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Abstract 

The choices for analyzing cognitive load performance data are often problematic as 

they are task-dependent and do not generalize well.  This makes research into task-

independent variables necessary.  Complexity is one such measure that one can retrieve 

from normal cognitive load measurements.  Using time series analysis techniques pro-

vides an efficient, less altered route to measurements that can account for multiple task-

dependent measures without being attached to the specific task.  In this experiment, we 

present stimuli to participants based on occluded hand location to determine object 

recognition effectiveness.  Maintaining a 65%- 75%-correct identification rate using a 

staircase procedure allowed for object recognition time and accuracy profile creation.  

Over the 18-inch hand movement, we observed a bimodal distribution in reaction times 

with a “far hand effect” decreasing times at around 18-15 inches from the stimulus, in-

creasing to a peak at 15-12 inches, and decreasing again as a participant moves his/her 

hand closer to the stimulus.  Nonlinear time series analysis was performed on the data; 

more specifically I used wavelet transform modulus maxima to analyze a continuous 

wavelet transform created from the time series based off the effect hand location has on 

object perception.   

 Keywords: Covert attention, embodied cognition, guidance, near-hand effect. 
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Primary Motor Cortex Stimulation Facilitates Visual Guidance and Attention 

Conceptualizing mental effort 

Cognitive load and task difficulty. 

 Conceptually, cognitive load is the strain put on mental mechanisms during per-

formance or schema creation.  Several factors interfere with one’s task performance in 

the form of cognitive load.  Cognitive load conceptually stems from problem solving 

studies involving working memory models (Sweller, 1988).  People are unable to dele-

gate effective cognitive ability levels to secondary responsibilities when performing in-

tensive primary task, presumably due to the increased load reducing the participant’s 

schema-forming effectiveness.  In an effort to assist others in reducing extraneous varia-

bles in studies, researchers have differentiated cognitive load into three basic categories: 

intrinsic, extraneous, and germane (DeLeeuw & Mayer, 2008).   

 Intrinsic cognitive load is the inherent amount of difficulty associated with a spe-

cific topic (Chandler & Sweller, 1991).  Time series analysis, for example, requires com-

binations of mathematical and computer programing knowledge.  Both these topics are 

inherently difficult to learn.  Combining the tasks introduces an exponential increase in 

difficulty.  Reducing intrinsic cognitive load requires one to break the task up into sub-

tasks.  Given the above example, one could start by learning why a time series differs 

from regular data and add to his/her schemas from there.  This process allows for eventu-

al mastery of multiple difficult tasks and the ability to combine schemas in new and 

unique ways that previously would not have been possible.  Controlling for this cognitive 

load type requires practice rounds, allowing the participant to pre-form the schema re-

quired for the task one wishes to perform.     
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 Extraneous cognitive load refers to how instructors represent information or tasks 

to a learner (Chandler & Sweller, 1991).  Giving poor instructions to perform a difficult 

task results in a substantial increase in task complexity and results in increased cognitive 

load (Ginns, 2006).  Reducing this cognitive load type, particularity by relating it spatial-

ly or temporally to another existing schema, allows for greater information consumption 

and task performance.  One can see this effect when looking at various ways to describe a 

wavelet one used in a transform.  Using the mathematical formula and performing ad-

vanced scaling techniques numerically on paper requires more effort on the learner’s be-

half than showing them the concept pictorially.  Proper metaphor use can often avoid this 

issue, but if one is speaking to people from multiple cultures this confound can increase 

difficulty in finding appropriate allegories.    

 Germane cognitive load is the load devoted to processing, construction, and au-

tomation of schemas.  The ability to remove completely this cognitive load type through 

any methods does not currently exist, making it the ideal task efficiency measurement.  

The best way to improve learning, until recently, was to reduce intrinsic and extraneous 

cognitive load (Sweller, Merrienboer, & Paas, 1998).  Various techniques make it possi-

ble now to redirect both intrinsic and extraneous cognitive load into germane load, in-

creasing the schema formation and learning rate.   

Operationalizing task difficulty as task complexity. 

 Researchers often give people a repetitive task and measure the decline in perfor-

mance as task difficulty increases to study cognitive load.  By allowing germane cogni-

tive load to fall to a baseline, and minimizing any intrinsic or extraneous cognitive load 

through practice techniques before data collection begins, researchers can correlate in-
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creases in cognitive load to task complexity through increased latency (Paas, Van 

Merriënboer, & Jeroen, 1993).  This approach was further verified in research involving 

memory sequencing in various cognitive load situations (Robinson, 2001).   

Factors in task difficulty. 

Heavy cognitive load has negative task performance effects, no matter the type, and 

the cognitive load experience differs from person to person.  High cognitive load in the 

elderly, for example, can affect their center of balance (Andersson, Hagman, 

Talianzadeh, Svedberg, & Larsen, 2002).  With increased distractions and cell phone use 

rising, students commonly experience high cognitive load.  This increase reduces the stu-

dents’ academic success (Frein, Jones, & Gerow, 2013).  These differences indicate the 

need for establishing a baseline cognitive load reaction level and comparing differences 

with a within-subjects design.  One may draw further conclusions about task-independent 

complexity measurements by observing within-subject trends.  Determining temporal de-

pendencies for the cognitive load measures, on the other hand, will require nonlinear time 

series data analysis to uncover.   

 The goal is to maintain a desired difficulty level.  A little stress is good for per-

formance and leads to increased results.  As difficulty increases, stress increases; if too 

much stress accumulates, participant performance will sharply decrease, resulting in fail-

ure for all subsequent tasks.  Cognitive load through response time (RT) manipulation 

assessment uses many possible IV structures.  This includes compound sub-task, increas-

ing the stimulus novelty, or using a stimulus onset asynchrony (SOA).   
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Dual task 

Using compound sub-tasks involves increasing intrinsic cognitive load, and subse-

quently RT, by adding multiple smaller tasks for the participant to follow.  As there is no 

cognitive load offloading to germane type task, this method fails to meet the standards 

required for haptic–visual duel sensory input studies; too many tertiary aspects would be 

involved.  This issue leaves us two main options for generating our cognitive load: in-

crease novelty and unpredictability, or increase speed   

Increase novelty/unpredictability. 

Increasing the stimulus novelty or unpredictability is another option that could af-

fect RT in this task type.  Researchers often use this method when involving biological 

features making stimulus novelty or unpredictability a prime candidate for haptic–visual 

interaction studies.  The issue with this IV is that it has causality limitations on human 

participants.  This limitation makes this option for stimulus modification a poor choice, 

leaving one last option for us to observe. 

SOA  

A SOA is a time-pressure alteration technique that designates the amount of time 

between the start of one stimulus and the start of another stimulus.  In studies that use two 

stimuli, a prime, and a target, researchers need a method to measure from the beginning 

of the prime until the beginning of the target.  This rapid stimuli progression timer, the 

SOA, can be manipulated to determine effects on other dependent measures such as re-

sponse time or brain activity (Harley, 2013).  This metric is the measurement commonly 

used in multi-sensory studies due to the rapid natural interaction observed.  The inspira-

tion for the current study includes this measurement type using a mask for the second 

stimulus that rapidly covers up the prime (Festman, Adam, Pratt, & Fischer, 2013).  The 
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commonly cited issue with this data type is that priming effects differ depending on prim-

ing stimulus length, causing equivalency issues in differing IV lengths (Spruyt, Hermans, 

Houwer, & Eelen, 2003).  To overcome this issue in the present study, one can use the 

mask as an information block rather than inducing a prime with the first stimulus.  Effec-

tively, this modification creates a single stimulus SOA that can be temporally manipulat-

ed and therefore nullifies the issue. 

Performance indicators of task difficulty 

Response time  

The idea behind RT is simple: the more mentally involved a problem is, the longer 

it takes to process (Donders, 1969; Sternberg, 1969).  If one devises a mental task that 

differs only in that it requires an extra mental process, one could determine the difference 

using RT; researchers call this process “Mental Chronometry” (Posner, 2005).  RT has 

been used to observe many phenomena throughout psychology’s history, and often RT 

changes indicate systemic interactions.  The cognitive load index creation allowed many 

cognitive load measurements to be standardized and analyzed using linear statistical fash-

ions, such as one-way analysis of variance (ANOVA) and logistic regressions (Paas, Van 

Merriënboer, & Jeroen, 1993).  More recent RT task modifications include the implicit-

association task (IAT) (Greenwald, McGhee, & Schwartz, 1998), lie detection (Walczyk, 

Igou, Dixon, & Tcholakian, 2013), and even stress discrimination (Setz, et al., 2010).  

When applied to system interactions, the different variables are the systems in question, 

and any increase in RT would show that there was an interaction. 
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Accuracy 

A hit is a correct answer to a question about the stimulus (e.g. did a letter appear?); 

a miss is an incorrect answer to the same question type.  One way to use this information 

is in the form of d′, a simple relationship of hits to false alarms.  The problem is that d' is 

a dimensionless task–dependent statistic; a higher value simply indicates that the signal is 

easier to detect (Macmillan, 2002).  Speed and accuracy are the general variables of in-

terest and are measured in the RT and error rate format.  There is a trade-off, known as 

the speed–accuracy trade-off (SAT), between these variables.  The SAT has a neurologi-

cal basis showing saccadic response tasks activate the superior colliculus and the lateral 

intraparietal area (LIP), and motor response tasks activate the primary motor cortex rather 

than the associated sensory areas (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 

2010).  This revelation on SAT origins makes haptic–visual duel sensory input a prime 

location for study on embodiment theories (Ashenfelter, Boker, Waddell, & Vitanov, 

2009).  One could also see implications for systems theory, provided the DV involved 

activates the primary motor cortex and the occipital lobe simultaneously making nonline-

ar analysis an ideal analytical method. 

Limitations 

The choices for analyzing performance data are often problematic.  Observations in 

power law show that performance is not a linear process (Bak, 1996). Any linear measure 

performed on a nonlinear process will be task-dependant and only show a temporly-void 

representation of the specific data point separated from the system’s entirety (Douc, 

Moulines, & Stoffer, 2014).  The general options, standard summary statistics, 

OLS/GLM, and ANOVA fall into this category and fail to account for the extraneous var-
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iables due to their rigidity.  To better account for these variables one can work with the 

nonlinear nature involved and model the system as it transpires in time (Abraham, 

Abraham, & Shaw, 1990). 

An alternative 

A measure that has already been found to be task-independent is complexity 

(Robinson, 2001).  The ability to extract this measure from a time series would create a 

way to bypass current dependency on linear task-dependent measurements.  **Both 

speed and accuracy are a coupled system (Wickelgren, 1977); if one desires a task inde-

pendent measure for cognitive load, one would need to look for another difficulty meas-

ure.  Extracting this dimension from a time series would create a way to bypass current 

dependency on linear task-dependent measurements.   

Time Series Analyses 

Time series are different from static data; for example, they violate the independent 

samples assumption (Shumway & Stoffer, 2011; Douc, Moulines, & Stoffer, 2014).  In 

studies where participants contribute only a single data point (perhaps a mean) to a col-

lective data set, the system/participant resets to time zero between runs.  This reset does 

not happen when participants contribute multiple data points across time; performance is 

related to performance at previous times and to future performance.  This relationship 

between past and future is known as an autocorrelation.  Time series analysis proceeds 

from a plot of the raw data that reveals maxima, minima, central tendency, trends, clus-

tering, or other features indicative of anomalies or structural issues that need resolution 

before proceeding.  This analysis type is a three-step process.  The first step is a pre-

whitening process that involves removing autocorrelations and smoothing the time series.  
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The second step is decomposition, which involves using various techniques to extract da-

ta from the time series.  Finally, the third step is analysis where one makes meaning of 

the presented information.  

       

Pre-whitening. 

When analyzing a time series the first thing one should do is observe the raw data 

plotted out.  From this plot (Figure 1), one can quickly decipher the maximum, minimum, 

and possibly mean data points; it is also possible to see overarching trends, data cluster-

ing, anomalies, linearity, and structural issues among other factors.  After looking at 

those descriptive details, one needs to recognize that a time series has a vast number of 

differences from normal statistical data.  By far the largest difference is the independent 

sample assumption violation; all samples relate to the previous trial, creating autocorrela-

tions that have to be removed.  Dealing with autocorrelations is one of the first tasks pre-

formed.  The most common way one accomplishes this task is by using an autoregressive 

algorithm that delineates the data, then rotates the data to allow for a mean with no slope, 

and standardizes it around a zero mean, much like z-scores (Figure 2).  In our sample 

 

  Figure 1.  One time series created from participant 1 block 1.   
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(Figure 1) the data has very little linear slope to it so we do not need to delineate, but note 

that after we remove autocorrelations (Figure 2), the data is now set around a mean of 0.  

The output for this section still has large spikes and trends that one needs to account for 

in the next process.  

 

Smoothing.  

The next section in the pre-whitening process is to select and apply a smoothing al-

gorithm (Shumway & Stoffer, 2011).  The most common process employed here is a 

moving average algorithm.  In this process, one averages the first 𝑛𝑖  (example slots [1,2] 

on Figure 3) numbers from a data set together.  Then one averages 𝑛𝑖+1 (example slots 

[2,3] on Figure 3).  This process continues until the end of the data set.  One then drops 

any final remaining numbers.  One can use any set size he/she wants with this process; 

the larger the set the smoother the time series will be.  It is important to note that using 

Figure 2.  An ARIMA procedure is applied to figure 1 to remove autocorrelations.  
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sets that are too large for the time series will erase sessional trends from the data, making 

it linear in nature. 

        

The output from the pre-whitening processes is smoothed and standardized, making 

it ready for decomposition.  The most common model for this process is the Auto-

Regressive Integrated Moving Averages model (ARIMA)
 Eq1

.  This portion is an art form 

that relies on knowledge of one’s data to know the proper correction level.  Although 

standardizing the data is a safe process, over smoothing a time series can radically alter or 

even destroy one’s data.  Although it is academically accepted, the smoothing process is 

frowned upon in several statistics circles, and mostly unnecessary in our situation.  For 

this reason, minimal smoothing technique usage will be performed in this study.  One 

should also note that wavelet transforms are the derivative of a smoothing function; the 

larger the scale, the smoother the time series will be, further reducing our need to smooth 

the time series as one already accounts for roughness in the system (Sun & Tang, 2002).  

                                                 
Eq1

 (1 − ∑ 𝜙𝑖𝐿
𝑖𝑃

𝑖=1 )1 − 𝐿𝑑𝑋𝑡 = 𝛿 + (1 + ∑ 𝜃𝑖𝐿
𝑖𝑞

𝑖=1 )𝜀𝑡 

Original Numbers Moving Average 

24

13 18.5

10 11.5

21 15.5

6 13.5

18 12

13

Figure 3: A moving average algorithm applied to a random number set. 
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This transformation allows us to remove the noise from the signal using thresholding 

techniques instead of moving averages.        

Representation 

The scale at which a system is measured directly influences how coupled location 

and velocity are to each other (Abraham & Shaw, 1992).  Scale in the present scenario is 

how close one looks at a signal, and velocity equates to temporal accountability.  The 

smaller the scale we use, the less temporal accountability we will have.  The way around 

this issue is to use probabilistic terms and measure using multiple wave frequencies at 

multiple locations.   

One common method employed to work around this coupling issue is the Fourier 

transform (ℱ) (Bracewell, 1986; Strang, 1993).  If one is mapping a function in R, the 

formula takes the equasion
Eq3

, forcing one to “freeze” the signal at temporal location ƒ(𝜒).  

If one desires variables to be located temporally, an inverse function is used
Eq4

.  This 

freezing allows one to focus in on either spatial or temporal signal aspects by sacrificing 

the ability to view the other.  Using ℱ is useful for mapping functions requiring time-

frequency relationships so long as one is not attempting to localize the signal.  This trans-

form has some associated issues.  The first issue is that ℱ assumes signals are infinite se-

ries segments; this assumption may be at odds with most biological systems as they are 

created or destroyed at intervals and do not last forever.  The second issue is the inability 

for ℱ to localize changes; any interaction with the signal will cause effects over the sig-

nal’s entirety.  In order to achieve a simultaneous time and frequency representation, one 

needs to use a continuous wavelet transform (CWT). 

                                                 
Eq3  ƒ̂(𝜉) =  ∫ ƒ(𝜒) 𝑒−2𝑖𝜒𝜉𝑑𝜒

∞

−∞
 

Eq4  ƒ(𝜒) =  ∫ ƒ̂(𝜉) 𝑒2𝑖𝜉𝜒𝑑𝜉
∞

−∞
 



PRIMARY MOTOR CORTEX STIMULATION AFFECTS GUIDANCE                    16 

Decomposition (Why not Fourier). 

In the second phase, time series decomposition techniques are employed.  This step 

involves selecting how one wants to represent the signal.  Depending on choices such as 

regression analysis, Fourier analyses, wavelet analysis, or the many other methods the 

end-result from the processing will be drastically different.  

Performing regression analysis requires minimal alteration to the series.  In effect, 

this is the result of over-smoothing until all that is left is the mean (Shumway & Stoffer, 

2011).  Although this method will display trends and allow for prediction models, it is 

often the least effective analytical method as it fails to account for sessional trends and 

frequency domain alterations.  Researchers usually perform regression analysis on the 

time domain in a time series. 

A Fourier analysis is the classic signal analysis tool.  This tool can be used to dis-

play the time domain or the frequency domain and requires little alteration to the signal 

(Shumway & Stoffer, 2011).  Its inability to display both the time and frequency domain 

and the inability to localize changes in the system can be crippling for many researchers.  

One attempt to circumvent this crippling effect is to cut the time series into segments, but 

this process raises another issue.  If one wishes to perform analyses on a signal thousands 

of cases long, and needs fine grain detail, he/she will have to break the signal into hun-

dreds of segments.  When there are alternative methods, it becomes difficult to justify this 

analysis.      

The preferred method of choice by researchers when needing simultaneous time and 

frequency domain analysis with fine grain detail is wavelet analysis (Douc, Moulines, & 

Stoffer, 2014).  Although it requires drastic alterations to the signal representation, it is 
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unparalleled in its ability to localize changes in both domains and provides easy-to-read 

output.  

Wavelet Transform Modulus Maxima 

Wavelet Transform Modulus Maxima (WTMM) is a means to represent the fine-

grain structure of signals (Walker, 2008).  The WTMM method uses continuous wavelet 

transform rather than Fourier transforms to detect singularities, otherwise known as dis-

continuities or areas in the signal that are not continuous at a particular location.  WTMM 

is useful when for signals with multiple fractal dimensions or when simultaneous time 

and frequency domain detail is desirable (Douc, Moulines, & Stoffer, 2014).  WTMM, 

often referred to as a "mathematical microscope," is able to display multiple simultaneous 

scales making it easier to sort signal information out from noise, sections of the time se-

ries that may be extraneous or chaotic.     

Wavelets and scales (windows).   

When performing this analysis type one first needs to select a mother wavelet.  The 

mother wavelet is the ruler by which all rulers in this type of analysis exist and is the un-

modified version of the daughter wavelets used in the next section.  Each wavelet type 

has a different sensitivity level making the choice an important one that depends on the 

signal at which one is looking (Walker, 2008; Douc, Moulines, & Stoffer, 2014).  In 

terms of choosing the mother wavelet, a wavelet’s usefulness is normally determined by 

its numbers of vanishing moments (Sun & Tang, 2002).  A vanishing moment is deter-

mined by the number of polynomials required in the equation to create it (Mallat, 2009).  

A wavelet with two vanishing moments is ideal for processing velocity signals.  In the 

current study, as the study is using a time series based on hand movements to detect ob-
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ject recognition speed and accuracy, one would use the Gaussian second derivative (Mex-

ican Hat
Eq11

) wavelet (Figure 4) which has two vanishing moments.  

 

Iterations and correlations.  

The next step in the wavelet transform modulus maxima (WTMM) method was to 

use a continuous wavelet transform (CWT) to convert the data into a graph.  This conver-

sion process involves applying the wavelet to the time series at differing periods and tak-

ing the correlation coefficients for that scale (a) and location (b) and creating a correla-

tion matrix from the corresponding values (Figure 5).  One can then assign these values 

colors and plot them as a heat-map (Figure 6). 

                                                 

Eq11
 (𝑡) =

2

√3𝜎𝜋
1
4

(1 −
𝑡2

𝜎2)𝑒
−𝑡2

2𝜎2 

Figure 4.  A gaussian2 wavelet shown at multiple scale variations.  
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   One can then use this heat-map to expose fractal properties visually and create the 

signal’s graphic profile.  The x-axis displays the fractal’s temporal aspects, allowing us to 

track changes in the converted TMU sequence.  The y-axis the scale is displayed showing 

recursion over time and outlining nested systems.  The dark lines prevalent in the figure 

show zero-correlation areas, known as separatrices, dividing the system state-space and 

outlining any bifurcations as the system descends into chaos.  One should note that this 

chaos is not random or uncontrolled fluctuation in the system, but it is a resolution factor 

and our current perceptual and technological limitations. 

Figure 5: Wavelet being applied to a time series in the CWT process. 
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Maxima and Singularities.  

In order to gain a more clear view, one needs to outline the maxima in the CWT 

image and abstract them to create a WTMM tree structure (Figure 7).  One property ob-

served in local singularities is that they suffer from exponential decay in the WTMM tree 

structure.  Maxima ridges caused by noise, especially white noise, do not proliferate to 

large scales (Mallat & Hwang, 1992).  More simply stated, the higher the scale that a 

branch reaches, the less likely that it is due to noise allowing us to observe a visual ver-

sion of a p-value.  This also means that on its own WTMM is not appropriate for ultra-

high frequency signals, as they will also display as noise (Sun & Tang, 2002).  There are 

ways to overcome these phenomena, but they are not necessary at present.  Using thresh-

olding techniques, one is able to isolate the probable signal branches from the noise and 

create a basic outline using the maxima peaks.  Using these peaks to regenerate the signal 

one is able to localize changes in the signal without affecting the system’s entirety. 

Figure 6: Outlining the contour lines of a CWT in order to create 

the WTMM tree structure. 
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Measuring the System 

Isolating the signal from the noise using WTMM is only part of the process; there 

are multiple measurements worth extracting from the remaining signal and multiple ways 

to extract them.  Unlike linear measurements such as d′, these measures are often multi-

dimensional; meaning the way they are represented determines their use.  The more 

common measurements— Hurst exponents, Holder exponents, and Fractal Dimension—

each reveal different aspects of the signal.  

Hurst exponent.  The Hurst exponent (H), also referred to as the "index of long-

range dependence,” quantifies a time series tendency to regress to the mean or to cluster 

in a particular direction (Kleinow, 2002).  A value in the range 0.5–1 indicates a time se-

ries with positive long-term autocorrelations, meaning a high value in the series will fol-

low other high values and will rise with time.  A value in the range 0 – 0.5 indicates long-

term switching between high and low values in a time series; single high values will like-

Figure 7: Maxima contour lines abstracted from the CWT plot.   
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ly be followed by low, with this tendency lasting a long time into the future.  A value of 

H=0.5 indicates a completely uncorrelated series.  As one already removed autocorrela-

tions, this value should remain fairly close to H=0.5, but local estimates of Hurst values 

can be determined using the formula 𝐻 = 2 − (ƒ(𝛼)).  This value is a local Hurst and not 

a guarantee of long-term dependencies. 

The Holder exponent.  The Holder exponent (𝛼), also known as the “singularity 

exponent,” quantifies the level of roughness in a system (Mallat, 2009).  On the Holder 

spectrum, a rougher state-space is chaotic, a smooth state-space is orderly, and everything 

exists in the gradients in between.  The median 𝛼 depends on how the measurements in 

the spectrum are standardized.  Often, as is the case in this paper, zero is the line on the 

graph that divides chaos on the negative side and order on the positive side.  The higher 

the 𝛼 value, the more orderly the system is and the lower the value the more chaotic it is.  

Another important factor about 𝛼 is the range between 𝛼(𝑚𝑎𝑥)and 𝛼(𝑚𝑖𝑛).  The larger the 

range, the more sensitive the system is to fluctuations.   

Fractal Dimension.  Mathematically a dimension is the number of points required 

to represent a system.  A single point is zero dimensions, a line is one, and a plane is two.  

In systems, this dimensionality works the same way with one exception.  The closer one 

looks at a system, the more numerous interdependent systems one will see.  How close 

one looks is referred to as the scale.  How these differing scales relate to each other is the 

fractal dimension.  This measurement is used to assess system complexity (Mandelbrot, 

1983).  If one looks at any independent system part, one will likely find base biological 

functions that allow proper performance.  Investigation into how these parts work may 
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allow us to reassemble a model that more accurately represents the way guidance works 

in a dynamical way, removing some unnecessary compartmentalization in the process. 

   Multifractal spectra.  By tracking how often a specific 𝛼 value appears, one can 

determine the fractal dimensionality of a system using the continuous function ƒ(𝛼) as it is 

related by a Legendre transformation (Halsey, Jensen, Kadanoff, Procaccia, & Shraiman, 

1986; Lyra & Tsallis, 1998).  The easiest way to do this is by using a multifractal spec-

trum.  In the multifractal spectrum, one is graphing 𝛼 on the x-axis to determine ƒ(𝛼)on 

the y-axis.  By displaying the values like this, one can quickly see several data features.  

The maximum ƒ(𝛼) value is also the Hausdorff Dimension D(box) making it another com-

plexity measurement.  Viewing 𝐷(𝐵𝑜𝑥) as the non-negative real number associated with 

any metric space, one can further generalize the notion of the dimension of a real vector 

space.  For example, 𝐷(𝐵𝑜𝑥) of a point is zero, a line is one, and a plane is two.  One can 

also observe the location 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥; these locations are also known as 𝐷∞ and 𝐷−∞ 

and are respectively where measurements are most concentrated and most rarefied.  Ob-

serving the graph shape and consistency as a whole allows for quick complexity and sta-

bility assessments in the system.  The narrower the spectrum is  𝐷∞ − 𝐷−∞  the less sen-

sitive it is to temporal scales.  The closer this number gets to zero the more likely it is to 

be mono-fractal in nature.  Using this layout it is also possible to determine the entropy 

index (q), a measure of uncertainty contained in the system
Eq12

 (Lyra & Tsallis, 1998).  

As task complexity further equates to cognitive load, one can make task-independent vis-

ual assessment of the cognitive load involved in a system. 

                                                 
Eq12

  
1

1−𝑞
=

1

𝛼(𝑚𝑎𝑥)
−

1

𝛼(𝑚𝑖𝑛)
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Self-organization of performance (predictions)  

In the current context, the antecedent to chaos is order and this correlates on the 

multifractal spectrum as positive or negative values on the x-axis (𝛼).  One can think of 

order and chaos as the amount of rules the system follows.  Some rules are required to 

predict the system, but too many rules and nothing interesting will ever happen.  Chaos is 

simply the flexibility within the rules.  A self-organizing system naturally trends to chaos 

or order like every other system, but after straying too far from its balance it will correct 

itself by altering the rules.  This process should present itself in a natural pull towards 

neutrality on the multifractal spectrum (𝛼= 0) that coincides with a change in speed or 

accuracy.   

Replication of near-hand effect.  Festman et al (2013) showed that there are stim-

ulus detection performance benefits from nearness-to-hand.  By replicating these benefits, 

we have a mechanism to test our cognitive load measurements against and a tool to show 

the efficiency using complexity measures can provide.  Specific measurements are useful 

for specific situations, but sometimes one needs to know general rules for general 

measures.  Task-independent measurements are more generalizable and applicable to sit-

uations that may otherwise be untestable.   

More subtle effects (potential to see SOC).  Orderliness in the signal appears as 

positive or negative 𝛼 values in the multifractal spectrum.  This orderliness allows the 

potential to observe self-organized critical aspects that can be used to create many other 

task-independent measurements.  These effects would be undetectable with linear tech-

niques (Douc, Moulines, & Stoffer, 2014; Mallat, 2009).  As complexity is a non-linear 
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measure, its multidimensionality may be useful in teasing out other non-apparent fine-

grain data features.  Revealing self-organized critical systems allows for better modeling 

techniques and more natural views of cognition.  One can use these features to make a 

pseudo-predictive long-term forecast by indicating that our visual system exhibits power-

law-like behaviors.  Further assessment of task-independencies involves Chinese partici-

pant observing Chinese stimuli to be included.  As the two languages and cultures are 

drastically different, normal descriptive measures should differ slightly, while task-

independent measures should remain relatively the same.  This postulated difference al-

lows for investigation into whether or not complexity is task-independent as claimed or if 

it is inadequate. 

Method 

Participants 

Ten right-handed, university students (five native English speakers and five native 

Chinese speakers, each with normal or corrected vision) volunteered for individual 30-

minute sessions over 4 weeks.  (Including two native languages reduced the potential for 

artefacts of alphabet choice.)  Each session was separated by at least one hour to reduce 

potential fatigue effects and the first 40 trials of each session were devoted to practicing 

the mouse-manipulation-plus-target-identification coordination task before data collec-

tion; each participant contributed about 1440–1920 trials in total. 

Materials 

Each participant stood upright before a platform that constituted the top level of a 

two-level, customized computer desk.  Above the platform, held by an articulating swing 

arm, was a 22-inch monitor (1366 x 768 pixel resolution, 65 x 41
o
 usable viewing field, 
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centered at 30
 o
 above the horizon) connected to Dell OptiPlex 780 [2.9GHz Core2 Duo 

processer 4GB Ram Windows Vista 32-bit].  To the left was standard keyboard that was 

in view and accessible to the participant's left hand.  On the bottom level, under the moni-

tor/keyboard platform and thus out of view, was a Logitech MX510 wireless optical 

mouse with its software acceleration disabled and its speed adjusted such that the mouse-

speed to hand-speed ratio was 1:1.  Bumpers at the sides of this desktop kept the partici-

pant's right hand inside a span of about 50 cm of longitudinal movement.  A 1200 Hz 

tone was the auditory signal to slide the mouse smoothly from the left side of the desktop 

to the right.  

 
Figure 8: Schematic illustration of the experimental setup.  (A) Side view.  (B) Bird's eye 

view of the hands and their respective tasks. The right hand moved continuously from left 

to right and back again on a desktop under the display.  Image adapted from Festman et al 

(2013).  

Each trial began with a fixation point, a left-to-right centered reticle (sized 2 x 2
o
) 

in continuous view at 6
o
 below midpoint.  The reticle's appearance coincided with a 1200 

Hz tone that signaled the beginning of the trial.  Stimulus presentation was a controlled 

by custom Python code that rendered the stimuli off-screen before display (pre-cache) for 

display speeds near monitor refresh rate.  The target stimuli (rotated characters T or L for 

English speakers and 彳 and 艹 for Chinese speakers) were sized 2.4
 
 x 2.4

o
.  They ap-



PRIMARY MOTOR CORTEX STIMULATION AFFECTS GUIDANCE                    27 

peared on the left or right bottom corners of the screen while the right hand was at one of 

six possible mouse trajectory points during the trial.  The visual stimulus remained for the 

length of the SOA at that mouse location before being occluded by a square black mask 

until the trials conclusion.   

Procedure 

Each session included 1 block of 240 trials (two target characters x two target loca-

tions x six mouse locations x 240 repetitions) and took under 30 minutes.  Each block 

consisted of 240 trials with probe presentation (10 trials per condition).  Each trial began 

with resetting the mouse curser to the left screen location and a 1200 Hz tone that sig-

naled the participant to slide the mouse smoothly from the left to the right side of the 

desktop (about 52 cm).  Thus, the mouse's trajectory crossed six critical points on the 

desktop:  3 left and 3 right (all equally spaced 8.6cm measurements) while moving left-

to-right.  Trials were separated by an instruction screen requesting keyboard input for the 

character displayed in the previous trial. 

Selection of target character, target location, and mouse location were randomized 

across trials using a separate randomizer for each IV (character, location, and mouse lo-

cation).  The target appeared when the mouse was at one of the six mouse trajectory 

points and remained visible for the length of the SOA at that mouse location before being 

occluded by a square black mask until the trials conclusion whereupon the participant 

used her or his left hand to indicate the target's identity by pressing T or L the on the 

keyboard (彳 and 艹 stickers placed over the T and L keys for Chinese characters).  

SOAs (the time between stimulus presentation and masking) were continuously adjusted 

via an adaptive staircase procedure.      



PRIMARY MOTOR CORTEX STIMULATION AFFECTS GUIDANCE                    28 

The session began with a 300ms lag between the onset of stimulus presentation and 

stimulus masking which decreased by 25% after every two consecutive correct responses 

but increased by 25% after each error response such that accuracy remained at the 70% 

average detection rate (between 65% and 75% accuracy overall).  This difference is about 

10% tighter than Festman et al. due to SOAs being computer adjusted instead of manual-

ly.  The first 40 trials provided sufficient practice that SOAs were reduced to <225ms on 

average, too short an interval for most participants to produce a stable eye fixation.  

SOAs were continuously recorded and adjusted by the computer after each response and 

used as the inputs to the WTMM procedure. 

Data Analysis 

 Separation into blocks.  To best view these system types one desired as little 

original data modification as possible.  The data are sorted as follows; all SOA’s attached 

to incorrect responses were discarded.  Each participant block was sorted according to 

presentation order.  Using hand location as a temporal measurement, one can create a 

time unit 6 measurements in length that one can use as a temporal measurement unit 

(TMU).  One can then specify multiple TMUs using the stimulus location, creating a 

strophic plane system view (Abraham & Shaw, 1992) that gives one the completed time 

series (Table 1).  To allow for more divergence between blocks and save space the first 

and last blocks were included in the description, and further information is provided us-

ing an internet link (see Appendix A).  

Participant Beginning End 

English Participants 
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Participant 1 

 
 

Participant 2 

  

Participant 3 

  

Participant 4 

  

Participant 5 

  

Chinese Participants 

Participant 6 

 
 

Participant 7 
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Participant 8 

  

Participant 9 

  

Participant 10 

  

Table 1:  The raw time series for each participant’s first and last block, SOA(x-axis max=900) and Time(y-axis 

max=200). 

 Pre-whitening.  After creating a time series an Auto-Regressive Integrated Mov-

ing Average (ARIMA (0,1,3)) algorithm was used to remove any autocorrelations (Table 

2). 

Participant Beginning End 

English Participants 

Participant 1 

  

Participant 2 

  

Participant 3 
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Participant 4 

  

Participant 5 

  

Chineese Participants 

Participant 6 

  

Participant 7 

  

Participant 8 

  

Participant 9 

  

Participant 10 

  

Table 2: The pre-whitened time series for each participant’s first and last block SOA(x-axis max=600, min=-400) and 

Time(y-axis max=200). 

 Decomposition into wavelets.  The mother wavelet chosen for this process is the 

second derivative of the Gaussian wavelet, otherwise known as the Mexican Hat wavelet.   
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 Iterations and correlations.  This transform was performed using R and the 

waveCWT package.  This created a unique CWT for each block that each participant ran 

(Appendix A).  

Maxima and singularities.  Outlining the maxima and extracting singularities cre-

ated a unique WTMM profile for each block that each participant ran (Appendix A). 

Holder exponents.  After extracting the Holder exponents, a graph with 𝛼on the x-

axis to determine ƒ(𝛼)on the y-axis, the multifractal spectrum, was created for each block 

each participant.  This information was then use for  analysis.  

Results 

Near hand effect  

A significant hand position effect was found when the data was split into separate 

one-way repeated measures ANOVA’s for the each stimulus location (left and right dis-

play side) on mean performance in stimulus discrimination, with hand position (six lev-

els) as within-subjects variable.  When the probe is on the left screen side a significant 

effect was observed F(5, 60) = 3.09, p = .015, 𝜂𝑝𝑎𝑟𝑡𝑖𝑎𝑙 
2 = .21, power = .842.  When the 

probe is on the right screen side, another significant effect was observed F(5, 60) = 4.232, 

p = .002, 𝜂𝑝𝑎𝑟𝑡𝑖𝑎𝑙
2  = .26, power = .945.  This finding indicates a strong preference for the 

hand being closer to the right screen side (Figure 9). 
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We then classified the trials according to hand proximity to the stimulus (near, me-

dium, and far), each section correlating to approximately 7.5 inches of hand movement 

area, to reveal another significant effect.  A two-way repeated measures ANOVA for 

stimulus locations (two levels) and hand proximity (three levels) as within-subjects vari-

ables using mean correct stimulus discrimination percentage as the measure was conduct-

ed revealing that hand proximity had a significant effect F(2, 24) = 31.74, p < .001, 

𝜂𝑝𝑎𝑟𝑡𝑖𝑎𝑙
2  = .73, power = 1.0, (Figure 10).  No significant preference for either stimulus 

presentation side was observed (p = .07).                        

70

75

80

85

90

95

100

1 2 3 4 5 6

Figure 9.  The x̅(SOA) in milliseconds for the total 

time series grouped by mouse location.  
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Task complexity across Ps, mean Holder exponent, and Range across each block 

/English and Chinese  

    English     

Block SOA(x̅-max) SOA(x̅-min) Accuracy(x̅) D(range) D(x̅-avg) 

1 0.714583333 0.026166789 71.33333333 0.746666 -0.04024 

2 0.57375 0.023720703 72.83333333 0.50186 0.264002 

3 0.624375 0.020009766 72.25 1.312771 -0.186902 

4 0.5625 0.020853272 70.16666667 1.351442 0.173166 

5 0.5015625 0.009960938 72.08333333 1.169745 -0.087008 

6 0.5375 0.022338867 71.94444444 1.273203 0.101724 

7 0.52734375 0.007910156 71.25 0.784629 -0.233413 

8 0.478125 0.003787232 71.25 2.100837 0.045322 

          Chinese     

Block SOA(x̅-max)  SOA(x̅-min)  Accuracy(x̅)   D(range)  D(x̅-avg) 

1 0.49125 0.007111416 73.75 1.275486 -0.426013 

2 0.59875 0.010644531 76.16666667 1.218285 -0.075482 

3 0.5175 0.006256771 75.33333333 1.536675 -0.200093 

4 0.4725 0.005373611 73.75 1.210975 -0.088201 

5 0.5025 0.007567063 74 1.579636 -0.218527 

6 0.46875 0.006317139 74.44444444 0.810891 0.099613 

          Grand Total     

0.71

0.73

0.75

0.77

0.79

0.81

Near  Med  Far

Left stm Right Stm

Figure 10.  Mean percentage correct by hand 

location compared to stimulus. 
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Block SOA(x̅-max)  SOA(x̅-min)  Accuracy(x̅)   D(range)  D(x̅-avg) 

1 0.960208333 0.029722497 72.54166667 1.011076 -0.233126 

2 0.873125 0.029042969 74.5 0.860072 0.09426 

3 0.883125 0.023138151 73.79166667 1.424723 -0.193498 

4 0.79875 0.023540077 71.95833333 1.281209 0.042482 

5 0.7528125 0.013744469 73.04166667 1.397462 -0.160075 

6 0.771875 0.025497437 73.19444444 1.042047 0.100668 

7 0.52734375 0.007910156 71.25 0.784629 -0.233413 

8 0.478125 0.003787232 71.25 2.100837 0.045322 
Table 3: The x̅-SOA(max), x̅-SOA(min), x̅-Accuracy, x̅-D(range), and x̅-D(-∞) for each block (split into English, 

Chinese, and Total). 
 

 The WTMM output revealed that the task complexity across participants was rela-

tively stable, fluctuating between -0.5 and .5.  These findings indicate that one is observ-

ing a relatively well-developed system in all participants.  In all participants, 𝐷(𝐵𝑜𝑥) =

1 indicating that at some point in every trial there was a direct line of sight between the 

participant and the stimulus.  One can also notice that in all participants D(∞) < 0 indicat-

ing the presence of chaos in all systems.  As D(-∞) approaches higher positive numbers 

one can observe that the system is becoming more ordered.  When D(-∞)≈ D(∞)*-1 it indi-

cates that the system is more likely to be mono-fractal.  Participant 7 is the only partici-

pant to be able to score above our cutoff, indicating that the task was overly simple; this 

difference is reflected in the increased order found on the multifractal spectrum.  Alt-

hough excluded from the overall linear analysis, this participant was included in the 

charts to show the increased level of order that corresponded to the relative easy time the 

participant had with the task. 

Multifractal spectra (for each P –describe performance).   

P SOA(avg-max)  SOA(avg-min)  Accuracy(avg)   D(range)  D(max-avg) 

      
 English Participants 

  
    

1 675.000 12.625 69.600 0.584 0.225 

2 506.250 24.250 67.100 0.488 0.180 
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3 525.000 29.700 72.750 0.595 -0.010 

4 558.350 9.500 72.900 0.389 0.420 

5 675.000 26.095 73.150 0.507 0.260 

Total English 587.920 20.434 71.100 0.513 0.215 

      Chinese Participants     

6 478.150 5.300 74.400 0.647 0.115 

7 450.000 0.266 77.100 0.296 0.560 

8 575.000 13.000 73.300 0.413 0.350 

9 506.300 10.165 72.050 0.545 0.265 

10 478.150 17.750 70.800 0.567 0.055 

Total Chinese 497.520 9.296 73.530 0.493 0.269 

Grand Total 542.720 14.865 72.315 0.503 0.242 

Table 4: The x̅-SOA(max), x̅-SOA(min), x̅-Accuracy, x̅-D(range), and x̅-D(-∞) for each participant (split into 

English, and Chinese). 
 

The relatively stable pattern of ƒ(α) for D(∞) indicates that in all situations the par-

ticipants were in a relative level of perceptual awareness.  This phenomenon is likely an 

artifact of the experimental environment as is the overall shape.  The silver ratio shape is 

also a reflection of the task.  Essentially, it indicates that the participant’s search pattern 

involved repeatedly cutting the screen in half until he/she acquired the target.  In partici-

pants 1,2,3, and 8 one can observe both a decrease in chaos in the system D(-∞) and a de-

crease in  x̅(SOA) in each SOA.  One can also witness the system becoming more chaotic 

and then regressing toward the mean in the subsequent trials.   

As noted earlier, participant 7 showed correct responses that were abnormal; the 

relative ease this participant had with the task is reflected in the D(-∞) at 0.83.  The stable 

x̅(SOA) and accuracy across trials leads us to believe that the decrease in D(-∞)  in the final 

trial may be due to the task becoming overly simplistic and the participant losing interest.  

Participant 6 and 9 were relatively stable across all measurements, but the spectrum re-

veals that the system is tightening up.  Previous trials of this participant indicate that they 

oscillate between ordered and chaotic blocks and rapid regress toward the mean in the 
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following blocks.  This finding, combined with the relatively high over all accuracy (both 

hit 75%),  indicates that these participants both have well developed visual search sys-

tems that exhibit smaller over changes between blocks.   

Participants 4 and 5 both show a drop in order between the first and last blocks.  

Once again, one notices the rapid oscillations between higher order and lower order be-

tween blocks, with the regression to the mean observed with all the others.  Participant 10 

remained stable over all the blocks, indicating little learning.  As the accuracy was lower 

than the other stable participants’ accuracy, she was not included in the group that found 

the task too simple at first.  With further investigation, one can notice that the  ƒ(𝛼) for 

this participant was tighter than the other participants ƒ(𝛼), indicating an increased con-

stant alertness level.  In light of that finding, we decided to investigate further.  By link-

ing all the blocks together, a longer time series was created for further analysis.  The re-

sulting multifractal spectrum (Figure 11) indicated that this participant likely also found 

this task to be easy, demonstrated  by the participant’s behavior exhibiting a high overall 

order and little variability over the blocks. 
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Participant Beginning End 

Participant 1 

  

Participant 2 

  

Participant 3 

  

Figure 11: Multifractal spectrum for participant 10, all 

trials combined.  
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Participant 4 

 
 

Participant 5 

 
 

Participant 6 

  

Participant 7 

  

Participant 8 

  

Participant 9 

  

Participant 10 

  

Table 5: This is the multifractal spectrum for each participant’s first and last block. 

Discussion 

Replication of near-hand effect  

Using the initial linear analysis, one can observe the findings, and the reduction in 

size due to trimming the data both closely reflected past researcher’s findings.  In the 
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graph comparisons (Figure 12), one can see that the standard error for the current study is 

comparable to prior findings, and our distance effects are more pronounced.  As we only 

moved the hand one direction Graph C should be compared to the “away” data in graph 

A, and the “toward” data in graph B.  These findings reflect a successful replication and 

closely correlate with the expected findings suggested by embodied cognition research.        

 

Figure 12: The results obtained in the Festman et al (2013) for comparison.  Graph A and 

B are the Festman results, Graph C are currently obtained results.  Figures A&B adapted 

from Festman et al (2013).  

 

Self-organization of performance   

Overall self-organization of performance was observed around the mean Holder 

exponent for all participants.  This finding indicates a self-correcting system that likely 

follows a power-law structure.  With a small x̅-D(range) (<1 for all participants) the system 

is relativity stable over the long run.  Further studies will be required to find the exact 

equation, but one should be able to model the system using a single solution equation.   

SOA as index of performance.  Although SOA change was an effective post-hoc 

indication of a catastrophic change in the system, there was little indication when that 

change would occur using it beforehand, as it is a task-dependent measure.  Also, SOA 

appears to be task-dependent as both the maximum and minimum x̅(SOA) were lower for 

the Chinese participants.  This difference between speaker types could be due to multiple 

factors, including cultural and personal history differences that would need to be evaluat-
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ed in future studies.  This is part of the issue observed with many unidimensional task-

dependent measurements, and a good example of where task-dependent measurements 

can provide obfuscated results.         

Multifractal spectra as task-independent measure of complexity.  

The multifractal spectrum did capture a task independent look at the complexity 

in the system.  Both ƒ(α) and α were stable over time and culture, reflecting that complexi-

ty is a task-independent measurement.  ƒ(α) did not appear to reflect much change for any 

participant, making it relatively inefficient in this particular task.  Changes in α were suf-

ficient to differentiate between cognitive load measurements, making it at least as effi-

cient as linear analysis. Its task-independent properties further push complexity ahead as 

an analytic tool.      

Holder.  As the task became more familiar, the Holder exponent generally became 

more orderly.  Once the level of chaos decreased to a point where the system was too 

easy, the participant adjusted the parameters naturally and increased the complexity.  This 

natural adjustment is represented as a rapid change in SOA or accuracy for the block in 

which the change occurs.  

Self-Organized Criticality.  Looking at the multifractal spectrums one can also 

see that the overall multifractal spectrum shape forms a hook with the D(∞)  approximate-

ly 2/3 up the y-axis and D(-∞) drops below the x-axis indicating that it trends to infinity.  

This hook form is the same pattern one would expect from a Cantor set (as shown in Hal-

sey et al (1986)) indicating that the participant is splitting the screen in half until the 

stimulus was discovered.  This pattern could be modeled as a singular point attractor in a 

system.    
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Task difficulty operationalized as task complexity 

Observations in the multifractal spectrum show that as the task became less diffi-

cult for the participant, the system generally became more orderly.  This process contin-

ued until the SOA adjusted enough for the difficulty to rise adding more complexity to 

the system.  These findings show that task difficulty is coupled with complexity.  Further, 

even though complexity proved to be task-independent, difficulty seemed to change as a 

function of stimulus and culture.     

Cognitive load re-conceptualized as task complexity 

This increase in difficulty also increased the cognitive load on the system.  Cogni-

tive load is related to task difficulty and subsequently results in increased complexity 

measurements.  Although cognitive load seems to be task dependent, it is different for 

everyone.  Complexity seems to be task independent, making it a more efficient meas-

urement of the system.  

 

Broader impacts (NSF, etc.) 

This study has many broader impacts, including implications in training programs 

and standardization of system complexity across scientific studies.  Another use for this 

measure could be to distinguish differences between cognitive systems and better stream-

line task model conceptualization.  With how close this task was to being a monofractal 

signal, it is not likely that it was an interaction between systems, indicating a much closer 

relationship between visual object recognition and motor control than previously suspect-

ed.  Future studies could focus on other dual-sensory interactions using much the same 

process to establish complexity indexes for various systems.    
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Appendix A 

Other Stuff 

 

  

The full dataset can 

be located at this 

location 

The folder with all 

the charts and 

graphs can be 

found here. 

The program and a copy of 

my CV can be found at 

http://1drv.ms/1cEYNZC 
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Thesis Summary Document: 

Primary Motor Cortex Stimulation Affects Guidance 

Statement of the Problem or Issue:  People observe objects close to their hands 

more efficiently than objects further from their hands.  This occurs even when the hand is 

not visible, for example, when a person is talking on a cell phone and driving.  Further 

knowledge about how this process works, and how one can measure it, could be useful in 

safer driving laws, better instrument panel layout, and the construction of more intuitive 

electronic devices.   

Brief Summary of the Literature:   Conceptually, cognitive load is the strain put 

on mental mechanisms during performance or schema creation.  Researchers often give 

people a repetitive task and measure the decline in performance as task difficulty increas-

es to study cognitive load.  Heavy cognitive load has negative task performance effects, 

no matter the type, and the cognitive load experience differs from person to person.  The 

choices for analyzing cognitive load performance data are often problematic as they are 

task-dependent and do not generalize well.  This makes research into task-independent 

variables necessary.  Complexity is one such measure that can be retrieved from normal 

cognitive load measures.  Using time series analysis techniques provides a more efficient, 

and less altered route to measurements that can account for multiple task-dependent 

measures without being attached to the specific task.   

Thesis Statement: Cognitive load can be operationalized as an individual's mul-

tifractal spectrum and measured using complexity. 

Statement of the Research Methodology:  Nonlinear time series analysis, more 

specifically I used wavelet transform modulus maxima to analyze a continuous wavelet 



PRIMARY MOTOR CORTEX STIMULATION AFFECTS GUIDANCE                    51 

transform created from a time series based off the effect hand location has on object per-

ception. 

Brief Summary of Findings: We found that cognitive load can be operationalized 

as an individual's multifractal spectrum and measured using complexity.  We also found 

evidence of visual search being a self-organizing critical system. 

Confirmation, Modification, or Denial of Thesis: 

Statement of the Significance of the Findings: SPSS was not analytically ade-

quate for time series analysis.  To circumvent this, I used the Continuous Wavelet Trans-

form (CWT) method along with Wavelet Transform Modulus Maximus (WTMM) to ex-

tract the Holder exponents (α) from the system.  Using these Holder exponents as a pow-

er law exponent I was able to use to extract the fractal dimensionality and create a mul-

tifractal spectrum.  This view allowed for easy detection of system complexity at differ-

ing times during the learning process.   

Suggestions for Future Research: In future studies it is advisable to use a 240 Hz 

monitor.  Moving forward from this location it would be interesting to use a continuous 

scale to determine hand location under the monitor.  In this scenario, it would be neces-

sary to save user profiles in order to have exact SOA’s set for each location on the moni-

tor at the blocks beginning.   
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