-
portation (2020), NPMRDS uses the Traffic Message Channel (TMC) standard
as a unique identifier for each road segment. TMCs have unique codes composed
of nine characters. For the purpose of brevity, the first three characters of the
TMC codes are omitted here. TMCs represent a road section from one exit or
entrance ramp to the next, which is either internal or external. An internal TMC
represents a portion of a road within an interchange (e.g., between an exit ramp
and entrance ramp). An external TMC represents a stretch of road between
interchanges. The first character of TMC in Figure 2.1 denotes the type and

direction of TMCs, which are described as the following:
e “P” denotes northbound or eastbound internal TMC.
e “N” denotes southbound or westbound internal TMC.
e “+” denotes northbound or eastbound external TMC.

e “7 denotes southbound or westbound external TMC.
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Figure 2.1: Example of Internal and External TMCs
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Travel time

Travel time x; is the time cost to traverse road segment L, from point A to point
B, departing at time ¢, as shown in Figure 2.2 (Duan et al., 2016). In this thesis,

we use travel times of TMCs in the Oklahoma highway network.

t L U+ x¢

@B @B

A B

Figure 2.2: Travel Time Estimation when a Traveler Traverse a Route From Point A
to Point B

2.1.2 Modeling Terms

In this part, we explain the modeling terms and concepts we have used in this

work.



ARIMA Model

Autoregressive integrated moving average (ARIMA) is popular statistical model
for forecasting and analysis of timeseries datasets. An ARIMA model is made up
of three components, an autoregressive part denoted by AR, an integrated part
denoted by I, and a moving average part represented by MA.

We first focus on the AR model. This model assumes that the predicted
variable is a linear combination of the same variable at the previous time steps.
Let p be the number of time steps in the past. AR(p) or autoregressive model of
order p means that the variable is regressed against itself using the value of the

same variable for p times in the past. The equation for AR(p) is written as
p
Yo =c+ Z PilYt—i T €
i=1

where y; and ¢, are the actual value of the predicted variable and the random error
at current time step ¢, respectively, ¢ is a constant term, and ¢; is the coefficient
of the equation at previous timestep i, where (i = 1, 2, ..., p). The tuning of an
AR model consists of tuning ; to approximate the data. This equation can be

written more concisely by introducing the Lag operator L as
Lnyt = Yt—n

where n is the number of previous lags. The AR process can be written as an

order p polynomial function L by

v = O(L)y + €



where © is polynomial operator for the AR process. A polynomial operator
transforms an equation to a polynomial expression form. Please take note that
the constant ¢ has been absorbed into the polynomial.

Second, in a given sequence, the integrated part calculates the difference of
an entry in the sequence with its previous entry. Then, the value of the entry
is replaced by the result of the differencing operation. This process is applied
to all entries. The order of the integrated part determines how many times the
differencing operation should be applied to a sequence consecutively. I(d) or
integrated order of d replaces an item in a sequence with the value differenced
for d times. We introduce an integration operator A¢ the integrated component

uses and define the equation for I(d) using

Aty =y = '™y
where yf” =1, and d is the order of differencing used. The expanded form is
m_ ., _
Ye " = Yt — Yt—1
2] (1] (1]

Y =Y — U

d d—1 d—1
yt =y =y

In each differencing operation, the number of entries is reduced by one. The

differencing technique is employed for transforming a non-stationary series to

stationary. A time series is called stationary if the summary statistics calculated

over time are consistent. A stationary time series has one main characteris-

tic where the calculated summary statistics over time are consistent. Summary

10



statistics can be the mean or the variance. If the time series shows trends or
seasonality then it is non-stationary. In non-stationary time series the summary
statistics change as time passes. Since classical time series methods perform well
on stationary data, integrated use differencing of raw observations to remove the
trend and support time series data with a trend.

Third, the moving average model leverages the past forecast errors in a
regression-like model. Let ¢ be the number of time steps in the past. MA(q)
or moving average of order q, uses the errors in ¢ previous time points to predict

current and future values. The equation for MA(q) is written as

q
Yo = p+ Zejet—j + €

J=1

where y; and ¢; are the actual value of the predicted variable and the random
error at current time step t, respectively. Also, p is the mean of the time series
and 6, is the coefficient of the equation at previous timestep j, where (j = 1, 2,

., q). The tuning of an MA model consists of tuning #; to approximate the

data. The MA process can be written as
Y = @(L)th + €t

where @ is the polynomial operator for the MA process.
Finally, the complete ARIMA process can be obtained by combining the AR,

I, and MA processes and is written as

A%y, = O(L)P A%y, + ®(L)1A%, + A,

11



The equation can be further simplified as

O(L)P A%y, = (L)1A%,.

SARIMA Model

Seasonal autoregressive integrated moving average (SARIMA) is an extension of
ARIMA that supports the seasonality of time series datasets. SARIMA mod-
els consider seasonality by applying an ARIMA model to lags that are integer
multiples of seasonality. Once the seasonality is modelled, an ARIMA model is
used to formulate non-seasonal part. The seasonal ARIMA model is formulated
as SARIMA(p, d, q)(P, D, Q)s, where p, d, q are from the ARIMA process and P,
D, @, and s constructs the seasonal part of the model.

First we introduce the seasonal differencing operator AL to take the seasonal
differences of the time series. Here s is the number of time lags comprising one
full period of seasonality. D is similar to d in ARIMA models, but instead applies
to seasonal lags. We also introduce the seasonal lag operator L°. Using seasonal

lags P and @ in ARMA (the combination of both AR and MA) process results

A??Jt = Q(LS)PAE% + ¢(LS)QAsD€t + ASDQ

where 6 and ¢ are the polyonimal operators for the seasonal AR and MA, respec-

tively. The equation can be written in concise form as

O(L5)’ APy, = p(L5)CAPe,.

12



We include the non-seasonal part to have to complete SARIMA equation as

O(L)PO(L) ATAPy, = O(L)1p(L*)YAYAPe,.

Autocorrelation and Partial Autocorrelation Functions

The autocorrelation function (ACF) of n determines the correlation of the current
time-series variable with the values of same variable at n previous time steps. The
partial autocorrelation function (PACF) is similar to ACF, but it only considers
the direct correlation between two steps by removing the implicit influence of
other time series values in between. For example, if n = 5, ACF finds the
correlation between the current time series and the time series at the 5 previous
time steps, while the indirect influence of 4 steps in between are preserved. On
the other hand, the PACF disregards the implicit effect of the other 4 values and
calculates the direct correlation value. ACF and PACF plots are used to estimate

AR and/or MA lags.

Learning Algorithm

An algorithm that can learn from data is called a learning algorithm (Goodfellow
et al., 2016). According to Mitchell (1997) “A computer program is said to learn
from experience E with respect to some class of tasks 7" and performance measure
P, if its performance at tasks in 7', as measured by P, improves with experience
E.” The terms task, performance measure, and experience are the next terms

explained.

13



Task

A task is a type of job that is expected from a machine learning algorithm to
perform. The task can be any problem that is hard to address by the traditional,
fixed, and human-designed computer programs (Goodfellow et al., 2016). There
are various types of tasks that machines can learn including but not limited to
classification and regression problems. In classification, the algorithm identifies
and/or predicts the category of a given item. For example, categorizing objects
within an image is a classification problem. Regression is predicting a numerical
value for a given input. The prediction of the amount of sales for the next day,
given the sales information for the past week, is an example of regression. In
this document, the task we are working on is a regression problem because we

attempt to predict the travel time which is a numerical value.

Experience

Learning algorithms can have a different experience of the data they encounter.
There are two broad types of learning algorithm depending on how the algorithm
experiences the data, which are supervised and unsupervised (Goodfellow et al.,
2016). In supervised learning the algorithm is presented with a dataset containing
input and output vectors. A wvector is an ordered collection of items. An input
vector is a vector containing the data used as an input for the learning algorithm.
An output vector is a vector of data associated with the input vector. In an
annotated dataset, the input and output vectors are explicitly tied together. The
supervised learning algorithm uses the annotated data to discover the relationship
between the input and output vectors. The dataset used in the learning process

is called a training set. On the other side, in unsupervised learning, the dataset

14



is not annotated. The algorithm attempts to discover patterns from the dataset
it is presented with. Reinforcement learning is another learning paradigm in
which the learner (agent) learns through interaction with the environment. The
agent takes an action based on its current situation (state) and receives feedback
from the environment or an external evaluator. The feedback can be in form of
a reward (positive), punishment (negative), or neutral. The goal of the agent
is to gather the maximum possible reward through a set of trials and errors.
The feedback mechanism helps the agent to learn which action is best associated
with which state. In this document, we are investigating various methods’ ability
to predict travel time in the highway network of Oklahoma using an annotated
travel time dataset. Therefore, the machine learning algorithms used to address

this problem are supervised algorithms.

Performance Measure

A performance measure is a systematic way to quantitatively measure how well
the algorithm performs the task. The design of the performance measure highly
depends on the underlying task performed by the learning algorithm. For exam-
ple, performance measures used in regression problems are quite different from
the ones used in classification problems. Performance measures help the learning
algorithm to automatically adjust the learning process. Travel time prediction is
a regression problem. We use mean squared error in the learning process. The
mean squared error (MSE) is the average of the square of the errors. The er-
ror is the difference between the ground truth and the prediction. The MSE is

computed as

1 & ~\2
MSE =~ (Y, - Vi)

15



where n is the number of samples, Y; is the ground truth (the output vector in an
annotated dataset explained in the Experience section), and Y; is the predicted
value. MSE includes a quadratic term, which helps by emphasizing large errors

and adjusting the learning algorithm accordingly.

Evaluation metrics

In this document we develop two types of models, machine learning and statisti-
cal. Typically, a machine learning process includes two stages, the training and
testing. The training stage includes the process of constructing the model. The
testing stage includes the process of evaluating the model once it is constructed.
Therefore, the dataset used in the learning process is divided for training and
testing purposes. The test data is never utilized in the training process; there-
fore, the testing procedure can objectively determine how the constructed model
performs beyond the training data. In this document, performance measure is
a term used to evaluate and guide the training process. One the other hand,
evaluation metric or metric is used to evaluate the testing process. Evaluation
metrics help comparing the final results of different modeling approaches. We
define two evaluation metrics, mean relative error (MRE) and root mean squared
relative error (RMSRE). Mean relative error (MRE) is calculated as

1 . Y; — Y|
MRE=-) —/—*%

16



where n is number of samples, Y; is the ground truth, and Y; is the predicted

value. The root mean square relative error (RMSRE) is calculated as
) 2

where n is the number of samples, Y; is the ground truth, and Y; is the predicted

1<~[Y, Y,
RMSRE =, | — Lt
Z( v

value.

We use two evaluation metrics to address two issues. The first issue is the
variation of errors caused by different length TMCs. For example, Figure 2.3
shows the distribution of TMC lengths in 2018. We can see some TMC lengths
beyond 15 miles, whereas most TMC lengths are less than 2 miles. To mitigate
this concern, we employ relative metrics such as MRE and RMSRE instead of
absolute metrics. The absolute metrics are calculated using the magnitude of the
difference between the ground truth and the prediction. They have the same unit
as the problem domain and are therefore, easier to interpret. However, in this
context, they are considerably correlated with the lengths of TMCs. The relative
errors are also based on the absolute errors but normalized by the magnitude
of the ground truth. They can help us understand the system’s prediction error
compared to actual travel time values. The second concern for the system is
the disparity of predictions. RMSRE helps us to understand whether the system
produces large errors. It includes a quadratic term, which results in exaggerating
larger errors. Using RMSRE, not only can we compare different approaches, we
can analyze a single model’s behavior. For example, we can objectively determine
the difference between the MRE and RMSRE in a specific model.

The reason that we only employ MSE during training is that MSE is an
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absolute metric. As discussed in Section 3.3, we create a new feature for the
training process by applying the TMC length to the travel time data (training
data). After developing the model, during the testing phase, we transform the
model prediction from the new feature to travel time by applying TMC length.

Therefore, as discussed earlier, we need relative metrics to handle error variation

caused by TMC length.

600+

Count

200+

6 é 16 £5
TMC Length (miles)

Figure 2.3: Distribution of TMC Length in 2018

2.2 Machine Learning with Artificial Neural Net-
works

In this work, the two machine learning approaches we have utilized are based on

artificial neural networks. The following subsections explain the required concepts
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to understand those approaches.

2.2.1 Artificial Neuron

An artificial neuron (AN) is a computational model inspired by biological nerve
cells or neurons (Engelbrecht, 2007). As illustrated in Figure 2.4, the AN receives
input via various connections from the environment or other ANs and computes
and fires the output signal. Let x; be the value for an input connection i, for
1 <7 < n, where n is the number of input connections. Each input connection
has a weight that influences the strength of an input signal. Let w; be the weight
for input connection i, for 1 < i < n, where n is the number of input connections.
To calculate the output signal, the neuron first computes the net value. There
are two primary types of ANs in terms of calculating the net value, summation

units and product units. Summation units calculate the net value as

n
net = E T;W;.
i=1

Product units calculate the net value as

n
net = | | x
i=1

ANs have a threshold or bias value that influences the net value. ANs calculate
the output signal by subtracting the bias from the net value and feeding it to
an actiwation function. An activation function is a linear or non-linear trans-
formation function that receives the net value and determines the AN’s output

strength (Engelbrecht, 2007). Denote the threshold 6 and the activation function
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with fan. The output signal o is

0= fan (net —0).

T
w1
o W2
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Ty Wn
Figure 2.4: Artificial Neuron

2.2.2 Artificial Neural Network

An artificial neural network (ANN) is a computational network typically with one
or more layers of ANs (Figure 2.5). ANNs are inspired by the decision process in
networks of nerve cells of the biological central nervous system (Graupe, 2013).
According to Haykin et al. (2009), an ANN is “a machine that is designed to model
the way in which the brain performs a particular task or function of interest; the
network is usually implemented by using electronic components or is simulated
in software on a digital computer.” ANNs are typically composed of three types
of layers of ANs: input layers, output layers, and hidden layers. The input
layer is the first layer and entry point in the ANN. This layer accepts initial
input from the environment and sends it to the next layer for further processing.
Hidden layers are located after the input layer. ANs in the hidden layers perform
transformations of the input they receive. The transformation operation depends
on various factors including the type of the activation function. In Figure 2.5,

there is only one hidden layer; however, ANNs can have more than one hidden
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layer (Engelbrecht, 2007). The final layer in the ANN is the output layer. This

layer determines the final result of the network.

- &

\__/

Input Layer Hidden Layer Output Layer

Figure 2.5: Artificial Neural Network with an Input, Hidden, and Output Layer

2.2.3 Dense and Sparse Layer

The ANs located in an ANN layer can connect to the ANs in the previous layer
either completely or partially. A layer is called dense or fully-connected if all ANs
within that layer have a connection to all of the ANs in the previous layer. It
means that all ANs within the dense layer receive input from all of the ANs in the
previous layer. A layer is sparse if one or more of its ANs are not connected to
at least one or more of the ANs within the previous layer. Typically, the sparse
layers lack a considerable number of connections from the previous layers. Figure

2.6 illustrates a dense and sparse layer side by side.
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Figure 2.6: Dense and Sparse Layers

2.2.4 Feedforward Neural Network

A feedforward neural network (FFNN) is a type of ANN that takes the input
signal from the environment and propagates it throughout the network to produce
the output (Engelbrecht, 2007). The final output of an FFNN for any input
pattern is calculated with a single forward pass through the network that starts
with the input layer and ends with the output layer (Engelbrecht, 2007). Layers
in FFNNs don’t have feedback connections to their previous layers (Engelbrecht,
2007).

2.2.5 Backpropagation Learning Algorithm

One of the popular algorithms used in FFNNs is backpropagation (Rumelhart
et al., 1986; Engelbrecht, 2007). Before starting the learning process, the candi-

date weights and biases of the network are typically randomly initialized. Then,
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the candidate weights and biases are adjusted through learning iterations. Each
learning iteration in backpropagation is called an epoch. Typically, an epoch

includes two stages:

1. Forward propagation: As explained in the previous section, the input sam-
ples are passed through the FFNN and the actual output of the network is

calculated.

2. Backward propagation: In this phase, a function called a loss function cal-
culates the error of the network. An error is the difference between the
actual output of the network and a target output values associated with
the input samples. The loss function is equipped with a performance met-
ric and helps the learning algorithm to choose a set of weights and biases
with minimum error. Finally, the calculated error value in the output layer
is propagated back toward the input layer and the weights and biases of
the neurons in the network are updated based on the error (Engelbrecht,
2007). In this work, we use MSE as the loss function during the training

process.

2.2.6 Recurrent Neural Network

A recurrent neural network (RNN) is a type of network useful for processing
sequences and temporal data. RNNs iterate through sequences and maintain a
hidden state containing information about all the items they have encountered
so far. Figure 2.7 depicts a simple RNN; the left side represents the compact
form of the RNN and the right side represents the form expanded through all
time steps. At timestep t, the hidden state of the network h; is calculated by

applying the activation function F' to the input z; and the hidden state from the
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previous timestep h;_;. This calculation method in the RNN provides an internal

memory, retaining the influence of the previous time step on the next one.

(hy) (hy () ()
. L d

x@?
T I

Figure 2.7: A Compact (Left Side) and Expanded (Right Side) Form a Simple
RNN

2.2.7 Long Short-Term Memory

A long short-term memory (LSTM) neural network is a type of RNN which has
special building units called LSTM cells (Figure 2.8). LSTM cells calculate and
maintain two hidden states, namely cell state ¢ and cell output h. Having two
hidden states allows LSTMs to address the issue of vanishing gradients, an effect
in which networks are unable to preserve information about previous time steps.
This issue is common in traditional RNNs and also very deep non-recurrent neural
networks. LSTMs carry the cell state ¢ across many time steps preventing older

information from gradually fading during processing (Chollet, 2017).
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Figure 2.8: A Sample LSTM Network

To calculate the cell state and output state, LSTM cells incorporate an inter-
nal calculation mechanism called gates. The LSTM cell has four gates, which are
the input gate, forget gate, output gate, and input modulation gate (Figure 2.9).
These gates regulate the flow of information through the cell and neural network

(Duan et al., 2016). At time step ¢, the input gate i; is calculated using

it =0 (Wll't + Uihtfl + bl>

the forget gate f; is calculated using

ft =0 (Wf&?t + Ufhtfl + bf)

the output gate o; is calculated using

Oy =0 (Woxt + Uoht—l + bo>

and the input modulation gate ¢;, which is the preliminary step to calculate the
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cell state ¢, is calculated using
¢; = tanh (Wexy + Uchy—1 + be)

where the x; is the input at time t, h,_; is the output state at the previous
timestep, W;, Wy, W, and W, are weight matrices for the input x,; vector in the
four gates, U;, Uy, U,, and U, are the weight matrices for the previous output
state h;—; in the four gates, b; , bf, by, and b, are the bias terms in the four gates.

Note that o symbolizes the logistic sigmoid function and tanh represents

_1
14+e—2

the hyperbolic tangent function ~<=%— . After the calculation of the gates, the

€T e @

cell state ¢; is calculated using

G=1; 0+ fi®c_

where ¢;_; is the cell state at the previous timestep. Please note that ® represents
the element-wise multiplication operator. At the last stage, the cell output is
calculated as

ht =0 ©® tanh (Ct)
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Figure 2.9: A Detailed LSTM Cell

2.2.8 One-Dimensional Convolutional Neural Networks

We use one-dimensional convolutional neural networks (1-D CNNs) to process
temporal data and sequences. In 1-D convolutions, we extract 1-D patches (sub-
sequences) from the input sequence (Figure 2.10). Then we calculate the dot
product of each patch with a 1-D vector called the kernel or filter. The kernel es-
sentially contains the weights that the CNN learns, and it has the same length as
the extracted 1-D patch. The scalar results of each dot product are lined up and
result in another sequence called the feature sequence, which has a smaller length
than the input sequence. Each index m of the feature sequence R is calculated

according to the formula

g
L

Riml=(S-K)ml=S"S[m+i KJi

i

I
o

where S'is the input sequence, and K is the kernel, w is the length of the kernel.

If the input sequence has a length of [, the feature sequence will be [ —w + 1 due
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to the border effect. Therefore, 0 <m <[ —w + 1.

Input sequence

Extracted patch

Dot product @

Kernel

Feature sequence

Figure 2.10: Performing One-Dimensional Convolution Operation on an Input
Sequence Results in a Feature Sequence

2.2.9 The Max-Pooling Operation

The mazx-pooling in 1-D CNN downsamples the length of the feature sequence and
reduces its size. The max-pooling has a window of a fixed length, which slides
over the feature sequence and performs the maximum operation. If the length of
the window in the max-pooling operation is 2, it halves the feature sequence by
extracting the maximum value within every two elements. Figure 2.11 illustrates

the max-pooling operation with a window of length 2.
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Figure 2.11: Performing Max Pooling Operation Downsamples the Feature Se-
quence

2.3 Related Work

There are various research efforts related to travel time prediction. Autoregres-
sive integrated moving average (ARIMA) is a traditional statistical time series
method, that is used for traffic forecasting (Williams, 2001; Williams and Hoel,
2003; Billings and Yang, 2006; Chandra and Al-Deek, 2009). One of the con-
straints of ARIMA-based methods are to approximate the proper model param-
eters before starting the modeling process and fitting time series data into the
model.

Machine Learning (ML) based data-driven approaches have become more pop-
ular due to the promising results as well as abundance of traffic data and com-
puting power (Duan et al., 2016). Data-driven methods utilize historical travel
time and/or other historical factors to predict travel time (Duan et al., 2016).
Using historical travel time average in linear models is one of the earliest meth-
ods to predict travel time (Wall and Dailey, 1999; Zhang and Rice, 2003; Rice
and Van Zwet, 2004; Sun et al., 2007). These models are simple in terms of the
data and computational power requirement, which make them suitable for areas

with static traffic patterns (Petersen et al., 2019). However, they can not reflect
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the immediate effect of unanticipated external events such traffic incidents for
accurate traffic condition predictions (Petersen et al., 2019).

Linear Kalman filtering (KF) is also applied to travel time prediction. The
KF method used historical data for travel time forecasting and calibrated the
prediction using the real-time data (Chien and Kuchipudi, 2003). Linear KF
is employed either independently (Shalaby and Farhan, 2004) or combined with
other methods (Yu et al., 2010). Despite some success to tackle travel time
prediction problems, linear KFs are not able to capture non-linear dynamics of
travel time in highly urban areas (Petersen et al., 2019).

Another ML approach that has been applied to traffic prediction is support
vector regression (SVR) (Smola and Schélkopf, 2004). SVR, which is a special
support vector machine (SVM), maps historical travel time data to a higher di-
mensional feature space and predicts travel time using the mapped data (Wu
et al., 2004). Previous work shows that SVM-based models have better perfor-
mance comparing to some regression and time-series models (Ma et al., 2015).

In addition, ANNs are widely explored for traffic forecasting. As an example,
comparing a simple multi-layer FFNN with KF proposed that ANNs outperform
KFs (Kumar et al., 2014). CNNs are ANN-based models that have been widely
used to solve variety complex tasks including image processing. Recently, some
variation of CNNs have been applied to the travel time prediction problems (Hou
and Edara, 2018; Ran et al., 2019; Wang et al., 2018). More complex ANNs such
as RNNs are also used for travel time prediction. An example is state space neural
network (SSNN) which is a variant of RNNs (van Lint et al., 2005). Another class
of RNNs are LSTMs, which are capable of capturing information from longer
travel time sequences. LSTMs have been used in travel time (Duan et al., 2016)

and speed prediction (Ma et al., 2015). A recent RNN-based model is a hybrid
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architecture, which is called ConvLSTM (Petersen et al., 2019). This model
combines LSTM and CNN architectures resulting a mean absolute percentage

error (MAPE) of 4.75% for 3-step ahead prediction.
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Chapter 3

Data

This chapter explains the data used in the modeling process. It describes how
the datasets are structured as well as how the data are prepared and transformed

for training purposes.

3.1 Datasets

This thesis uses two sets of data. The first is the travel time dataset and the
second is the TMC dataset. Both datasets are described in the following subsec-

tions.

3.1.1 Travel Time Dataset

The travel time dataset contains travel time and speed reports from the TMCs
in the Oklahoma road network system for the span of two years from January
Ist, 2018 to December 31st, 2019. There are a total of 3881 TMCs reporting
for 2018 and an additional 297 TMCs reporting for 2019. Each TMC should

have a record of speed and travel time in five-minute increments; however, due
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to technical issues, there are missing reports for some of the TMCs. There are
4 functional classes of roads in this dataset, namely Classes 1, 2, 3, and 4. We
performed the modeling on functional class 1 TMCs, which represent interstate
road systems. We focused only on interstate TMCs because of their significant
role in conveying traffic. Also, they have considerably fewer missing reports
compared to other classes in the dataset. This narrows down the number of

TMCs to 1449 for 2018 and an additional 51 for 2019.

3.1.2 TMC Dataset

This dataset contains the details about TMCs. TMCs are identified by a unique
code and the date range during which they are active, i.e., from 2018 to 2019.
They also have attributes such as road name, county, latitude, longitude, length,
and urban code. We use some attributes like TMC length in feature engineering

before performing the modeling.

3.2 Data Preparation

To prepare the data for travel time prediction modeling, we convert each TMC to
a travel time sequence. We frame travel time prediction as a univariate multi-step
time-series problem. First, we define a lag, a minimum amount of travel time to
predict some steps of travel time in the future. We will slide a window over each
TMC travel time sequence and generate the lag-step pairs to fit in the models.
The current travel time data reports for every five minutes for each TMC. This
five-minute increment causes two issues in modeling. First, due to errors, some
TMCs are unable to report travel time every five minutes. This results in missing

values in the travel time dataset and consequently in the generated lag-step pairs.

33



Time series models generally fail to converge when there are missing values in
the training data. Second, it takes a considerable amount of time to train the
model with all TMC sequences with a five-minute increment. Because there are
2,949 interstate TMCs and the maximum length of the TMC sequence is 105,120
reports (365 days x 24 hours per day x 12 reports per hour), and we would need
to slide the window over each sequence, it would be very time-consuming to train
on all available data. Therefore, to address the issue, we downsample each TMC
by transforming the reports to be for every hour. We achieve this by calculating
the average of each 12 consecutive travel time reports, which represents an hour.

In some TMCs, there are occasions that all travel time reports within specific
hours are missing. Therefore, even after downsampling, the reports associated
with those hours are missing. To address the issue, we developed an algorithm to
analyze and filter the TMCs with a severe level of missing values. This algorithm
includes only the sequences with a maximum of 4 missing travel times within a
span of 80 hours. In other words, if the TMC’s sequence has more than 4 missing
values in each 80-hour window, that portion of the sequence is considered a
gap that cannot be imputed and should be removed from the sequence. If the
sequence meets the condition, it remains intact; otherwise, it may be split to
smaller subsequences. After running the algorithm on the interstate TMCs, we
are left with a total of 4,108 sequences. These sequences come from 1,347 and
1,358 TMCs accounting for 93% and 90% for 2018 and 2019, respectively. There
are 1,297 TMCs that are common in both 2018 and 2019. The length of travel

time sequences ranges from 2 to 12 months.
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3.3 Feature Engineering

The lengths of TMCs are in miles and are not equal. Travel time is correlated
with the length of the TMC, resulting a highly variable travel time distribution.
In order to mitigate the role of the TMC length, we created a new feature called
speed by dividing the travel time by the length of each TMC. We performed the
modeling using speed; however, when we want to calculate the error of prediction,
we convert speed back to travel time by multiplying by length. We can see in
Figure 3.1 and 3.2 the travel time distribution before and after the transformation.
Speed transformation preserves the relation between the travel time observations
within a sequence. Figure 3.3 and 3.4 depict the time plot for travel time for a
random TMC. They show the travel time before and after transformation within
the range of 500 hours. The signal is inversed; however, the relation between the

values are intact.
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Figure 3.1: Travel Time Distribution (Before Transformation)
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Figure 3.2: Speed Distribution (After Transformation)
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Figure 3.3: Travel Time Plot of a TMC (Before Transformation)

30.0

27.

%

25.0

22.5

20.0

17.5

15.0

1255

il
|

\
#

ey W

F
¢ f””w““»” . ‘W iy il

\\ Wy /#W

0 100

200 300 400 500

Number of Hours

Figure 3.4: Speed Plot of a TMC (After Transformation)

37




Chapter 4

Methodology

We use the statistical SARIMA method as well as two machine learning ap-
proaches known as LSTM and 1-D CNN in our modeling process. The SARIMA
model is our baseline and we compare machine learning results with it. The
purpose of modeling is to capture the relation between travel time occurrences
in a sequence and predict the travel time for the next 4 hours in the Oklahoma
interstate road network system. Our goal is to discover appropriate architectures
for the statistical and machine learning techniques. The proposed architecture
for each approach should be able to predict the travel time with minimal error.
The experimental environment is in Google Colab, which is a cloud service that
provides a user-friendly interface to run the Python code. It also provides com-
puting resources enabling us to run the deep learning models, offering a Tensor
Processing Unit (TPU) and 35 GB of RAM.

In this chapter, first, we explain the SARIMA methodology. Then, we describe

the LSTM and 1-D CNN approaches in detail.
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4.1 SARIMA Approach

The most important step in SARIMA modeling is determining the model’s pa-
rameters. SARIMA is an extension to the traditional ARIMA approach. ARIMA
is comprised of three processes, autoregressive (AR), integrated (I), and moving
average (MA). Each process has a parameter associated with it; they are p for
AR, q for MA, and the difference parameter d for I. SARIMA includes 4 extra
parameters, which are P, @), D, and s. We have estimated the parameters d, D,
and s, by analyzing the time plots and ACF plots. Figure 4.1 illustrates time
plots for 4 random TMCs for 240 hours (10 days). The differencing parameter d
is used when the time-series has a trend, i.e., it is increasing or decreasing. As
we can see in the figure, the travel time sequences do not seem to have trends;
therefore, d=0. Also, Figure 4.2 shows ACF plots for the same TMCs used in
Figure 4.1. The number of lags in the ACF plots are 240. It can be observed
that sequences have seasonality of 24 hours. This means that a similar travel time
pattern occurs every 24 hours. Therefore, we have assigned 24 to s. SARIMA
modeling converges if the seasonality of the sequence is removed. Therefore, we
have assigned 1 to D. That means that each travel time in a sequence will be
subtracted from a travel time point that is located 1 season (24 hours) ahead.

Then, the transformed (differenced) data will be used for the modeling.
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Figure 4.1: Display 24-hour Seasonality Using Time Plots
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Figure 4.2: Display 24-hour Seasonality Using ACF Plots

We have estimated parameters of p, ¢, P, and () using ACF and PACF plots
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of the differenced data. Figures 4.3 and 4.4 shows the ACF and PACF plots for a

sample TMC 111P05174 before and after differencing for 240 hours, respectively.
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Figure 4.3: PACF and ACF Plots Before Differencing Operation
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The values for p and P can be determined by observing the PACF plot. The
order p of the AR process can be zero, if the PACF value steadily approaches
zero. If the partial autocorrelation is significant at lag k£ and abruptly drops
after lag k, then we can try an autoregressive model of order p = k. In PACF
plot in Figure 4.4, the value of partial autocorrelation suddenly declines after
the first lag. Therefore, we can choose p=1. The seasonal term P is zero, if
the partial autocorrelation for seasonal lags smoothly approaches zero. If this
value is significant until season k£ and abruptly drops after season k, then we
can try P = k. From the PACF plot in Figure 4.4, we can see that the partial
autocorrelation value smoothly decreases in several seasons, where each season is
24 lags. Therefore, we choose P=0.

The order g of the MA process can be obtained by observing the ACF plot of
the differenced data. The value of ¢ is zero if the autocorrelation value smoothly
approaches zero. Otherwise, ¢ is the number of lags at which the value of ACF
abruptly drops. From the ACF plot in Figure 4.4, we can choose ¢ = 2. The
seasonal term (@) is zero if the autocorrelation for the seasonal lags smoothly
approaches zero. If this value is significant until season k and abruptly drops
after season k, then we can try ) = k. From the ACF plot in Figure 4.4, we
can see that the autocorrelation value drops after the first season. Therefore, we
choose Q=1.

Based on the above example we choose the SARIMA (1,0,2) x (0,1,1)94
model. However, since the seasonal part of the SARIMA is computationally
expensive, we have set the value for () to zero, which should prevent the model

from canceling the seasonal differencing.
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4.1.1 Urban Code

The TMCs in the travel time dataset belong to three categories in terms of the
urban area code to which they belong. There are three urban codes in the data
namely, rural, small urban, and large urban. We have divided the data based on
the urban code and identified the SARIMA parameters for each category. There
are 1,362 rural, 386 are small urban, and 2,396 large urban. After analysis of the
ACF and PACF plots from samples of each of urban code, following SARIMA

parameters are chosen:
e (3,0,2) x (0,1,0)94 for the rural area
e (1,0,2) x (0,1,0)94 for the small urban areas

e (2,0,2) x (0,1,0)a4 for the large urban areas

4.2 Machine Learning Approaches

Before explaining LSTM and 1-D CNN, here, we summarize the common proce-
dures in both approaches. First, they are trained and tested using Keras. Keras
is an open-source neural-network library written in Python. It is designed to
enable developers to conduct fast experimentation with deep neural networks.
In addition, both LSTM and 1-D CNN follow the similar training procedures.
The training dataset includes 4,108 transformed travel time sequences ranging
from 1,500 hours (two months) to 8,760 hours (12 months). The process starts
with splitting the data into the training, validation, and test sets. We use the
training set in the training process to find the model weights. Then, we examine
the accuracy of the trained model by using it to predict the travel time in the

validation set. We compare the error in the prediction of the validation set with
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that of the training set. We use the magnitude of the error to determine whether
the model is overfitting. Overfitting is an error that the underlying function in
the modeling process fits too closely to the data points in the training dataset. In
other words, overfitting results in a overly complex models attempting to explain
all characteristics of the dataset. Since the training dataset includes errors and
noise and does not completely reflect the real world, an overly complex model
based on training data can not be used to explain other datasets. In case of over-
fitting, it is necessary to tune the model hyperparameters. Hyperparameters are
network parameters that influence the learning process. Unlike the model param-
eters, the hyperparameters are not learned in the training process, and should be
adjusted in advance. The hyperparameters are specific to each type of modeling.
Examples of the hyperparameters in 1-D CNN are number of hidden layers and
kernel size. In LSTM, an example is the number of units. In the context of this
document, units in LSTM are different from the ANN neurons and they corre-
spond to dimensions of the weight matrix in an LSTM cell. We also examine
different hyperparameters for each modeling approach to minimize the validation
set error. The set of hyperparameters that gives us the least validation error is
used for the final stage, i.e., the test stage. We use test data, the dataset which
is not seen by the models, to examine our model’s performance. This is the error
that we will report and use to compare the models with each other. Finally, we
have defined a Python generator that generates input-output pairs from a given
travel time sequence for both approaches. The generator takes two parameters
called lag and step, which are equivalent to input and output, respectively. The
lag is the number travel times used for prediction by the model. The step is the
number travel times the model predicts in future. As shown in Figure 4.5, the

generator slides over the sequence by an increment of one and generates lag-step
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pairs. The generator also has a batch size parameter. The batch size controls
how many lag-step pairs are returned every time the generator is requested to
generate training data. The lag-step pairs generation continues until it exhausts

all possible pairs for the given sequence then it switches to the next sequence.

Travel time sequence

/

lag (input) step (output)

Figure 4.5: Data Generator Uses a Time Sequence for Creation of Lag-Step Pair

4.3 LSTM Approach

LSTM is a machine learning modeling approach that is appropriate for processing
sequences. We examine LSTMs to develop a model capable of predicting up to
four hours of travel time. We train the model twice. In the first training setup,
we explore different hyperparameters and determine an appropriate architecture.
Then, we use the selected architecture in the final training process and report

the result.
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4.3.1 LSTM Model Architecture

We initially followed the LSTM architecture for travel time prediction proposed
by Duan et al. (2016). This LSTM model consists of 1 input layer, 1 hidden layer,
and 1 output layer. Duan et al. (2016) develops a specific LSTM model for each
of the 66 travel time reporting locations in Highways in England. The number
of units in their architecture is considered a hyperparameter and it ranges from
1 to 5. They have experimented with values from 1 to 5, inclusive, to set unit
numbers for each model and chosen the architecture that yields the minimum
validation error. In our case, the total number of sequences is 4108. Due to the
extensive number of sequences, and limited time and resources, it is not feasible
for us to experiment with all possible unit numbers for each of the 4108 sequences.
Instead, we have proposed an architecture similar to that of Duan et al. (2016)
but with a higher capacity, which can potentially predict the travel time for the
majority of TMCs in the interstate road network of Oklahoma. Our search space
for the unit number is the multiples of 24, ranging from 24 to 120. We have
observed 24-hour patterns in the travel time plots; therefore, we assumed that
24-based unit numbers are appropriate. We have started with a network including
one LSTM layer, one hidden dense layer, and an output layer. The number of
neurons in the hidden dense layer and output layer are fixed, and they are set
to 24 and 1, respectively. This means that the proposed network predicts one
step in the future because the number of neurons in the output layer is 1. The
process of determining an appropriate architecture includes iterating through the
stated range of possible unit numbers, training the model, calculating the error
on the validation set, and choosing the unit number that produces the minimum

error. We have found that the unit number 24 gives the least validation error.
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Table 4.1: Proposed LSTM Architecture

Layer (type) Output Shape Param #
Istm_1 (LSTM) (None, 24) 2496
dense_1 (Dense) (None, 24) 600
dense_2 (Dense) (None, 1) 25

Total params: 3,121
Trainable params: 3,121
Non-trainable params: 0

Therefore, we have chosen a 24-unit LSTM architecture for the next round of

training. Table 4.1 shows the proposed LSTM architecture.

4.3.2 LSTM Input and Output Dimension

The LSTM requires the input sequence to be 3-dimensional. The first dimen-
sion is the batch size. The second and third dimensions are individual input
dimensions. The batch size is 36 and lag size is 24; therefore, the data generator
generates two-dimensional sequences with the shape of 36x24. To comply with
the LSTM input dimension requirement, the input is reshaped to 36 x24x1. The
output shape of the LSTM network is one travel time at a time. That means for
each batch of 24 hours travel time, the network predicts one travel time. Because

the size of the batches are 36, the output shape of the network is 36x1.

4.3.3 Number of Trainable Parameters in LSTM

The number of units in the LSTM layer determines the dimension of the weight
tensors in an LSTM cell. As described in the background section, there are four
gates in an LSTM layer. Each gate has two sets of weight tensors and a bias
term. At a given timestep, W is the weight tensor corresponding to the input

sequence, U is the weight tensor for the output from the previous timestep, and
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b is the bias term. The number of parameters for a single LSTM operation is

calculated as follows:

W parameters = number of units X input sequence third dimension,
U parameters = number of units x number of units,
b parameters = number of units,

LSTM parameters = 4 x (W parameters + U parameters + b parameters).

Based on the above equations, the number of parameters in the LSTM layer is

4% (24 x 1424 x 24 + 24) = 2496.

The second layer in the architecture is a hidden dense layer with 24 neurons. The

number of weights in a dense layer is calculated using

Weights in a dense layer = number of neurons,
x output shape of the previous layer,

+ number of neurons.

Since the shape of the output from the LSTM layer is 24, therefore the number

of parameters in the dense layer is

24 x 24 + 24 = 600.

The output layer is also a dense layer which has only one neuron, therefore the

number parameters in the output layer is

1x24+1=25.
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Therefore, the total trainable parameters in the proposed architecture is 2,496 +
600 + 25 = 3,121. In this document we also compare different architectures.
Therefore, we use the proposed LSTM model and modify the number of neurons
in the last layer. We experiment with two, three, and four neurons in the final

layer, which results in 3,146, 3,171, and 3,196 parameters, respectively.

4.3.4 Training the LSTM Model

After choosing an appropriate architecture, we train the LSTM model on the
dataset by randomly dividing it to the training, validation, and test sets and
assigning 2,100, 1,000, and 1,000 sequences to them, respectively. The selected
model only predicts one travel time at a time, therefore, we have experimented
with and modified the architecture four times by setting the number of neurons
in the output layer from one to four. In other words, in each trial, the model is
trained four times separately using the same training data to predict one value
at a time, two values at a time, three values at a time, and four values at a
time. The number of epochs in the training and validation process is set to 100
epochs. Moreover, we have used MSE as our performance metric both for training
and validation. We have utilized the step-per-epoch feature in Keras. In each
step of an epoch, Keras requests the generator to generate and return an input-
output pair. Due to time and resource constraints, we defined 2,500 steps for
training and 1,200 steps for validation. Consequently, Keras could only request
the training generator 100x2,500=250,000 times which resulted exhausting 1,600
sequences out of 2,100 training sequences. Also, Keras requested the validation
generator 100x1,200=120,000 times which resulted in exhausting 800 sequences

out of 1,000 validation sequences. We follow the same procedure for three times
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to help account for inherent randomness in the initial weight values and sampling

order.

4.4 1-D CNN Approach

1-D CNN is a machine learning modeling approach that is suitable for processing
sequences. We examine the 1-D CNN approach to develop a model capable of
predicting up to four hours of travel time. We have trained the model twice. In
the first training setup, we have explored different hyperparameters and deter-
mined an appropriate architecture. Then, we have used the selected architecture

in the final training process and we have reported the result.

4.4.1 1-D CNN Model Architecture

We have designed a 1-D CNN architecture to be similar to the LSTM architecture
for comparison purposes. Therefore, we have started the initial design of the net-
work with one 1-dimensional convolution layer equipped with max-pooling and
flattening operations. The flattening operation reshapes a 2-D array to a 1-D
array. The convolution layer is followed by a hidden dense layer, and concluded
by the output layer. We have identified the number of filters (kernels) in the
convolution layer and the number of neurons in the hidden layer as hyperparam-
eters. Our search space for the hyperparameters include multiples of 8, ranging
from 8 to 32. The length of a kernel in the model is fixed and is set to 4. The
process of finding an appropriate architecture includes iterating through the set
of candidate hyperparameters, training the model, calculating the error on the
validation set, and choosing the hyperparameter pairs that yield the minimum

error. We have found that the combination of 24 filters and 24 neurons, gives the
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Table 4.2: Proposed 1-D CNN Architecture

Layer (type) Output Shape Param #
convld_1 (ConvlD) (None, 21, 24) 120
max_poolingld_1 (MaxPoolinglD) (None, 10, 24) 0
flatten_1 (Flatten) (None, 240) 0
dense_1 (Dense) (None, 24) 5784
dense_2 (Dense) (None, 1) 25

Total params : 5,929
Trainable params : 5,929
Non-trainable params : 0

least validation error. Table 4.2 shows the proposed 1-D architecture

4.4.2 1-D CNN Input and Output Dimensions

The 1-D CNN architecture requires the input sequence to be 3-dimensional. The
first dimension is the batch size. The second and third dimensions are individual
input dimensions. The batch size is 36 and lag size is 24; therefore, the data
generator generates 2-dimensional sequences with the shape of 36x24. To com-
ply with the 1-D CNN input dimension requirement, the input is reshaped to
36x24x1. The output shape of the 1-D CNN network is 1 travel time at a time.
That means for each batch of 24 hours travel time, the network predicts 1 travel
time. Since the size of the batches are 36, the output shape of the network is

36x%x1.

4.4.3 Number of Trainable Parameters in 1-D CNN

The number of and the size of the kernel in 1-D convolution layer determines the
number of weights. The number of parameters in a single 1-D convolution layer
is

number of kernels X kernel size + number of kernels
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Based on the above equations, the number of parameters in a 1-D convolution
layer is

24 x 4424 =120.

The output shape of a 1-D convolution layer is

output feature sequence length x number of filters.

Therefore, the output shape is 21x24. The max-pooling operation halves the
feature sequence, which results in a 10x24 output feature sequence. The flatten-
ing operation converts the 2-D feature sequence to a 1-D vector. Therefore, the
shape the output before the hidden layer is 10x24 = 240. The next layer in the
architecture is a hidden dense layer with 24 neurons. The number of parameters

in a dense layer is calculated using

Weights in a dense layer = number of neurons,
X output shape of the previous layer,

-+ number of neurons.

Therefore, the number of parameters for the hidden layer is

24 x 240 4 24 = 5784.

The output layer is also a dense layer which has only one neuron, therefore the

number parameters in the output layer is calculated using

1x24+1=25.
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Therefore, the total trainable parameters in the proposed architecture is 120 +
5,784425 = 5,929. In this document we also compare different architectures.
Therefore, we use the proposed 1-D CNN model and modify the number of neu-
rons in the last layer. We experiment with two, three, and four neurons in the

final layer, which results in 5,954, 5,979, and 6,004 parameters, respectively.

4.4.4 Training the 1-D CNN Model

After choosing an appropriate architecture, we train the 1-D CNN model on
the dataset by randomly dividing it to training, validation, and test sets and
assigning 2,100, 1,000, and 1,000 sequences to them, respectively. The selected
model only predicts one travel time at a time; therefore, we have experimented
with and modified the architecture four times by setting the number of neurons
in the output layer from one to four. In other words, the model is trained four
times separately using the same training data to predict one value at a time,
two values at a time, three values at a time, and four values at a time. The
number of epochs in the training and validation process is set to 100 epochs.
Moreover, we have used MSE as our performance metric both for training and
validation. We have used the step-per-epoch feature in Keras. In each step of an
epoch, Keras requests the generator to generate and return an input-output pair.
Due to time and resource constraints, we defined 2,500 steps for training and
1,200 steps for validation. Consequently, Keras could only request the training
generator 100x2,500=250,000 times which resulted exhausting 1,600 sequences
out of 2,100 training sequences. Also, Keras requested the validation generator
100x1,200=120,000 times which resulted in exhausting 800 sequences out of 1,000

validation sequences. We follow the same procedure three times to help account
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for inherent randomness in the initial weight values and sampling order.
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Chapter 5

Results and Discussion

In this chapter, first we present the evaluation results for each of our proposed
models: SARIMA, LSTM and 1-D CNN. Then, we compare the performance of

all proposed models and discuss the results.

5.1 Results for SARIMA

To test SARIMA, we define and test different parameters for each urban code.
These code are rural, small urban, and large urban area codes. The travel time
sequences are randomly sampled based on their urban code and fit in to their cor-
responding SARIMA model. The fitting process includes feeding an input travel
time sequence into the SARIMA model and predicting a limited number of steps
in future. The number of steps defines the number of travel times a model pre-
dicts simultaneously given an input sequence. We also have tested each model’s
predictive capabilities under 4 different architectures, which are 1-step, 2-step, 3-
step, and 4-step ahead predictions. The SARIMA model predicts the travel time

using the predefined parameters, i.e., number of autoregressive (AR) or moving
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average (MA) lags. The length of the process is highly dependent on parameters
because model parameters such as MA lags determine the number of previous
travel times the model should use in the calculation process. Therefore, using
large lags often causes delays in model convergence. We have followed a similar
procedure to machine learning approaches in terms of generating the data for
the fitting process. The model partitions each input sequences using a sliding
window. The model fits the travel time portion and predicts the required. The
sliding continues by the increment of 1 until it reaches to the end of the sequence.
The input sequence length ranges from 2 to 12 months. Unfortunately, it is not
feasible to exhaust all possible travel time portions from a given sequence. There-
fore, we have limited the maximum amount of sliding to 720 hours (1 month) for
each sequence. The starting point of the sliding process is randomly chosen. In
other words, the model picks a random start position for each input sequence and
generates 720 portions for the fitting process. The rest of this section presents

the results for the rural, small urban, and large urban area SARIMA models.

5.1.1 Rural Area SARIMA Model

We have randomly selected 36 out of 1,362 total rural area sequences. Fig 5.1
depicts the MRE and RMSRE errors for rural areas. The model generally does
not perform well since the number of errors greater than 1 in both error types is
considerable. Also, the number of large errors increases when the model predicts
multiple steps simultaneously. For example, there are more than 18 RMSRE
values greater than 1 at the 4-step architecture which accounts for half of the

sequences.
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Figure 5.1: SARIMA MRE and RMSRE Results for Rural Areas

5.1.2 Small Urban SARIMA Model

We have randomly selected 38 out of 386 small urban sequences. Fig 5.2 illustrates
the MRE and RMSRE errors for 4 different architectures. As we can see the size
of both error types increases as the architecture size increases. This also applies
to the lower steps in multi-step architectures. For example, prediction of one step
ahead in 4-step architecture is more erroneous compared to its 1-step architecture.
We can also observe relative errors more than 1, which is an indicator of larger
error predictions. Some errors exceeds 5, so we chose to color code them to keep

the graph vertical axis within a specific range.
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Figure 5.2: SARIMA MRE and RMSRE Results for Small Urban Areas

5.1.3 Large Urban SARIMA Model

There are a total of 2,396 sequences belong to the large urban areas. We have used

46 of them for the modeling purpose in SARIMA. Fig 5.3 shows the break down

of MRE and RMSRE errors in modeling large urban sequences. The number of

large errors (e.g., greater than 1) is trivial in single-step architecture. However,

we can observe that performance degrades in all steps of the larger architectures.
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Figure 5.3: SARIMA MRE and RMSRE Results for Large Urban Areas

5.1.4 Discussion for the SARIMA Models

Among the three SARIMA models, the small Urban SARIMA has the best per-

formance. One explanation can be the way we have chosen the model parameters.

The models’ parameters are defined in advance. Therefore, it is possible that we

have not chosen appropriate parameters for other models. Also, the performance

is negatively correlated with the number of prediction steps. As the number of

steps increases, the errors in prediction increase.
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5.2 Results for LSTM

To train the LSTM model, we have allocated 1000 sequences for test purposes;
however, we could calculate the error for only 800 sequences due to time and
resource constraints. We have used two metrics, RMSE and RMSRE, for eval-
uation. As mentioned in Chapter 3, the dataset is transformed for feature en-
gineering purposes. Therefore, before calculating the prediction error, we have
converted the model prediction and the ground truth back to travel time (sec-
onds). To obtain more reliable results, we have repeated the procedure three
times. Figure 5.4 presents the results of the LSTM networks evaluated by the
relative metrics, MRE and RMSRE. The top half shows the boxplots for MRE
scores and the bottom half depicts the boxplots for RMSRE scores. As discussed
in 4.3.4, we have experimented with 4 different LSTM architectures, in which the
output layer is modified to predict 1, 2, 3, and 4 travel times separately. There
is an interesting pattern in LSTM errors, where the errors increase when the
number of steps in architecture is odd and decrease when the number of steps
in architecture is even. This experimental setup helps us to understand how the
change in the output layer influences the predictive capability of the network.
Figure 5.4 also shows that the median of the MREs for each step of each archi-
tecture is around 0.05. This applies to the median of RMSRE as well, where the
median of score is below 0.09 at each step. There is a pattern in error fluctuation
depending on architecture type. We can see the that the upper bound and median
of both error types in the odd-step architectures increases and in the even-step
architectures decreases. This means that modifying the number of neurons in the
output layer affects the prediction accuracy. Finally, we can notice that there is a

difference between the MRE and RMSRE at each step of each architecture. The
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median and maximum of the RMSRE errors are substantially larger compared
to median and maximum of MRE at each step. This can suggest the prediction

of the larger errors by the LSTM model.
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Figure 5.4: The Proposed LSTM Model's MRE and RMSRE Results

5.3 Results for 1-D CNN

To train the 1-D CNN model, we have allocated 1,000 sequences for test pur-
poses; however, we could calculate the error only for 800 sequences due to time
and resource constraints. We have used two different metrics, MRE and RMSRE,
for evaluation. As mentioned in Chapter 3, the dataset is transformed for feature

engineering purposes. Therefore, before calculating the prediction error, we have
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converted the model prediction and the ground truth back to travel time (sec-
onds). The model’s architecture is modified to provide 1-step, 2-step, 3-step, and
4-step prediction using the same test dataset. We have repeated the procedure
three times to have a more reliable results. Figure 5.5 shows the MRE and RM-
SRE scores for the 1-D CNN architecture. Both results are relative which is an
appropriate evaluator for the overall performance of the network. As mentioned
in Section 5.2, we report the result for four different architectures. We can see
that both errors are almost constant across architectures and steps. The me-
dian of MRE and RMSRE are around 0.04 and 0.06 respectively. In contrast to
LSTM, the results indicate that the addition of neurons to the output layer does
not substantially affect the model’s prediction stability. Finally, we can notice
that there is a difference between the MRE and RMSRE at each step of each
architecture. The median and maximum of the RMSRE errors are substantially
larger compared to median and maximum of MRE at each step. This can suggest

the prediction of the larger errors by the 1-D CNN model.
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Figure 5.5: The Proposed 1-D CNN Model's MRE and RMSRE Results

5.4 Comparison of the Proposed Models

Figure 5.6 shows the comparison of three modeling approaches: 1-D CNN, LSTM,
and SARIMA. The errors of steps of each architecture are combined and sorted
and a single boxplot is generated per metric. Therefore, for each method and
architecture, there are two metric boxplots, MRE, and RMSRE. The 1-D CNN
and LSTM methods have similar performance and they both outperform the
SARIMA model. The SARIMA model suffers from highly skewed errors, espe-

cially in higher step architectures, which go beyond relative errors of 1.0. On the
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other hand, 1-D CNN and LSTM errors never pass 0.25 and 0.37, respectively.

Also, contrary to the SARIMA model, the performance of the machine learning

models is not affected by increasing the architecture size. Tables 5.1, 5.2, 5.3,

and 5.4 show the median, mean, and standard deviation of MRE and RMSRE

errors of all architectures. The largest statistical summary for each error metric

is colored with red. We can see from the tables that SARIMA has the largest

mean and standard deviation across all architectures. Especially, the magnitude

of mean and standard deviation of errors in SARIMA in higher step architec-

tures are considerable. Also, in 6 out of 8 median error reports, SARIMA has the

maximum error value. Therefore, the machine learning approaches outperform

SARIMA.
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Figure 5.6: Comparison of 1-D CNN, LSTM, and SARIMA Results
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Table 5.1: Summary of MRE and RMSRE Errors for 1-Step Architecture

Architecture | Metric Type | Method Median Mean Standard
Deviation

SARIMA 4.08e-2 6.3e-2 5.62¢-2

MRE LSTM 4.87e-2 5.33e-2 3.11e-2

1-D CNN 4.41e-2 4.55e-2 2.02e-2

1-step

SARIMA 9.86e-2 2.91e-1 7.63e-1

RMSRE LSTM 7.31e-2 8.21e-2 4.38e-2

1-D CNN 6.36e-2 7.25e-2 3.52¢-2

Table 5.2: Summary of MRE and RMSRE Errors for 2-Step Architecture

Architecture | Metric Type | Method Median Mean Standard
Deviation

SARIMA 4.5e-2 1.07e0 7.81e0

MRE LSTM 3.54e-2 4e-2 2.19e-2

1-D CNN 4.31e-2 4.44e-2 1.97e-2

2-step

SARIMA 1.08e-1 2.59¢l 2.01e2

RMSRE LSTM 5.93e-2 6.99¢-2 3.92¢-2

1-D CNN 6.29e-2 7.16e-2 3.47e-2
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Table 5.3: Summary of MRE and RMSRE FErrors for 3-Step Architecture

Architecture | Metric Type | Method Median Mean Standard
Deviation

SARIMA 4.92¢-2 8.67e2 1.31e4

MRE LSTM 5.23e-2 7.34e-2 5.18¢-2

1-D CNN 4.37e-2 4.52¢-2 2.03e-2

3-step

SARIMA 1.18e-1 2.31e4 3.49e5

RMSRE LSTM 8.68e-2 9.61e-2 5.32¢-2

1-D CNN 6.35e-2 7.23e-2 3.51e-2

Table 5.4: Summary of MRE and RMSRE Errors for 4-Step Architecture

Architecture | Metric Type | Method Median Mean Standard
Deviation
SARIMA 5.42e-2 7.6E+36 1.67E+38

MRE LSTM 3.89e-2 4.25e-2 2.21e-2

1-D CNN 4.4e-2 4.54e-2 2.01e-2

4-step

SARIMA 1.24e-1 2.04E+438 4.48E+39

RMSRE LSTM 6.07e-2 7.11e-2 3.82¢-2

1-D CNN 6.36e-2 7.26e-2 3.5e-2

We compare the MRE and RMSRE errors in 1-D CNN and LSTM, by per-
forming statistical analysis on the mean and variance. We employe two-sided
t-test to compare the mean of 1-D CNN and LSTM. The null hypothesis is that
the mean of errors of 1-D CNN is equal to that of LSTM. We also use two-sided
F-test to compare the variance of 1-D CNN and LSTM. The null hypothesis for
the variance is that the ratio of the variance of errors in 1-D CNN to the variance

of errors in LSTM equals 1. The significance level for rejecting and failing to
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reject the null hypothesises is 0.05 which is a commonly used value in statistical
testings. Tables 5.5, 5.6, 5.7, and 5.8 show the result of statistical analysis of
mean and variance of the errors of 1-D CNN and LSTM. The immediate take
away from the p-values of all the performed tests is that in each case thethe
p-value is smaller than 0.05(significance level). Thus all null hypotheses are re-
jected and indeed the compared means and variances are different. Based on the
results of the statistical analysis, the minimum value for each error metric type
is colored with dark blue. All results are rounded off to two significant digits
We can see from the results that 1-D CNN has the minimum variance across
all architectures. In addition, 1-D CNN has the minimum mean in 1-step and
3-step architectures, while LSTM has the minimum mean in 2-step and 4-step
architectures. There is an interesting pattern in LSTM errors, where the mean
of errors increases when the number of steps in architecture is odd and it de-
creases when the number of steps in architecture is even. The exact reason for
this fluctuation is unknown. However, it can be due to the recurrent mechanism
in LSTM networks. The major difference between LSTM and 1-D CNN is that
LSTMs constantly retain relevant information and/or forget irrelevant informa-
tion in a travel time sequence. This information maintenance process combined
with the architecture design choice are the subjects of our future work for better

understanding of the behavior.
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Table 5.5: Statistical Analysis of Mean and Variance of the Errors for the 1-Step
Architecture for 1-D CNN & LSTM

Mean Hypothesis Variance Hypothesis
Test Test
Metric Standard
Architecture Method | Mean Degrees of Degrees of
Type Deviation p-value p-value
Freedom Freedom
1-D CNN | 4.55e-2 | 2.02e-2 numerator = 1929
MRE 3259 <0.001 <0.001
LSTM | 5.33e-2 3.11e-2 denominator = 1899
1-step
1-D CNN | 7.25e-2 | 3.52e-2 numerator = 1929
RMSRE 3634 <0.001 <0.001
LSTM | 8.21e-2 4.38e-2 denominator = 1899

Table 5.6: Statistical Analysis of Mean and Variance of the Errors for the 2-Step
Architecture for 1-D CNN & LSTM

Mean Hypothesis Variance Hypothesis
Test Test
Metric Standard
Architecture Method | Mean Degrees of Degrees of
Type Deviation p-value p-value
Freedom Freedom
1-D CNN | 4.44e-2 1.97e-2 numerator= 3859
MRE 7553 <0.001 <0.001
LSTM | 4e-2 2.19e-2 denominator= 3799
2-step
1-D CNN | 7.16e-2 3.47e-2 numerator= 3859
RMSRE 7518 0.0291 <0.001
LSTM |6.99e-2 | 3.92e-2 denominator= 3799

Table 5.7: Statistical Analysis of Mean and Variance of the Errors for the 3-Step
Architecture for 1-D CNN & LSTM

Mean Hypothesis Variance Hypothesis
Test Test
Metric Standard
Architecture Method | Mean Degrees of Degrees of
Type Deviation p-value p-value
Freedom Freedom
1-D CNN | 4.52e-2 | 2.03e-2 numerator= 5789
MRE 7384 <0.001 <0.001
LSTM | 7.34e-2 5.18e-2 denominator= 5699
3-step
1-D CNN | 7.23e-2 | 3.51e-2 numerator= 5789
RMSRE 9854 <0.001 <0.001
LSTM | 9.61e-2 5.32e-2 denominator= 5699
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Table 5.8: Statistical Analysis of Mean and Variance of the Errors for the 4-Step
Architecture for 1-D CNN & LSTM

Mean Hypothesis Variance Hypothesis
Test Test
Metric Standard
Architecture Method | Mean Degrees of Degrees of
Type Deviation p-value p-value
Freedom Freedom
1-D CNN | 4.54e-2 2.01e-2 numerator= 7719
MRE 15141 <0.001 <0.001
LSTM | 4.25e-2| 2.2le-2 denominator= 7599
4-step
1-D CNN | 7.26e-2 3.5e-2 numerator= 7719
RMSRE 15166 0.01 <0.001
LSTM | 7.11e-2 | 3.82e-2 denominator= 7599

We can review the disparity of errors for each specific model by comparing the
mean and standard deviation of MRE and RMSRE. For example, in both LSTM
and 1-D CNN, the mean and standard deviation of RMSRE are considerably
larger than those of MRE at each architecture. For example, in a 4-step LSTM
architecture, the mean and standard devation of RMSRE are 0.0711 and 0.0382,
respectively. They are nearly twice as large as the mean and standard deviation
of MRE, which are 0.0424, 0.0220 respectively. This suggests that both 1-D CNN
and LSTM produce larger errors, which are noticeable in the difference between

the RMSRE and MRE.
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Chapter 6

Conclusions and Future work

In this work we formulate travel time prediction as a time series problem. We
use the travel time from the travel time and speed reports from the TMCs in the
Oklahoma highway system for the span of two years. This comprises measure-
ments from a total of 1,449 TMCs reporting for 2018 and an additional 51 TMCs
reporting for 2019. These datasets provide an excellent opportunity to measure
the accuracy of deep learning models in a real world context rather than using
synthetic datasets. With real world datasets, it is expected to observe issues such
as missing values. TMCs have travel time reports for each 5 minutes and in some
of them, due to technical issues, missing values are present. We handle this issue
by downsampling the dataset. Instead of including each travel time entry, we
calculate the average of them in a window of 60 minutes. In order to apply this
methodology to other states we need to make sure that those datasets are also
using constructs similar to TMCs as used in this dataset.

In this thesis, we experiment with three approaches including two machine
learning methods and one traditional statistical approach known as SARIMA.

Also, we observe each methodology in four different architectures to see how
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predicting multiple steps in the future influences the forecasting power of the
models. To compare the models among themselves we use relative error perfor-
mance metrics RMSRE and MRE. We show that even our simple LSTM and
1-D CNN models outperform the traditional statistical approach SARIMA. The
results also show that LSTMs and 1-D CNNs are more stable in multi-step pre-
dictions compared to their SARIMA counterpart.

In addition, 1-D CNNs have similar performance to LSTMs. Both 1-D CNNs
and LSTMs have the minimum mean of errors in two architectures. However, by
analyzing the standard deviation of the errors, we find that errors in 1-D CNNs
are less variable compared to the LSTM approach. In other words, our proposed
1-D CNN learned and captured the relation between travel times reports in the
Oklahoma interstate travel time sequence almost the same as the proposed LSTM
model but with less variability. We also find that 1-D CNN is more stable in terms
of prediction errors across the experimented architectures compared to LSTM.
We note that modifying architecture to predict different steps in future resulted in
fluctuation in error pattern in LSTM; however, 1-D CNN remained quite stable.
Generally, LSTM-based models are considered to perform better in time series
problems (Gers et al., 2002). One explanation for these results can be attributed
the architecture of the models. In this work we develop the LSTM architecture
similar to Duan et al. (2016) and strive to have models with the same size, in
terms of the number of neurons, to ensure the fairness in our evaluations.

One implication of this is that before choosing a network type for a given
problem we should be extra cautious.

This work inherits the shortcoming of finding an appropriate architecture.
Our model architectures are rather simple, yet we still need to investigate whether

a more complex model can further improve the results.

71



Explainability is the second shortcoming of this work. We still need to in-
vestigate “how” our deep learning models outperform the traditional statistical
approaches. Using other metric types such as absolute errors also could help the
explainability of the results. Absolute errors have same units as the problem do-
main, which is seconds for travel time prediction. Relative or absolute errors of
a model can have different meaning when used for evaluating TMCs of different
lengths. For example, if a model produces moderate absolute errors, it might be
acceptable for longer TMCs; however, it might result in large relative errors for
shorter TMCs, which would suggest that the model is not able to handle shorter
TMCs. On the other hand, if a model produces small relative errors, it might give
large absolute errors for longer TMCs, which might be concerning for travelers
who care only for total number of seconds/minutes late for their final destina-
tion. Therefore, using combination of both absolute and relative error metrics
and analysis of the results are suggested.

In this research, different statistical SARIMA models were developed to ad-
dress the different urban area codes. On the other hand, the machine learning
models were trained based on an assumption that the statistics for the TMCs are
the same. It is possible to extend this work by, first, analyzing and identifying the
TMCs distribution; second, constructing machine learning models for the TMCs
based on similarity in distributions.

It is possible to extend this work by experimenting with and evaluating the
accuracy of different LSTM-based architectures including stacked, bi-directional,
and encoder-decoder LSTM architectures. Also, hybrid models such as ConvL-
STM and CNN LSTM can be used for travel time prediction.

In this work, we used heuristics to find the model’s hyperparameters. In our

future work, we can employ more systematic algorithms to determine the model’s
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hyperparameters such as genetic algorithms.

While the focus of this thesis is to predict travel times at individual TMCs,
we can extend this problem to predict the travel times between any two points.
In this case, we need to predict the travel for paths that comprise multiple TMCs.
The extended version of this problem has excellent use cases in the personal and
commercial navigation applications. In order to tackle such problems we might
need alternative model architectures as we have to deal with the spatial aspects

as well. We leave this problem for our future work.
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