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Abstract: In the aftermath of a mass casualty incident, a large number of patients are 

likely to arrive at a hospital for medical care.  The large patient demand often 

overwhelms the capacity of the medical resources available in an event called a patient 

surge, in which medical triage is often utilized. This study develops analytical models 

based on queuing theory that can be used as the basis for a tool to determine what staffing 

and other hospital resources are needed during a patient surge.  Additionally, this study 

presents a simulation model that can also be utilized alongside the analytical models to 

analyze details that are not captured in the analytical approach.  These models allow 

different patient volume and makeup scenarios to be evaluated so that the resources 

needed can be estimated.  The models and codes developed in this study could be paired 

with a decision support system that hospital administrators and planners could use to 

develop contingency plans for mass casualty incidents with a variety of patient volumes 

and makeup. Finally, this study also made a small contribution to the queueing body of 

knowledge by extending results available for a Markovian multi-server priority queue to 

yield simple and reasonably accurate approximations for the general multi-server priority 

queue. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

In the aftermath of a large-scale disaster, hospitals are put under immense pressure.  A 

large surge of injured patients requiring immediate surgical treatment floods the hospital 

system.  As the number of patients arriving over a short period of time often exceeds the 

capacity of the hospital, healthcare professionals are faced with more patients than they 

can quickly treat, leaving patients to wait in a queue until medical professionals become 

available.   

This scenario is referred to as a mass casualty incident (MCI), defined as any incident in 

which medical resources are overwhelmed by the number and severity of casualties.  

Patient surges often occur after MCIs such as building collapses, mass-transportation 

accidents, and natural disasters.  Despite the sharp increase in patient demand following 

an MCI, it is imperative that patients are seen and cared for promptly. 

Hospital operations after an MCI face many obstacles, depending on the type of disaster.  

During an epidemic, hospitals face a surge in demand while experiencing a decrease in 

available healthcare workers as medical professionals become ill and are unable to care 

for others.  In the aftermath of a natural disaster, such as a hurricane or an earthquake,
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power and water shortages can be expected and roads may be blocked or destroyed, 

slowing the arrival of supplies or volunteer healthcare professionals.  After an MCI, it is 

imperative that emergency procedures are in place to ensure that patients that were in the 

hospital system before the disaster and patients in the hospital system as a result of the 

disaster are both cared for in a timely manner.   

Although there are certainly cases where patient outcomes may not be significantly 

affected by an extended wait before care is received, there are numerous cases where an 

immediate surgical treatment is one of the most important factors in a successful patient 

outcome. Even initially non-life-threatening injuries have the potential to become life 

threatening after an extended period of time due to the threat of infection. 

In the hours following an MCI, it is crucial that hospitals have a plan in place to care for 

the surge of incoming patients.  This is referred to as surge capacity, or the ability expand 

beyond normal services to manage a sudden influx of patients.  The World Health 

Organization states that all hospitals should have a preparedness plan for patient surge to 

prevent chaos during mass casualty management and to treat and save as many patients as 

possible (World Health Organization). The volume and makeup of patients vary 

depending on the MCI type.  Additionally, each hospital has different resources available, 

ranging from available personnel to operating rooms.  A decision support tool has the 

potential to aid hospitals while creating their preparedness plans to ensure that the 

available resources specific to each hospital are used effectively, resulting in a higher 

level of patient care. 
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1.2 Introduction to Triage 

When a large surge of patients arrives at a hospital unexpectedly, triage is the most 

commonly used method of managing patients with limited resources.  Patients are placed 

into different categories depending on the severity of their injuries and the state of the 

patient. Patients are then taken to the appropriate area for further monitoring as they wait 

for admission to the operating room.  Typically, patients with the most severe injuries but 

that are likely to survive are the highest priority. 

The use of triage originated in military operations.  Although triage principles were likely 

used previously, the first records of triage were described by Baron Dominique Larre 

(1776-1842), a surgeon in the Napoleonic Army.  Larre’s methods “included initial 

treatment and triage of the wounded and triage of the wounded on the battlefield before 

transport by horse-drawn “ambulances” to hospitals located in the rear.”  Before the use 

of triage, wounded soldiers were left until the conclusion of the battle and then collected, 

often by order of rank (Kennedy, Aghababian, Gans, & Lewis, 1996).   

Since its inception as a military operation, triage is now used almost universally in the 

aftermath of MCIs.  Although the challenges hospitals face during a surge event vary 

depending on what type of event has occurred, a common issue in the Emergency 

Department is reducing the period of time between a patient’s arrival and the time the 

patient is seen by the triage healthcare provider in charge of evaluating and classifying 

patients.  This metric is often referred to as Pre-Triage Time (PTT), and is crucial 

because it allows medical professionals to determine which patients need to be admitted 

into an operating room most urgently.  Failure to quickly perform this initial screen could 
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result in a severely injured patient’s condition further declining as they wait to be 

evaluated. 

Another important Emergency Department (ED) metric is the Door to Doctor (D2D) 

time, or the time between a patient’s arrival to the ED and the patient seeing a physician, 

physician assistant, or nurse practitioner for their needed treatment.  If a patient is in 

critical condition, D2D time is incredibly important to ensure the patient’s condition does 

not further deteriorate.  Long D2D times are correlated with a higher number of sick 

patients that leave without being treated (J. Cochran & Burdick, 2011).  The median D2D 

time is around 30 minutes.  The shortest D2D time of 12 minutes was seen in patients 

considered to have an immediate need to be seen ("Multivariable testing cuts door-to-doc 

times by 24%," 2007).  Just as the D2D time is important in an emergency department, a 

quick D2D time after an MCI is critical to ensure patients receive care in a timely 

manner.  

In an Emergency Department (ED), most facilities use the time of initial triage and 

registration as the time of arrival (Houston, Sanchez, Fischer, Volz, & Wolfe, 2015).  

However, this ignores the time between patient arrival time and triage time, which is 

referred to as pre-triage time (PTT), as mentioned above.  In normal ED operating 

conditions, studies have shown this time to reach as high as 98.6 minutes (Betz, 

Stempien, Trivedi, & Bryce, 2017) to 105 minutes (Houston et al., 2015), with a median 

PTT of 11 minutes, which is approximately 30% of the mean national door-to-doctor 

time. Unsurprisingly, longer pre-triage wait times are more prevalent in emergency 

department peak hours. Building on this correlation, it stands to reason that if the pre-



 

5 
 

triage time is a concern during surges that are typical to normal ED operating conditions, 

it could be an even more significant concern during a surge following an MCI.  

1.3 Introduction to Queuing Theory 

After an MCI, the demand (patients needing to be treated by a healthcare professional) 

outnumbers the capacity (healthcare professionals’ ability to provide care).  In this case, 

there are patients waiting to be treated by healthcare personnel that form a queue, as the 

healthcare personnel providing service cannot outpace the demand of patients flowing 

into the hospital. Queuing theory involves a rigorous mathematical study of queues or 

“waiting lines” that form when the rate of arrival (in this case, influx of patients into a 

hospital) temporarily exceeds the rate of service (patients that can be treated and 

discharged).   

Queuing theory became a popular field of study after World War II as the result of work 

by Agner Erlang as a way to model incoming telephone calls.  Since its origin, it has been 

applied in many areas, including banks, computer systems, communication systems, 

manufacturing systems, and hospitals.  It is typically used to estimate waiting times and 

determine how many service providers are necessary to achieve reasonable waiting times 

and an acceptable level of resource utilization. 

1.4 Brief Literature Review 

Although queuing theory originated shortly after World War II, its applications in 

hospitals were not widespread until later.   One of the earliest investigations looked into 

the queuing process in hospital outpatient departments and the patient’s waiting time 

(Bailey, 1952).  The same researcher later established a capacity threshold where the 



 

6 
 

service rate equals the arrival rate (Bailey, 1954). After these investigations, research 

regarding queuing applications in healthcare seemed to slow until the 1970s.  Since then, 

several advances have been made in using queuing theory to estimate bed requirements, 

determine staffing needs, and limit wait times. 

Although queuing theory has been applied to several areas of healthcare, there is still 

relatively very little research over queuing applications in hospitals relating to surge 

capacity.   In disaster situations, when the demand is significantly greater than a 

hospital’s capacity to provide care, having the ability to expand service is invaluable.  

Abujudeh, Vuong, and Baker investigated the use of portable X-ray examination 

procedures in an emergency room (Abujudeh, Vuong, & Baker, 2005).  De Bruin, Koole, 

and Visser used queuing theory to analyze the cause of bottlenecks in the emergency 

department (de Bruin, Koole, & Visser, 2005).  

If not treated promptly, victims of a disaster could face severe, life-changing or life-

threatening consequences.  Because of the severe consequences of belated treatment and 

the potential volume of patients affected by a disaster, it is imperative that further 

research take place to investigate methods of treating patients quickly and effectively in 

the aftermath of a disaster.   

1.5 Thesis Outline  

Chapter 2 contains a literature review over research relevant to meeting the surge in 

demand following a disaster.  Following this, chapter 3 lists the research objectives of 

this project.  Chapter 4 then details the triage modeling approach. This includes the 

current triage process, physical arrangement, and the queuing approach.  Chapter 5 
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explains the analytical models developed in this study.  Chapter 6 describes the 

simulation model developed in Simio and the tests used to validate it. Chapter 7 presents 

the numerical cases tested as a part of this study. In this chapter, results from all three 

sections of the triage model are examined.  Finally, Chapter 8 presents a summary of the 

work completed as a part of this study, further work, and the contribution of this study. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Disaster Management and Operations Research 

There have been numerous studies conducted to mitigate the effects of a large-scale 

disaster.  These papers fall under disaster management, which is the organization and 

management of resources and responsibilities for dealing with humanitarian aspects of 

emergencies in order to lessen the impact of disasters ("About Disaster Management - 

IFRC"). There are four phases of disaster management: mitigation, preparedness, 

response, and recovery. ("Phases of Disaster: Disaster Preparedness and Economic 

Recovery,") The mitigation phase encompasses efforts that attempt to reduce 

vulnerability to disasters, such as enforcing building codes or constructing levees to 

protect a city.  Preparedness focuses on the impact that a disaster would have on a 

community and includes education and training, as well as emergency planning. 

Response addresses the immediate effects of a disaster and includes triage and meeting 

humanitarian needs such as food and shelter, and cleanup.  The recovery period is the 

restoration of a community to normalcy.   

Operations research is frequently applied to disaster management problems, as it provides 

a quantitative foundation for decision-making.  Disaster management applications of 

operations research are numerous and typically fall under the preparedness and response 
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phases of disaster management.  Some examples include Sung and Lee’s work on using 

column generation to optimally allocate emergency resources after an MCI (Sung & Lee, 

2016) and Fawcett and Oliveira’s work on casualty treatment after earthquake disasters 

(Fawcett & Oliveira, 2000). 

2.2 Queuing, Simulation, and Hospital Operations 

Queuing theory and simulation have proven to be effective tools in improving hospital 

operations.  Several studies have used queuing theory and simulation to determine the 

bed capacity of a hospital.  Cochran and Bharti used queuing theory to analyze the 

utilization of beds within different areas of a hospital and then re-allocate the beds to fit 

the utilization patterns of the hospital (Cochran & Bharti, 2006).   Cochran also 

researched hospital Emergency Department capacity needs using queuing theory in a 

subsequent paper (Cochran & Roche, 2009).  Later, Pinto et al. used queuing theory and 

regression analysis to identify the minimum number of hospital beds that would meet the 

demand needs of a hospital (Pinto, De Campos, Perpetuo, & Ribeiro, 2015).  Takagi, 

Kanai, and Misue also used queuing networks to analyze the flow of obstetric patients in 

a hospital, which could then be used for capacity planning of hospital wards in the future 

(Takagi, Kanai, & Misue, 2017).  

Queuing theory and simulation have also been used in hospital applications to evaluate 

different methods of patient routing.  Connelly and Blair explored the use of discrete 

event simulation (DES) to analyze the movement of staff between emergency department 

areas to compare the benefit of an alternate patient flow pattern (Connelly & Bair, 2004).  

Bish et al. evaluated the usage of patient segmentation using queuing theory, discovering 
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that the split-flow method allowed healthcare professionals to see more patients (Bish, 

McCormick, & Otegbeye, 2016).  Similarly, Bonalumi et al. used queuing theory to 

analyze the use of a ‘Super Track’ to see low-acuity patients at an inner-city hospital 

(Bonalumi et al., 2017). 

Queuing theory and simulation have been used to improve hospital operations in other 

capacities as well.  For example, Bahadori et al. used queuing theory and a simulation 

model to evaluate different server usage methods (Bahadori, Mohammadnejhad, 

Ravangard, & Teymourzadeh, 2014).  

2.3 Surge Capacity    

At the intersection of disaster management and hospital operations lies the concept of 

surge capacity, defined as the ability to manage a sudden, unexpected increase in patient 

volume that would otherwise severely challenge or exceed the present capacity of the 

facility (Hick, Barbera, & Kelen, 2009).  In ‘Refining Surge Capacity: Conventional, 

Contingency, and Crisis Capacity’, Hick et al. describe four key interdependent factors 

that contribute to effective surge response: system, staff, space, and supplies.  The 

authors proposed three subsets of overall surge capacity: conventional, contingency, and 

crisis.  These three subsets correspond to different levels of surge, with conventional 

capacity consistent with daily practices, contingency capacity having little impact on 

usual patient care, and crisis capacity not consistent with usual standards of care but 

providing sufficient care in a disaster setting. 

Although papers dealing with extraordinary surge remain relatively rare compared to the 

research conducted on daily surge events and ED overcrowding, several papers have 



 

11 
 

addressed patient surges after a mass casualty incident. In 2005, Sacco et al. conducted 

one of the first attempts to analytically model resource-constrained patient prioritization, 

modeled as a classic resource allocation problem (Sacco et al., 2005).  Ouyong et al. used 

a simulation model of a Lubbock hospital to evaluate the impact of a surge event on the 

hospital, identifying a scenario that would cause the model to crash (Ouyang, Patvivatsiri, 

& Montes, 2006).  Later, Muhammet and Fuat also used discrete event simulation (DES) 

to identify that when the percentage of patients in critical condition exceeds 20%, more 

staff is needed (Muhammet & Ali Fuat, 2015).  

Narrowing into the combination of queuing theory and surge capacity, several recent 

studies have used queuing theory to propose or evaluate methods of dealing with large 

quantities of patients following an MCI.  Gong and Batta identified a queue-length cutoff 

model for a two-priority queue to treat as many patients as possible during a surge event 

(Gong & Batta, 2006).  Cohen et al. used a two-stage tandem queuing system with 

flexible servers to evaluate surgeon allocation; surgeons are often the scarcest resource 

after an MCI (Cohen, Mandelbaum, & Zychlinski, 2013).  Adalja et al. focused on 

absorbing the citywide patient surge following Hurricane Sandy using queuing theory, 

identifying that the long-term patient surge that followed the closure of many hospitals 

affected by Hurricane Sandy was more taxing on hospitals than the acute patient surge 

immediately following the hurricane (Adalja et al., 2014).  Lodree, Altay, and Cook used 

queuing theory paired with optimization to evaluate the best staff assignment policies 

after an MCI, considering different patient prioritization levels and servers arriving 

sporadically, as would be the case following an MCI (Lodree, Altay, & Cook, 2017). 
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2.4 Reducing Door to Doctor Time 

Significant research has been conducted on the reduction of door-to-doctor times, as D2D 

time is highly correlated to patient satisfaction and hospitals are graded on their D2D 

times.  Research has been conducted to make the ED triage process ‘leaner’, reducing the 

number of steps patients and staff must go through before a physician sees a patient.  In 

one hospital, these changes led to a D2D reduction from 67 minutes to 18 minutes 

("Slash door-to-doc time, boost patient approval," 2011).  One hospital that meets its goal 

of a D2D time of 31 minutes in 98.3% of patients cite good communication and constant 

awareness of waiting patients as keys to maintaining D2D times ("Busy ED keeps 

promise of 'door to doc' in 31 minutes," 2008).  While D2D time is a common metric in 

hospital emergency departments, it is also a critical consideration after an MCI.  

In a triage situation after an MCI, D2D time can have different meanings due to the 

number of physicians involved in the triage process.  There are physicians utilized at the 

initial triage area, treatment areas, and at the operating room.  For the purpose of this 

paper, D2D time will refer to the time between a patient’s arrival at the triage area and 

the patient’s admission into an operating room. 

2.5 Reducing Pre-Triage Time 

Although considerable research has been done on reducing time between the initial 

assessment of a patient and the treatment of a patient under surge conditions, very little 

literature has been identified that addresses the time between the arrival of a patient to a 

hospital and the initial assessment of that patient, which is referred to as pre-triage time 

(PTT).  Only two papers have been identified that investigate the concept of pre-triage 
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time (Betz et al., 2017; Houston et al., 2015).   Both of these papers investigated the time 

between patient arrival and initial triage in an emergency department under normal 

conditions.  Both papers also noted the lack of data on pre-triage time, as the time of 

arrival is usually noted as the time of initial triage screening in an emergency department 

setting, which ignores any patient wait between time of arrival and time of initial triage.  

Additionally, both papers noted that PTT increased when the emergency department 

experienced a surge. 

However, a parallel can be drawn between PTT and the wait passengers experience 

before going through security screening at airports.  In both situations, the number of 

people waiting typically significantly outnumbers the number of people acting as servers.  

Similarly, people are waiting in long queues before going through a screening or 

assessment process in both situations.  Congestion grows as the number of waiting people 

increasingly outnumbers the number of servers.  However, the consequences of 

prolonged wait times greatly differ between the two scenarios.  A prolonged wait in a 

security queue will result in a missed flight in the worst-case scenario.  In an emergency 

triage situation, prolonged wait times can result in greater bodily damage than the initial 

injury, or even death.  

After the events of September 11, 2001, airport procedures in the United States have 

significantly evolved, resulting in a more thorough screening procedure that has increased 

average wait times before screening.  The passenger screening process seeks to achieve 

two objectives: security and customer service, which is primarily achieved through timely 

wait times before screening (Gkritza, Niemeier, & Mannering, 2006).  In 2016, airports, 

airlines, and the TSA scrambled to identify ways to reduce long security screening wait 
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times after facing harsh criticism of wait times that reached as high as two hours during 

peak times ("TSA Boosts Efforts to Cut Waits at Airports -- WSJ," 2016).   There is a 

considerable amount of literature focusing on reducing wait times at security screening.  

In 2016, Dorton and Liu investigated the impact of baggage volume and alarm rate on a 

security checkpoint’s performance, finding that baggage volume had a moderate effect on 

cycle time and no effect on throughput (Dorton & Liu, 2016).  Later, Song and Zhuang 

analyzed optimal screening policies, looking to balance security and congestion concerns 

(Song & Zhuang, 2017). 

In initial triage and security screenings, the objective is the same: to screen a large 

amount of people in as little time as possible.  Although there has been no literature 

discovered on improving the efficiency of initial triage screening, the existing literature 

on improving the airport screening process suggests that queuing principles could be 

applied to initial triage screening to prevent excessive wait times for initial triage 

screening.  

In the triage setting, the quality of care patients receive while waiting for admission to an 

operating room is an additional concern not present in the security screening application.  

However, just as queuing theory principles can be applied to security screenings, they can 

be applied to triage to ensure that there is sufficient staffing so that patients receive the 

level of care needed for their condition. 

The literature review shows that applications of operations research and queuing theory 

have been successfully completed in areas similar to triage. These principles have the 

potential to decrease waiting times and increase the quality of care a patient receives in 



 

15 
 

triage after a mass casualty incident.  By applying these principles to the triage setting, 

this study has developed tools that can be used to determine what resources are needed to 

decrease wait times and increase the quality of care patients receive.  In doing so, this 

study contributes to the body of literature on applying queuing theory to determine 

resources needed in a triage setting.   
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CHAPTER III 

RESEARCH STATEMENT, GOALS, AND OBJECTIVES 

3.1 Problem Statement 

After an MCI, the ability to quickly respond and treat patients is invaluable. In many 

instances, the time between injury and treatment could mean the difference between life 

and death for a patient.  In a post-MCI scenario, the ability to appropriately treat patients 

rests on the implementation of an effective triage screening queuing system.  An effective 

triage system must maintain a reasonable waiting time between a patient’s arrival and the 

initial triage screening, a reasonable waiting time before admission to the operating room, 

and provide sufficient care during the patient’s wait between initial screening and 

admission to the operating room. Efficient and sufficient staffing of the triage queuing 

system has the potential to make a significant positive impact on the wellbeing of the 

patient.   

3.2 Goals 

There is need for more research in developing models to determine resource needs either 

in a post-MCI or surge scenario to maintain a reasonable wait time before surgical 

treatment and a reasonable level of care while waiting for admission to the operating 

room.   
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This study developed two analytical models that can be used to analyze the resources 

necessary to meet patient needs under a range of patient makeup and volume scenarios 

following an MCI.  One model focuses on wait time before initial triage screening and 

wait time before admission to the operating room.   The other model focuses on the level 

of care in treatment areas. These models could then be used in a decision support system 

that emergency responders and healthcare professionals could use to determine the 

appropriate parameter levels needed in a specific scenario to achieve an appropriate triage 

waiting time and level of care for patients.  In addition, the study also developed a 

simulation model in Simio to not only validate the analytical models, but also for 

potential use alongside the analytical models to support the decision-making process. 

3.3 Objectives and Tasks 

To achieve the research goals, the following research objectives and tasks were 

completed: 

1. Published work in relevant areas was identified and reviewed.   

A thorough literature review was completed that focused on applications of 

queuing theory that are relevant to triage.  Current triage methods and techniques 

were also explored in detail, as well as the complex problems that occur when 

dealing with patient surges and large-scale triage.  Tasks associated with this 

objective included the following. 

a. Current triage methods and relevant queuing literature were reviewed 

b. Information regarding challenges and considerations present during 

patient surges was gathered and evaluated 
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c. Data was gathered on triage waiting times and staffing levels deemed 

medically safe 

d. Relevant data was gathered on volume and makeup of patients after 

different types of MCIs 

e. Current methods of triage were reviewed, including physical arrangement  

2. Analytical models of the triage system were developed and tested 

Developing analytical models of the triage process was the main contribution of 

this study.  To develop the analytical models, the details of patient priority had to 

be captured correctly in order to reflect the impact the priority system has on 

waiting time of patients.  Additionally, the care provided in the treatment areas 

had to be modelled.  Tasks associated with this objective include the following. 

a. An analytical model for a general muti-server priority queue was 

developed 

b. The analytical model was validated by comparing its results to the output 

of a Simio model 

c. An analytical model of the treatment areas was developed through a 

linkage with the output of the priority queue model. 

d. Numerical experimentation of models was completed  

3. A simulation model in Simio of the triage process was developed. 

The simulation model served as a way to validate the main analytical model.  

Additionally, the simulation model has the ability to capture some details that the 

analytical model cannot and could play a complementary role.  Completed tasks 

associated with this objective include the following. 
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a. An effective way of modeling the priority queue in Simio was identified 

b. A model of the treatment areas that was tied to the main triage system was 

developed 

c. The simulation was numerically validated using exact results available for 

the special Markovian case of the priority queue model. 

4. The analytical models were coded in Excel for future use in a decision support 

system  

A decision support system will allow first responders and hospital administrators 

to investigate the use of different staffing arrangements for triage and create plans 

for specific MCIs.  When the codes are coupled with a user-friendly interface and 

the simulation model, the resulting decision support system could be valuable to 

hospital contingency planning.  

3.4 Scope and Limitations 

The focus of this project was to build analytical models appropriate for use in a what-if 

mode for hospital administrators and planners to identify resources needed to meet 

patient needs after an MCI.  Both hospitals and MCIs vary greatly in terms of available 

staff, number of injuries, and makeup of injury types.  Because of this, models that can be 

used to experiment with different parameters and analyze what resource levels will meet 

patient needs in a variety of situations is an obvious choice of tool.   

The key metrics analyzed by the models are the mean of the wait before initial triage 

screening (PTT), mean of time between patient arrival and admission into an operating 
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room (D2D), and the level of care patients receive as they wait for admission to an 

operating room.   

The scope of the project is limited to the time between the patient’s arrival at the triage 

area of a hospital (typically outside the main entrance of the hospital) and the patient’s 

exit from an operating room.  

Transportation to the triage area and evacuation are not included in the scope of this 

project.  Additionally, identifying an optimal parameter setting or method is not an 

objective.  Instead, the focus of the project is to identify how parameters can and should 

be shifted in order to obtain the level of care in the triage holding areas, wait before initial 

triage, and wait before admission to operating rooms deemed ideal by medical 

professionals.   

3.5 Research Contribution 

This project explored the parameters associated with triage and their impact on important 

aspects of patient care.  The contribution of this study includes the development of a 

method for modeling the triage system, which has components that do not fit the typical 

queuing framework.  Specifically, the treatment area of the triage system is atypical 

because it serves as a queue in which services are performed.  Additionally, this study 

developed approximations for a general multi-server priority queue used for estimating 

the waiting time of patients for the operating room. 

When used in a decision support system, the modeling of the triage system through both 

the analytical models and simulation will allow healthcare professionals and emergency 
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planners to analyze how parameters affect key metrics that impact patient health as they 

prepare emergency plans for mass casualty events. 
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CHAPTER IV 

MODELING APPROACH 

4.1 Triage Process Outline 

After an MCI, victims are transported from the scene of the event to a hospital.  In 

normal hospital operations, when the number of patients needing treatment does not 

overwhelm hospital resources, patients are taken into the hospital for triage screenings 

and treatment.  However, in a large patient surge such as one following an MCI, the 

triage area is usually set up outside the entrance of the hospital. 

As patients arrive at the triage area, they are screened and sorted into categories 

depending on the severity of their injuries.  Even patients arriving by ambulance that 

have already been evaluated should be re-triaged upon arrival.   

There are several different triage methods medical professionals use when dealing with 

severe patient surge.  This project assumes the use of SALT guidelines for mass casualty 

triage.  SALT stands for “Sort, Assess, Life-saving interventions, and Treatment”.  This 

guideline was developed by an interdisciplinary committee formed by the CDC and 

comprised of the AMA, the American College of Surgeons, the American College of 
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Emergency Physicians, and the National Association of EMTs, as well as several other 

relevant organizations (Ugarte).  SALT categories are as follows:  

 Immediate: Requires attention within minutes to two hours upon arrival to 

avoid death or major disability 

 Delayed: Wounded in need of surgery but whose condition permits treatment 

delay without unduly endangering life, limb, or eyesight  

 Minimal: Have relatively minor injuries and can either effectively care for 

themselves or require only minimal care 

 Expectant: Have injuries that overwhelm current medical resources.  This 

category is re-evaluated frequently as resources become available.  

Although four patient categories are described in the SALT guidelines, only two 

categories were considered in this study: immediate and delayed.  These categories are 

referred to as high priority and low priority in the mathematical and simulation models.  

Initially, the decision to limit the categories examined to two was due to the shortcomings 

of the initial model used to reflect the priority queue.  However, after a more 

comprehensive model was discovered, extended, and subsequently utilized in this study, 

modeling all four categories is now possible and easily implementable.  

The triage officer, usually the most skilled surgeon or the medical professional with the 

most triage experience, is responsible for evaluating and categorizing each patient.  

Under some circumstances, the triage officer may also provide extremely quick life-

saving procedures, such as unblocking an airway. When the number of patients waiting to 

be seen is extremely large, more than one triage officer may be utilized.  In some 
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situations, more than one treatment area per triage category may also be necessary 

(Emergency War Surgery, 2004).   

For security purposes and to minimize chaos in the triage area, the flow into and through 

the triage area is primarily one-directional, with the exception of litter-bearers that carry 

patients to designated areas. 

After patients have been placed in their initial categories, they continue to be monitored 

by medical professionals while waiting for their operations.  Suggested staffing levels for 

immediate and delayed patient care are included in Table 1 (Cotter, 2006).  Minimal 

patients typically do not receive medical attention until the other patients have been 

treated and expectant patients receive only basic care for comfort.  

Table 1- Healthcare Providers Needed for Triage Classifications 

Normal Operations 

Immediate Care 

(High Priority) 

1 Advanced Life Support (ALS) provider 

and 1 Basic Life Support (BLS) provider 

per patient  

Delayed Care 

(Low Priority) 

1 BLS provider per patient and 1 ALS 

provider per 3 patients 

Major Emergency Medical Operations 

Immediate Care 

(High Priority) 

1 ALS provider and 1 BLS provider per 2 

patients 

Delayed Care 

(Low Priority) 

1 BLS provider per 3 patients and one 

ALS provider per 5 patients 

Disaster-Level Operations 

Immediate Care 

(High Priority) 

1 ALS provider per 3 patients and 1 BLS 

provider per 5 patients 

Delayed Care 

(Low Priority) 

1 BLS provider per 5 patients and 1 ALS 

provider per 10 patients 

 

Advanced Life Support providers complete advanced life-support measures such as 

giving medicine via injection.  Basic Life Support providers do not provide any care that 

breaks the skin of the patient. 
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Treatment areas for all patient categories are designed to be easily expandable.  This 

allows the physical space the patients occupy to accommodate the necessary number of 

patients. Because treatment areas serve as the holding area before a patient is admitted 

into an operating room, the treatment area and staffing assigned to the treatment area 

must be able to accommodate the entire queue of patients waiting for the operating 

room(s). While patients are in the treatment area, care must be provided periodically by 

healthcare personnel.   

Triage is an inherently dynamic process.  If the patient’s condition changes significantly 

while in a holding area, the patient will be re-triaged into the correct category.  Refined 

triage often takes place within a category, with the medical professional over an area 

determining which patients have first priority to be admitted into surgery. 

In triage situations, the operating room is consistently the bottleneck.  Patients in the 

immediate category are admitted into the operating room first, followed by delayed 

patients.  There can be any number of operating rooms present in a triage system.  The 

modeling of the operating room(s) was an important piece of this study.  The modeling of 

the operating room(s) had to capture the details of the patient priority or category in order 

to accurately show the average number of patients that waited in both treatment areas as 

well as the average amount of time spent there, depending on their priority level.  

4.2 Physical Arrangement 

The triage model shown in Figure 1 focuses only on the immediate and delayed 

categories. The number of triage officers, number of patient beds, and number of life 



 

26 
 

support providers are parameters that can be adjusted to control the level of patient care 

and wait time before initial triage evaluation. 

 

Figure 1- Physical Triage Arrangement 

 

4.3 Modeling Approach 

A queuing network is a clear choice to model and analyze the performance of the triage 

system.  Queuing networks are often used to analyze the performance of complex 

systems such as computers, communication networks, and production shops (W Whitt, 

1983).  The triage queuing network model is comprised of nodes and arcs.  The nodes 

represent the areas where patients receive care of any type.  The arcs represent the flow 

of patients.  Patients enter the network when they arrive at the triage area and begin 

waiting for an initial triage screening.  Patients leave the network when they leave the 
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operating room.  For this project, Whitt’s two moment approach and arrival and departure 

mechanisms will be used as described in his 1983 paper, The Queuing Network Analyzer. 

In a typical queuing network, if all servers at a node were busy, patients would join a 

queue and wait until a server is free.  When the server becomes free, the service of the 

next patient in line is carried out without interruption.  This is true for the initial triage 

screening node in the triage system.  This node may have one or more servers, which are 

triage officers in this context.  After service is complete at this node, patients are sent to a 

treatment area node.  The percentage of patients sent to each node is likely determined by 

the type of MCI that caused the patient surge. 

Although the triage screening node acts as a traditional node, the treatment areas for each 

patient type do not follow the same patterns as typical service nodes. Instead of patients 

waiting for their individual turn with a server, as in a typical node, in treatment areas, 

patients do not wait before being admitted into the treatment area.  As the number of 

patients in a treatment area increases, the level of care patients receive in treatment areas 

may decline unless more servers are added to care for patients.  Treatment area nodes 

were modeled in a two different ways for this study.  In the main triage system, treatment 

areas were modeled as queues for patients waiting for admission to the operating room(s).  

Using this approach, the average number of patients in the treatment areas and average 

time a patient spends in the treatment areas was calculated.  However, as patients wait in 

the queue for admission to the operating room, the service provided by medical 

professionals monitoring patients and preventing further deterioration in the patient’s 

condition must also be modeled.   
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To model the care patients receive in the treatment areas, a secondary model was utilized 

that used the time patients spend in the treatment areas.  Using this information, the 

number of medical professionals needed to maintain the necessary level of patient care 

could be calculated by analyzing the delay experienced by patients in the treatment area 

in receiving the care they require from the treatment area staff. 

Patients move between nodes.  In the triage model, this may be because their service is 

complete (in the screening node) or because an operating room has become open.  The 

patient moves between nodes until the patient exits the system (through the operating 

room in this case).  The queuing network model for a triage system is considered open 

because patients arrive from and return to the outside of the system.   

Following Whitt’s approach, key elements in the general approach for modeling a 

queuing network are as follows: 

1. Parameters are used to characterize the flows and service at nodes. Because these 

parameters can easily be changed, the model can be applicable to many different 

situations. 

2. Approximations for multiple server queues are based on the partial information 

provided by the parameters that characterize the arrival process and service-times 

at each node. 

3. Calculus for transforming parameters represents the basic network operations of 

merging, splitting, and departure 

4. A synthesis algorithm solves the system of traffic rate and variability equations 

resulting from the basic calculus applied to the network. 
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The general approach of a using a queuing network is to represent all arrival processes 

and service time distributions using a few parameters.  This will allow different scenarios 

to easily be modeled once the basic arrangement is in place, allowing analysis to be 

conducted to determine what staffing and bed levels are needed in the aftermath of a MCI 

with varying characteristics.  
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CHAPTER V 

ANALYTICAL MODEL OF THE TRIAGE SYSTEM 

5.1 Two-Priority Triage System Overview 

In this modeling approach, only the immediate and delayed patient categories are 

considered and are denoted as high priority and low priority, respectively. 

Notation 

𝜆 = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 

𝑐𝑎
2 = 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 Inter-arrival time 

𝜏𝑇 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑟𝑖𝑎𝑔𝑒 

𝑐𝑠,𝑇
2 = 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑟𝑖𝑎𝑔𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒  

𝑚𝑇 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛𝑠 𝑎𝑡 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑟𝑖𝑎𝑔𝑒 

𝑝 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐿𝑜𝑤 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 

𝜏𝑂 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑆𝑢𝑟𝑔𝑒𝑟𝑦 
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𝑐𝑠,𝑂
2 = 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑢𝑟𝑔𝑒𝑟𝑦 𝑇𝑖𝑚𝑒  

𝑚𝑂 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑅𝑜𝑜𝑚𝑠 

 

 

Figure 2 – Triage Queuing Network 

 
5.2 Modeling Initial Triage 

Patients arrive to the hospital according to an arrival process with  rate λ and squared 

coefficient of variation 𝑐𝑎
2.  These patients then form a FIFO queue for the initial triage 

server.  Initial triage has an average service time, a squared coefficient of variation, and 

specified number of triage officers that evaluate patients and assign them to a high or low 

priority level.   

The formula shown below was used to approximate the waiting time incoming patients 

would experience at the initial triage node.  The approximation is the simple version of 

the approximations suggested by Whitt (1993).  A more complicated version of the 

approximation used later in the priority queue model could also be employed here.  
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≈ (
𝑐𝑎
2 + 𝑐𝑠

2

2
)𝐸𝑊(𝑀/𝑀/𝑚) 

In the above formula, EW(M/M/m) is the average waiting time in queue for the 

corresponding multi-server queue with Poisson arrivals and exponential service times 

(see Appendix I for details).   

Patients then exit initial triage.  The squared coefficient of variation of the departure 

process can be derived from Whitt’s approximation in The Queuing Network Analyzer, 

equations 38 and 39 (Whitt, 1983). 

𝑐𝑑
2 = 1 + (1 − (

𝜆𝜏𝑇
𝑚𝑇

)
2

) (𝑐𝑎
2 − 1) +

(𝜆𝜏𝑇/𝑚𝑇)
2

√𝑚𝑇

(𝑐𝑠,𝑇
2 − 1) 

5.3 Modeling the Operating Rooms 

It is assumed that the surgical operating room has identical service times for patients of 

both priority levels.  The mean service time and squared coefficient of variation for both 

priority levels are 𝜏𝑂 and 𝑐𝑠,𝑂
2  respectively.  The number of operating rooms (and required 

personnel teams) is represented by 𝑚𝑂.   

At the initial triage, patients are classified as low priority with probability p, and as high 

priority with probability (1 – p).  Patients enter the high priority treatment area after 

exiting initial triage with an arrival rate of 

𝜆𝐻𝑃 = 𝜆(1 − 𝑝) 

and a squared coefficient of variation of inter-arrival time  

𝑐𝑎,𝐻𝑃
2 = (1 − 𝑝)𝑐𝑑

2 + 𝑝 
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Patients enter the low priority treatment area after exiting initial triage at an arrival rate of 

𝜆𝐿𝑃 = 𝜆𝑝 

and squared coefficient of variation of inter-arrival time 

𝑐𝑎,𝐿𝑃
2 = 𝑝𝑐𝑑

2 + 1 − 𝑝 

High priority patients experience the triage system almost as if only high priority patients 

exist within the system.  Within the queue, they have priority over low priority patients.  

The only time that high priority patients experience delay due to low priority patients is if 

a low priority patient is in surgery when a high priority patient arrives and all operating 

rooms are busy.  In that case, the high priority patient must wait until the low priority 

patient’s surgery is complete before they can begin their surgery.  In other words, there is 

no preemption of service. 

However, low priority patients are impacted heavily by the presence of high priority 

patients within the triage system.  The operating room admits low priority patients into 

surgery only if there are no high priority patients within the triage system.   

Because patients are treated differently in the system based on their priority levels, their 

waiting time in the triage system must be calculated using a priority-discipline queuing 

model, where the queue discipline is based on a priority system ( Hillier and Lieberman, 

2004). There are two types of priority discipline queueing models: non-preemptive and 

preemptive.  In a non-preemptive queuing model, if a low priority customer is being 

served while a high priority customer arrives, the low priority customer’s service will 

continue until completion, at which time the high priority customer’s service will begin.  

In a preemptive system, if a low priority customer is being served while a high priority 
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customer arrives, the low priority customer’s service will be interrupted so that the high 

priority customer’s service can begin immediately upon their arrival.  In our case, a low 

priority patient’s operation cannot be paused in the event of a high priority patient’s 

arrival.  Therefore, the triage system can be modeled as a non-preemptive priority 

discipline queueing system. 

Hillier and Liberman (1984) provide exact results for a non-preemptive, muti-server 

priority queue with Poisson arrivals and exponential service times.  Using their notation, 

Wk, the expected waiting time in the system for a patient of priority class k, can be 

calculated as:  

𝑊𝑘 =
1

𝐴 ∗ 𝐵𝑘−1 ∗ 𝐵𝑘
+
1

𝜇
 

where  𝐴 = 𝑠! (
𝑠𝜇− 𝜆

𝑟𝑠
) ∑

𝑟𝑗

𝑗!

𝑠−1
𝑗=0 + 𝑠𝜇 

𝐵0 = 1 

𝐵𝑘 = 1 −
∑ 𝜆𝑖
𝑘
𝑖=1

𝑠𝜇
 

and      𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 

 𝜇 = 𝑚𝑒𝑎𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑏𝑢𝑠𝑦 𝑠𝑒𝑟𝑣𝑒𝑟 = 
1

𝜏𝑂
 

 𝜆𝑖 = 𝑚𝑒𝑎𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑖 

 𝜆 = ∑ 𝜆𝑖
𝑁
𝑖=1  
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 𝑟 =
𝜆

𝜇
 

 N = number of priority classes 

For this triage system application, high priority is class 1 and low priority is class 2.  The 

expected time a class k patient will wait in the queue is equal to: 

𝐸𝑊𝑘 =
1

𝐴 ∗ 𝐵𝑘−1 ∗ 𝐵𝑘
 

 The above approach models the expected wait time of high and low priority patients 

assuming that both the service and inter-arrival time distributions are exponential.  When 

inter-arrival times and service times do not follow an exponential distribution, Whitt’s 

“Approximation for the GI/G/m Queue” is used to approximate the estimated waiting 

time of patients ( Whitt, 1993).   Our rationale for applying Whitt’s correction factor for 

non-exponential cases is based on the following observations. 

The service time distributions are identical for both high priority and low priority 

patients, and the priority discipline is non-preemptive. Because of this, the average 

number in queue and the average waiting time in queue for an “aggregate” patient should 

be the same as in an equivalent multi-server queue with an arrival rate equal to the total 

arrival rate of all patients. 

In Whitt’s (1993) paper, the equation used to approximate the estimated wait time for 

general arrival and/or service parameters using the results from the M/M/m queue is as 

follows: 
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𝐸𝑊(𝜌, 𝑐𝑎
2, 𝑐𝑠

2, 𝑚) ≈ 𝜙(𝜌, 𝑐𝑎
2, 𝑐𝑠

2, 𝑚) (
𝑐𝑎
2 + 𝑐𝑠

2

2
)𝐸𝑊(𝑀/𝑀/𝑚) 

Where: 

𝜙(𝜌, 𝑐𝑎
2, 𝑐𝑠

2, 𝑚) =

{
 
 

 
 (
4(𝑐𝑎

2 − 𝑐𝑠
2)

4𝑐𝑎2 − 3𝑐𝑠2
)𝜙1(𝑚, 𝜌) + (

𝑐𝑠
2

4𝑐𝑎2 − 3𝑐𝑠2
)Ψ(

𝑐𝑎
2 + 𝑐𝑠

2

2
,𝑚, 𝜌) , 𝑐𝑎

2 ≥ 𝑐𝑠
2

(
𝑐𝑠
2 − 𝑐𝑎

2

2𝑐𝑎2 + 2𝑐𝑠2
)𝜙3(𝑚, 𝜌) + (

𝑐𝑠
2 + 3𝑐𝑎

2

2𝑐𝑎2 + 2𝑐𝑠2
)Ψ(

𝑐𝑎
2 + 𝑐𝑠

2

2
,𝑚, 𝜌) , 𝑐𝑎

2 ≤ 𝑐𝑠
2

 

And 

Ψ(𝑐2, 𝑚, 𝜌) = {
1,                                      𝑐2 ≥ 1

𝜙4(𝑚, 𝜌)
2(1−𝑐2), 0 ≤ 𝑐2 ≤ 1

 

𝜙4(𝑚, 𝜌) = 𝑚𝑖𝑛 {1,
𝜙1(𝑚, 𝜌) + 𝜙3(𝑚, 𝜌)

2
}  

𝜙3(𝑚, 𝜌) = 𝜙2(𝑚, 𝜌)
−2(1−𝜌)

3𝜌  

𝜙2(𝑚, 𝜌) = 1 − 4𝛾(𝑚, 𝑝) 

𝜙1 = 1 + 𝛾(𝑚, 𝜌) 

𝛾(𝑚, 𝜌) = 𝑚𝑖𝑛 {0.24,
(1 − 𝜌)(𝑚 − 1)((4 + 5𝑚)

1
2 − 2)

16𝑚𝜌
} 

After calculating 𝜙(𝜌, 𝑐𝑎
2, 𝑐𝑠

2, 𝑚), the EWk calculated using the two-priority system can be 

utilized as shown below:  

𝐸𝑊𝐻 ≈ 𝜙(𝜌𝑂 , 𝑐𝑎,𝑂
2 , 𝑐𝑠,𝑂

2 ,  𝑚𝑂) (
𝑐𝑎
2 + 𝑐𝑠

2

2
)𝐸𝑊1 
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and  

𝐸𝑊𝐿 ≈ 𝜙(𝜌𝑂 , 𝑐𝑎,𝑂
2 , 𝑐𝑠,𝑂

2 , 𝑚𝑂)(
𝑐𝑎
2 + 𝑐𝑠

2

2
)𝐸𝑊2 

Where  

𝜌𝑂 =  𝜆𝜏𝑂/𝑚𝑂 

 

𝑐𝑎,𝑂
2 = 𝑐𝑑

2 

 𝑐𝑑
2 is the squared coefficient of variation of inter-departure time at the initial triage node. 

 

5.4 Input to the Treatment Areas 

Patients exiting initial triage are transported to the high and low priority treatment areas 

as they wait for admission into the operating room. Treatment areas act as the queue for 

the operating room.  As patients wait for surgery in these treatment areas, they are closely 

monitored by medical personnel and given medications and other interventions as 

needed.   

The arrival rate to the treatment areas is the same as the arrival rate to the operating 

room(s), as the treatment areas serve as a holding area for patients before they are 

admitted into the operating room.  Therefore, as patients leave the initial triage node and 

arrive at the treatment areas, the arrival parameters are as before: 

Patients enter the high priority treatment area after exiting initial triage at an arrival rate 

of 

𝜆𝐻𝑃 = 𝜆(1 − 𝑝) 
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and a squared coefficient of variation of inter-arrival time  

𝑐𝑎,𝐻𝑃
2 = (1 − 𝑝)𝑐𝑑

2 + 𝑝 

Patients enter the low priority treatment area after exiting initial triage at an arrival rate of 

𝜆𝐿𝑃 = 𝜆𝑝 

and squared coefficient of variation of inter-arrival time 

𝑐𝑎,𝐿𝑃
2 = 𝑝𝑐𝑑

2 + 1 − 𝑝 

Where 𝑐𝑑
2 is the squared coefficient of variation of inter-departure time at the initial triage 

node, and p is the percentage of patients that will be classified as low priority.  

 Because the treatment areas serve as the queue for the operating room(s), the average 

time a patient spends in the queue for the operating rooms is equal to the total time the 

patient is in the treatment area.  Therefore, the average waiting time for the operating 

room serve as input for the treatment area models. The average number of patients in 

each treatment area can be calculated as follows. 

𝐿𝑞,𝐻𝑃 = 𝜆𝐻𝑃𝐸𝑊𝐻𝑃 

𝐿𝑞,𝐿𝑃 = 𝜆𝐿𝑃𝐸𝑊𝐿𝑃 

The above would give us the average number of beds needed in each of the treatment 

areas. Next, an analytical model to evaluate the level of care that can be expected from 

different staffing requirements is presented.  The average delay before a patient receives 

care could be used as a surrogate measure for the level of care.  This model can then be 

used to determine the staffing required for adequate coverage in the treatment areas 
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5.5 Modeling the Treatment Areas 

Once the patients arrive at the treatment areas, they are checked and tended to 

periodically.  We model each treatment area as a two-node open queueing network as 

shown in Figure 3.  The Check node represents the care that a patient receives from a 

healthcare worker periodically, and the Stable node models the time between checks 

where the patient is resting and requires no care. The “Exit” from the Stable node 

represents a patient leaving the treatment area to enter an operating room.   

 

Figure 3 – Treatment Area Network 

 
The patient’s exit from a treatment area is determined by the patient’s admission into the 

operating room.  In this model, the probability of the patient exiting a treatment area is 

depicted as PE.  This probability is not known, but we know that its value should be set in 

such a way that the average time a patient spends in the 2-node network is equal to the 

average time spent by a patient waiting in queue for an operating room.  Hence, the 

average time is system for the high-priority (low-priority) treatment area model should be 

equal to 𝐸𝑊𝐻𝑃  (𝐸𝑊𝐿𝑃)  obtained from the priority queue model. This gives us a way to 

device a search procedure to find 𝑃𝐸. Of course, 𝑃𝐸 values will be different for the high-

priority and low-priority treatment area network models,  Once, we have 𝑃𝐸 , then the 
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average delay before check, 𝐸𝑊𝑐 can be computed.  The complete set of equations for the 

treatment area network model are given below.  

In this network, Expected Total Time in Treatment Area was calculated as: 

Notation 

𝜏𝐶  = Average Check Time 

𝑐𝑠,𝐶
2  = Squared Coefficient of Variation of Check Time 

𝑚𝐶 = Number of Medical Staff at Check 

𝜏𝑆  = Average Stable or Resting Time 

𝑃𝐸 = Probability of Exit 

𝛾𝐶 = Total Arrival Rate to Check Node 

𝑐𝑎,𝐶
2  = Squared Coefficient of Variation of Combined Arrival Processes to Check 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 = (𝐸𝑊𝐶 + 𝜏𝐶 + 𝜏𝑆 ) ∗
1

𝑃𝐸
 

𝐸𝑊𝐶 ≅ 𝐸𝑊(𝑀(Υ𝐶),𝑀 (
1

𝜏𝐶
) ,𝑚𝐶 ∗

𝑐𝑎,𝐶
2 + 𝑐𝑠,𝐶

2

2
 

𝑐𝑎,𝐶
2 =

(1 − 𝑃𝐸)
2 {𝜌𝐶

2 +
𝜌𝐶
2

√𝑚𝐶

(𝑐𝑠,𝐶
2 − 1)} + 𝑃𝐸{1 − 𝑃𝐸 + 𝑐𝑎,𝐻𝑃

2 }

[1 − (1 − 𝑃𝐸)2(1 − 𝜌𝐶
2)]

 

𝜌𝐶 =
Υ𝐶𝜏𝐶
𝑚𝐶
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𝛾𝐶 =
𝜆(𝐻𝑃 𝑜𝑟 𝐿𝑃)

𝑃𝐸
 

The treatment area network model was implemented in Excel and using the Solver 

capability in Excel, the PEvalue was calculated for a specific set of parameter values.  

Once PE is identified, the average wait time for the check node could be calculated.  If the 

estimated wait for the Check node is excessive, it can be concluded that patients cannot 

be checked as frequently as desired and additional healthcare workers are necessary.  The 

search procedure can be repeated with a new value for  mc till a satisfactory level of wait 

time is achieved.   

The average number of patients in a treatment area, 

𝐿𝑞,𝐻𝑃 = 𝜆𝐻𝑃𝐸𝑊𝐻𝑃 

𝐿𝑞,𝐿𝑃 = 𝜆𝐿𝑃𝐸𝑊𝐿𝑃 

calculated using Little’s Law, is indicative of the average number of beds needed in the 

treatment area.  The above results are important metrics because they reflect the number 

of healthcare workers and beds needed in the treatment areas.   

5.6 Summary of Analytical Models Developed 

Three main areas were modeled as part of this study: initial triage, operating rooms, and 

treatment areas.  Each of these areas build off each other; the departure parameters from 

the initial triage node had to be calculated before the operating room calculations could 

begin.  The waiting times from the operating room priority model were fed into the 

treatment area calculations in order to examine the level of care received under different 

staffing parameters.  These models were verified using the estimated results from a Simio 
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model.  The models developed in this section are powerful tools that can be used to plan 

necessary staffing and bed space needed for patient care after an MCI, and their use has 

the potential to help hospitals obtain valuable information so they can be prepared with a 

plan before tragedy strikes. 
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CHAPTER VI 

 
SIMIO MODEL DEVELOPMENTS 

 

The simulation model was built using Simio software (Simio Student Edition Version 11, 

2019).  The simulation models two interdependent systems: the main triage system and 

the treatment areas.  Although the simulation was built to validate the analytical models, 

the simulation model can be used as a planning tool on its own to fine tune the solutions 

developed using the analytical models. The simulation model has the ability to capture 

more information and model more details compared to the analytical models.  

6.1 Main Triage System 

The main treatment system consists of the initial triage server, the two treatment areas 

where high priority and low priority patients wait admission to the operating room, and 

the operating rooms where patients are eventually admitted.   The queues for each 

operating room correspond to the treatment areas where patients receive care as needed 

before admission to the operating room.  In the picture below, Server1 models initial 

triage, where a triage officer completes a quick scan of incoming patients to determine if 

the patient should be categorized as high priority or low priority.  After initial triage, the 
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patient moves to either HighPriority or LowPriority, both of which are treatment areas, 

before moving to the operating room and eventually exiting the system. 

 

Figure 4 – Main Triage Simulation 

The initial triage server acts on a first come first served priority.  The rate of arriving 

patients can be modified in the MainSource properties. The service rate of the initial 

triage officer and the number of triage officers at the initial triage server can be easily 

modified in the InitialTriage server properties.  

After being examined at the initial triage area, patients go to either the high priority or 

low priority treatment areas while they wait for admission to the operating room.  The 

probability of a patient being sent to each treatment area is determined by the link weight 

of paths leading to each treatment area.   The probability of these links can be easily 

edited to reflect the changes to the system that occur when the mix of high and low 

priority patients changes. 

Admission to the operating room is priority based with no preemption.  To model one 

operating room serving all patient categories, the capacity is set to 1.  The ranking rule is 

set to highest priority first, which ensures that high priority patients are seen before low 
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priority patients.  Differing numbers of operating rooms can easily be modeled by 

changing the capacity of the server.  This can show the impact of having different 

numbers of operating rooms ready to accept patients in a triage situation. 

To quickly validate the Simio model, Little’s Law was used to ensure that the average 

number of patients shown to be in the treatment areas made sense given the other 

parameters. 

𝐿𝑖𝑡𝑡𝑙𝑒′𝑠 𝐿𝑎𝑤: 𝐿 = 𝜆𝑊 

Where L= the average number of patients in the system, λ is the arrival rate, and W is the 

average waiting time.  When checked across several parameter combinations, Little’s 

Law held true as expected, validating the data retrieval methods used. 

After the simulation was completed and partially validated using Little’s Law, the 

simulation results were compared to exact analytical results available for the special 

exponential case for validation. 

 

6.2 Treatment Area Systems 

The treatment area systems are used to model the care that patients receive while waiting 

for admission to the operating room.  The treatment area model for each triage category 

consists of a category-specific Source and two servers labelled Stable and Check.  

When a patient in the main system enters the path to a treatment area, the source for that 

triage category is triggered to create a new entity.  That entity then circulates through the 

Stable and Check servers.  These servers model the frequency with which patients receive 
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care.  For instance, if a patient in a specific category must receive care every ten minutes, 

the processing time for the Stable server is ten minutes before the patients moves to the 

Check server.  The Check server service time can be edited easily to model different 

processes that may need to take place while monitoring patients.  The Stable server has 

infinite capacity, and the Check capacity is reflective of the number of care-givers present 

in the treatment area that is being modelled. 

 

Figure 5 – Treatment Area Simulation 

When a patient in the main triage system exits the operating room, an add-on process is 

triggered to remove one patient from the treatment area corresponding to the priority 
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level of the patient that exited the main triage system.  This ensures that the number of 

patients in each treatment area is equal to the number of each patient type waiting for the 

operating room in the main triage system. 
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CHAPTER VII 

NUMERICAL EXPERIMENTATION 
 

The main focus of the numerical experimentation was to validate the priority queueing 

model for non-exponential cases and demonstrate the efficacy of the treatment area 

models in producing the desired results.  For analytical queueing models, the utilization 

per server has to be strictly less than one to yield valid results.  To capture the heavy load 

on the hospital system during a surge, we tested the priority queue model at fairly high 

utilizations and chose 90% and 97% for our numerical experiments. 

 

7.1 Initial Triage Numerical Case 

To model the initial triage process, it was assumed that the initial triage service time 

followed a triangular distribution with a mean of 2 minutes, a maximum of 3 minutes, 

and a minimum of 1 minute.  Two arrival rates were considered: 𝜆 = 2.2383 per hour 

and 𝜆 = 2.07 per hour.  These arrival rates corresponded to 97% and 90% operating 

room utilization rates respectively.  We assumed a Poisson arrival process, and 𝑐𝑎
2 was set 

equal to 1.  Using the triangular(1,2,3) distribution to model the initial triage service time 

yielded a 𝑐𝑠
2 of 0.0833.  A low variability in the initial triage service times is reasonable 

and even desirable as the main purpose is to quickly categorize patients and send them to 

the appropriate treatment areas 
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After completing the analytical calculations, it became clear that the wait time at initial 

triage was negligible (much less than a minute), due to the arrival rates that were selected 

to keep the utilization of the operating rooms under one.  However, if the operating room 

capacity is significantly increased, the arrival rates could be much higher and at some 

point the triage wait times may become a problem, even to the point of necessitating an 

additional triage officer.  

 
7.2 Operating Room Numerical Case 

To identify the parameters that should be used in the priority queue model, the first step 

was to identify typical service times in surgical triage situations.  “Duration and 

Predictors of Emergency Surgical Operations – Basis for Medical Management of Mass 

Casualty Incidents” stated that the average time in surgery during a triage was 130 

minutes (Huber-Wagner et al., 2009).  The text then went on to describe the breakdown 

of surgery times as shown below. 

Table 2 – Operation Time Breakdown 

Percentage of Patients Time in Operating Room 

54.1% 137 minutes 

26.3% 110 minutes 

11.5% 136 minutes 

5% 91 minutes 

3.1% 142 minutes 
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From this data, two potential service time cases were established.  In the first, service 

time would be distributed exponentially, with the mean = 130.  This would result in a 𝑐𝑠
2 

equal to 1. 

In the second case, a triangular distribution was used to model the data.  Using the 

triangular distribution, the lower limit (a) =110, the upper limit (b) =142, and the mode 

(c) = 137.  Using these parameters, the mean of the triangular distribution equals 130 

minutes, which is consistent with the data stated above.  Using these parameters, 𝑐𝑠
2 is 

equal to 0.0029 

After establishing the service time parameter, the arrival rate was established.  Because 

triage is only necessary when the number of patients entering a hospital nears or exceeds 

the capacity of the hospital to care for those patients, only high utilization cases needed to 

be considered. Two utilization levels were considered – 90% and 97%.  The number of 

servers (operating rooms) was set to be 5 for the experiments.  Using the average service 

time and these utilization values, two arrival rates were calculated.  The first, 

corresponding to 90% utilization, was λ=2.07/hour.  The second, corresponding to 97% 

utilization, was λ=2.283/hour 

In summary, to model the operating room service node, 5 servers were modeled using 

90% and 97% utilization.  Two different distributions were modeled: Exponential (130) 

and Triangular (110, 137, and 147).  Four different combinations were modeled, and 

within each of the combinations, the probability of a patient being classified low priority 

ranged from 0.1 to 0.9 in steps of 0.1.  Therefore, a total of 36 combinations were tested.  

All combinations are shown below.  
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Table 3 – List of Combinations Tested 

Utilization Distribution P(Low Priority) 

90% 

Utilization 

Exponential (130) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Triangular (110, 137, 

142) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

97% 

Utilization 

Exponential (130) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Triangular (110, 137, 

142) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 
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The resulting average wait times from both the simulation and analytical models for each 

parameter combination are shown below. In the graphs, the x-axis shows the probability 

of an incoming patient being classified as low priority and the y-axis represents the 

average patient waiting time in minutes. 
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90% Utilization, Service Time Distribution Exponential with τ=130 minutes 

 

Figure 6 - High Priority Wait Time Results with 90% Utilization and Exponential Service 

Time Distribution 

 

 

 

Figure 7 - Low Priority Wait Time Results with 90% Utilization and Exponential Service 

Time Distribution 
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90% Utilization, Service Time Distribution Triangular (110, 137, 142) minutes 

 

Figure 8 - High Priority Wait Time Results with 90% Utilization and Triangular Service 

Time Distribution 

 

 

 

Figure 9 - Low Priority Wait Time Results with 90% Utilization and Triangular Service 

Time Distribution 
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97% Utilization, Service Time Distribution Exponential with τ=130 minutes 

 

Figure 10 - High Priority Wait Time Results with 97% Utilization and Exponential 

Service Time Distribution 

 

 

 

Figure 11 - Low Priority Wait Time Results with 97% Utilization and Exponential 

Service Time Distribution 
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97% Utilization, Service Time Distribution Triangular (110, 137, 142) minutes 

 

Figure 12 - High Priority Wait Time Results with 97% Utilization and Triangular Service 

Time Distribution 

 
 

 

Figure 13 - Low Priority Wait Time Results with 97% Utilization and Triangular Service 

Time Distribution 
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Among all parameter combinations, the highest high priority wait time was 235.8 

minutes.  This occurred when utilization was 97%, the distribution was exponential, and 

the probability of an incoming patient being low priority was 10%.  This was the only 

combination for which the high priority wait time was greater than two hours, which is 

the recommended maximum wait time for high priority patients as described by the triage 

guidelines.  Additionally, research suggests that typically the percentage of low priority 

patients is around 80%-90% (Emergency War Surgery, 2004).  For this range in the 

model, wait times are much lower than any other percentage of low priority patients.  

Across all 72 parameter combinations, the analytic and simulation models were within 

15% of each other 62.5% of the time.  The difference between the two models was higher 

in some instances.  This can likely be attributed to the high utilization that was used in 

these models.  It should be noted that the analytical results for the exponential case are 

exact.  In these cases, even the simulation results did not match with the exact results 

illustrating the difficulty is obtaining statistically accurate estimates from simulation 

models when the server utilization is close to 1.  The agreement is much better at 90% 

utilization and worse at 97% utilization. 

7.3 Treatment Areas Numerical Case 

The first step in modeling the treatment areas was to determine the probability of exit 

from the Treatment Area.  This value was calculated using the model for the open 

queuing network described in Chapter 6 with the average waiting time in queue from the 

priority queue model used as the total time in system.  The search capability of Excel 

Solver was utilized to find the probability of exit. 
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After the probability of a patient exiting the system was estimated, the wait time values 

from the Check node and the total number of patients in the treatment area were 

calculated.  For this numerical case, it was estimated that high priority patients must be 

checked every ten minutes and low priority patients must be checked every twenty 

minutes.  The number of healthcare providers in each treatment area was set at 1.  If wait 

times for the Check node were excessive, it could be concluded that the treatment area is 

understaffed and more healthcare workers are necessary to provide adequate patient care.  

The average number of patients in the treatment area is equivalent to the average number 

of beds needed.  Results from this step are shown below for the 90% utilization case:  

Table 4 - High Priority Results 

High Priority 

Distribution p P(exit) Check Utilization 

Total Time in 

Treatment 

Area (minutes) 

Number in 

Treatment 

Area 

Check 

Wait 

(minutes) 

Exponential 0.2 0.1747 31.61% 69.77 1.93 0.186 

Triangular 0.2 0.3525 15.66% 34.39 0.95 0.123 

Exponential 0.5 0.3387 10.19% 35.65 0.61 0.073 

Triangular 0.5 0.6748 5.11% 17.86 0.31 0.053 

Exponential 0.6 0.3920 7.04% 30.75 0.42 0.054 

Triangular 0.6 0.7832 3.52% 15.37 0.21 0.038 

Exponential 0.7 0.4477 4.62% 26.89 0.28 0.038 

Triangular 0.7 0.8914 2.32% 13.49 0.14 0.025 

Exponential 0.8 0.5020 2.75% 23.95 0.17 0.024 

Triangular 0.8 1.0000 1.38% 12.02 0.08 0.015 

Exponential 0.9 0.5563 1.24% 21.59 0.07 0.011 
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Table 5 - Low Priority Results 

Low Priority 

Distribution p P(exit) Check Utilization 

Total Time in 

Treatment 

Area (minutes) 

Number in 

Treatment 

Area 

Check Wait 

(minutes) 

Exponential 0.2 0.3270 42.22% 676.42 4.67 0.108 

Triangular 0.2 0.6500 21.22% 339.19 2.34 0.056 

Exponential 0.5 0.6420 53.72% 346.32 5.97 0.241 

Triangular 0.5 0.1274 27.09% 173.66 3.00 0.119 

Exponential 0.6 0.7480 55.34% 297.86 6.17 0.282 

Triangular 0.6 0.1482 27.93% 149.36 3.09 0.139 

Exponential 0.7 0.8540 56.54% 261.30 6.31 0.321 

Triangular 0.7 0.1691 28.56% 131.03 3.16 0.157 

Exponential 0.8 0.9610 57.46% 232.74 6.42 0.359 

Triangular 0.8 0.1900 29.05% 116.71 3.22 0.175 

Exponential 0.9 0.1068 58.17% 209.80 6.51 0.396 

 

These results suggest that for the parameters tested, one healthcare worker per treatment 

area is likely sufficient.   

For the case shown, very few beds are needed in the high priority treatment area, as the 

number in the treatment area is never above 2 for the parameters tested.  However, more 

beds are needed in the low priority treatment area.  This difference is due to the extended 

amount of time low priority patients wait for admission to the operating room when 

compared to the high priority patients.  
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CHAPTER VIII 

CONCLUSION 

8.1 Summary of Work 

In this study, a literature review was completed that revealed the need for more 

research on modeling of triage systems after a mass casualty event.  In response to 

this need, the goal of this study was to develop an analytical approach to modeling 

triage in order to determine the staffing and resource needs of hospitals after an 

MCI.   

To complete this study, information was gathered over triage operations, such as 

the process that patients go through, staffing assignments, and typical times for 

operations, initial triage, and checks performed while patients wait for the operating 

room. 

After relevant information was gathered, both analytical models and a simulation 

model in Simio were created to model triage operations and evaluate the level of 

care that patients receive under a variety of parameters, including staffing 

resources.  These models were coded for two priorities, but could be easily modified 

to fit more than two priority categories. 
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8.2 Contributions 

In preparedness for a mass casualty event, the ability of hospitals to make staffing 

and resource assignment decisions that are model-based is critically important.  

Understaffing could lead to patient conditions deteriorating as they wait for 

lifesaving operations. 

This study details an approach of identifying the staff and resources needed through 

analytical models.  Paired with a Decision Support System interface, the models 

developed in this study have the potential to aid hospital and emergency planners, 

giving them a detailed look at what patient wait times at different points in the 

system would look like under varying parameters.  Using the models, this analysis 

can be accomplished without the need to draw from past data.  This is especially 

significant because historical data isn’t always available in crises that are 

unprecedented by any other time in history.  

The study has also made a small contribution to the queueing body of knowledge by 

extending an exact model for a Markovian multi-server priority queueing model to 

develop approximations for the case with general arrival processes and service 

times.  This simple extension greatly enhances the applicability of the model in 

practical situations with its ability to explicitly incorporate the effect of variability in 

arrival and service processes. 
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8.3 Future Work 

Although all models are coded and validated, to make the approach outlined in this 

study more accessible to hospital planners and administrators that are responsible 

for developing emergency plans in the case of MCIs, a user interface will need to be 

developed.  This user interface should have clear areas to input known parameters 

and test unknown parameters across a wide range of values so that users can draw 

from the range to gain additional insight. 

After the user interface is developed, it will be prudent to evaluate its utility by 

soliciting feedback from individuals in hospital planning and administration roles.  

Ideally, they would be able to suggest areas that could be further developed that 

could benefit them and make the models more usable for those that could benefit 

the most. 

By calculating the variance in waiting times and the number in the system, future 

work could focus on developing better estimates for the number of beds and other 

resources needed to provide care for patients with varying confidence levels. 

Another area for future work is testing the models in a real-world scenario.  It would 

be beneficial to work with a hospital to identify the input parameters that would be 

specific to an array of disasters.  If an MCI occurred at a hospital that had used the 

models for planning, comparing the results from the models to real life data would 

be a valuable contribution to further validation of the models.  
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APPENDIX I 

M/M/m Equations 
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Estimated: Length of Queue: 

𝐿𝑞 = ∑(𝑛 −𝑚)𝑃𝑛

∞

𝑛=𝑚

= [
(
𝜆
𝜇)
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Estimated Wait in Queue: 

𝑊𝑞 =
𝐿𝑞

𝜆
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