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Abstract: Microgrids (MGs) are becoming more popular in modern electric power systems
owing to their reliability, efficiency, and simplicity. The proportional-integral (PI) based
droop control mechanism has been widely used in the MG control domain as the setpoint
generator for the primary controller which has several drawbacks. In order to mitigate these
issues, and to enhance the transient and steady-state operations in islanded MGs, advanced
control and intelligent optimization methodologies are presented in this dissertation. First, to
improve the existing PI-based droop relationship in DCMGs, a multi-objective optimization
(MOO) based optimal droop coefficient computation method is proposed. Considering the
system voltage regulation, system total loss minimization, and enhanced current sharing
among the distributed generators (DGs), the Pareto optimal front is obtained using the Elitist
non dominated sorting genetic algorithm (NSGA II). Then, a fuzzy membership function
approach is introduced to extract the best compromise solution from the Pareto optimal front.
The drawbacks of PI-based droop control cannot be entirely mitigated by tuning the droop
gains. Hence, a droop free, approximate optimal feedback control strategy is proposed to
optimally control DGs in islanded DCMGs. Further, to gain the fully optimal behavior, and
to mitigate constant power load (CPL) instabilities, a decentralized optimal feedback control
strategy is also introduced for the active loads (ALs) in the MG. In both algorithms, the
approximate dynamic programming (ADP) method is employed to solve the constrained input
infinite horizon optimal control problem by successive approximation of the value function
via a linear in the parameter (LIP) neural network (NN). The NN weights are updated online
by a concurrent reinforcement learning (RL) based tuning algorithm, and the convergence of
the unknown weights to a neighborhood of the optimal weights is guaranteed without the
persistence of excitation (PE). Finally, a local optimal control strategy is presented to path
optimization of islanded ACMGs to enhance the transient operations while mitigating the
voltage and frequency deviations caused by the traditional droop control. Optimal state
and control transient trajectories in the d-q reference frame are obtained by Pontryagin’s
minimum principle which drives each DG from a given initial condition to their steady-state
manifold. Both simulation and experimental results are presented to validate the concepts.
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CHAPTER I

INTRODUCTION

1.1 Small Scale Power Systems and Microgrids

With the development of technological and conceptual arenas in power engineering,

smart grids have become an exciting part of modern electric power systems [1, 2]. The

integration of small scale power systems (SSPS) in these smart grids carries fascinating

features in terms of power system design and controls [3–5]. As a subcategory of SSPS,

microgrids (MGs) are equipped with its own premium, reliable and flexible power system

operations rather than in the conventional large scale macro power systems [6–9]. Distributed

generation, decentralized control, and high penetration of renewable energy are some significant

aspects that can be recognized in these MGs [10–12].

The traditional macro or large scale power system is a combination of large, high inertial

generators and bulky loads connected through long transmission lines [13,14]. It is a centralized

power system architecture that has a small number of power injections, high maintenance

cost, and complex transmission network [13]. Due to its size and centralized control, load

balancing, voltage, and frequency regulation are difficult to achieve [13,14]. Further, the large

thermal generation units produce air pollutants that make fatal environmental hazards. The

emerging issues such as increasing demand, limitations of centralized power system planning,

lack of high reliability, limited power quality urge the need of decentralized, small scale power

systems such as MGs [13,15,16].

The MG concept was initially introduced in [17] as a methodology to integrate
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distributed energy resources (DERs) along with the architecture, control and protection and

energy management of the system. It also discussed the satisfaction of customer needs such

as, enhance local reliability, reduce feeder losses, support local voltages, provide increased

efficiency through use waste heat, voltage sag correction or provide uninterruptible power

supply functions. There exist different definitions for the MG and the U.S Department of

Energy defines the MG as ”a group of interconnected loads and distributed energy resources

within clearly defined electrical boundaries that act as a single controllable entity with respect

to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in

both grid-connected or island-mode” [18]. Simply, a MG is a group of DGs, and energy storage

systems (ESSs) collectively operate to supply energy demand to the customers reliably and

efficiently even without the aid of the main grid [19]. As stated, one of the main aspects of

MGs is the integration of distributed generators (DGs) or DERs. A definition of DG resources

is given as, ”Distributed resources are demand and supply-side resources that can be deployed

throughout an electric distribution system (as distinguished from the transmission system)

to meet the energy and reliability needs of the customers served by that system. Distributed

resources can be installed on either the customer side or the utility side of the meter” [20].

The MGs can be classified into different sections according to their number of phases,

voltage level, application type, system structure, control structure, and connection method of

DGs [13,14]. Table 1.1 summarized the main classes of MGs.

Table 1.1: Classes of Microgrids.

Type MG Class

Phases Three-phase, Single-phase
Voltage level Medium voltage (1-35 kV), Low voltage (below 1 kV)
Voltage type DCMGs, ACMGs, Hybrid DC/AC MGs

Application type Utility MGs, Commercial, Industrial or Residential MGs, Military MGs
Control Centralized, Decentralized, Distributed

DG connection Electronically coupled, Conventionally coupled.

There are numerous advantages of MGs over the traditional macro power grids. Some

of the advantages are listed below [13,14,18].

• Improve the reliability and make the grid more resilient by islanding from the main

grid during any fault or outage.
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• Effective energy supply for critical loads even under main grid failures.

• Provide local support for efficient, low-cost, and clean energy.

• Reduce losses by locating generation near demand.

• Reduce grid congestion and peak loads.

• Demand-side management and customer involvement in electricity generation.

• Avoid the expensive and inefficient long-distance transmission of power.

However, the MGs have many disadvantages too. Some of these drawbacks and

challenges are discussed in the subsequent sections.

1.2 Motivation

Even though MGs carry fascinating features over the large scale power systems,

integration of DG units in MGs introduces a number of operational challenges in terms of

control and protection [13,19,21]. Some of these can be summarized as [19],

• Stability issues in regular operation and transition between modes of operation.

• Low inertia and spinning reserve.

• Control challenges such as power balance, frequency and voltage regulation.

• Bidirectional power flows and reverse power problems.

• Modeling issues due to variety of loads and distribution line properties.

• Communication problems in coordination among DG units.

• Uncertainty of load profiles and system parameters.

The simplified structure of an islanded MG is shown in Figure 1.1. Isolation switch

decouples the physical connection between the MG and the main grid. A salient feature of

a MG is most of the sources are renewable such as solar, wind, geothermal, battery energy

storage, etc. Both sources and loads are distributed across the MG, and they are connected
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to a common bus through a power electronic interface (PEI). This type of MG is called

a parallel-connected bus system since sources and loads are connected in parallel to the

common bus. There is another type of MGs called meshed MGs [22]. In the meshed MGs,

the common bus is absent and each active component has its own bus interconnected to other

buses through distribution lines. Sources in MGs are referred to as DGs which are typically

renewable sources followed by PEI. The PEI plays a significant role in the MG control as

it is responsible for the behavior of the active component connected to it. The PEI can be

any isolated or non-isolated converter such as buck, boost, buck-boost, flyback, VSI, matrix

converter, dual active bridge, rectifiers, .etc. Control of the MG implies control of these PEIs

individually or collectively.

Main DC Bus

Isolation 

Switch

~
=

=
=

~
=

~
=

AC Load

DC Load

=
=

PEI

PEI

PEI

Wind

PV

=
=

PEI
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Main Grid

Figure 1.1: Schematic structure of a simplified islanded DCMG. c© [2020] IEEE.

Since all the generation sources and loads are directly connected to the MG through a

PEI, there is no inertial element directly connected to the system. Moreover, renewable energy

sources and small scale power generation units dominate in these systems, low spinning reserve,

generation inertia, and damping exist in contrast to the large scale power systems [3, 11].

These issues make the MG a low inertial dynamical system which is difficult to control and

prone to instabilities. Therefore, new modeling tools and control algorithms are required
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to analyze and control these future power systems. This dissertation mainly focuses on

the optimization, control, and stability issues in the islanded MGs and methodologies to

overcome them. Control and optimization of MGs in both centralized and decentralized

domains are widely discussed in recent times [11, 23]. Among the MG control methods

which have been proposed recently, the most prominent primary control methodology is

the proportional-integral (PI) controller based droop control [24, 25]. Even though the PI

controller is the most simple and convenient algorithm, it has poor transient performances [26],

sensitivity to controller gains, and sluggish response to sudden disturbances [27]. Further, the

droop mechanism suffers from high load-dependent voltage deviations, poor load sharing, and

circulating current issues [28]. Therefore, advanced control mechanisms and modifications are

required to replace PI loops and droop control in MGs to operate active resources efficiently.

In any type of a MG, the control of DGs is primarily done by the droop control [25].

In the DC droop control, the load sharing is achieved by properly varying the DG output

voltage according to the measured output current [25]. The droop relationship comprises two

constant droop coefficients, namely the virtual resistance and the output voltage reference

at no load [25]. In AC droop control, DG output voltage and frequency are adjusted by

the measured active and reactive power respectively [25,29]. Here, droop relationships are

characterized by the parameters called active and reactive power droop coefficients, nominal

frequency, and voltage set point [25, 29]. Optimization of these droop coefficients to gain

desired characteristics is an elegant method to improve the traditional droop mechanism.

The application of various techniques to compute optimal droop coefficients can be found in

the literature [30–37].

In most cases, optimal droop coefficient computation requires to solve several conflicting

objectives. When there is more than one objective to satisfy, a single-objective optimization

problem becomes a multi-objective optimization (MOO) problem. Most of the existing

approaches mentioned above use the weighted sum approach to convert multi-objective to

a single objective. Improving only one objective would degrade the quality of the other

objectives due to their conflicting nature. In order to obtain the best results, this requires

the knowledge of optimum weighting factors which are generally unknown. Further, a small

change in weights may result in significant changes in the objective vectors, and significantly

different weights may produce nearly similar objective vectors [38]. Moreover, weighted sum
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approaches generate a single solution that does not provide flexibility to the decision-maker

to select a compromise solution out of a pool of equally good solutions. Hence, the best

way to attack a MOO problem is obtaining the corresponding Pareto optimal front [39] by

simultaneous minimization of the objectives and then extracting a compromise solution as

shown in this dissertation.

The drawbacks of PI-based droop control cannot be completely mitigated by merely

optimizing the droop gains. Therefore, improvements to the conventional droop relationship

are achieved by introducing novel control algorithms and appending secondary control

mechanisms to compensate for the errors introduced by the primary controller. In order to

enhance the load current sharing accuracy and to restore the local DC output voltage of

droop based DCMGs, a low-bandwidth communication based distributed control method is

proposed in [40]. Further, to achieve the same goals, an adaptive droop based distributed

secondary controller is proposed in [41] for DCMGs with cooperative voltage and the current

regulators. Moreover, the introduction of a robust adaptive control mechanism to adjust droop

characteristics to maintain proper current sharing and bus voltage stability of DCMGs can be

found in [42]. An improved secondary control methodology for DCMGs under fast-changing

load current conditions is proposed in [43] to remove the DC voltage deviation and to improve

the current sharing accuracy of the conventional droop method through voltage shifting and

slope adjusting approaches. The main limitations of the alternative droop mechanisms are,

many of these algorithms require offline tuning, communication among the other DGs in the

MG and the dependency on the primary level control actions. Moreover, optimal control,

model predictive control (MPC), multi-agent distributed control and game theoretic based

control have introduced to control DGs in MGs to overcome the issues related to PI-based

droop control [3, 11,44,45]. Besides, reinforcement learning (RL) inspired various adaptive or

approximate dynamic programming (ADP) methods have been developed to solve optimal

control problems in MG control domain [46–51]. The main limitation of most of the proposed

ADP based feedback optimal control methods is that those require persistence of excitation

(PE) condition to guarantee the parameter convergence [52]. Usually, the PE condition is

satisfied by adding a small probing noise to the control input [53, 54]. Since there is no

exact information on the required amount of noise power and the number of frequencies to

guarantee PE, adding noise is always problematic. Moreover, injecting unnecessary noise
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to the control input can make the whole system unstable and it is uncertain to know when

it is sufficient to remove the probing signal [55]. Specially, in DCMGs, the control input

is the duty cycle which is bounded between zero and one and hence, even adding a small

noise to the duty cycle can make undesirable large variations in output voltage and current.

Motivated by these facts, an approximate optimal feedback control method is proposed in

this dissertation which eliminates the aforementioned constraints. The controller discussed

here is an online, nonlinear feedback controller, which does not require any offline training.

Hence, the proposed controller is very suitable for efficiently control DGs in DCMGs.

Nonlinear load profiles such as constant power loads (CPLs) often introduce instabilities

to the power system due to their negative impedance characteristics, lack of damping and

generation inertia [56–58]. Mitigation of CPL instabilities has been addressed in the literature

to some extent [56,57,59,60]. Among them, hardware-oriented methods focus on the addition

of resistive loads, the inclusion of filters, load shedding, and placement of energy storage

devices [56,61]. However, these approaches are costly, require more space, and lossy which

make them neither efficient nor effective. In contrast, control-oriented methodologies have

been developed such as linear controllers [62], boundary controllers [63], game-theoretic

controllers [3, 51], and sliding mode controllers [64, 65]. The power buffer is an effective

method of mitigating instabilities caused by nonlinear load profiles, which has been introduced

in [66] and discussed in [3, 51, 67–69]. The main drawback of all the existing power buffer

approaches is they either provide open-loop numerical solutions or require communication

among neighboring active loads. Motivated by the lack of decentralized feedback optimal

stabilization control approaches to optimally control active loads such as power buffers, this

dissertation introduces a novel control algorithm inspired by the ADP approach.

Transient optimization of MGs and parallel inverter systems has been discussed in the

literature [32,33,70,71]. However, most of the approaches assume the small-signal model of

the system which makes the controller vulnerable to large-signal disturbances. Even though

a transient improvement is considered in the aforementioned approaches, most of them do

not focus on the optimum transient response or the path optimization of the individual DGs.

Generation of optimum control and state trajectories that drive the system from a given

initial condition to the desired steady-state equilibrium is beneficial in MG control and it

has not been thoroughly addressed in the ACMGs domain yet. Therefore, a local optimal

7



control approach is introduced in this dissertation to transient path optimization of the

individual inverters in an islanded ACMG. In the proposed local optimal control approach,

each individual DG attempts to minimize its own dynamic cost by maneuvering their local

control inputs. In this modeling, the optimal trajectories of the control inputs which minimize

a performance index are generated in the d-q reference frame which fulfills the state of the

art of d-q reference frame local optimal control in ACMGs.

1.3 Proposed Approaches and Contributions

The overall objectives of the proposed approaches are, to enhance the performances of

the existing droop control, to mitigate the drawbacks of traditional PI-based droop control by

introducing droop free optimal control approaches, to introduce advanced control architecture

to control active loads in MGs. More stable and efficient transient and steady-state MG

operations are the primary outcomes of the proposed concepts in this dissertation.

1.3.1 Multi-Objective Optimization of Droop Controlled Distributed Genera-

tors in Islanded DC Microgrids

The autonomous control of DCMG is primarily based on the droop control [25].

Typically, the droop coefficients of each DG are fixed and assigned based on their capacity

which leads to poor current sharing and voltage regulation. Recognizing the advantages and

superior performances of the nature-inspired MOO techniques, this dissertation presents

a MOO based intelligent computation approach to derive the optimal droop coefficients

for DGs in an islanded MG. The proposed method takes into consideration not only the

capacities of the DGs, but also the system voltage regulation, system total loss minimization

and enhanced current sharing among the DGs. The Pareto optimal front of the constructed

MOO problem is obtained using the Elitist non dominated sorting genetic algorithm (NSGA

II) [72]. The best compromise solution is extracted from the generated Pareto optimal front

by employing a fuzzy membership function approach. Moreover, a state feedback linearization

based controller is introduced to facilitates the control actions to experimentally validate the

effectiveness and the applicability of the generated optimal droop relationships. The proposed

approach was tested with a parallel-connected DC 9 bus system, IEEE 30 bus system and

experimentally validated on a five bus system.
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1.3.2 Approximate Optimal Feedback Control of Islanded DC Microgrids

There are two contributions to this section.

1. Droop Free Optimal Feedback Control of DGs in Islanded DC Microgrids.

2. Decentralized Optimal Stabilization of Active Loads in Islanded DC Microgrids.

As an alternative to the traditional PI-based droop control, this dissertation introduces

a droop free, approximate optimal feedback control strategy to optimally control DGs in

islanded DCMGs. Each DG is modeled as a control affine dynamical system and constrained

input of each DG is designed to minimize the infinite horizon cost. Further, this dissertation

also proposes a decentralized, online optimal feedback control strategy to optimally stabilize

active loads in the DCMG. Each active load is modeled as a control affine dynamical system

with an interconnected coupling term in the energy and admittance domain [73]. Then the

decentralized, constrained input of each active load is obtained online in the feedback form to

minimize the infinite horizon cost. In both cases, the ADP [54] method is employed to solve

the infinite horizon optimal control problem by successive approximation of the value function

via a LIP NN. The NN weights are updated online by a RL based tuning algorithm and the

convergence of the unknown wights to a neighborhood of the optimal weights is guaranteed

without the PE. Both simulation and experimental results are presented to demonstrate the

effectiveness and applicability of the proposed concept.

1.3.3 Transient Optimization of Islanded AC Microgrids

In order to enhance the transient operations in islanded ACMGs, this dissertation

presents a transient path optimization of a parallel-connected inverter-based DG system

in an islanded ACMG. Optimal state and control transient trajectories are obtained which

drive each DG from a given initial condition to their desired steady-state manifold. This

transient trajectory optimization is an offline process that generates the open loop, local

optimal control signals of the inverters. To generate the optimal state and control transient

trajectories, Pontryagin’s minimum principle is employed. The dynamic model of each DG,

MG network and the optimum trajectories are generated in the d-q reference frame. An

example microgrid system with three inverters was used to demonstrate the effectiveness and

the performance of the proposed concept.
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CHAPTER II

REVIEW OF LITERATURE

2.1 Control of Microgrids

A MG comprises DGs which supply the energy demand and loads who consume this

energy. Both the sources and loads are treated as active components in a MG which can

be controlled to have desired operations. The main control variables in a MG are voltage,

current, frequency, active and reactive power. There are two modes of operations in MGs

namely the grid-connected mode and the islanded mode. In each mode of operation, the

control objectives are slightly different. In the grid-connected mode of operation, the MG

frequency and the voltage at the point of common coupling are dominated by the main grid.

Hence the main objective of the MG controllers in this mode is active and reactive power

control of the DGs and demand-side management [14,19]. In the islanded mode of operation,

the MG is disconnected from the main grid and thus operates independently. Therefore, DGs

must control the system voltage and frequency by themselves while balancing the energy

supply and demand which is more challenging than the grid-connected mode [14,19]. Thus,

the main control objectives in the islanded mode are [74],

• System voltage and frequency regulation.

• Power balancing between supply and demand.

• Maintaining acceptable power quality.

• Communication among the other MG component to collectively achieve the objectives.
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In the literature, different control architectures have been introduced to control MGs

in both modes of operation. The control objectives such as voltage and frequency control,

active and reactive power control can be categorized under centralized, decentralized and

distributed control. Main control categories are discussed in the next subsections.

2.1.1 Hierarchical Control

Hierarchical control is the widely discussed control architecture in the MG domain

[9,25,75,76]. There are three main levels in the hierarchical control which are primary control,

secondary control, and tertiary control. The main functions of each level are summarized

below.

1. Level 1 (primary control): Controls of this level are based on local measurements

without any communication. This level features the fastest response among all the

other levels. Objectives include islanding detection, frequency control, output voltage,

and current control and power-sharing control. The droop based control methods are

often utilized at this level. Any nonlinear, linear, or optimal controls can be employed

at this level to achieve the control goals.

2. Level 2 (secondary control): This level ensures that the electrical quantities in the MG

are within the required values such as the voltage and frequency. It corrects whatever

the deviations caused by the primary level and try to keep the electrical variables near

the nominal values. Moreover, it can include the mechanism to seamlessly disconnect

or reconnect the MG from the main grid.

3. Level 3 (tertiary control): This level responsible for the economic and high-level energy

management operations among multiple MGs and the main grid. Objectives of this

level include coordination of operations of multiple MGs which interact with each other,

provide reliable communication and supply requirements to or from the main grid to

voltage support, frequency regulation and energy exchange.

2.1.2 Centralized Control

The centralized control approach is suitable for the smaller size MGs where the owners

of DGs and loads have common goals and seek cooperation to meet their objectives [14]. A
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high-speed communication link carries the state variable information from component level

sensors to the MG central controller (MGCC) [14]. The MGCC processes the information

and produces the decisions (control actions or setpoints) to the local controllers of each active

component via the communication link. Centrally controlled MGs are relatively easier to

handle since a single operator decides the entire operation of the system. However, this

method is not reliable since a failure of the MGCC can cause shut down of the entire MG.

Applications of centralized controllers in MGs can be found in [77–81].

2.1.3 Decentralized Control

The decentralized control approach takes decisions at the component level. It uses

locally available measurements with a predefined control algorithm to make control decisions.

In MG literature this method usually referred to as the autonomous control [14, 19]. The

decentralized control is suitable for the complex MG networks with a large number of DGs

and when active components have different goals. In such a network, the centralized control

structure would fail since it requires high data handling capacity and processing power. The

decentralized control architecture is more flexible and reliable [24]. However, it can produce

multiple frequent failures in local controllers and also challenging to achieve globally optimal

behavior. The decentralized control in MGs can be found in [82–87].

2.1.4 Distributed Control

The distributed control approach can be treated as an extended version of the de-

centralized control. In this architecture, local controllers of each DG communicate with

its neighbors via a low bandwidth communication channel to achieve goals collectively [24].

Under this method, MGs are modeled as multi-agent systems (MAS) and seek for cooperation

among the neighbors to control the entire MG by dividing a large problem into multiple

subproblems. Consensus-based controls are the most popular algorithms used in the MG con-

trol domain under this category. Communication delays and failures can cause issues in this

control approach. The application of distributed control in MGs can be found in [44,88–91].
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2.2 Optimization of Microgrids

To gain maximum efficiency from the MG controllers, operational algorithms and

parameters should be optimized. Operation cost minimization, peak power reduction, voltage

and frequency regulation, air pollutant and emission minimization, active and reactive

power loss minimization, reliability and customer satisfaction maximization are some of the

objectives that can be achieved by tuning the MG parameters and optimizing the control

algorithms. Because of the superior problem-solving behavior, population-based heuristic

optimization algorithms are taken as the main focus in this dissertation.

Modern heuristic optimization approaches together with the MOO techniques are

widely applied in both traditional and modern power system applications [92]. The most

common applications are the power system planning, load forecasting, fault detection, power-

system controls, reactive power compensation, voltage control, economic dispatch and optimal

power flow [92]. Among these typical applications, the most attractive form is the economic

power dispatch problem and the associated optimal power flow (OPF). Economic dispatch

is the process of finding out the optimal active power generations of each generator which

minimizes the total fuel cost of the system. This MOO problem is widely addressed in the

literature using different intelligent MOO approaches. In [93], the multi-objective evolutionary

algorithm (MOEA) is developed to solve the economic dispatch problem together with the

emission minimization of atmospheric pollutants. Here the authors have solved the problem

using three different approaches and results are compared. Particle swarm optimization

(PSO) based MOO technique is applied in [94] to solve the same two objective active power

scheduling problem and results are compared with other MOEA approaches. In both of the

above methods, the best compromise solution is obtained based on the fuzzy set theory and

the optimal power flow solution is obtained for several IEEE bus systems. The application of

differential evolution to the OPF problem can be found in [95] and [96]. In [95], generator

operating cost minimization and total transmission line loss minimization are considered. On

the other hand, in [96], both the active power dispatch and reactive power dispatch problems

are addressed considering the emission factors. An improved PSO algorithm is applied in [97]

to solve the OPF while considering the minimization of operating cost, emission, system

losses and maximization of the voltage stability index.
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Intelligent MOO techniques have been widely applied in modern MG system applica-

tions [98–106]. In order to obtain the optimal location and operations of DGs, Pareto frontier

differential evolution algorithm based MOO technique is developed in [98]. The NSGA II

MOO-based stochastic framework for the day ahead scheduling of MG energy storage systems

is presented in [99] to minimize the expected operation cost and the expected load curtailment

cost. The MOGA is utilized in [100] to simultaneously maximize the power availability and

minimize the generated cost of a hybrid DG system based on a techno-economic approach.

The differential evolution MOO for a DC MG is proposed in [101]. In this approach, objectives

are considered to simultaneously minimize operation and maintenance cost, and loss of power

supply. The chaotic binary PSO is applied in [102] to minimize the total economic cost and

network loss of MGs. Applications of MOO in droop based MGs can be found in [103–106].

An optimal configuration for droop controlled islanded MG systems is developed in [103]

based on NSGA II. In this approach, optimization considers three conflicting objectives pri-

marily consisting of fuel cost minimization, loadability maximization and switching operation

minimization of islanded MGs. Optimal operations in droop based islanded MGs have been

obtained in [104] employing the multi-objective antlion optimizer algorithm. Total generation

cost, total emission, and loadability factor are considered as conflicting objectives. Further,

stochastic modeling is utilized to deal with the uncertainties in load demand and renewable

generation. A novel probabilistic load flow algorithm based on the cumulant method is

introduced in [105] to analyze the operating state of a decentralized droop controlled islanded

MGs under uncertain environments. In this modeling, a MO coordinated planning model of

active and reactive power resources is proposed to control the annual comprehensive cost and

the operating risk. Moreover, NSGA-II MOO is utilized to solve the MO planning model. An

optimal power dispatch strategy is proposed in [106] for droop based AC–DC hybrid MGs

under load and generation uncertainties. In order to simultaneously minimize the cost and

emission in MGs, this approach considers expected operating cost and the expected emission

of the DGs as conflicting objectives. Further, the optimal solution is obtained by employing

a technique which consists of PSO and fuzzy max-min strategies.

Improvement in the traditional droop based MG control can be attained by optimizing

the droop coefficients. The optimal droop coefficient computation is an elegant method to

improve the traditional droop mechanism. Intelligent optimization techniques have been
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widely applied to obtain the optimal droop coefficients [30–37]. An optimal droop coefficient

computation method is introduced in [30] based on the fuzzy membership functions and

particle swarm optimization (PSO). In this formulation, operating cost minimization and

emission minimization of MGs are carried out considering the heat demand, load demand

and generation uncertainties. In order to obtain the optimum dynamic response of parallel-

connected DGs, an optimum droop gain setting calculation method is proposed in [31] based

on the differential evolution global search technique. Considering the small-signal model of

the droop based MG, optimum droop and PI controller gain computation method is proposed

in [32]. In this algorithm, to minimize the deviation between the instantaneous power and

the nominal output power of the inverter during the switching between the grid-connected

and the islanded modes, a genetic algorithm-based technique is employed. Application of the

particle swarm optimization technique to tune the PI controller gains and the droop gains of

the droop based MG can be found in [33] and [34]. Objective functions in [33] are proposed to

minimize the error in the measured power and to enhance the damping characteristics in each

mode of operation. In [34], the performance index comprises of the active and reactive power

errors and the voltage and frequency deviations from their nominal values. The PSO based

optimum droop parameter calculation methodology for DCMGs is developed in [35]. In this

approach, a single cost function is formulated as a summation of the current sharing errors and

the voltage degradations occurring at various loading conditions. Construction of nonlinear

droop relationships to optimize operations in ACMGs can be found in [36]. In this modeling,

the PSO is employed to obtain optimum nonlinear droop relationships that minimize the

operating cost of the MG and share the reactive power effectively among the sources. In

order to have higher efficiency and lower energy losses in DCMGs, [37] is proposed a tertiary

control level to compute the droop gains which provide the global efficiency optimum. Here,

the genetic algorithm is applied to solve the optimization problem.

2.3 Multi Objective Optimization Methods

The topic of MOO has been explored extensively during the past few decades. When

there is more than one objective to satisfy, a single-objective optimization problem becomes

a MOO problem. In contrast to the single optimization problem, in MOO we are interested

in several extreme values that are all equally good.
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MOO techniques can be broadly divided into two sections, which are the classical

methods and intelligent methods [39, 92]. Classical methods use the traditional optimization

techniques where intelligent methods use bio or nature-inspired algorithms such as evolutionary

algorithms (EAs) [39] and swarm intelligent based approaches [107]. The classical methods

further classified into four classes which are no-preference methods, posteriori methods, a

priori methods, and interactive methods [108]. Under no-preference methods, classical MOO

techniques such as multi-objective proximal bundle method, method of the global criterion

can be identified [108]. Examples for the posteriori methods are the weighting method,

ε constraint method, method of weighted metrics and achievement scalarizing function

approach [108]. The techniques such as value function method, Lexicographic ordering and

goal programming can be classified under a priori methods [108]. Few of the interactive

methods are interactive surrogate worth trade-off method, Geoffrion-Dyer-Feinberg method,

sequential proxy technique, Tchebycheff method, step method and methods based on reference

points [108].

Intelligent MOO techniques are more popular these days because of their superior

problem-solving behavior. Most of the novel intelligent methods do not require any type

of gradient information and hence it is computationally less complex when solving higher

dimensions and highly nonlinear systems. Moreover, these population-based algorithms are

suitable for solving problems with discontinuities in the objectives [39]. Further, the classical

methods suffer from tracking in sub-optimal or local optimal solutions, as well as most of

them depending on the initial conditions [39]. Therefore, intelligent population-based MOO

approaches are becoming more effective in the modern research arena. Many intelligent MOO

techniques have been developed so far and the most popular methodologies are derived from

the multi-objective evolutionary algorithm (MOEA). MOEAs can be broadly categorized into

two sections, which are the non-elitist MOEAs and elitist MOEAs [39]. Examples for the

non-elitist MOEAs are vector evaluated GA (VEGA) [109], weight-based GA (WBGA) [110],

random weighted GA (RWGA) [111], multiple objective GA (MOGA) [112], non-dominated

sorting GA (NSGA) [113] and niched pareto GA (NPGA) [114]. On the other hand, some

of the elitist MOEAs are distance-based Pareto GA (DPGA) [115], elitist non-dominated

sorting GA (NSGA II) [72], and strength Pareto EA (SPEA) [116]. A summary of the MOO

solution methodologies is given in Figure 2.1.
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Figure 2.1: MOO solution methodologies.

Real-world MOO problems often need to be solved under certain constraints. To

achieve the constraint handling capability, existing MOEAs need to be modified. Multiple

constraint handling approaches have been proposed for the MOEA and some of them are

summarized here. The most straightforward way of dealing with the constraints is ignoring

infeasible solutions [39]. Another common method is the penalty function approach where

each solution is given a penalty depending on the magnitude of the constraint violation [117].

Another constraint handling approach with the binary tournament selection named as Jimenez-

Verdegay-Gomez-Skarmeta method is proposed in [118] considering only the inequality

constraints of the type less than or equal. A novel constraint handling technique for MOEA

is proposed in [119] based on an adaptive penalty function and a distance measure. The

constrained tournament method is the technique employed in the original NSGA II algorithm

to handle the inequality constraints of the type greater than or equal [39,72]. Ray-Tai-Seow’s
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method is proposed in [120] where a non-domination check of the constraint violations taking

into account when dealing with the constraints.

2.4 Transient Optimization and Optimal Control in Microgrids

Transients in MGs occur as a result of various disturbances in the system such as load

changes, due to the intermittent and dynamic nature of DGs and transitions from islanded

mode to grid-connected mode and vice versa [121]. Oscillations that are initiated as results of

the transients must be damped to maintain the system stability. Improvements in the transient

operations of MGs are reported in the literature [31–34,70,71,86,87,122–126]. Majority of

the work has been done to improve the transients of the droop based MGs [70,71,86,122,123].

In order to improve the dynamic response, transient droop technique is introduced in [70] by

appending the active and reactive power derivative and integral terms to the conventional

static droop equations. Similar work can be found in [86], where the static droop characteristics

are combined with the transient droop functions by employing a 2-DOF tunable controller.

The major difference in this approach is, transient droop gains are adaptive to damp the

oscillatory modes at different operating conditions. The transient response of the droop based

controller is highly degrading due to the low pass filtering of the calculated instantaneous

active and reactive powers [71, 86]. As a solution, active and reactive power calculation, and

low pass filtering is replaced by a synchronous reference frame phase-locked loop in [71]. Also,

the virtual impedance loop and proportional resonant controller in the voltage control loop

are integrated to enhance the dynamic response of the system. In [122], improved transient

response is achieved by introducing dynamic droop coefficients during a transient period.

Here, virtual inertia is added to the system by modeling the active power droop gain as

a function of the time derivative of the frequency. Dynamics initiated as a result of the

intermittent nature of the renewable sources are addressed in [123] and [124] considering

solar PV sources. Based on the argument that the droop gains must vary according to

the maximum power point curve of their associated PV array, in [123] droop coefficients

are tuned as solar irradiation changes without any measure of the irradiation. In order to

improve the transient response, a real-time voltage and frequency compensation strategy

is proposed in [124]. Here, an adaptive virtual impedance loop is designed to suppress the

voltage fluctuations caused due to the variations in the PV and an adaptive virtual frequency
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impedance loop is introduced to regulate the frequency.

Even though transient improvements are considered in the aforementioned approaches,

none of them focus on the optimum transient response or the path optimization of the

individual inverters. Subsequent works done in [31–34,87,125,126] depict the optimum control

of MGs operated with DG resources. An optimized sensitivity analysis based decentralized

control method for a distribution network is proposed in [87]. Voltage regulation, the

minimization of the active power losses and the reactive power exchanged with the distributed

generation units are achieved by employing an artificial intelligence-based optimization

technique. However, this is more on steady-state static optimization, and no attention has

been posed for transient optimization. An optimal control method of a multi-inverter system

is presented in [125] which tries to minimize a performance index, consist of the output

voltage error, the inductor currents of all the inverters and the reference signals. In this

approach, a single objective function is considered for the complete system including all the

control variables and states, and the minimization is done in a cooperative manner. Optimum

dynamic response of parallel operation of inverters is achieved in [31] by setting the optimum

droop gains obtained via the differential evolution global search technique. This method uses

the complete system matrix of the whole system to find the optimum droop gains. In that

sense, this method illustrates a cooperative technique that needs the information of other

DGs in the system.

Transient optimization of MGs when subjected to a mode change is addressed in

[32–34,127]. Based on the small-signal model of the droop controlled MG, optimum droop

and PI controller gain calculation methodology is proposed in [32]. A GA based optimization

technique is employed to improve the dynamic response during the switching between grid-

connected and islanded mode. This modeling approach tries to minimize the deviation

between the instantaneous power and the nominal output power of the inverter. However, this

nominal output power is used in the performance index is not the steady-state optimum power

productions of the DGs. Another drawback of this approach is, this needs the small-signal

dynamic model of the system, which makes the analysis complex. In [33] and [34], the PSO

technique is employed to tune the PI controller gains and droop gains of the droop based

MG operated in the islanded mode or grid-connected mode. Objective functions in [33]

are proposed to minimize the error in the measured power and to enhance the damping
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characteristics in each mode of operation. On the other hand, in [34], the performance index

comprises active and reactive power errors and voltage and frequency deviations from the

nominal values. Here, DGs are coordinated via droop controllers and a supervisory centralized

controller. Hence this method is neither a non-cooperative technique nor a decentralized

method. Further, the power references or the nominal values used in the above two methods

are not the optimum values that minimize the individual costs of each DG. Optimum

parameter selection methodology for a droop based MG to improve the transient time and

to minimize the frequency drop is proposed in [127] based on the Imperialist Competitive

Algorithm. This method suggests the best parameters for voltage source inverters since the

objective function is formulated to minimize the transient time. Based on the evolutionary

theory, in [126] droop gains are tuned to their optimum values to minimize the settling time.

In addition, this method guarantees stable and fast damping responses.

Recently optimal control, model predictive control (MPC), multi-agent distributed

control and game theoretic based control have gained more attention in the MG control

arena [3, 11,44,45]. All of these techniques are related in the sense that they generate the

control inputs to minimize an associated cost functional [128,129]. In [3] and [11] open-loop

optimal control actions are generated to optimally control resources in MGs using Pontryagin’s

minimum principle [128]. An optimal load player management strategy is proposed in [3] by

modeling the end loads as variable impedances. In [11], local optimal control of source players

in an ACMG is achieved by minimizing the quadratic state cost and control effort of each DG.

A distributed feedback optimal control strategy is developed in [44] to cooperatively control

active sources in a DCMG. The performance index of this modeling is constructed to achieve

optimal voltage and power regulation of each DGs in the MG. In [45] MPC based maximum

power point tracking methodology is applied to control PV sources in a DC distribution

system. Further, MPC is employed to develop an optimal droop based current regulator to

interface PV sources into the DC distribution system.

Game theory-based controls are one of the emerging decision making technology in the

modern MG environment. Game theory is used under the competitive circumstances where the

outcome of an individuals’ selection of action depends on the actions of others [130,131]. Some

of the key areas where these controllers employed in the MG domain are [132], energy demand

estimation and supply cost, smart grid load balancing, MG modeling and analysis, price
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directed energy utilization, agent-based micro storage management, and demand and load

management. The design of an optimal grid stabilizer for weak/islanded grids using a unified

power quality conditioner is proposed in [133]. Here, a zero-sum, two-player game is formed

between unified power quality conditioner control and grid disturbances to design a discrete-

time Hamilton–Jacobi–Isaacs nonlinear optimal controller through a continual approximation

of a cost function using NNs. Active power production equilibria of renewable generations are

obtained in [134] by employing the game theory under the assumption of negligible reactive

power variations. Both of these methods are based on numerous assumptions and complex

modeling approaches. In addition, applications of the game theory can be found in [135–138]

for load frequency control, distributed dispatch, and energy consumption scheduling. In [135],

a differential game-based cooperative control approach is adopted to study the two-area and

three-area load frequency control of interconnected power systems. In the contest of energy

demand estimation and supply cost, energy consumption scheduling games are considered

by taking users as players and daily schedules of their household appliances and loads as

strategies. Under this, distributed dispatch strategy based on the population games is

proposed in [136] and hierarchical MG management system which leads to efficient load

sharing among the available DGs based on dynamic population games is proposed in [137]. In

addition to that, the dynamic maximization of the MG utility is achieved by the evolutionary

game theory approach. An incentive-based, autonomous and optimal energy consumption

scheduling scheme is presented in [138] to minimize the cost of energy and also to balance

the total residential load. An energy consumption scheduling game is formulated among the

consumers and their strategies are taken as the daily schedules of their household appliances

and loads. Moreover, game-theoretic, decentralized optimum decision-making methodology is

presented in [3] and [4] for DC MGs.

Reinforcement learning (RL) inspired various ADP methods have been developed

to solve optimal control problems in past few decades [53–55, 129, 139, 140]. Feedback

optimal cooperative and multi-agent control architectures for dynamical systems who seeks

collective behavior is discussed in [129]. RL based feedback optimal and game-theoretic

control development can be found in [139] and [55]. The State Following Kernel method based

feedback optimal control approach is proposed in [140]. Varies classes of ADP based feedback

optimal controls such as Q-learning, value gradient learning, policy iteration, single network
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adaptive critic, and robust ADP are presented in [53]. Further, discrete and continuous-time

ADP, feedback optimal control of non-affine systems and applications of ADP techniques in

real-world problems can be found in [54].

These methodologies are becoming more popular in MG control domain too [46–51].

An ADP based optimal control methodology is developed in [46] to operate partially known

parallel-connected voltage source inverters (VSI) in an ACMG. In this modeling, the local

performance indices are generated to minimize the output voltage error and circulation

currents among the other VSIs. An intelligent dynamic energy management system (EMS)

is proposed in [47] for a smart MGs. Combining evolutionary ADP and RL frameworks,

an action dependent heuristic dynamic programming method is employed to solve the

dynamic optimization problem while maximizing reliability, self-sustainability, environmental

friendliness, extended battery life, and customer satisfaction. Application of adaptive critic

based disturbance attenuation method for the MG system is presented in [48]. Here the

problem is modeled as a two-player zero-sum differential game and control signals are

generated to guarantee the load frequency regulation of the MG under load disturbances and

energy uncertainties. An adaptive critic based dynamic stochastic optimal control design for

a MG is proposed in [49]. The main objectives of this approach are modeled to smoothen the

PV and wind generation output, to reduces the power losses and to maximizes the usage

of battery-based energy storage systems while providing dynamic reactive power support.

An optimal battery management controller for a smart residential MG system is developed

in [50] by a novel mixed iterative ADP algorithm. In this modeling, the objective function is

selected to minimize the total cost from the grid, to make the stored energy of the battery

close to the middle of the storage limit, and to prevent large charging or discharging power of

the battery. A differential game-theoretic approach is proposed in [51] to collectively control

active loads in a DCMG. Here, the obtained coupled algebraic Riccati equations are solved

by an offline RL based policy iteration algorithm.

2.5 Solution of Optimal Control Problem

Solution methods of optimal control problems (OCPs) can be broadly divided into

two sections namely direct methods and indirect methods. Direct optimal control methods

transform the optimal control problem into a nonlinear programming problem and use
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Figure 2.2: Optimal control solution methodologies.

numerical techniques to solve it. Direct single shooting, direct multiple shooting, and direct

orthogonal collocation are some of the direct optimal control solution methods [128,141–143].

Indirect methods can be again classified into numerical solution methods and analytical

solution methods [55]. Generally in numerical solution techniques, Hamiltonian is formulated

and resultant two-point boundary value problem (TPBVP) is solved using techniques such as

indirect collocation method, indirect single and multiple shooting, steepest descent based

technique, the variation of extremals, quasi-linearization and gradient projection [128,143].

The TPBVP is generated via Pontryagin’s minimum/maximum principle which results in

state and costate dynamical equations and boundary conditions [128]. Analytical solution

methods are based on the dynamic programming and associate Hamilton Jacobi Bellman
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(HJB) equation which is highly nonlinear, difficult to solve, partial differential equation [128].

In linear systems, the HJB equation is simplified to the algebraic Riccati equation (ARE)

[144]. For nonlinear systems, alternate methods have been developed to find the analytical

solution to the optimal control problems such as inverse optimal control method [145,146].

An approximate solution to the HJB equation is obtained by the RL based techniques

such as temporal difference based methods, Q-Learning, adaptive dynamic programming

(ADP) [53–55,129, 139, 140]. Summary of the optimal control solution methodologies is given

in Figure 2.2.

2.6 Constant Power Load and Power Buffer Controls in Microgrids

Negative impedance characteristics of CPLs introduce instabilities to the power systems

[56–58]. In order to mitigate the instabilities and stabilizes CPL based MGs, various hardware-

oriented methods and control-oriented methodologies have been developed [56, 57, 59–61].

Because of the high cost, loss and space requirements associated with the hardware-oriented

methods, the addition of resistive loads, the inclusion of filters, load shedding, and placement

of energy storage devices are not much popular [56, 61]. On the contrary, various control-

oriented methodologies can be found in the literature such as linear controllers [62], boundary

controllers [63], game-theoretic controllers [3,51], and sliding mode controllers [64,65]. A linear

control approach is proposed in [62] to improve the stability margin of an inverter-based motor

drive system followed by a CPL supplied by an imperfect dc power supply. The introduced

linear controller act as an oscillation compensator which is realized by a stabilization block

containing a bandpass filter and a proportional regulator. A boundary controller is presented

in [63] with a first-order switching surface to control instantaneous CPLs attached to buck

converters. The proposed method eliminates the large oscillations that occur in the buck

converter operations under CPLs by a linear switching surface with a negative slope. In [56],

a comprehensive analysis of stability issues in DCMGs with instantaneous CPLs and possible

solutions are presented. Both hardware and control-oriented approaches are analyzed in

terms of their advantages and disadvantages. Here, a nonlinear boundary controller which is

based on state-dependent switching of LRC semiconductor devices, linear controllers such

as PID controllers and nonlinear controllers based on passivity are discussed to stabilize

CPL instabilities. Application of sliding mode and feedback linearization control methods
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to stabilize the automotive converter systems with CPLs is carried out in [57]. In this

approach, an assessment of the negative impedance instability of the CPLs in automotive

power systems is presented. Further, in [59] two linear stabilizers are introduced to stabilize

parallel-connected DC-DC buck converters connected to CPLs. Here, the first method is

employed under constant voltage source mode while the second method is employed with the

droop mode. Bifurcation analysis of CPL based power system is carried out in [64]. Here, a

load bus voltage regulation problem under instantaneous CPLs is addressed through a sliding

mode controller considering a DC-DC bidirectional boost power converter.

The power buffer is an effective method of mitigating instabilities caused by nonlinear

load profiles, which has been introduced in [66] and discussed in [3, 51, 67–69]. In these

approaches, the PEI followed by the CPL is modeled as a variable impedance load seen by the

distribution network which is referred to as an active load. Then its effective input impedance

is maneuvered to stabilize the MG subjected to any transients such as startup or abrupt

load changes [67]. The power buffer contains large storage capacity and it is used to buffer,

store and shape the input energy profile to the load rather than voltage regulation [147].

Pontryagin’s minimum principle [128] is utilized in [67] to obtain the optimal geometric

manifolds which stabilize the CPL with the buffer energy. The extraction of the geometric

manifold in the energy-power domain based on the a priori computation of the reactions and

trajectories is carried out in [69]. Here the problem is formulated as a non-cooperative game

and Pontryagin’s minimum principle is employed to extract the solution. Further, in [3] a

non-cooperative game-theoretic controller development is proposed to improve the transient

of active loads during a cold start using Pontryagin’s minimum principle. Steady-state game-

theoretic solutions for the active loads operate DCMG is proposed in [4]. Here, a turn-based

approach is employed to obtain the optimal solution in a decentralized manner. The main

drawback of all the aforementioned approaches is they provide open-loop numerical solutions.

The solutions are stored in a memory or a lookup table for use in a particular situation such

as load change or at startup. Feedback cooperative and game theoretic approaches in power

buffer control are very limited and can be found in [51] and [68]. In these methodologies,

dynamic programming is employed to obtain optimal solutions to stabilizes the MG. These

approaches provide feedback control algorithms that require communication which make the

distribution system complex and degrades reliability.
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CHAPTER III

MULTI-OBJECTIVE OPTIMIZATION OF DROOP CONTROLLED DISTRIBUTED

GENERATORS IN ISLANDED DC MICROGRIDS

3.1 Major Objectives

In order to eliminate the drawbacks in traditional droop control such as high load

dependency on the system voltage and current sharing errors, a multi-objective optimization

(MOO) based optimal droop coefficient computation methodology is developed. Unlike the

traditional droop coefficients which are assigned based on the distributed generator (DG)

capacity, the proposed approach considers three other objectives when computing the optimal

droop gains. These are, overall system voltage regulation, current sharing improvement, and

system loss minimization. A series of best virtual resistances and reference voltages for each

DG in the system are computed while simultaneously minimizing all the objectives using

NSGA II Multi-Objective Evolutionary Algorithm. In order to find out the best compromise

solution from the generated Pareto optimal front, a fuzzy membership function approach is

also presented. Further, to test the performance of the computed optimal droop relationships,

a state feedback linearized controller is introduced. The proposed approach was tested with

a parallel-connected DC 9 bus system, IEEE 30 bus system and experimentally validated

on a five bus system. The proposed approach is different from the existing optima droop

coefficient computation methods since they use weighted sum approaches to aggregate multi

objectives to get a single objective function. Then they use single objective optimization

techniques to find optimal droop gains. However, the proposed approach in this dissertation
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employs a MOO technique to find the Pareto optimal front of the problem and then the best

compromise solution is extracted. Main findings of this chapter are published in [148].

3.2 Droop Control in DC Microgrids

Typical DCMG is a combination of sources and loads connected to the common DC

bus. This type of MG is called a parallel-connected bus system since sources and loads are

connected in parallel to the common bus. Sources in MGs are referred to as DGs which are

typically renewable sources followed by PEIs. In any type of a MG, the control of DGs is

primarily done by droop control [25]. In the DC droop control, the load sharing is achieved

by properly varying the DG output voltage (Vo) according to the measured output current

(Io) [25]. The output voltage reference (V ∗o ) of a DG is given by the linear droop relationship

as in (3.1) [25,35].

V ∗o = Vr −RDIo (3.1)

This droop relationship comprises of two constant droop coefficients namely the virtual

resistance (RD) and the output voltage reference at no load (Vr) [25]. Suppose that δVmax is

the maximum allowed voltage deviation and Imax is the maximum output current, then RD

is typically designed as in (3.2) [25]. The reference voltage is usually equal to the nominal

system voltage Vn.

RD = δVmax/Imax (3.2)

Vb
r1 r2

RL

RD1 RD2

Vr1 Vr2

 

Figure 3.1: Two DG one load example test system. c© [2020] IEEE.

The two primary objectives in droop based DG sources are the voltage regulation and

proper load sharing [149]. This ensures stability as well as the reliability of the system and

it helps to avoid any overloading of DGs. In order to understand the load sharing of droop

based parallel DG system, consider the simple two DG and one resistive load system shown
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in Figure. 3.1. The reference voltages of the DGs are Vr1, Vr2, virtual resistances are RD1,

RD2 and distribution line resistances are r1 and r2. Bus voltage at the load is Vb and the

load resistance is RL. The relationships (3.3) and (3.4) give the voltage at the load bus and

the difference in current supplied by the DGs.

Vb =
(R1Vr2 +R2Vr1)RL

(R1 +R2)RL +R1R2

(3.3)

∆I =
2(Vr1 − Vr2)RL +R2Vr1 −R1Vr2

(R1 +R2)RL +R1R2

(3.4)

In (3.3) and (3.4), R1 = RD1 + r1 and R2 = RD2 + r2. According to (3.4), the current

sharing error is inversely proportional to the virtual resistances. Hence, if the DG virtual

resistances are increased, then the current sharing can be improved. However, as the virtual

resistances grow, the bus voltage degrades according to (3.3). Therefore, there is always a

trade-off between voltage regulation and current sharing. In order to see the effect of virtual

resistance on the current sharing and voltage regulation, two objectives are defined in (3.5)

and (3.6).

f1(RD1, RD2) = |Vn − Vb| (3.5)

f2(RD1, RD2) = |∆I| (3.6)

Nominal voltage Vn is set to 110 V and the line resistances are set to 0.1 Ω. The reference

voltages of both the DGs are kept at 111 V and the load resistance is selected as 20 Ω. The

corresponding objective functions are plotted in Figure. 3.2 and it can be seen that it is

difficult to extract a single solution that minimizes both the objectives by mere observation

of the objective variations.

Analytically, the Pareto optimal front of two objective functions with two decision

variables is given by, [150].
∂f1

∂RD1

∂f2

∂RD2

=
∂f1

∂RD2

∂f2

∂RD1

(3.7)

Optimal virtual resistances that minimize both the objectives are found along the curves as

shown in Figure. 3.3, which are the solutions of (3.7). All the solutions along these curves

are equally good. For a multi-bus system with more objectives and decision variables, finding

an analytical solution for the Pareto optimal front is difficult and computationally inefficient.
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Therefore, employing an intelligent MOO method is beneficial.
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3.3 Multi-Objective Formulation

Mathematical modeling of the MG and objective function formulation are explained

in this section. Suppose there are N number of buses in the MG with g number of DGs in

the set G and N − g number of load buses in the set L. Each DG can be modeled as a voltage

source followed by a virtual resistance as shown in Figure. 3.1. From the nodal current and

voltage relationship, the current injected to the kth ∈ G ∪ L bus can be written as,

Ik =
N∑
j=1
j 6=k

(Vk − Vj)Ykj (3.8)

where, Ykj is the admittance between bus k and bus j and k, j ∈ G ∪ L. For a DG bus, the

injected current can be replaced by (3.1) and the resulting nodal current and voltage equation

will be,

Vrk
RDk

= Vk

 1

RDk

+
N∑
j=1
j 6=k

Ykj

− N∑
j=1
j 6=k

YkjVj (3.9)
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where, k ∈ G, j ∈ G ∪ L. On the contrary, for a load bus with a resistive load, the load

resistance can be inserted as an admittance connected to the bus and hence the injected

current becomes zero. For instance, the nodal relationship of the kth ∈ L load bus can be

shown as,

0 = Vk

 1

RLk

+
N∑
j=1
j 6=k

Ykj

− N∑
j=1
j 6=k

YkjVj (3.10)

where, k ∈ L, j ∈ G∪L. The nodal relationship for the N bus power system can be obtained

as in (3.11).

I = Y V (3.11)

where, I is the modified injected current vector given by (3.12) and V is the bus voltage

vector.

I =
[
Vr1/RD1 Vr2/RD2 · · · Vrg/RDg 0

]T
(3.12)

In (3.12), 0 is the zero vector with length N − g, Y is the modified system admittance

matrix with additional terms added to the diagonal entries of the usual admittance matrix.

In case of a DG bus, 1/RDk (k ∈ G) is added to the corresponding diagonal term and 1/RLk

(k ∈ L) is added if the bus is a load bus.

3.3.1 System Voltage Regulation

Overall system voltage regulation is one of the most important objectives in DCMGs.

Voltage vector (V ) of the MG can be computed from the nodal relationship derived in (3.11)

as,

V = Y −1I (3.13)

The first objective can be formulated in two ways. Either minimize the error between the

average voltage in the MG and the system nominal voltage Vn as in (3.14) or minimize the

aggregated error between individual bus voltages and nominal voltage Vn as in (3.15).

f1 = |Vn −
1

N

N∑
j=1

Vj| (3.14)
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f1 =
1

N

N∑
j=1

|Vn − Vj| (3.15)

3.3.2 Current Sharing Improvement

Once the DG voltages are extracted from the voltage vector (V ), current injections of

each DG can be calculated by employing (3.1). Then, the overall current sharing error in the

system can be computed as (3.16) and minimization of this error will be considered as the

second major objective.

f2 =

g−1∑
k=1

g∑
j=k+1

|Ik − Ij| (3.16)

where, Ik = (Vrk − Vk)/RDk.

3.3.3 System Active Power Loss Minimization

Due to the distribution line resistances, active power losses exist in the MGs. Droop

coefficients can be tuned to minimize power loss for a given system and the objective needing

to be minimized can be considered as,

f3 =
N−1∑
k=1

N∑
j=k+1

Ykj (Vk − Vj)2 (3.17)

The minimization of this objective is considered as a secondary objective. The main attention

will be given to voltage regulation and current sharing improvement.

3.3.4 Impact of Constant Power Loads

Optimal droop coefficient computation under constant power loads (CPLs) is discussed

in this section. CPLs are nonlinear loads that introduce instabilities to the power system. A

CPL can be represented as a variable resistive load and it can be modeled with the aid of

power electronic converters [3, 4]. The control goal of the converter will be to maintain the

input power equal to the desired power value of the CPL. This will include an extra equality

constraint to the MOO problem as shown in (3.18). Here, Pk is the desired active power of

the CPL. In order to maintain equality in every instance, the proper value of the variable
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resistance RLk needs to be computed depending on the bus voltage (Vk). Hence, this will

increase the number of decision variables in the MOO problem.

ceq,k = Pk −
V 2
k

RLk

(3.18)

3.3.5 Optimization Constraints of the Proposed Approach

In the DCMG point of view, the developed MOO problem needs to be solved under

certain power system constraints. First, the droop coefficients must be computed within the

given maximum and minimum values as shown in (3.19). The decision variable vector φ and

its lower and upper bounds are given as φL and φU must be set such that the overall system

stability is being protected. The stability can be verified by performing small signal stability

around the steady-state operating point of the system.

φL ≤ φ ≤ φU (3.19)

Further, the solutions must satisfy the power flow equality constraints, which are already

taken into consideration while constructing the objectives. Moreover, all the bus voltages

need to be inside the allowable voltage margins as in (3.20). In (3.20), allowable lower and

upper bounds of the bus voltages are given as V L and V U respectively.

V L ≤ Vj ≤ V U j ∈ G ∪ L (3.20)

Next, all the DG voltages and currents must be under the allowable maximum voltage drop

(δVmax) and the maximum allowable current (Imax) limits as shown in (3.21) and (3.22).

|Vn − Vk| ≤ δVmax,k k ∈ G (3.21)

Ik ≤ Imax,k k ∈ G (3.22)

Further, if there are CPLs in the system, then the MOO problem needs to be solved

under the corresponding equality constraints as explained in 3.3.4. When the DCMG structure

changes from a parallel system to a mesh system, the admittance matrix needs to be modified
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accordingly. Next, the developed MOO problem which contains the objectives (3.14)-(3.17)

and constraints (3.18)-(3.22) need to be solved using a suitable MOO technique. The multi-

objective evolutionary algorithms (MOEAs) are the most popular solution methods which

are employed to solve MOO problems by identifying the Pareto optimal front. Among them,

Elitist non dominated sorting genetic algorithm (NSGA II) is the most widely used MOEA in

the literature and has been employed in this dissertation. It utilizes both the elite preservation

strategy and explicit diversity preservation mechanism.

3.4 Best Compromise Solution

The NSGA II generates a set of equally good non dominated set of solutions called

Pareto optimal solutions. Each Pareto solution contains a set of optimized droop coefficients.

Among them, selecting a suitable solution to apply in the real world application requires a

decision-making strategy. In order to extract a compromise solution from the Pareto front,

methods such as NNs [151], Pseudo weight vector approach [152] and fuzzy membership

function approach [94] are available in the literature. NN approaches require training data

sets and it involves the training of the network [151]. This training makes the problem

complex and inefficient. The pseudo weight vector approach is also similar to the fuzzy

membership function approach, which computes a pseudo weight vector for each solution

in the Pareto front [152]. However, its capability of producing good outcomes has not been

tested well in the literature. On the contrary, the fuzzy membership function approach does

not require any training or training data set to apply in a decision-making problem. Moreover,

it is a simple mechanism and has been proven to produce good results [94,152]. Motivated

by the fuzzy set theory, this paper implemented the fuzzy membership function approach to

obtain the best compromise solution.

When formulating the fuzzy membership function, user-defined unacceptable and

acceptable satisfactory values for each objective are assigned (fmaxi and fmini ). It is required

to find a single Pareto solution that has objective values close to the zero or to the user-

defined satisfactory objective values and farthest away from the unsatisfactory objective

values towards fmini . To achieve this, a linear fuzzy membership function is formulated and

the membership function value is computed for each Pareto solution using (3.23). Suppose

there is M number of solutions available in the Pareto optimal set. Then, the membership
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value of the kth solution in ith objective (µki ) is given by,

µki =


1 if fki ≤ fmin

i ,

fmax
i −fki

fmax
i −fmin

i
if fmin

i < fki < fmax
i ,

0 if fki ≥ fmax
i .

(3.23)

This value measures how close a Pareto solution to each of the satisfactory objective values or

below. The membership function value is computed for all the objectives. In this particular

problem, since there are three objectives, the membership function value of a single Pareto

solution is a three-dimensional vector. The procedure first computes the fuzzy membership

value for each solution and objective. Next, in order to obtain an overall measure of goodness

from the three-dimensional performance vector, normalization is done using (3.24).

µk =

∑Nobj

i=1 µki∑M
k=1

∑Nobj

i=1 µki
(3.24)

where, Nobj is the number of objectives. This overall normalized membership value aggregates

all the individual membership function values computed for a single Pareto solution. Then it

produces a normalized measure of goodness in all the objectives. Once this normalization

is performed for all the Pareto solutions, the Pareto solution, which possesses the highest

value, is the best solution closes to zero cost or closes to all the satisfactory objective values.

Hence, the Pareto optimal solution which has the maximum value of the normalized overall

membership value is selected as the best compromise solution.

3.5 Proposed State Feedback Linearized Droop Controller

Controller design for a DG system to regulate the DG output voltages to the reference

values given by the derived optimal droop relationships is discussed in this section. Every

DG in a MG is connected to the system through a PEI as shown in Figure 3.4. In DC

MGs, these can be DC-DC buck, boost or any other DC-DC converter. The boost power

converter topology is considered as the example intermediate converter in this paper. First,

the instantaneous output current (io,k) of the DG is sensed and the required output voltage

reference (V ∗o,k) is calculated according to the droop relationship given in (3.1) with the
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Figure 3.4: Boost PEI topology. c© [2020] IEEE.

computed optimal droop coefficients. Next, using this voltage reference, corresponding

inductor current reference (I∗L,k) can be computed. Then, the state feedback linearization

controller [153] is employed to regulate the output voltage and inductor current to the

corresponding references. The dynamic model of the average mode boost converter can be

expressed as,

Lk
diL,k
dt

= −vo,kuk + Ek (3.25)

Ck
dvo,k
dt

= iL,kuk − io,k (3.26)

where, Lk, Ck, Ek, uk, io,k iL,k and vo,k are the inductance, capacitance, input voltage, control

input, output current, inductor current and output capacitor voltage of the kth DG. For the

ease of controller design, this dynamical model is converted to the Brunovsky’s canonical

form [153]. Two new states are defined as the total energy stored in the system (x1,k) and

the internal power of the converter (x2,k) which are given by,

x1,k =
1

2

(
Lki

2
L,k + Ckv

2
0,k

)
(3.27)

x2,k = EkiL,k − vo,kio,k (3.28)
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With these new states, dynamical model of the boost converter in Brunovsky’s canonical

form can be represented as,

ẋ1,k = x2,k (3.29)

ẋ2,k = f (xk) + g (xk)u (3.30)

where, f(xk) = E2
k/Lk + i2o,k/Ck and g(xk) = −(Ekv

2
0,k/Lk + io,kiL,k/Ck). Based on the

reference output voltage (V ∗o,k) provided by the optimal droop relationship, the desired values

of the states (xd1,k, x
d
2,k) are calculated as,

xd1,k =
1

2
[Lk(I

∗
L,k)

2 + Ck(V
∗
o,k)

2] (3.31)

xd2,k = 0 (3.32)

Here, I∗L,k = io,kV
∗
o,k/Ek is the equivalent inductor current reference corresponding to the

reference output voltage V ∗o,k. With the desired states, the system state error can be calculated

as,

rk = α(x1,k − xd1,k) + (x2,k − xd2,k) (3.33)

The dynamics of the error system can be obtained as,

ṙk = αx2,k + f (xk) + g (xk)uk (3.34)

Under the control input given by (3.35), it can be shown that the dynamical system is stable

and it drives the system state error to zero [153]. Consequently, the error between the actual

output voltage and the reference output voltage will become zero at the steady-state. In the

controller, α and K are positive design constants.

uk =
1

g(xk)
(−f(xk)− αx2,k −Krk) (3.35)

Stability of the proposed controller can be analyzed by considering the positive definite

Lyapunov function given by,

Vk =
1

2
r2
k (3.36)
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Time derivative of V along the error dynamics (3.34) can be shown as,

V̇k = rk
(
αx2,k + f (xk) + g (xk)uk

)
(3.37)

Substituting the control input given by (3.35), the time derivative of the Lyapunov function

can be shown to be a negative definite function given in (3.38). This concludes the asymptotic

stability of the kth DG error at the origin.

V̇k = −Kr2
k ≤ −K|rk|2 (3.38)

Considering the overall Lyapunov function V = 1
2

∑g
k=1 r

2
k, the asymptotic stability of the

entire MG can be established by following the same procedure. The complete process is

summarized in the flow chart given in Figure 3.5.

If the system has an emergency or a fault situation, as far as it is stabilizable, the

stability and the control effect of the MG are guaranteed by the developed feedback controller

under the computed droop gains. However, during the emergency period, the previously

calculated droop coefficients may not be the optimal design. Thus, as an alternative, a new

set of droop coefficients can be computed using the proposed approach and reassigned for

the emergency period. This requires a centralized control unit to acquire information about

the changes in the MG and to set the recomputed optimal droop coefficients. In MG domain,

this is possible by establishing a communication medium for sharing the information.

3.6 Simulation Test Cases and Results

Simulations were carried out in Matlab considering the 5 DGs, 4 loads system shown

in Figure 3.6 and the IEEE 30 bus system [154] with nominal voltage Vn = 110 V. The DGs

can be any DC power source followed by the PEI as shown in Figure 3.4. In this modeling,

it is assumed that the input voltage to each PEI is constant which is a typical assumption

in many droop-based MGs in the literature [9, 25, 155]. Distribution line resistances were

set to 0.2 Ω. Upper and lower bounds of the virtual resistances were chosen as 0.2 Ω and

1.5 Ω while the upper and lower reference voltage bound for all the DGs were set to 110 V

and 115 V. The optimization constraints were considered as, Vi > 0.95Vn, δVmax = 5 V, and
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Figure 3.5: Procedure of the complete process. c© [2020] IEEE.

Imax = 10 A. The unacceptable and acceptable satisfactory values for the best compromise

solution are given in Table 3.1. These values can be assigned as users wish or observing the

variation in the Pareto optimal front. In all the simulations these values were chosen to have

the best possible voltage regulation and current sharing since those are the objectives with

paramount importance. Several tests were performed such as equal DG reference voltages,

arbitrary DG reference voltages, comparison with traditional droop, generator disconnection,

MG with CPLs, unequal line resistance, and meshed MG system. In each case, MOEA was

initialized with 500 individuals in the population.
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Figure 3.6: Parallel connected test system. c© [2020] IEEE.

Table 3.1: Acceptable and Unacceptable Objective Values for the Best Compromise Solution

fmax1 fmin1 fmax2 fmin2 fmax3 fmin3

Value 4 V 2 V 4 A 1 A 50 W 30 W

3.6.1 Parallel MG System with Equal DG Reference Voltages

Pareto optimal front in the objective space for equal DG reference voltages with equal

line resistances is shown in Figure 3.7. The best compromise solution was found as f1 = 1.35

V, f2 = 0.37 A and f3 = 43.57 W. At this point, optimal virtual resistances of DG 1 to DG

5 were obtained as 0.577 Ω, 0.796 Ω, 0.928 Ω, 0.796 Ω and 0.565 Ω. The optimal reference

voltage for this test case was found at 113.87 V. Clearly the obtained best cost solution from

the proposed fuzzy membership function approach lies below the unsatisfactory objective

values defined for this problem. Moreover, the computed optimal solution shows f1 < fmin1

and f2 < fmin2 which are close to the zero cost. Without the fuzzy membership function

approach, it would be infeasible to obtain such a solution by analyzing the Pareto front given

in Figure 3.7 due to the conflicting nature of the objective values. For instance, the power

loss increases if one traverses towards the zero voltage deviation point in the Pareto front
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starting from the optimal solution. Further, seeking a solution with lower losses by traversing

down from the optimal solution along the Pareto surface degrades both current and voltage

deviations according to Figure 3.7. Moreover, current sharing minimization increases both

system losses and voltage deviation. Therefore, it is very difficult to find a compromise

solution without a decision making strategy. The fuzzy membership function approach eases

the burden of finding the optimal solution along the Pareto optimal front.
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Figure 3.7: Pareto optimal front of parallel system with equal Vref . c© [2020] IEEE.

3.6.2 Parallel MG System with Arbitrary DG Reference Voltages

Pareto optimal front for arbitrary DG reference voltages with equal line resistances is

shown in Figure 3.8. In contrast to the previous test cases, here an extra degree of freedom

is included when computing the optimal droop parameters by allowing arbitrary reference

voltages. The best compromise solution was found at the point f1 = 0.13 V, f2 = 0.24 A and

f3 = 44.671 W. Voltage deviation error is minimized compared to the previous case since

different DGs are allowed to have different reference voltages. The corresponding virtual

resistances obtained in this solution were, 0.522 Ω, 0.625 Ω, 0.695 Ω, 0.519 Ω and 0.399 Ω.

Moreover, the computed optimal DG reference voltages were, 114.87 V, 114.01 V, 113.62 V,
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Figure 3.8: Pareto optimal front of parallel system with arbitrary Vref . c© [2020] IEEE.

113.30 V, and 114.01 V respectively.

3.6.3 Performance Comparison with Traditional Droop

The parallel DG system in Figure 3.6 was controlled by the controller developed in

section 3.5 with traditional droop coefficients and computed optimal droop coefficients. Then

the performances of the optimal droop relationships were compared with the traditional droop

relationships. In the traditional approach, all the DG virtual resistances were kept at 0.5 Ω

and reference voltages were set to 110 V. These traditional droop coefficients were obtained by

following the procedure described in section 3.2 based on the maximum allowable DG output

voltage deviations and maximum output currents given above. Controller parameters α and

K were set to 10 and 5000 and, boost converter parameters were selected as Lk = 10 mH,

Ck = 3.4 mF and Ek = 60 V for all the DGs. Results of parallel DG system with equal

line resistances are given in Figure 3.9 and Figure 3.10 and results of the other systems are

presented at the end of each test case. In parallel DG system with equal line resistances,

DG1, DG5, and DG2, DG4 voltages and currents are overlapping because of the symmetry

of the network.
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Figure 3.9: Variation of DG output voltages and currents in parallel DG system with equal
line resistances (a) Voltages and (b) Currents. c© [2020] IEEE.

Figure 3.10: Variation of the objective functions in parallel DG system with equal line
resistances (a) f1, (b) f2 and (c) f3. c© [2020] IEEE.

Parallel DG system with equal line resistances was initialized with the traditional

droop coefficients and at t = 1s those were changed to optimal droop gains with equal

reference voltages. Next, optimal droop coefficients with arbitrary reference voltages were

set at t = 2s. The results show a significant improvement in voltage regulation and current

sharing. Clearly, the DG output currents reach an equal value and remain close to each other
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with the optimal droop and voltages are restored to keep the average system voltage close to

the nominal value. In equal reference voltage case and in arbitrary reference voltage case,

the observed voltage regulation improvements over the traditional droop coefficients were

62.5% and 96.4% respectively. Significant current sharing improvement can be identified in

both scenarios and they are 97.6% and 98.4% over the traditional method. However, power

loss minimization has been slightly degraded due to the compromisation between multiple

objectives. Lower power loss can be always achieved by changing the fmax3 and fmin3 values

which will result in degrading the voltage regulation and current sharing than in this case.

3.6.4 Generator Disconnection

The performance of the proposed approach under a fault or an emergency situation was

evaluated under this test case. Initially, the MG in Figure 3.6 was controlled by the optimal

droop coefficients with arbitrary reference voltages. When t = 2s, DG5 was disconnected

from the MG and hence bus 5 becomes a load bus with no load attached to it. Variations in

the DG output voltages and currents are shown in Figure 3.11.

Figure 3.11: Variation of DG output voltages and currents in parallel DG system subjected
to a generator disconnection (a) Voltages and (b) Currents. c© [2020] IEEE.
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At the point of DG disconnection, all the bus voltages undergo a voltage dip due

to the loss of a generation source. Lowest voltage can be identified in bus 5, which is

104.8 V. Injected current at bus 5 goes to zero while other DGs show current overshoots.

Maximum overshoot can be seen in DG 4 which increases its current up to 12.52 A. All the

currents and voltages converge to a new equilibrium after 0.2s. Now the MG is controlled by

pre-fault optimal droop coefficients which are not the optimal setting for the new system.

Still, the pre-computed droop coefficients are capable of providing the required demand while

protecting the system stability. Under the pre-fault optimal droop settings, the objective

values were computed as, f1 = 1.63 V, f2 = 10.33 A and f3 = 43.63 W. Optimal virtual

resistances and corresponding reference voltages for the post-fault MG with 4 DGs were

found as 0.231 Ω, 0.503 Ω, 0.623 Ω, 0.719 Ω and 114.83 V, 114.969 V, 113.942 V and 113.674

V respectively. After 6s from the fault, recomputed optimal droop coefficients with arbitrary

reference voltages were assigned to the existing DGs. Thus, the objective values improve to

f1 = 0.95 V, f2 = 0.58 A and f3 = 56.27 W.

3.6.5 Microgrid with Constant Power Loads
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Figure 3.12: Pareto optimal front of parallel system with CPLs. c© [2020] IEEE.

The effect of CPLs in the optimal droop coefficient computation is explored in this
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section. Loads at bus six and bus nine in the parallel-connected system with equal line

resistances were considered as CPLs with a power consumption of 500 W. Generated Pareto

optimal front is depicted in Figure 3.12. The best compromise solution was found at f1 = 2.95

V, f2 = 0.39 A and f3 = 41.87 W. In this test case, due to the effect of CPLs, voltage

deviation error has been increased. Optimal virtual resistances were found as, 0.748 Ω, 0.999

Ω, 1.146 Ω, 0.989 Ω, 0.757 Ω and DG reference voltage was observed as 113.15 V. Further,

the corresponding equivalent variable resistances of the CPLs at bus 6 and 9 were 23.05 Ω

and 23.02 Ω respectively.

3.6.6 Parallel MG System with Unequal Line Resistances

In order to demonstrate the performances of the proposed concept with unequal

distribution line resistances, a simulation test case was conducted. Table 3.2 summarizes the

line resistances used to generate the results in Figure 3.13, while keeping all other parameters

unchanged. In this case, the best cost solution for arbitrary DG reference voltages was found

at f1 = 1.34 V, f2 = 0.38 A and f3 = 38.30 W. System loss shows a lower value compared

to the previous cases because some of the line resistances are now below 0.2 Ω. Voltage

deviation and current sharing error increases due to the asymmetry in the network. The

optimal virtual resistances were found as 0.6604 Ω, 0.7661 Ω, 0.8360 Ω, 0.8264 Ω and 0.5627

Ω. The optimal DG reference voltages for this test case were observed as, 113.69 V, 113.57

V, 113.36 V, 114.17 V, and 114.21 V.

Table 3.2: Distribution Line Resistances. c© [2020] IEEE.

From Bus To Bus Value (Ω) From Bus To Bus Value (Ω)

1 6 0.10 6 2 0.15

2 7 0.20 7 3 0.25

3 8 0.10 8 4 0.15

4 9 0.20 9 5 0.25

In order to compare the performances against the traditional droop coefficients, the

parallel DG system with unequal line resistances was initialized with the traditional droop

coefficients and at t = 1s those were changed to the optimal droop coefficients computed above.

According to the results shown in Figure 3.13 and Figure 3.14, even with the different line
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Figure 3.13: Variation of DG output voltages and currents in parallel DG system with
unequal line resistances (a) Voltages and (b) Currents. c© [2020] IEEE.

Figure 3.14: Variation of the objective functions in parallel DG system with unequal line
resistances (a) f1, (b) f2 and (c) f3. c© [2020] IEEE.

resistances, the obtained optimal droop coefficients demonstrate excellent voltage regulation

and current sharing error minimization. Comparative improvements in average voltage

regulation and current sharing error minimization over the traditional droop coefficients were

calculated as 62% and 97.2 % respectively.
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3.6.7 Meshed MG System

This test case was carried out to compute the optimal droop coefficients of a meshed

MG considering the IEEE 30 bus system given in [154]. Distribution line resistances and

all the loads were considered as 0.2 Ω and 30 Ω respectively. Obtained Pareto optimal front

with arbitrary DG reference voltages is shown in Figure 3.15. Considered unacceptable and

acceptable satisfactory values for the best compromise solution were fmax1 = 7 V, fmax2 = 25

A, fmax3 = 280 W, fmin1 = 5 V, fmin2 = 15 A and fmin3 = 250 W. Best cost solution was found

as f1 = 2.15 V, f2 = 13.34 A and f3 = 299.9 W. The obtained optimal virtual resistances

were, 0.275 Ω, ,0.314 Ω, 0.270 Ω, 0.290 Ω, 0.343 Ω, 0.376 Ω. The optimal reference voltages

were found as, 114.87 V, 114.86 V, 114.95 V, 113.90 V, 114.80 V, 114.31 V respectively.
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Figure 3.15: Pareto optimal front of meshed system. c© [2020] IEEE.

A Comparison between the traditional and optimal droop in the mesh MG was

performed and results are given here. In the mesh system, traditional virtual resistances were

set to 0.4 Ω for all the DGs based on their allowable maximum output voltages deviation

and maximum output currents given above. The mesh DG system was initialized with the

traditional droop coefficients and at t = 1s those were changed to optimal droop gains with

arbitrary reference voltages. In the traditional case, steady-state DG voltages are below

the nominal system voltage and the currents are distributed between 12.22 A and 7.95 A
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Figure 3.16: Variation of DG output voltages and currents in mesh DG system (a) Voltages
and (b) Currents. c© [2020] IEEE.

Figure 3.17: Variation of the objective functions in mesh DG system (a) f1, (b) f2 and (c)
f3. c© [2020] IEEE.

as shown in Figure 3.16. With the optimal droop, voltages are restored to maintain the

overall system voltage close to the nominal value. DG output currents show close variation

than the traditional case where the distribution is now between 11.6 A and 9.48 A. Since

the mesh system is not symmetrical, current sharing error minimization is not good as in

the parallel system. If high priority is given to the current sharing error minimization, a
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better result can be obtained. However, it will result in higher system losses and poor voltage

regulation. According to Figure 3.17, objective values of the traditional case are f1 = 7.22 V,

f2 = 29.06 A and f3 = 266.1 W. Even though a high loss is observed with the optimal droop,

the objectives f1 and f2 gained 70.2% and 54.1% improvements over the traditional method.

3.7 Experimental Validation

The effectiveness and applicability of the optimal droop coefficients computed by the

proposed method were experimentally validated on the test bench shown in Figure 3.18. The

experimental test bench contains the DS1104 controller card, CP1104 I/O board, MOSFET

converter system and the bus system. The upper half of the parallel-connected bus system

shown in Figure 3.6 was considered as the test bus system with 3 DGs and two loads at 30

Ω and 20 Ω operated in 30 V nominal bus voltage with 1 Ω distribution line resistances.

Upper and lower bounds of the virtual resistances were chosen as 0.3 Ω and 1.5 Ω while the

upper and lower reference voltage bounds were set to 28 V and 32 V. Further, optimization

constraints were considered as, Vi > 0.95Vn, δVmax = 1 V, and Imax = 2 A. Obtained optimal

virtual resistances of DG1, DG2 and DG3 were 0.547 Ω, 0.722 Ω, and 0.734 Ω. The optimal

reference voltages were found at 30.92 V, 30.43 V, and 30.62 V respectively. With these

droop coefficients, the MG was controlled by the developed state feedback controller. The

experimental setup details are summarized in Table 3.3.

In the presented experimental test setup, the update laws were programmed in the

MATLAB/Simulink environment. The feedback signals from the current and voltage sensors

were taken into the computer through the dSPACE DS1104 controller card and CP1104 I/O

board. Some of the voltage and current information were measured directly from the inbuilt

test points in the V ishay power electronic drive board. To get the other voltage feedbacks,

Tektronix P5200A differential probes were used. Further, Tektronix TCP A300 current

amplifiers combined with TCP305A current probes have been used to get the output current

information of each DG. Generated duty cycles were passed through the PWM generator and

the corresponding PWM switching signals were fed into the MOSFET converters through

the slave I/O PWM DBUS connector in the dSPACE CP1104 I/O board.

Initially, the system was controlled by the traditional droop and then the coefficients

were changed to optimal droop. The output current and voltage waveforms of the DGs are
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Table 3.3: Parameters of the Experimental Setup. c© [2020] IEEE.

Parameter Value

Traditional RD 0.5 Ω

Traditional Vr 30 V

Switching frequency 16 kHz

Lk 10 mH

Ek 20 V

Ck DG1 & DG3 - 3.4 mF, DG2 - 2.8 mF

DG1

DG2

DG3

DG1 DG3DG2

Control system

DG1

DG2

DG3

Control systemLoads Bus system

Figure 3.18: Experimental test bench. c© [2020] IEEE.

shown in Figure 3.19 and Figure 3.20. According to Figure 3.19, DG output currents are

not equal and under the optimal droop, they converge to a closer value around 0.8 A. The

DG output voltages show a small increment as in Figure 3.20. Experimental costs of the

three objectives under the optimal droop coefficients were f1 = 0.43 V, f2 = 0.08 A and

f3 = 1.28 W. The three objective values of the traditional droop were f1 = 0.98 V, f2 = 0.93

A and f3 = 0.82 W. Since the optimal solution of the droop coefficients was extracted to

have the best possible voltage regulation and current sharing, a slight increment in losses

can be observed. However, with the optimal droop, the improvement in f1 and f2 over the

traditional droop are 56.21% and 91.40% respectively.
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Figure 3.19: Experimental current variation. c© [2020] IEEE.

DG1

DG2

DG3

DG1 DG3DG2

Figure 3.20: Experimental voltage variation. c© [2020] IEEE.
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Figure 3.21: Experimental current variation subjected to a DG disconnection. c© [2020]
IEEE.
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Figure 3.22: Experimental voltage variation subjected to a DG disconnection. c© [2020]
IEEE.

Control action and stability of the proposed concept under a DG disconnection was

experimentally verified. Initially, the MG was controlled by the pre-fault optimal droop
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found in the first experimental test case. Then, the DG3 was disconnected from the MG

and hence it becomes a load bus with no load connected to it. The remaining DGs were

controlled with the pre-fault optimal droop until the post-fault optimal droop coefficients

are available and assigned. Variations in the currents and voltages are shown in Figure 3.21

and Figure 3.22. According to the results, the control and stability of the MG are protected

with the pre-fault droop even one DG is disconnected. During this period, the experimental

objective values were computed as, f1 = 1.8 V, f2 = 0.325 A and f3 = 1.71 W. After 6s

from the DG disconnection, post-fault optimal droop coefficients were assigned. Obtained

post-fault optimal virtual resistances and reference voltages of DG1 and DG2 were 0.301 Ω,

0.598 Ω, 31.94 V, and 30.87 V respectively. With the post-fault optimal droop, improvements

in current sharing and voltage regulation can be observed. Experimental objective values for

the post-fault optimal droop were calculated as f1 = 1.11 V, f2 = 0.02 A and f3 = 2.96 W.

3.8 Conclusion

A MOO based optimal droop coefficient computation methodology for DGs in islanded

DCMG was proposed in this section. Overall system voltage regulation, current sharing

error minimization, and total system active power loss minimization were taken as conflicting

objectives. Elitist non dominated sorting genetic algorithm (NSGA II) was utilized to obtain

the Pareto optimal front in the objective space and a fuzzy membership function was employed

to obtain the best compromise solution. Simulations were carried out for both the parallel-

connected system and the meshed system. In addition, a state feedback linearized controller

was utilized to facilitate the control actions under the optimal droop relationships. Both

simulation and experimental results were presented with the developed feedback controller to

demonstrate the effectiveness of the proposed optimal droop coefficients over the traditional

ones. According to the results, it can be inferred that the droop coefficients generated by

the proposed MOO approach have superior steady-state responses and better performance

compared to the traditional droop coefficients. The inclusion of a dynamic MOO technique to

make the droop coefficient calculation process online and replace the controller to an adaptive

controller would be exciting future directions of this work. The inclusion of a dynamic MOO

technique allows to adaptively change the droop constants along with solar radiation which

has numerous advantages in renewable-based MGs.
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CHAPTER IV

DROOP FREE OPTIMAL FEEDBACK CONTROL OF DISTRIBUTED GENERATORS

IN ISLANDED DC MICROGRIDS

4.1 Major Objectives

A droop free, approximate optimal feedback control methodology is proposed in this

chapter for islanded DCMGs. Mitigation of major drawbacks in traditional proportional-

integral (PI) based droop control is the main objective of the proposed approach. Concurrent

learning-based feedback optimal control methodology is employed to compute the constraint

input of each distributed generator (DG) in the MG. Unlike other feedback optimal controllers,

the proposed methodology for DCMG possesses convergence of the unknown wights to a

neighborhood of the optimal weights without the persistence of excitation (PE). Simulation

and experimental results are presented to demonstrate the proposed concept considering 7

bus system and 5 bus test systems respectively. The major contributions of this section are

summarized below.

1. The development of a droop free control algorithm to replace conventional droop

mechanism in DGs in islanded DCMGs.

2. A novel, real-time feedback optimal control algorithm to achieve the optimal dynamic

response of the droop free DGs.

In the traditional droop methods, the sources in the MG are controlled through predefined

droop characteristics called the linear droop relationships [25, 40]. Here, the DG output

54



voltage is changed according to the measured output current based on the droop relationship.

Conversely, online droop free methods predict the source behavioral characteristics based

on the instantaneous measurements of the system and do not rely on predefined offline

trajectories or surfaces. In the proposed droop free approach, instead of tampering the output

voltage, the DG input current is changed according to the measured output current while

keeping the output voltage at the nominal value. This control objective is realized in an

optimal manner to gain the best possible transient performances subjected to any disturbance

in the system. The proposed real-time optimal feedback control algorithm is based on

the infinite horizon optimal control architecture. Further, this algorithm is derived from

the concurrent reinforcement learning (RL) adaptive/approximate dynamic programming

(ADP) with control bounds. The main advantages of this feedback optimal control algorithm

compared to the existing methods in DCMG control are,

1. No offline training is required. Parameter convergence is achieved online.

2. Does not require PE condition to guarantee the parameter convergence like most of the

other existing feedback optimal controllers.

3. Bounded control signal in the allowable control space.

4. Fast parameter convergence.

This novel control algorithm is introduced to replace the traditional PI-based control loops

in the droop controller. Introducing the droop free algorithm together with the proposed

optimal feedback control algorithm, the following advantages are obtained compared to the

existing conventional PI-based droop control.

1. Higher voltage quality through improved voltage regulation in individual DGs and

overall DCMG.

2. Mitigation of poor transient performances.

3. Low control burden by minimum duty cycle variations.

4. Fast response to sudden disturbances.
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In the modeling, each DG is modeled as a control affine dynamical system and optimal

duty cycles for each DG are generated by a constrained input ADP method. Two RL

based adaptive tuning algorithms are introduced to learn the unknown parameters in the

optimal value function and the controller by simulation of experience via Bellman Error (BE)

extrapolation which does not require PE to guarantee the parameter convergence. Main

findings of this chapter are published in [156].

4.2 Dynamic Modeling of Distributed Generators

In this chapter, intermediate PEI of each DG is assumed to be boost topology as

shown in Figure 4.1. A combination of the input voltage source, PEI and the controller is

referred to as a DG. We are not considering the dynamics of the input power source in this

chapter as it is a different research topic. In control design for DGs, it is customary to assume

the input power source provides a constant voltage to the PEI [25,41]. Hence, all the input

sources are assumed to be constant DC voltage sources. Even though the input voltage is

assumed to be constant in the modeling to ease the computational burden, the proposed

control algorithm is capable of compensating input voltage disturbances. Simulation results

are presented to demonstrate the adaptability against the input voltage disturbances later in

the chapter. Further, we assume that the PEI is closely located to the main DC bus and

hence the line resistance between the main DC bus and output of the PEI can be neglected.

Main DC Bus
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Switch

~
=

=
=

~
=

~
=

AC Load

DC Load

=
=

PEI

PEI

PEI

Wind

PV

=
=

PEI

Battery

Main Grid

Ek

rLk

vok

iLk iok

PEI

Lk

Ck

Main DC Bus

Dk

1-Dk

Figure 4.1: Schematic diagram of the boost PEI. c© [2020] IEEE.

Suppose N number of DGs exist in the set G. Then, the dynamic model of the kth
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DG (k ∈ G) can be represented as,

Lk i̇Lk(t) = Ek −Dkvok(t)− rLkiLk(t) (4.1)

Ckv̇ok(t) = DkiLk(t)− iok (4.2)

where, the two states iLk, vok are the inductor current and output voltage, control input is the

duty cycle Dk, iok is the instantaneous output current and Lk, rLk, Ck, Ek are the inductance

of the inductor, the resistance of the inductor, the capacitance of the capacitor and the input

voltage of the DG. In the modeling, the output current assumed to be time-independent

and at any given time controller attempts to adjust the duty cycle to supply the measured

instantaneous output current. Hence, the desired duty cycle is a function of the instantaneous

output current. Suppose the desired output voltage is x2d which is the nominal system

voltage, the desired duty cycle can be obtained by (4.1) and (4.2) as,

D̄k =
Ek +

√
E2
k − 4x2diokrLk
2x2d

(4.3)

Assumption 1 : Every DG has a maximum generation capacity which limits its output

current. The bound of kth DG instantaneous output current is given by,

iok <
E2
k

4x2drLk
; ∀k ∈ G (4.4)

This assumption ensures the existence of a real solution to the desired duty cycle in (4.3).

Defining the error system states as x1k = iLk(t)− iok/D̄k, x2k = vok(t)− x2d, relative

control as uk = Dk − D̄k and using (4.1)-(4.3), the error system dynamics of the kth DG can

be obtained in control affine form as,

ẋk = fk(xk) + gk(xk)uk (4.5)

where, the concatenate state xk =
[
x1k x2k

]T
, fk(xk) and gk(xk) are given by,
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fk(xk) =


−rLkx1k − D̄kx2k

Lk
D̄kx1k

Ck

 ; gk(xk) =


−(x2k + x2d)

Lk
x1k + iok/D̄k

Ck

 (4.6)

Since the control duty cycle is only allowed to use the values in Dk ∈ (0, 1), relative

controller can only pick values in the set uk ∈ (−D̄k, 1− D̄k). In order to make the upper

and lower bounds of the controller even such that |uk| ≤ ūk, control bound is selected as

ūk = min{D̄k, 1− D̄k}. Even though this assignment restricts the control space more than it

supposed to be, alternatively it makes the constrained input control problem much simpler

to solve and it always ensures the actual duty cycle remains in the set (0, 1).

Now the goal is to find the optimal feedback control actions which drive the error

system states given by (4.5) to zero. The next section explains how to achieve this goal online

in the state feedback form.

4.3 Infinite Horizon Approximate Optimal Control of Distributed Generators

4.3.1 Problem Statement

Once the system dynamics are constructed as in (4.5) and (4.6) with the control input

constraint explained in previous section, the goal is to solve the infinite horizon optimal

control problem. Consequently, the objective is to find a control signal (u∗k(xk)) which

minimizes the performance index,

Jk(xk, uk) =

∫ ∞
t0

rk(xk(τ), uk(τ))dτ (4.7)

such that,

u∗k(xk) = arg min
uk(τ)∈Ωu

k |τ∈R≥t

∫ ∞
t

rk(xk(τ), uk(τ))dτ (4.8)

where, Ωu
k = {uk|uk ∈ R, |uk(xk)| ≤ ūk}. The instantaneous cost in (4.7) and (4.8) is defined

as,

rk(xk, uk) = Qk(xk) + Uk(uk) (4.9)

where, Qk(xk) is a positive definite function and Uk(uk) is a positive definite integral function.

Since the goal is to regulate the error system states to zero, the quadratic state cost of
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the form xTkPkxk is selected for Qk(xk). Here, Pk is a positive definite symmetric matrix

with appropriate dimension. In order to satisfy the control input constraint, following

non-quadratic penalty function is employed for Uk(uk) [157,158].

Uk(uk) = 2Rkūk

∫ uk

0

tanh−1(ζ/ūk)dζ (4.10)

where, Rk is a positive constant.

The performance index is the objective function that the control agent wishes to

maximize or minimize. This dissertation considers the integral state and control cost from

any initial state to infinity. This particular problem is called the infinite horizon optimal

control problem. The instantaneous state cost is the difference between the current state and

the desired state at that time instance while the instantaneous control cost is formulated

as a nonlinear function of the difference between current control and desired control at that

time instance. The integral summation of these state and control errors from the initial time

to the infinity makes the performance index and the goal is to minimize the cost of errors.

Since this is a performance index of the cost that contains state and control errors, we want

to minimize it to reach the desired state and control. To minimize the performance index,

the only explicit adjustable variable in hand is the control signal. The control variable in

this problem is the control duty cycle. It directly tied to the state through system dynamics

(4.1) and (4.2). Since the performance index comprises of system state and it has nonlinear

control error function, the control signal directly affects the performance index. Hence, by

properly adjusting the control signal, the performance index can be minimized.

Closed form solution to the derived optimal control problem is characterized by the

optimal value function given by [128],

V ∗k (xk) = min
uk(τ)∈Ωu

k |τ∈R≥t

∫ ∞
t

rk(xk(τ), uk(τ))dτ (4.11)

The optimal value function satisfies the Hamilton Jacobi Bellman (HJB) equation [128] such

that,

min
uk∈Ωu

k

[
∇V ∗k (xk)(fk(xk) + gk(xk)uk(xk)) + rk(xk, uk)

]
= 0 (4.12)

where, ∇ is the gradient operator with respect to xk and H(xk, uk) = ∇V ∗k (xk)(fk(xk) +
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gk(xk)uk(xk)) + rk(xk, uk) is the Hamiltonian. If the optimal controller (u∗k(xk)) exists,

according to (4.12), the HJB equation can be shown as,

∇V ∗k (xk)(fk(xk) + gk(xk)u
∗
k(xk)) + rk(xk, u

∗
k(xk)) = 0 (4.13)

with the initial condition V ∗k (0) = 0. The optimal control law which satisfies the HJB equation

can be obtained by differentiating the Hamiltonian with respect to uk as,

u∗k(xk) = −ūk tanh
[ 1

2Rkūk
∇V ∗k (xk)gk(xk)

]
(4.14)

Since the hyperbolic tangent function is a continuous, one to one bounded function such

that | tanh(·)| ≤ 1, the optimal control policy derived in (4.14) satisfies |uk| ≤ ūk. Further,

the second derivative of the Hamiltonian can be shown as, 2Rkūk∇uk(tanh−1(uk/ūk)). Since

the hyperbolic tangent function is strictly monotonically increasing, the second derivative is

positive [55]. This implies u∗k(xk) given in (4.14) minimizes the Hamiltonian.

Once the optimal control policy u∗k(xk) is obtained, the optimal duty cycle of the

kth DG (D∗k) can be computed. This optimal duty cycle is a state feedback controller

which is a function of the DG’s optimal value function. To obtain the value function, one

needs to substitute the optimal control (4.14) in (4.13) and solve the HJB equation for

V ∗k (xk). Then V ∗k (xk) can be substituted back in (4.14) to obtain u∗k(xk) and subsequently D∗k.

However, obtaining an exact analytical solution to the HJB equation is generally infeasible.

Hence, methods have been developed to obtain an approximate solution by employing ADP

techniques. In RL based online ADP methods, the optimal value function is approximated by

a NN and the unknown weights of the approximate value function are updated to minimize

the approximation error called the Bellman Error (BE) [53,55]. In this chapter, two linear in

the parameter (LIP) NNs are utilized to successively approximate the optimal value function

and the optimal feedback control law as described in the next section. In the subsequent

analysis, the indicator k is dropped for the notational brevity and the procedure is similar

for all the DGs in G.
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4.3.2 Value Function Approximation

NNs are an effective method for unknown function approximation on prescribed

compact sets [159]. The universal approximation property of NNs can be utilized to synthesize

the optimal value function in a compact set χ ⊂ R2 as,

V ∗(x) = W Tσ(x) + ε(x) (4.15)

where, W ∈ RL is the vector of ideal NN weights bounded by a known constant such

that ‖W‖ ≤ W̄ , L ∈ N is the number of neurons, σ(x) : R2 → RL is a continuously

differentiable activation function having the properties σ(0) = 0 and ∇σ(0) = 0, and ε(x)

is the function reconstruction error which is bounded in the sense supx∈χ |ε(x)| ≤ ε̄ and

supx∈χ |∇ε(x)| ≤ ε̄′ [55]. With this NN representation, the optimal controller can be derived

as,

u∗(x) = −ū tanh
[ 1

2Rū

(
W T∇σ(x) +∇ε(x)

)
g(x)

]
(4.16)

Since the optimal wight vector W is unknown, an estimate set of weights are assigned to

approximate the value function and the optimal control law as,

V̂ (x, Ŵc) = Ŵ T
c σ(x) (4.17)

û(x, Ŵa) = −ū tanh
[ 1

2Rū
Ŵ T
a ∇σ(x)g(x)

]
(4.18)

where, Ŵc ∈ RL and Ŵa ∈ RL are called the critic and actor weights which are the estimates

of actual weights W . Replacing the optimal value function and optimal control in (4.13) by

these estimates, the BE can be expressed as,

δ(x, Ŵc, Ŵa) = ∇V̂ (x, Ŵc)
(
f(x)+g(x)û(x, Ŵa)

)
+Q(x)+2Rū

[
û(x, Ŵa)tanh−1

( û(x, Ŵa)

ū

)
+
ū

2
ln
(

1−
( û(x, Ŵa)

ū

)2)]
(4.19)

The objective is to design an adaptive tuning algorithm to simultaneously adjust the weight

estimates to minimize the BE as explained in the next subsection. Eventually, the decision

variables of the transient optimization problem become the unknown weights in the actor
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and critic NNs. Utilizing two sets of weights to estimates the same unknown optimal weights

makes the problem less complex. Further, with this modification, critic weights appear

linearly in the BE which allows the least-squares (LS) based update law [52,55].

4.3.3 Model Based Reinforcement Learning

RL is learning itself on how to proceed and what actions to take in order to gain

reward by maximizing or minimizing a given performance index [160]. The learner is given

a performance index and a possible pool of actions or an action space, but not told which

actions to take. Therefore, the learning agent must explore and decide which actions yield

the most reward by utilizing them. Depending on the rewards gained by current and past

actions, the learning agent decides the future actions. Further, the goal or the performance

index must interrelate to the state space in some way so that the learning agent can sense

the variations in the state and gained reward as consequences of its actions. In this chapter,

the learner is trying to minimize the BE by tuning the actor and critic weights.

Online RL implies it works in real-time without any human interaction or prior

information. This type of learning process operates in real-time, and it is an unsupervised

like learning mechanism which does not require any offline tuning. The algorithm seeks the

optimal value function along the system trajectories as it operates, and it tries to find the

control signal which minimizes the considered performance index. This means it uses the

information gain by the state space to tune the unknown weights in the value function and

control signal. If the dynamical system changes due to a load change or any other disturbance,

then the operating conditions and eventually the state trajectories will change. Then, the

weight tuning laws will adjust accordingly to find out the new weights corresponding to the

current system in real-time.

Two update laws are employed here to learn the optimal weights in the value function

by adjusting the actor and critic weights. In online RL based update laws, these wights are

updated through the observed data along the system trajectories. The traditional online

learning algorithms require sufficient richness in the observed data to converge the weight

estimates to a neighborhood of the optimal weights which is characterized by the PE condition.

Usually, a probing noise is added to the controller to achieve PE which is undesirable in

DCMG control. Therefore, this chapter employs a concurrent learning-based adaptive learning
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algorithm that does not require PE for convergence [161]. The methodology discussed in this

work utilizes the system model to extrapolate the BE to unexplored areas of the state space

and use that information as a gained experience for learning.

An update law based on the LS with forgetting factor is employed to tune the critic

gains as [52,55,162],

˙̂
Wc(t) = −kc1Γ(t)

φ(t)

ρ(t)
δ(t)− kc2

M
Γ(t)

M∑
i=1

φi(t)

ρi(t)
δi(t) (4.20)

Γ̇(t) =
(
βΓ(t)− kc1Γ(t)

φ(t)φT (t)

ρ2(t)
Γ(t)− kc2

M
Γ(t)

M∑
i=1

φi(t)φ
T
i (t)

ρ2
i (t)

Γ(t)
)
1‖Γ(t)‖≤Γ̄ (4.21)

where, φ(t) = ∇σ(x)
(
f(x) + g(x)û(x, Ŵa)

)
∈ RL is the regressor vector, ρ(t) = 1 +

νφT (t)Γ(t)φ(t) ∈ R is the normalizing term, Γ(t) ∈ RL×L is the time varying LS gain

matrix, 1 is the indicator function, Γ̄ is the saturating upper bound of Γ(t), kc1, kc2, ν are

positive constant gains and β is the forgetting factor [52]. Further, φi(t) = ∇σ(xi)
(
f(xi) +

g(xi)û(xi, Ŵa)
)
∈ RL, and ρi(t) = 1 + νφTi (t)Γ(t)φi(t) ∈ R are the regressor and normalizing

term evaluated at the predefined set of points xi and δi(t) = δ(xi, Ŵc, Ŵa) is the BE extrapo-

lated to those points. In the modeling, it is assumed that the predefined points satisfy the

following rank condition [55].

Assumption 2 : There exists a finite set of fixed points {xi ∈ R2|i = 1, . . . ,M} such

that ∀t ∈ R≥0,

0 < c ,
1

M

(
inf
t∈R≥0

(
λmin

{
M∑
i=1

φi(t)φ
T
i (t)

ρ2
i (t)

}))
(4.22)

Based on the stability analysis the actor weights are updated as,

˙̂
Wa(t) = −ka1

(
Ŵa(t)−Ŵc(t)

)
+ū
(
kc1 tanh(D̂a)

φ(t)

ρ(t)
GT
σ+

kc2
M

M∑
i=1

tanh(D̂ai)
φi(t)

ρi(t)
GT
σi

)
Ŵc(t)

(4.23)

where, Gσ = ∇σ(x)g(x), Gσi = ∇σ(xi)g(xi), D̂a = GT
σ Ŵa/2Rū and D̂ai = GT

σiŴa/2Rū.

Alternatively a projection based algorithm can also be implemented to tune the actor weights

in the sense that
˙̂
Wa(t) = proj

(
− ka1(Ŵa(t)− Ŵc(t))

)
[162]. Based on these tuning laws,
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estimate of the optimal controller can be obtained using (4.18) and then the approximate

optimal duty cycle for each DG can be recovered as,

D̂(x, Ŵa) = û(x, Ŵa) + D̄ (4.24)

The complete process is summarized in Figure 4.2.
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Figure 4.2: Model based approximate dynamic programming solution of a single DG. c©
[2020] IEEE.

4.4 Stability Analysis

Stability analysis of the local optimal controller is done in this section. For notational

brevity function dependency on state and time is suppressed unless otherwise stated for clarity.

Define a closed ball Br ⊂ R2(1+L) with radius r centered at the origin and let χ , Br ∩ R2.
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Subtracting (4.13) from (4.19), BE (δ) and extrapolated BE (δi) can be expressed as,

δ = −φT W̃c − ū tanh(D̂a)G
T
σ W̃a +Rū2 ln

[1− tanh2(D̂a)

1− tanh2(D̂∗a)

]
−∇εf (4.25)

δi = −φTi W̃c − ū tanh(D̂ai)G
T
σiW̃a +Rū2 ln

[1− tanh2(D̂ai)

1− tanh2(D̂∗ai)

]
−∇εifi (4.26)

where, W̃c = W − Ŵc and W̃a = W − Ŵa are the critic and actor weight estimation errors,

∇εi = ∇ε(xi), fi = f(xi), gi = g(xi), ∇σi = ∇σ(xi), D̂
∗
a = (W T∇σ + ∇ε)g/2Rū and

D̂∗ai = (W T∇σi +∇εi)gi/2Rū.

Consider the continuously differentiable positive definite (PD) candidate Lyapunov

function VL : R2(1+L) × R≥0 → R≥0,

VL(Z, t) = V ∗(x) +
1

2
W̃ T
c Γ−1W̃c +

1

2
W̃ T
a W̃a (4.27)

where, V ∗ is the optimal value function, Z =
[
xT W̃ T

c W̃ T
a

]T
∈ R2(1+L). Since V ∗ is PD and

LS gain matrix is bounded such that ΓIL ≤ Γ(t) ≤ Γ̄IL [55, 162], VL is bounded as [163],

vL(‖Z‖) ≤ VL(Z, t) ≤ v̄L(‖Z‖) (4.28)

where, vL and v̄L are class K functions. Using the BEs in (4.25) and (4.26), time derivative

of (4.27) along the dynamics (4.5), (4.20), (4.21), (4.23) can be expressed as,

V̇L = −Q(x)−U(u∗)−W̃ T
c

[
kc1

φφT

ρ
(1− 1

2ρ
)+
kc2
M

M∑
i=1

φiφ
T
i

ρi
−kc2

M∑
i=1

φiφ
T
i

2Mρ2
i

+
βΓ−1

2

]
W̃c−W̃ T

a
˙̂
Wa

− ūW̃ T
c

[
kc1 tanh(D̂a)

φ

ρ
GT
σ +

kc2
M

M∑
i=1

tanh(D̂ai)
φi
ρi
GT
σi

]
W̃a + Ξ (4.29)

where, Ξ = W̃ T
c

[
kc1

φ

ρ

(
Rū2 ln

[1− tanh2(D̂a)

1− tanh2(D̂∗a)

]
−∇εf

)
+
kc2
M

∑M
i=1

φi
ρi

(
Rū2 ln

[1− tanh2(D̂ai)

1− tanh2(D̂∗ai)

]
−

∇εifi

)]
. Using the inequality

φφT

ρ2
≤ φφT

ρ
[162], and substituting for

˙̂
Wa, the Lyapunov

65



derivative can be upper bounded as,

V̇L ≤ −Q(x)− U(u∗)− kc2W̃ T
c

[
βΓ−1

2kc2
+

M∑
i=1

φiφ
T
i

2Mρi

]
W̃c − ka1W̃

T
a W̃a + ka1W̃

T
a W̃c

− ūW̃ T
a

[
kc1 tanh(D̂a)

φ

ρ
GT
σ +

kc2
M

M∑
i=1

tanh(D̂ai)
φi
ρi
GT
σi

]
W + Ξ (4.30)

The approximation ln
[
1 − tanh2(D)

]
= ln(4) − 2Dsgn(D) + εD [158] is employed in the

subsequent stability analysis for the bounded approximation error εD ≤ ε̄D for D = {D̂a, D
∗
a}.

Define the notation |ω| , supx∈χ ‖ω‖ and positive constants {λj|j = 1, . . . , 6} such that

λ1 + λ2 + λ3 = 1 and λ4 + λ5 + λ6 = 1. Further, let C and ϑ are two positive constants

defined as,

C =
β

2Γ̄kc2
+
c

2
(4.31)

ϑ =
γ2(kc1 + kc2)2

4

( ūW̄ 2|Gσ|
ka1λ5

+
∆2

kc2Cλ3

)
+ ∆u∗ (4.32)

where, ∆ = ū(2W̄ |Gσ|+ |∇εg|)+Rū2ε̄D+ |∇εf |, ∆u∗ = 2ū(W̄ |Gσ|+ |∇εg|)+Rū2(ln(4)+ ε̄D∗
a
),

and ε̄D = ε̄D̂a
+ ε̄D∗

a
. Moreover, define any class K PD function vL(‖Z‖), and sufficient

conditions for ultimate boundedness as,

vL(‖Z‖) ≤ 1

2

(
Q(x) + kc2Cλ1‖W̃c‖2 + ka1λ4‖W̃a‖2

)
(4.33)

2
√
ka1kc2Cλ2λ6 ≥ ka1 + ūγ(kc1 + kc2)|Gσ| (4.34)

v−1
L (ϑ) < v̄−1

L (vL(r)) (4.35)

Using the boundedness of the normalized regressor such that ‖φ
ρ
‖ ≤ γ [55], and under the

sufficient conditions (4.34) and (4.35), V̇L can be further upper bounded as,

V̇L ≤ −vL(‖Z‖), ∀‖Z‖ > v−1
L (ϑ) (4.36)

for all Z ∈ Br and t ≥ 0. Hence, according to [163] the concatenated state and weight

estimation error system Z is uniformly ultimately bounded (UUB) in the sense lim
t→∞

sup ‖Z‖ ≤
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v−1
L (v̄L(v−1

L (ϑ))). Taking the overall Lyapunov function as
∑

k∈G VL,k(Zk, t), and following the

similar procedure, UUB result for the entire MG can be established. Based on the analysis

given in this section, it can be inferred that, under the sufficient conditions and assumptions,

the proposed concept stabilizes each DG and eventually the entire DCMG.

4.5 Simulation Test Cases and Results

Simulations were carried out considering the 7 bus test system shown in Figure 4.3

with transmission line resistance 0.2 Ω and nominal voltage 30 V. Typically, the number of

DGs are limited in islanded DCMGs and hence a small test system has been used to validate

the proposed concept. Plant and controller parameters are given in Table 4.1 for k = 1, 2, 3.

Value function of each DG is approximated by a quadratic power series of error system states

by considering the activation function σ(xk) =
[
x2

1k x2
2k x1kx2k

]T
. This activation function

makes the LIP NN which contains 3 neurons and a single layer. Initial conditions for the

actor and critic weights were considered as 0.2 and the least square gain matrix was initialized

with 100I3×3.
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Figure 4.3: Bus system used for simulations. c© [2020] IEEE.

Four main simulation test cases are presented. The first test case simulates the startup

phase of the DCMG with zero initial conditions which demonstrates the performance of

the proposed approach during the startup transient stage. Second and third test cases are

presented to show the adaptability, load sharing, and stability of the proposed droop free

concept against load and DG input voltage disturbances. Each test case was compared with

the traditional droop controllers with PI control as the fourth simulation test case.
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Table 4.1: Plant and Controller Parameters. c© [2020] IEEE.

Parameter Value Parameter Value

Lk 500 µH kc1 10

rLk 0.5 Ω kc2 20

Ck 120 µF ka1 20

Ek 15 V β 0.3

Γ̄ 200 ν 0.05

Pk I2×2 Rk 1/(LkCk)

4.5.1 Startup Transient Optimization

Figure 4.4: Variations during the startup (a) Output current, (b) Output voltage and (c)
Duty cycle. c© [2020] IEEE.

The DCMG was initialized with zero initial conditions and the results are shown in

Figure 4.4. The main objective of this test case to demonstrates the performance of the

proposed approach during the startup transient stage. According to the results, output

voltages reach the desired 30 V within 10 ms. The duty cycle variation is very small and it is
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bounded between 0.453 and 0.511 which validates the claim of constrained input. During the

learning transient, the maximum output current is observed as 1.3 A, while the maximum

output voltage is 39.5 V. Steady-state (s.s) output currents of DG1, DG2 and DG3 are 0.97

A, 0.87 A and 1.1 A respectively. According to the results, it can be identified that the

proposed controller perfectly share the load and regulate the voltage to the desired value

while protecting the overall system stability.

The convergence of the actor and critic weights and satisfaction of the rank condition

are shown in Figure 4.5 and Figure 4.6 respectively. Both actor and critic weights converge

to 0.0011, 0.0026, 0.0008 and the rank condition satisfies the assumption in (4.22). This

result demonstrates the convergence performance of the proposed learning algorithm given

by (4.20), (4.21) and (4.23).

Figure 4.5: Variation of the DG1 NN weights (a) Critic weights, (b) Actor weights. c©
[2020] IEEE.
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Figure 4.6: Variation of the rank condition given in assumption 2. c© [2020] IEEE.

4.5.2 Adaptability Against Load Disturbances

The main objective of this test case is to demonstrate the adaptive control ability of

the proposed approximate optimal control law under load influences. In order to explore the

adaptability of the proposed concept against load disturbances, a step load change from 40 Ω

to 20 Ω was given to load at bus five at t = 1s. According to the results shown in Figure

4.7, the peak to peak (p.p) maximum output voltage fluctuation around the nominal voltage

is 1.06 V and all the DGs regain the desired voltage within 10 ms. Duty cycles of all the

DGs remain within the acceptable range. DG1 and DG2 output currents rise to 1.34 A and

1.25 A since they are close to the load bus 5 while DG3 output current remains at 1.1 A.

According to the simulation results, it can be inferred that the proposed control algorithm is

capable of regulating the DG output voltage and protecting the system stability under load

disturbances.

4.5.3 Adaptability Against Input Voltage Disturbance

Analysis of the adaptability of the proposed approximate optimal control law against

the input voltage disturbance is the main objective of this simulation test case. In order to

see the performance, a step input voltage change was given to DG1 from 15 V to 20 V at
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Figure 4.7: Variations subjected to a load disturbance (a) Output current, (b) Output
voltage and (c) Duty cycle. c© [2020] IEEE.

t = 1s. According to the results shown in Figure 4.8, output voltages and currents reach their

original s.s values within 20 ms. The p.p maximum output voltage fluctuation around the

nominal voltage is 0.5 V. DG1 duty cycle converges to a new value due to the input voltage

change while other duty cycles remain in the same values as before. Based on the simulation

test results, it can be seen that the proposed control algorithm perfectly regulates the DG

output voltage and protects the system stability under input voltage disturbances.

4.6 Comparison with Traditional Controller

The main objective of this test case is to compare the performance of the proposed

concept against the existing droop based controls. The proposed controller was compared

with the traditional PI-based droop controller. In PI-based droop control, two cascade PI

controllers were employed in the traditional method which comprises of slow outer voltage

loop and a fast inner current loop. Proportional and integral gains of the outer voltage loop

were set to 0.001 and 5 where the corresponding current loop gains were considered as 1 and

50 respectively. The PI gains were tuned to have the best transient and s.s responses. The
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Figure 4.8: Variations subjected to an input voltage disturbance (a) Output current, (b)
Output voltage and (c) Duty cycle. c© [2020] IEEE.

droop relationship gives a reference voltage set point for the voltage loop. Droop coefficients

were selected as 0.5 Ω for virtual impedance and 30 V for the no-load reference voltage. In

order to keep the duty cycle within the allowable bound, the output of the current control loop

was passed through a hard limiter before feeding into the converter. Upper and lower bounds

of the hard limiter were selected as 1 and 0 respectively. Performances of the controllers were

compared in two situations. Case 1 represents the startup phase of the DCMG and case 2

represents a load change scenario at bus five from 40 Ω to 20 Ω after 10s of normal operation.

The results are summarized in Table 4.2 and Figure 4.9 to Figure 4.11.

The variations of integral transient state costs given by (4.7) are shown in Figure 4.9.

The cost can be used as a measure of the transient performance of the controller. In the

startup phase as well as after the load change, the proposed controller shows a small integral

cost compared to the traditional PI controller. The main observations of the startup cost

comparison can be summarized as; with the proposed controller, the maximum cost can be

observed in DG1 which is 0.5557 and with the PI controller, the maximum transient cost of

2.929 can be observed in DG3. After the load change, all DG integral costs increase and the
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Figure 4.9: Comparison of integral state costs (a) Proposed controller in startup, (b)
Traditional controller in startup, (c) Proposed controller in load change, (d) Traditional
controller in load change. c© [2020] IEEE.

main observation can be summarized as; with the proposed controller, DG1 transient cost

shows the highest value of 0.5564 and with the PI controller, DG3 transient cost increases

to 3.074. Integral costs of the remaining DGs and percentage improvements (% Imp.) over

the PI droop method are given in Table 4.2. According to the results, improved transient

performance can be achieved by the proposed concept.

Further, the convergence is much faster in the proposed controller compared to the

conventional method. In the startup, the maximum settling times were observed in DG3

which are; 2.114 ms under the proposed controller and 38.812 ms with the PI droop controller.

After the load change, the maximum settling times were observed as; 2.422 ms in DG3 with

the proposed controller and 61.022 ms in DG 1 under the PI droop controller. All the other

settling times with PI droop controller and percentage improvements are given in Table 4.2.

Clearly, the PI droop controller shows a sluggish response in the startup and under a load

disturbance compared to the proposed controller.

Duty cycle variations in startup and load change transients are shown in Figure 4.10.

In both cases, the droop controller shows higher variation and it grasps both allowable upper

or lower bounds. In the startup, the maximum p.p duty cycle variations are observed as;
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0.0569 with the proposed controller, and 1 with the PI controller. The percentage p.p duty

cycle reduction in DG3 over the PI droop controller was computed as 94.31 %. After the load

change, both controllers show small duty cycle variations and the maximum p.p variations

are; 0.0154 with the proposed controller and 0.0552 with the PI controller. The proposed

controller achieves a significantly low duty cycle variation over the PI droop controller due to

the minimization of the control effort given in (4.10).

Figure 4.10: Comparison of duty cycles (a) Proposed controller in startup, (b) Traditional
controller in startup, (c) Proposed controller in load change, (d) Traditional controller in
load change. c© [2020] IEEE.

DG output voltage deviations from the nominal voltage are shown in Figure 4.11.

Main observations drawn from this analysis are;

1. In regular operation and after a load change, zero DG output voltage errors are observed

under the proposed controller.

2. In the regular operation, the maximum voltage error of 0.5 V can be observed in DG3

with PI droop controller.

3. The minimum voltage error can be observed in DG2 which is 0.47 V under the PI droop

controller.
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After the load change, all the DG voltage errors increased and comparative results are depicted

in Table 4.2 for the PI droop controller. Even though the load change greatly affected the DG

voltage error in the PI droop controller, no change can be seen with the proposed controller.

The average DCMG voltage error before the load change was computed as; 0.059 V with

the proposed controller, and 0.54 V with the PI controller. After the load change, average

DCMG voltage errors increase to; 0.07 V with the proposed controller and 0.67 V with the

PI controller. The percentage improvements in the average voltage gained by the proposed

controller over the droop methods are; 89.1% before the load change and 89.55% after the

load change. Percentage increment in the average MG voltage error before and after the load

change is; 18.64% in the proposed controller and 24.07% in the droop controllers. Further,

by employing the proposed concept 80.92% overall DCMG integral state cost in startup and

81.9% overall DCMG integral state cost in load change are reduced over the traditional PI

droop controller.

Figure 4.11: Comparison of voltage errors before and after the load change. c© [2020]
IEEE.
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Table 4.2: Comparative Analysis with Traditional PI Based Droop Controller. c© [2020]
IEEE.

DG1 DG2 DG3

Proposed Traditional % Imp. Proposed Traditional % Imp. Proposed Traditional % Imp.

Integral state cost
case 1 0.5557 2.901 80.84 0.5556 2.903 80.86 0.5550 2.929 81.05

case 2 0.5564 3.073 81.89 0.5563 3.065 81.85 0.5555 3.074 81.93

Settling time (ms)
case 1 2.108 37.973 94.45 2.107 38.003 94.46 2.114 38.812 94.55

case 2 2.101 61.002 96.56 2.098 54.483 96.15 2.422 51.062 95.26

S.S voltage deviation (V)
case 1 0.00 0.47 100 0.00 0.47 100 0.00 0.50 100

case 2 0.00 0.63 100 0.00 0.60 100 0.00 0.57 100

4.7 Experimental Validation

The controllers and the DG system were implemented based on MATLAB/Simulink

and dSPACE control systems for experimental validation. Figure 4.12 shows the experimental

test bench that contains the DS1104 controller card, CP1104 I/O board, MOSFET converter

system and the bus system without DG3 and load bus seven adopted from Figure 4.3.

Parameters of the experimental setup are given in Table 4.3 with fs is the switching frequency

and rl is the distribution line resistance. All the other parameters were the same as in the

simulations. Multiple test case results are shown in Figure 4.13 to Figure 4.17.

Table 4.3: Parameters of the Experimental Setup. c© [2020] IEEE.

Parameter Value Parameter Value

Lk 10 mH Ek 15 V

rLk 0.8 Ω fs 30 kHz

Ck 500 µF rl 1 Ω

For the practical implementation, the proposed approach requires feedbacks from two

current sensors and two voltage sensors. Two current feedbacks are the inductor and the

output currents while the two voltage feedbacks are the input and output voltages. These

instantaneous data are fed into the controller which is programmed to reflect the process

given in Figure 4.2. The controller takes the current and voltage information from the sensors

to run the update laws (4.20), (4.21) and (4.23) to generates the duty cycle according to
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Figure 4.12: Experimental test bench. c© [2020] IEEE.

(4.24). Then the duty cycle is fed into the PWM generator which outputs the corresponding

switching signals to the converters. In addition to the measured signals, the controller requires

the values of inductance, inductive resistance, and capacitance of the converter.

In the presented experimental test setup, the update laws were programmed in the

MATLAB/Simulink environment. The feedback signals from the current and voltage sensors

were taken into the computer through the dSPACE DS1104 controller card and CP1104 I/O

board. Some of the voltage and current information were measured directly from the inbuilt

test points in the V ishay power electronic drive board. To get the other voltage feedbacks,

Tektronix P5200A differential probes were used. Further, Tektronix TCP A300 current

amplifiers combined with TCP305A current probes have been used to get the output current

information of each DG. Generated duty cycles were passed through the PWM generator and

the corresponding PWM switching signals were fed into the MOSFET converters through

the slave I/O PWM DBUS connector in the dSPACE CP1104 I/O board.

4.7.1 Startup Transient Optimization

Experimental variations of the DG output currents and voltages during the startup

phase of the DCMG are shown in Figure 4.13. According to the results, it can be seen

that both DGs regulate the output voltage close to the desired 30 V. However, due to the
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unmodeled dynamics in the experimental system, slight deviations can be observed in the

output voltages. Further, the s.s currents of DG1 and DG 2 are 0.95 A and 1.26 A respectively.

The PWM control signal outputs from the slave I/O PWM DBUS connector in the dSPACE

is shown in Figure 4.14. The s.s duty cycles of DG1 and DG 2 were observed as 0.45 and

0.43 respectively.
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Figure 4.13: Experimental variations during the startup. c© [2020] IEEE.

4.7.2 Adaptability Against Load Changes

Experimental variations of the DG output currents and voltages subjected to a load

change at bus five from 40 Ω to 20 Ω are shown in Figure 4.15. As shown in the results, the

output voltage of both DGs regains the desired voltage within a short time. Even though a

small voltage dip is observed at the point of load change, the difference in s.s values before and

after the load change is the same. There are no overshoots observed in the output currents

and the s.s values are measured as 1.33 A and 1.5 A in DG1 and DG2 after the load change.

4.7.3 Adaptability Against Input Voltage Disturbance

Experimental variations of the DG output currents and voltages subjected to an input

voltage disturbance in DG1 are shown in Figure 4.16. Slight overshoots are observed in
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Figure 4.15: Experimental variations subjected to a load change. c© [2020] IEEE.

both the DG output voltages for a short time and then they converge to the desired s.s

values. An overshoot is observed in DG1 output current and on the contrary, an undershoot

can be seen in DG2 output current. The reason for these large variations is the unmodeled

dynamics in the switching action which used to trigger the input voltage change. Despite the
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effect of unmodeled dynamics, both DG output currents and voltages regain their respective

equilibrium after a short period of time.
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Figure 4.16: Experimental variations subjected to an input voltage change. c© [2020]
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4.8 Conclusion

In this chapter, a droop free, online approximate optimal feedback control methodology

was proposed to control DGs in islanded DCMGs. Each DG was modeled as a control affine

dynamical system with constrained input. An optimal control problem was formulated to

minimize the infinite horizon quadratic state cost with a non-quadratic control input penalty

function. An approximate solution to the optimal control problem was obtained by an ADP

method based on a RL algorithm. In the proposed approach, the optimal value function and

the optimal control law of each DG were approximated by two separate LIP NNs. A LS

based update law was implemented to update the unknown weights in the critic NN while the

second update law given by the stability analysis was used to update the actor NN weights.

The employed update laws are inspired by the concurrent RL which uses the simulation

of experience through the BE extrapolation to guarantee the parameter convergence to a

neighborhood of the actual weights without PE. Lyapunov stability analysis was presented
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to show the UUB stability of the system states and the parameter estimates. Simulation

and experimental results were given to demonstrate the effectiveness and applicability of

the proposed concept. Both results show excellent output voltage regulation and adaptable

nature in the startup, under load and input voltage changes.

The proposed feedback optimal control approach with concurrent RL requires the

exact model knowledge of the DG. This includes the input voltage to the PEI, inductive,

resistive and capacitive parameters of PEI .etc. To overcome this limitation, the existing

algorithm can be reformulated as an advanced adaptive learning algorithm that does not

require any internal parameters or exact model of the system. The adaptive algorithms

can be realized by NN approximation of the dynamics combining the system identification

functionalities associated with NNs and would be an interesting future direction of this work.
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CHAPTER V

DECENTRALIZED OPTIMAL STABILIZATION OF ACTIVE LOADS IN ISLANDED

DC MICROGRIDS

5.1 Major Objectives

The power buffer is an effective method of mitigating instabilities caused by nonlinear

load profiles, which has been introduced in [66] and discussed in [3, 51, 67–69]. In these

approaches, the power electronic interface (PEI) followed by the constant power load (CPL)

is modeled as a variable impedance load seen by the distribution network which is referred

to as an active load. Then its effective input impedance is maneuvered to stabilize the MG

subjected to any transients such as startup or abrupt load changes. The power buffer contains

large storage capacity and it is used to buffer, store and shape the input energy profile to the

load rather than voltage regulation. Motivated by the lack of decentralized feedback optimal

stabilization control approaches to optimally control active loads such as power buffers, this

chapter introduces a novel control algorithm inspired by the adaptive/approximate dynamic

programming (ADP). Most of the existing power buffer control methods, are either open-loop

controllers or require communication among the active loads. Oppose to the existing open-loop

and distributed controllers with communication, the proposed stabilization algorithm in this

chapter possesses a decentralized, online feedback optimal stabilization ability of active loads

operate in islanded DCMGs. The proposed methodology uses locally available measurements

and no communication is required. The major challenge in ADP based optimal feedback

controls is the requirement of the persistence of excitation (PE) condition to guarantee the
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parameter convergence. Typically, the PE condition is achieved by adding a probing noise to

the control input. Due to the lack of knowledge on sufficient noise power and the required

number of distinct frequencies to satisfy the PE, the inclusion of random noise could cause

serious issues. The proposed method in this chapter uses a concurrent reinforcement learning

(RL) method to eliminate those issues. It does not require PE condition and hence no

requirement of additive noise to the control input. The ADP based feedback optimal control

solution utilizes value function approximation via neural networks (NNs). A model-based

concurrent RL approach is employed to successively approximate unknown NN weights in the

value function without the PE. Moreover, the decentralized stabilizing controller discussed in

this chapter is an online, nonlinear feedback controller, which does not require any offline

training. Therefore, the main objective of this chapter is to develop a communication free,

decentralized, online feedback optimal controller to stabilizes active loads in DCMG without

PE condition.

5.2 Active Loads in Islanded Microgrids

5.2.1 Active Load as a Member in the MG

Power system loads are typically modeled as constant impedance, power or current [164].

In the MG domain, end loads (ELs) are connected to the network through a PEI [4,67]. Any

PEI based load with local energy storage in a MG domain can be represented as Figure

5.1 and can be treated as an active load. The EL can be individual or a composite load

of constant impedance, constant current or CPL. In DCMGs, the PEI can be any DC-DC

converter topology which acts as the intermediate device between the MG and the EL. In this

work, boost topology is used as the PEI as shown in Figure 5.1. The input characteristics of

the PEI can be controlled to reflect the EL properties. Further, it behaves as a voltage and

admittance translator between the MG and the EL [4].

Consider the average mode boost DC-DC converter shown in Figure 5.1 with the

input voltage, input current, output voltage and control duty cycle are given by Ei, ii, vo, Di

respectively. At any given time, the variable input admittance of the PEI seen by the MG is,

yi =
ii
Ei

(5.1)
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Figure 5.1: PEI as an interface between the MG and the EL with boost topology.

Considering a lossless PEI, the input-output power balance for a CPL with demand Pi yields,

E2
i yi = Pi (5.2)

Using the input-output voltage relationship of the boost converter (Ei = Div̄i), where v̄i is

the demanded voltage of the CPL, the input admittance of the PEI can be expressed as,

yi =
Pi

(Div̄i)2
=

yo
D2
i

(5.3)

where, yo =
Pi
v̄2
i

is the effective output admittance. According to (5.3), each active load can

be modeled as a variable admittance. It allows the active load to act as a member of the MG

as a single quantity. Therefore, active loads can be included as elements in the power system

admittance matrix. Consider a bus set M with m number of source buses and an active load

set L ⊂M with n load buses. Each active load is modeled as a variable shunt admittance

(yi) and included in the bus admittance matrix. Bus nodal relationship of the MG can be

represented in matrix form as,

I = Y E (5.4)
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where, I ∈ R(m+n) and E ∈ R(m+n) are the bus injected current vector and bus bar voltage

vector. The symmetric bus admittance matrix is given by Y ∈ R(m+n)×(m+n). Since loads

are modeled as variable admittances and included in the admittance matrix, bus nodal

relationship given in (5.4) can be partitioned as,

[
Is

0

]
=

[
Y1 Y2

Y3 Y4

][
Es

Eb

]
(5.5)

where, Is ∈ Rm is the source current injections, Es ∈ Rm is the source bus voltages, Eb ∈ Rn

is the load bus voltages and 0 ∈ Rn is the zero vector. Partitioned admittance matrix consists

of four sub-matrices Y1 ∈ Rm×m, Y2 ∈ Rm×n, Y3 ∈ Rn×m, Y4 ∈ Rn×n. Active loads are

embedded in diagonal terms of Y4 as admittances. Load bus voltages of the MG can be

obtained by,

Eb = Y −1
4

(
0− Y3Es

)
(5.6)

Once each active load is modeled as a variable shunt admittance (yi) and included in the bus

admittance matrix, it can be identified that the active load bus input voltages are a function

of transmission line parameters, all the active load input admittances, and source voltages [3].

Hence, all the active loads are coupled and control decision of each active load affects the

others.

5.2.2 Dynamic Modeling of Active Loads

The energy and admittance domain dynamic model of the ith active load with negligible

inductor energy storage can be given as [3, 67],

ẇi = E2
i yi − Pi (5.7)

ẏi = ui (5.8)

where, wi is the energy stored in the capacitor, Ei is the locally available bus voltage, Pi

is the power demand of the CPL and ui is the control input. For the boost topology, the
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corresponding duty cycle can be computed from the control input ui as [73],

Di = Ei

(
1− Liui

)√ Ci
2wi

(5.9)

where, Li and Ci are the inductance and capacitance of the PEI. From (5.7) the desired input

admittance of the ith player can be calculated instantaneously as,

ȳi = Pi/E
2
i , ∀Ei ≥ ∆ > 0 (5.10)

where, ∆ is the minimum input voltage required for uninterruptible power supply before the

shutdown of the active load during a fault. When the input voltage is less than ∆ or zero in

a case of a complete blackout, the desired input admittance is set to a large value to keep

the system stable until the stored energy in the capacitor reaches a minimum. The time

duration between the beginning of the fault and the time when the system goes unstable

is refereed to as the critical clearing time in this chapter. If the fault is not cleared before

the critical clearing time, then the load needs to be shut down. In normal situations, the

desired input admittance (5.10) ensures the demanded power to the CPL at all the time.

The desired energy state is given as a function of the desired voltage of the CPL (v̄i) as,

w̄i =
1

2
Civ̄

2
i (5.11)

Two new states xi,1 = wi − w̄i, xi,2 = yi − ȳi are defined to derive the error system dynamics

of the ith active load. The dynamics of the energy error state is given by,

ẋi,1 = E2
i xi,2 (5.12)

The dynamics of the input admittance error state is given by,

ẋi,2 = ui +
2Pi
E3
i

Ėi (5.13)

Since, Ėi = (∇yEi)ẏ and ẏ = u, where y ∈ Rn is the vector of input admittance, u ∈ Rn is

the total control vector in the MG, and ∇y is the gradient with respect to y, (5.13) can be
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rewritten as,

ẋi,2 = ui +
2Pi
E3
i

(∇yEi)u (5.14)

Then, the dynamics of the ith active load can be represented as,

ẋi = fi(xi) +Bui + Zi(X, u) (5.15)

where, xi =
[
xi,1 xi,2

]T
, fi(xi) =

[
E2
i xi,2 0

]T
, B =

[
0 1

]T
, Zi(X, u) = 2BPi(∇yEi)u/E

3
i

is the interconnected coupling term and X =
[
xT1 xT2 ... xTn

]T
∈ R2n is the overall system

state. The saturation bounds of the control input is given by the constraint imposed on the

duty cycle which is 0 ≤ Di ≤ 1. From (5.9), the control input bound can be expressed as,

(
1− vi

Ei

) 1

Li
≤ ui ≤

1

Li
(5.16)

Suppose that the minimum output voltage of all the active loads are 2Ei, i.e v̄i ≥ 2Ei. This

is true because the PEI is a boost converter. Then the control input can be bounded as,

‖ui‖ ≤ ūi =
1

Li
.

5.3 Decentralized Feedback Optimal Controller

In the decentralized control architecture introduced in this chapter, local feedback

optimal controls are obtained for the isolated active loads. Isolated active load dynamics are

obtained by letting the interconnected coupling terms to zero as,

ẋi = fi(xi) +Bui (5.17)

The interconnected coupling term Zi(X, u) contains the gradient with respect to input

admittances. Therefore, it is highly coupled with other active load admittances and if

one considers this term for the controller development, it would be impossible to derive a

decentralized controller. As an alternative, the isolated subsystem is obtained without the

other load player influences by eliminating the coupling term as shown in (5.17). Then, the

optimal controller is derived for this isolated subsystem and it is a decentralized controller.

Next, this decentralized optimal feedback controller is applied to the actual system with
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the coupling term in (5.15). Later it will be shown that, under the decentralized optimal

controller obtained for the isolated subsystem given by (5.17), the original dynamics of the

actual active load presented in (5.15) can be stabilized. Further, under this local feedback

optimal control actions, the stability of the entire MG will also be shown. Infinite horizon

feedback optimal control of the ith isolated active load is explained in the next section.

5.3.1 Infinite Horizon Optimal Control of Isolated Active Loads

Once the isolated load dynamics are obtained as in (5.17), the goal of each active

load is to drive its state to zero by solving the infinite horizon optimal control problem. The

objective of the infinite horizon optimal control problem is to find a feedback control signal

(u∗i (xi)) which minimizes the performance index,

Ji(xi, ui) =

∫ ∞
t0

ri(xi(τ), ui(τ))dτ (5.18)

such that,

u∗i (xi) = arg min
ui(τ)∈Ωu

i |τ∈R≥t

∫ ∞
t

ri(xi(τ), ui(τ))dτ (5.19)

where, Ωu
i = {ui|ui ∈ R, |ui(xi)| ≤ ūi} and the instantaneous cost is defined as,

ri(xi, ui) = Qi(xi) + Ui(ui) (5.20)

where, Qi(xi) is a positive definite (PD) function and Ui(ui) is a PD integral function. Since

the goal is to regulate the error system states to zero, the quadratic state cost of the form

xTi Pixi is selected for Qi(xi). Here, Pi is a PD symmetric matrix with appropriate dimension.

In order to satisfy the control input constraint, following non quadratic penalty function is

employed for Ui(ui) [157,158].

Ui(ui) = 2Riūi

∫ ui

0

tanh−1(ζ/ūi)dζ (5.21)

where, Ri is a positive constant. Closed form solution to the derived optimal control problem

is characterized by the optimal value function given by [128],
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V ∗i (xi) = min
ui(τ)∈Ωu

i |τ∈R≥t

∫ ∞
t

ri(xi(τ), ui(τ))dτ (5.22)

The optimal value function satisfies the Hamilton Jacobi Bellman (HJB) equation [128] such

that,

Hi(xi, ui) : min
ui∈Ωu

i

[
∇V ∗i (xi)(fi(xi) +Bui(xi)) + ri(xi, ui)

]
= 0 (5.23)

where, ∇ is the gradient operator with respect to xi. If the optimal controller (u∗i (xi)) exists,

according to (5.23), the HJB equation can be shown as,

∇V ∗i (xi)(fi(xi) +Bu∗i (xi)) + ri(xi, u
∗
i (xi)) = 0 (5.24)

with the initial condition V ∗i (0) = 0. The optimal control law which satisfies the HJB equation

can be obtained by differentiating the Hamiltonian (Hi) in (5.23) with respect to ui as,

u∗i (xi) = −ūi tanh
[ 1

2Riūi
∇V ∗i (xi)B

]
(5.25)

Since the hyperbolic tangent function is a continuous, one to one bounded function such

that | tanh(·)| ≤ 1, the optimal control policy derived in (5.25) satisfies |ui| ≤ ūi. Further,

the second derivative of the Hamiltonian can be shown as, 2Riūi∇ui(tanh−1(ui/ūi)). Also,

the hyperbolic tangent function is strictly monotonically increasing, the second derivative is

positive [55]. This implies u∗i (xi) given in (5.25) minimizes the Hamiltonian.

5.3.2 Local Stability of the Isolated Active Loads

Consider the candidate Lyapunov function of the ith isolated active load Vi : R2 → R≥0,

Vi(xi) = V ∗i (xi) (5.26)

Optimal value function is a candidate Lyapunov function [54]. The first time derivative of

Vi(xi) along its dynamics under the optimal controller can be shown as,

V̇i(xi) = ∇V ∗i (xi)(fi(xi) +Bu∗i (xi)) (5.27)
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From (5.24), the Lyapunov derivative can be further shown as,

V̇i(xi) = −ri(xi, u∗i (xi)) = −
(
Qi(xi) + Ui(ui)

)
≤ 0 (5.28)

Positive definiteness of Qi(xi) and Ui(ui) make the Lyapunov derivative negative definite

which implies the asymptotic stability of the origin under the decentralized feedback optimal

controller.

5.3.3 Stability of the Interconnected System with the Decentralized Optimal

Controller

The stability of the interconnected dynamics can be analyzed by considering the actual

load dynamics given in (5.15) with the total Lyapunov function V(X) : R2n → R≥0,

V(X) =
n∑
i=1

diV
∗
i (xi), di > 0 (5.29)

Taking the first time derivative and utilizing (5.24) and (5.28), the Lyapunov derivative can

be expressed as,

V̇(X) ≤ −
n∑
i=1

diαiψ
2(xi) +

n∑
i=1

di∇V ∗i (xi)Zi(X) (5.30)

where, αi > 0 are minimum eigenvalues of Pi and ψ2(xi) = ‖xi‖2. Define a closed ball

Br ⊂ R2n with radius r centered at the origin. Suppose, there exist positive constants βi > 0

and γij > 0 such that, ∀i and ∀ ‖x‖ < r,

‖∇V ∗i (xi)‖ ≤ βiψ(xi) (5.31)

‖Zi(X)‖ ≤
n∑
j=1

γijψ(xj) (5.32)

Then, the Lyapunov derivative can be upper bounded as [163],

V̇(X) ≤ −1

2
ΨT
(
DS + STD

)
Ψ (5.33)
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where, Ψ =
[
ψ(x1) ... ψ(xn)

]T
, D = diag(d1, ..., dn), and S is an n × n matrix with the

elements sij = αi − βiγii when i = j and sij = βiγij when i 6= j. Hence, if there exists

a positive diagonal matrix D such that DS + STD > 0, then the Lyapunov derivative is

negative definite. According to [163], if the matrix S is an M-matrix, which means the

leading principle minors of S are positive, then there exist a positive diagonal matrix D such

that DS + STD > 0 and therefore, the origin is asymptotically stable. Hence, active power

regulation can be achieved by the proposed decentralized feedback optimal control algorithm

while preserving the stability of the entire MG.

However, finding an exact analytical solution to the optimal value function is generally

not possible [53–55]. Therefore, ADP based RL techniques have been proposed in the

literature to obtain an approximate solution. In these methods, the optimal value function is

approximated by NNs. Then, the unknown NN weights in the approximated value function

are continuously updated to minimize the approximation error. The approximation error

is called the Bellman Error (BE) or the temporal difference (TD) [53,55]. In this chapter,

two LIP NNs are employed to successively approximate the optimal value function and the

optimal feedback control law as described in the next section.

5.4 Model Based Reinforcement Learning of the Decentralized Feedback Opti-

mal Controller

5.4.1 Value Function Approximation

NNs are known for their effectiveness in unknown function approximation on prescribed

compact sets [159]. The universal approximation property of NNs can be used to synthesize

the optimal value function of the ith active load in a compact set χ ⊂ R2 as,

V ∗i (xi) = W T
i σ(xi) + εi(xi) (5.34)

where, Wi ∈ RL is the ideal NN weight vector bounded by a known constant such that

‖Wi‖ ≤ W ∀i, L ∈ N is the number of neurons, σ(xi) : R2 → RL is a continuously

differentiable activation function having the properties σ(0) = 0 and ∇σ(0) = 0. Even

though, same activation function and number of neurons are utilized in this chapter, different

active loads can be assigned different activation functions and number of neurons without
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loss of generality. The function reconstruction error is given by εi(xi) which is bounded in

the sense ∀i, supxi∈χ |εi(xi)| ≤ ε̄ and supxi∈χ |∇εi(xi)| ≤ ε̄′ [55]. With this NN representation,

the derived optimal controller can be expressed as,

u∗i (xi) = −ūi tanh
[ 1

2Riūi

(
W T
i ∇σ(xi) +∇εi(xi)

)
B
]

(5.35)

Since the ideal NN wight vector Wi is unknown, an approximate set of weights are assigned

to estimate the value function and the optimal control law as,

V̂i(xi, Ŵc,i) = Ŵ T
c,iσ(xi) (5.36)

ûi(xi, Ŵa,i) = −ūi tanh
[ 1

2Riūi
Ŵ T
a,i∇σ(xi)B

]
(5.37)

where, the critic and actor weights are given by Ŵc,i ∈ RL and Ŵa,i ∈ RL respectively. These

are the estimates of actual weights Wi. Substituting the approximated value function and

optimal controller in (5.24), the BE of the ith active load can be expressed as,

δi(xi, Ŵc,i, Ŵa,i) = ∇V̂i(xi, Ŵc,i)
(
fi(xi) +Bûi(xi, Ŵa,i)

)
+Qi(xi) + 2Riūi

[
ûi(xi, Ŵa,i)tanh−1

( ûi(xi, Ŵa,i)

ūi

)
+
ūi
2
ln
(

1−
( ûi(xi, Ŵa,i)

ūi

)2)]
(5.38)

The goal is to develop an adaptive update algorithm to tune the estimated NN weights to

minimize the BE simultaneously. In order to ease the complexity of the problem, two sets of

weights (actor and critic) are used to estimates the same unknown ideal weights. With this

modification, critic weights appear linearly in the BE which allows employing least square

(LS) based update law [52,55].

5.4.2 Model Based Reinforcement Learning

Concurrent learning-based adaptive update laws are proposed in this section to tune

the weights in actor and critic NNs. In online ADP techniques, the weights are updated

based on the observed data along the system trajectories [53,55]. In order to learn the actual
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NN weights, parameter convergence is required [53,55]. To gain the parameter convergence,

sufficient richness in the observed data must exist [52]. This richness is characterized

by PE [52]. Typically a probing noise is added to the controller to make the regressor

PE [54,165]. However, the addition of probing noise is undesirable in MG control. In contrast,

this dissertation utilizes a concurrent learning-based adaptive learning algorithm which only

requires relaxed PE like rank condition to guarantee parameter convergence to a neighborhood

of the ideal weights [55, 161]. Instead of adding a probing noise to the control input, this

method uses a virtual excitation in the adaptive algorithm. It utilizes the system model to

extrapolate the BE to unexplored areas of the state space and uses that information as a

gained experience for learning in the virtual excitation. The proposed adaptive law based on

the LS with forgetting factor is given by [52,55,162],

˙̂
Wc,i(t) = −kc1,iΓi(t)

φi(t)

ρi(t)
δi(t)−

kc2,i
M

Γi(t)
M∑
k=1

φk,i(t)

ρk,i(t)
δk,i(t) (5.39)

Γ̇i(t) =
(
βiΓi(t)− kc1,iΓi(t)

φi(t)φ
T
i (t)

ρ2
i (t)

Γi(t)

− kc2,i
M

Γi(t)
M∑
k=1

φk,i(t)φ
T
k,i(t)

ρ2
k,i(t)

Γi(t)
)
1‖Γi(t)‖≤Γ (5.40)

˙̂
Wa,i(t) = −ka,i

(
Ŵa,i(t)− Ŵc,i(t)

)
(5.41)

where, the regressor is φi(t) = ∇σ(xi)
(
fi(xi) + Bûi(xi, Ŵa,i)

)
∈ RL, normalization term is

ρi(t) = 1 + νiφ
T
i (t)Γi(t)φi(t) ∈ R. The time varying LS gain matrix is given by Γi(t) ∈ RL×L,

and 1 is the indicator function with the saturating upper bound Γ for all Γi(t) ∀i. The

constant β is the forgetting factor [52], kc1,i, kc2,i, ka,i, νi are positive constant gains. Moreover,

φk,i(t) = ∇σ(xk,i)
(
fi(xk,i) +Bûi(xk,i, Ŵa,i)

)
∈ RL, ρk,i(t) = 1 + νiφ

T
k,i(t)Γi(t)φk,i(t) ∈ R and

δk,i(t) = δi(xk,i, Ŵc,i, Ŵa,i) are the kth extrapolated regressor, normalizing term and the BE

of the ith active load evaluated at the predefined set of points in the state space xk,i. It is

assumed that the predefined set points satisfy the following rank condition [55]. For each
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i ∈ L, there exists a finite set of fixed points {xk,i ∈ R2|k = 1, . . . ,M} such that ∀t ∈ R≥0,

0 < ci ,
1

M

(
inf
t∈R≥0

(
λmin

{
M∑
k=1

φk,i(t)φ
T
k,i(t)

ρ2
k,i(t)

}))
(5.42)

This PE like rank condition will be used in the subsequent stability analysis to show the

parameter convergence. The critic and LS gain update laws are similar to the update laws

used in chapter 4. However, a simplified actor weight update law is employed in this chapter.

5.4.3 Stability of the Adaptive Update Laws

The Lyapunov stability analysis of the error state, actor and critic weight estimates

is similar to the one already done in chapter 4 and briefly discussed in this section. In the

subsequent analysis, the indicator i and function dependency on state and time are suppressed

for notational brevity. The procedure is similar for all the individual active loads in the set

L. Consider a closed ball centered at the origin B% ⊂ R2(1+L). The radius of the ball is % and

let χ , B% ∩ R2. Subtracting (5.38) from (5.24), an unmeasurable form of the BE (δ) and

extrapolated BE (δk) can be expressed as,

δ = −φT W̃c − ū tanh(D̂a)G
T
σ W̃a +Rū2 ln

[1− tanh2(D̂a)

1− tanh2(D̂∗a)

]
−∇εf (5.43)

δk = −φTk W̃c − ū tanh(D̂ak)G
T
σkW̃a +Rū2 ln

[1− tanh2(D̂ak)

1− tanh2(D̂∗ak)

]
−∇εkfk (5.44)

where, Gσ = ∇σ(x)B, Gσk = ∇σ(xk)B, D̂a = GT
σ Ŵa/2Rū, D̂ak = GT

σkŴa/2Rū, W̃c =

W − Ŵc and W̃a = W − Ŵa are the critic and actor weight estimation errors, ∇εk = ∇ε(xk),
fk = f(xk), ∇σk = ∇σ(xk), D̂

∗
a = (W T∇σ +∇ε)B/2Rū and D̂∗ak = (W T∇σk +∇εk)B/2Rū.

Consider the continuously differentiable PD Lyapunov candidate VL : R2(1+L) × R≥0 → R≥0,

VL(Z, t) = V ∗(x) +
1

2
W̃ T
c Γ−1W̃c +

1

2
W̃ T
a W̃a (5.45)

where, V ∗ is the optimal value function, and the concatenated error state and weight estimation

error vector is given as Z =
[
xT W̃ T

c W̃ T
a

]T
∈ R2(1+L). Due to the positive definiteness of V ∗

and boundedness of the LS gain matrix such that ΓIL ≤ Γ(t) ≤ ΓIL [55, 162], the candidate
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Lyapunov function VL is bounded as [163],

vL(‖Z‖) ≤ VL(Z, t) ≤ v̄L(‖Z‖) (5.46)

where, vL and v̄L are class K functions. Define the notation |ω| , supx∈χ ‖ω‖ and a positive

constant C as,

C =
β

2Γkc2
+
c

2
(5.47)

Then, using the BEs in (5.43) and (5.44), time derivative of VL(Z, t) along the dynamics

(5.17), (5.39) - (5.41) can be upper bounded as,

V̇L ≤ −r∗(x)− kc2C‖W̃c‖2 − ka‖W̃a‖2 + γ(kc1 + kc2)∆‖W̃c‖

+
[
ka + 2ūγ(kc1 + kc2)|Gσ|

]
‖W̃a‖‖W̃c‖ (5.48)

where, ∆ = ū
(

2W |Gσ|+ |∇εB|
)

+Rū2ε̄D+ |∇εf | and γ is the upper bound of the normalized

regressor such that ‖φ
ρ
‖ ≤ γ [55]. The approximation ln

[
1−tanh2(D)

]
= ln(4)−2Dsgn(D)+

εD [158] is employed in (5.48) for the bounded approximation error εD ≤ ε̄D for D = {D̂a, D̂
∗
a}.

Define positive constants {λj|j = 1, . . . , 5} such that λ1 + λ2 + λ3 = 1 and λ4 + λ5 = 1.

Sufficient conditions for the UUB are given as,

2
√
kakc2Cλ3λ5 ≥ ka + 2ūγ(kc1 + kc2)|Gσ| (5.49)

v−1
L (ϑ) < v̄−1

L (vL(%)) (5.50)

where, ϑ is a positive constant and vL is any class K PD function defined as,

ϑ =

(
γ(kc1 + kc2)∆

)2

4kc2Cλ2

(5.51)

vL(‖Z‖) ≤ 1

2

(
r∗(x) + kc2Cλ1‖W̃c‖2 + kaλ4‖W̃a‖2

)
(5.52)

Under the sufficient conditions, V̇L can be further upper bounded as,

V̇L ≤ −vL(‖Z‖), ∀‖Z‖ > v−1
L (ϑ) (5.53)
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for all Z ∈ B% and t ≥ 0. Therefore, the concatenated state and weight estimation error

system Z is UUB in the sense lim
t→∞

sup ‖Z‖ ≤ v−1
L (v̄L(v−1

L (ϑ))) [163].

5.5 Simulation Study

Series of simulations were carried out in Matlab/Simulink considering the IEEE 9 bus

system given in [3] with three active loads. All the active load parameters were considered

same and given by, Li = 500 µH and Ci = 120 µF. Active load power demands were considered

as 0.8 p.u, 1.0 p.u and 1.2 p.u for load 1, 2 and 3 connected to bus 5, 6 and 8 respectively.

All source voltages were kept fixed at 1 p.u and distribution line resistances were considered

as 0.01 p.u. Desired per unit energy storage of all the loads were set to 1 p.u. Base values of

voltage, power, capacitance and inductance were considered as 110 V, 1000 W, 240 µF and

20 mH respectively. Controller parameters were considered as, β = 0.3, kc1,i = 10, kc2,i = 20,

ka,i = 20, νi = 0.05, Ri = 1 and Pi identity matrix for all i ∈ L. Value function of each active

load is approximated by a quadratic power series of system states. Hence, the activation

function was selected as σ(xi) =
[
x2
i,1 x2

i,2 xi,1xi,2

]T
. Initial conditions for both the actor

and critic weights were considered as 15 and the least square gain matrix was initialized with

100I3×3.

5.5.1 Startup Transient

This test case shows the active load behavior during the startup phase of the MG. It

is assumed that all the loads are disconnected from the load buses at the beginning of the

simulation and hence, initial values of the admittance are zero. Variation of the states, input

bus voltages, and input powers are shown in Figure 5.2. All the internal energy states reach

the desired value of 1 p.u in 6s as seen in Figure 5.2 (a). Similarly, all input admittances

converge to their steady-state (s.s) values within 6s as shown in Figure 5.2 (b). Steady state

input admittances of load 1, 2 and 3 can be observed as 0.823 p.u, 1.03 p.u and 1.24 p.u.

In order to maximize the input power to the load during the startup, input admittance

increases rapidly during the initial transient. Due to this sudden increment, overshoots can be

observed in all the active load input admittances. Load bus voltage variations are illustrated

in Figure 5.2 (c) where the s.s input voltages are found as 0.986 p.u, 0.985 p.u, and 0.984
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Figure 5.2: Variation of states, input voltages and powers during the startup (a) Stored
energy, (b) Input admittance, (c) Input voltage and (d) Input power.

p.u. According to the input power variations given in Figure 5.2 (d), all initial input powers

are zero since loads were disconnected from the bus at the beginning. Gradually, the input

powers built up and after 6s, those reach their desired steady states. Overshoots exist in all

the load input powers and the maximum is observed in load 3 which is equal to 1.45 p.u.

A comparison of the proposed controller against a model predictive controller (MPC)

was carried out and results are shown in Figure 5.3. The MPC was designed using the

Matlab/Simulink MPC controller block. Then Matlab/Simulink MPC designer tool has been

used to tune the response with 0.1s sample time with a 10s prediction horizon. Compared to

the proposed controller, MPC transient performances are not smooth. Further MPC learning

process is relatively slow and large fluctuations can be seen in the admittance and hence in

the input power. With the MPC, the internal energy consumption is higher compared to

the proposed controller and load three reaches zero stored energy at 1.5s. Transient error

state cost variations of active load one during the startup is shown in Figure 5.4. Similar
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Figure 5.3: Variation of states, input voltages and powers during the startup with MPC (a)
Stored energy, (b) Input admittance, (c) Input voltage and (d) Input power.

variations can be seen in the other loads as well. Clearly, the proposed controller shows lower

transient cost compared to the MPC. The percentage improvement in the proposed controller

with respect to the transient cost suppression at the startup is computed as 66.46%.

Actor and critic NN weight updates of active load 1 are shown in Figure 5.5. Similar

variations can be seen in the other loads and they are not shown here for the sake of brevity.

All weights were initialized with 15. Weight 1, 2 and 3 are converged to 2, 1.76 and 1.72

respectively.

To demonstrate the performance of the proposed concept with a more complex system,

a simulation was carried out considering the modified IEEE 30 bus system [154]. The loads

at bus 7, 8, 10, 12, 14 and 15 were considered as active loads with demands 0.8 p.u, 1 p.u,

1.2 p.u, 1.5 p.u, 0.5 p.u and 2 p.u respectively. All the other loads were set to constant

impedance loads with 30 Ω. Variation of states and input powers are shown in Figure 5.6.

All the system states converged to their respective equilibrium after 5s and demanded powers
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Figure 5.4: Variation of transient state cost of active load 1.

Figure 5.5: Variation of active load 1 NN weights during the startup (a) Critic and (b)
Actor.

to all the active loads are delivered accordingly.
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Figure 5.6: Variation of states and power during the startup in IEEE 30 bus system (a)
Load 1, (b) Load 2, (c) Load 3, (d) Load 4, (e) Load 5 and (f) Load 6.

5.5.2 Active Load Demand Change

The adaptability of the proposed decentralized control law subjected to a load distur-

bance was examined in this test case. Load 1 power demand was changed from 0.8 p.u to 1.5

p.u at t = 100s and results are shown in Figure 5.7. Based on the results, it can be seen that,

just after the abrupt load change, available input energy is not sufficient enough to satisfy the

required load demand. Hence, internally stored energy needs to be utilized to compensate for

the power deficiency as shown in Figure 5.7 (a). Due to this stored energy consumption, the

internal energy drops from 1 p.u to 0.71 p.u in 1.1s. In the meantime, in order to maximize

the energy input to the active load, input admittance increases according to the result shown

in Figure 5.7 (b). At t = 101.1s, input admittance reaches a point where it can produces the

demanded power to the load. Both energy and input admittance states of load one gain their

respective equilibrium at 1 p.u and 1.56 p.u 8s after the disturbance. Further, slight changes

can be observed in load two and three input admittances. Final input admittances of those
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Figure 5.7: Variation of states, input voltages and powers in the load change (a) Stored
energy, (b) Input admittance, (c) Input voltage and (d) Input power.

Figure 5.8: Active load 1 NN weights in the load change (a) Critic and (b) Actor.
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are converged to 1.036 p.u and 1.246 p.u. Due to the demand change in load one, all the

bus voltages are affected as depicted in Figure 5.7 (c). The maximum voltage drop can be

observed in bus 5, where the load change occurred. The final input voltages of load 1, 2 and

3 are measured as 0.98 p.u, 0.983 p.u and 0.981 p.u. Input powers of load 2 and 3 are not

affected by the demand change as expected. Within 8s, load 1 input power gains the desired

value of 1.5 p.u. NN weight update process of the load 1 subjected to the demand change

are shown in Figure 5.8. No change can be seen in weight 1. However, weight 2 and 3 are

changed to 1.78 and 1.7.

Figure 5.9: Variation of states, input voltages and powers in the load change with MPC (a)
Stored energy, (b) Input admittance, (c) Input voltage and (d) Input power.

Comparative results with MPC is shown in Figure 5.9. As in the startup transient,

the MPC utilizes a significant amount of stored energy. The percentage stored energy change

in load 1 with the proposed controller and MPC are 29% and 61.4% respectively. Moreover,

higher overshoots in admittance and input power can be observed in the MPC compared to

the proposed controller. The transient error state cost variation of load 1 subjected to the
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demand change is demonstrated in Figure 5.4 after 100s. Clearly, low transient cost can be

observed in the proposed controller and the improvement against the MPC can be calculated

as 70.36%.

5.5.3 Adaptability Against Source Disturbances - Limited Source Voltages

Figure 5.10: Variation of states under limited source voltages (a) Stored energy and (b)
Input admittance.

The performance of the proposed concept under limited source voltages was investigated

in this test case. Simulation results for 10% source voltage reduction in every 200s starting

from t = 100s are given in Figure 5.10 and Figure 5.11. When the source voltage reduces,

the load bus voltage goes down as seen by Figure 5.11 (a). Therefore, each time, input

admittance increases to provide the required demand as shown by Figure 5.10 (b). During

the transients, the internally stored energy is utilized to keep the demand at the required

value as seen by Figure 5.10 (a). The internally stored energy state takes a longer time to

reach the desired value when the input voltage is low. Each situation, variation in the input

power shown in Figure 5.11 (b) is small and it reaches the demanded value in minimal time.
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Figure 5.11: Variation of input voltages and powers under limited source voltages (a) Input
voltage and (b) Input power.

According to the results, the proposed control algorithm is able to provide the CPL demand

even under limited source voltages.

5.5.4 Adaptability Against Source Disturbances - Complete Blackout

A complete blackout was created by setting all the input source voltages to zero at t

= 100s. Then the fault was cleared just before the critical clearing time which was found as

650ms for this test setup. During the fault period, all the desired input admittances were set

to 10 p.u. Variation in the states, input voltages and powers are given in Figure 5.12 and

Figure 5.13. Due to the blackout, all the input voltages and input powers become zero for

a short time as seen from Figure 5.13. In order to provide the load demand, the internally

stored energy is utilized in each active load as shown in Figure 5.12 (a). Within the fault

period, energy states of load 1, 2 and 3 drop to 0.496 p.u, 0.37 p.u and 0.244 p.u. In contrast,

input admittances increase to reach the desired value of 10 p.u and at the end of the fault

period, maximum values of load 1, 2 and 3 admittances are 5.406 p.u, 5.506 and 5.607 p.u.
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At the same time, corresponding maximum input powers are 4.618 p.u, 4.698 p.u and 4.778

p.u. After the fault has been cleared, the energy storage of all the loads rapidly increases

and reaches the desired s.s after 20s. Maximum energy storage of 3.505 p.u can be observed

in load 1 while 3.321 p.u and 3.137 p.u are observed in load 2 and 3 respectively.

Figure 5.12: Variation of states subjected to a blackout (a) Stored energy and (b) Input
admittance.

The adaptive nature of the proposed concept subjected to an insecure voltage which is

manifested initially as a slow voltage decay following a sharp decline at the point of collapse

is shown in Figure 5.14. In this scenario, the source voltages drop linearly from 1 p.u to

0.9 p.u in 10s and then suddenly collapse to zero. In order to supply the demand during

the linear voltage drop, all input admittances increase their values. However, no change can

be seen in the stored energy state. After the collapse at 110s, the variation is similar to

the complete blackout test case. Within 20s, all the states regain their equilibrium and the

demanded powers are delivered to the loads.
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Figure 5.13: Variation of input voltages and powers subjected to a blackout (a) Input
voltage and (b) Input power.

Figure 5.14: Variation of state, input voltages and powers subjected to a voltage collapse
(a) Stored energy, (b) Input admittance, (c) Input voltage and (d) Input power.
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5.5.5 Distribution Line Disconnection

The performance of the proposed concept under a fault in the distribution network

was investigated and results are shown in this section. Suppose the distribution line between

bus 8 and 9 in the IEEE 9 bus system was disconnected at t = 100s. Variation in the state,

load bus voltages, and input powers are shown in Figure 5.15. Load 3 state and voltage was

greatly affected by the line disconnection since it is close to the fault than the others. Stored

energy utilization can be seen in load 3 just after the fault and all the energy states regain

the desired state value after 8s. New s.s values of the admittances were found as 0.826 p.u,

1.027 p.u, and 1.266 p.u respectively. Load bus 1, 2 and 3 voltages were changed to 0.984

V, 0.988 V and 0.974 V. From the results, it can be inferred that the proposed concept is

capable of providing uninterruptible power to the active loads even under a distribution line

disconnection.

Figure 5.15: Variation of state, input voltages and powers subjected to a line disconnection
(a) Stored energy, (b) Input admittance, (c) Input voltage and (d) Input power.
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5.6 Optimally Controlled Islanded DCMG

Figure 5.16: Variations in the startup (a) Output voltage, and (b) Output current.

The droop free optimal feedback control of DGs developed in chapter 4 and the

decentralized optimal stabilization of active loads discussed in this chapter are combined to

achieve a fully optimally controlled islanded DCMG. Simulation results of startup, and load

change scenarios with IEEE 9 bus system are given in Figure 5.16 to Figure 5.19. During

the startup, the DG output voltages reach the desired 1 p.u in a short time of 20ms. The

maximum voltage peak during the transient can be observed as 1.3 p.u. The output currents

take 6s to gain the s.s values of 0.97 p.u, 1.02 p.u, and 1.06 p.u respectively. The maximum

peak current is observed in DG3 which is 1.31 p.u. Variation of active load states and input

powers during the startup are shown in Figure 5.17. These variations are similar to the

results shown in Figure 5.2.

Simulations results after the CPL demand change in active load 1 from 0.8 p.u to 1.5

p.u at 20s are shown in Figures 5.18 and 5.19. A slight voltage drop can be seen in all the DG

output voltages and after 8s those regain the desired value. Due to the demand change DG

1, 2 and 3 output currents increase to new s.s values of 1.26 p.u, 1.31 p.u, and 1.2 p.u. As in

the startup case, active load behavior is similar to the results already discussed in Figure 5.7.
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Figure 5.17: Variations in the startup (a) Stored energy, (b) Input admittance, and (c)
Input power.

Figure 5.18: Variations in the load change (a) Output voltage, and (b) Output current.
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Figure 5.19: Variation of state, and input powers of active loads in the load change (a)
Stored energy, (b) Input admittance, and (c) Input power.

5.7 Conclusion

A decentralized, optimal feedback stabilization controller was proposed in this chapter

to optimally control active loads in DCMGs. Each active load was modeled as a control

affine dynamical system with an interconnected term in the energy and admittance domain.

The feedback optimal control actions were generated online via an ADP method inspired

by concurrent RL. Two LIP NNs were employed to successively approximate the unknown

weights in the actor and critic NNs. Lyapunov stability analysis was given to prove the UUB

stability of the system states and the weight estimates. Series of Matlab/Simulink simulations

were carried out and results were presented to demonstrate the effectiveness and applicability

of the proposed concept. According to the results, the proposed concept shows excellent

transient and s.s performances in the startup and subjected to a source, load and network

disturbances.

The main limitation of the proposed approach is, this requires complete model

knowledge of the dynamical system which includes parameter values of inductance, capacitance,
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input voltage and output CPL demand. To overcome this limitation, a fully adaptive

decentralized optimal feedback controller can be introduced. With the fully adaptive controller,

the optimal active load stabilization controller can be realized with completely unknown

active load demand, and PEI parameter information which opens a way to plug and play

capability. Also, when there is a constant external disturbance, the proposed controller might

fail to deliver the expected results. To handle such constant disturbance issues, a robust

ADP approach can be introduced and would be a possible future direction of this work.
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CHAPTER VI

TRANSIENT OPTIMIZATION OF ISLANDED AC MICROGRIDS

6.1 Major Objectives

Transient path optimization of inverter based distributed generators (DGs) in islanded

ACMGs is proposed in this chapter. Elimination of the voltage and frequency deviations

caused by the traditional droop control is the main objective of the proposed approach.

Dynamical model of each DG and transmission lines are obtained in d-q rotating reference

frame. Then Pontryagin’s minimum principle is employed to find the optimal control and

state paths which drive the system from the zero initial conditions to the predefined final

manifold. The desired steady state of each DG is calculated to have proper nominal voltage

and frequency of the power system. Main findings of this chapter are published in [11].

6.2 Dynamic Modeling of Distributed Generators in D-Q reference frame

In a parallel connected inverter based DG system, input side of each inverter is

connected to a micro power source and the output terminal is connected to a LC filter as

shown in Figure 6.1. The LC filter output is then connected to the main AC bus through a

coupling inductor. The combination of input power source, inverter, LC filter and coupling

inductor is considered as a DG. For the completeness of the network, a distribution line is

shown from node i to node j and a series RL load (resistive and inductive) is connected to the

network at node j. Once the initial condition and the steady state desired operating point of

a DG are defined, there can be multiple control trajectories which can be utilized to drive the

112



Main grid

Fuel cell PV Wind

Local load Local load Local load

Local bus Local bus

Main bus

LoadsLoads

Isolation 

switch

~~
==

~
=

~
=

qj

D

di

dj

δi 

ωi

δj 

ωcom

ωj

qi Q

i*tdi

i*tqi

itdi

itqi

+

-

∑ ∑ 

∑ ∑ 
-

+
+

+

+

+

v*tdi

v*tqi

-ωn Lfi

ωn Lfi

KPci+ KIci /s  

KPci+ KIci /s  i*tqi

i*tdiv*odi

v*oqi

+

+

vodi

voqi

+

-

∑ 

-ωn Cfi

KPvi+ KIvi /s  

-

+
+

+
+

ioqi

iodi

+

+

+

KPvi+ KIvi /s  

ωn Cfi

∑ ∑ 

∑ ∑ 

∑ 

Gffi

Gffi

LC2 = 0.35 mH

RC2 = 0.03 Ω 

DG 1

R23 = 0.35 Ω 

L23 = 1.8 mH

R12 = 0.23 Ω 

L12 = 0.32 mH

1

2

3

DG 2

DG 3

LC1 = 0.35 mH

RC1 = 0.03 Ω 

LC3 = 0.35 mH

RC3 = 0.03 Ω 

RL Load 1
LL1 = 50 mH

RL1 = 25 Ω 

RL Load 2
LL2 = 50 mH

RL2 = 35 Ω 

Node j

 RLj                 

LLj

~
=

Source

Inverter terminal

Coupling inductor 

Node i

LC 

filter

iLDj , iLQj                      
iodi , ioqi

ilDs , ilQs

vodi ,  voqi

Cfi

Lfi

vbdi , vbqi

Llr Rlr

ilDr, ilQr

Rls

Lls

Lci

vbDj , vbQjvbDi , vbQi

Rci

Source

Voltage 

controller

Current 

controller

iodi ,ioqi

Main bus

itdi ,itqi

vtdi ,vtqi itdi ,itqi

vodi ,voqi

v*odi ,v*oqi 

i*tdi ,i*tqi v*tdi ,v*tqi

ω*i

~
=

Figure 6.1: Single DG and one load connected to the main bus.

system from the given initial conditions to the preferred final manifold. Among those set of

controls, finding the optimum control trajectory which minimizes a predefined performance

index is important and will be discussed in this chapter. Further, the main attention will

be posed to the startup transient optimization which considers the zero initial conditions.

The proposed approach is an alternative to the traditional droop based ACMG control which

does not cause any voltage and frequency deviations.

Suppose there are n number of DGs in the set N which are connected to the islanded

ACMG. Consider the dynamic model of the ith DG shown in Figure 6.1. Rotating reference

frame (d-q domain) dynamic state equations of the ith DG LC filter inductor current can be

expressed as,

Lfi
dild,i
dt

= −Rfiild,i − vod,i + vid,i + Lfiilq,iωi (6.1)

Lfi
dilq,i
dt

= −Rfiilq,i − voq,i + viq,i − Lfiild,iωi (6.2)

where, ild,i, ilq,i are the d and q axis LC filter inductor currents, vod,i, voq,i, are the d and q

axis LC filter capacitor voltages, Lfi, Rfi are the filter inductance and series resistance. The

inverter terminal d and q axis voltages (vid,i, viq,i) and the local reference frame frequency

(ωi) are the control variables. The LC filter capacitor voltage dynamic equations can be given
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as,

Cfi
dvod,i
dt

= ild,i − iod,i + Cfivoq,iωi (6.3)

Cfi
dvoq,i
dt

= ilq,i − ioq,i − Cfivod,iωi (6.4)

where, Cfi, iod,i, ioq,i are the filter capacitance, d and q axis coupling inductor currents. These

coupling inductor currents are the output current components of the DG. The dynamic state

equations of the coupling inductor current can be expressed as,

Lci
diod,i
dt

= −Rciiod,i + vod,i − vbd,i + Lciioq,iωi (6.5)

Lci
dioq,i
dt

= −Rciioq,i + voq,i − vbq,i − Lciiod,iωi (6.6)

where, Lci and Rci are the inductance and the resistance of the coupling inductor. Local d

and q axis nodal bus bar voltages at the ith DG output are given as vbd,i and vbq,i which are

measurable quantities.

The dynamic model of the ith DG is given by the equations (6.1) to (6.6). Since n

individual DG systems are in the MG, this procedure is repeated from i = 1 to n. Local state

of the ith DG is xi =
[
ild,i ilq,i vod,i voq,i iod,i ioq,i

]T
∈ R6; i ∈ N . On the other hand, the

control input of the ith DG is defined as ui =
[
ωi vid,i viq,i

]T
∈ R3; i ∈ N . Concatenating

(6.1)-(6.6), the dynamic model of a single DG can be represented in vector form as,

ẋi = fi(xi, ui) (6.7)

In order to model the network dynamics, single DG is selected as the common reference

frame and all the transmission lines and loads are defined on this reference frame. DG1

frequency is taken as the common reference frame in this study (ωcom = ω1). In order to

well define the bus bar nodal voltages vbd,i and vbq,i, a sufficiently large virtual resistor (r) is

introduced. Based on this virtual resistance, and referred to the node i in the Figure 6.1, d

and q axis bus bar voltages are defined as,

vbd,i = r(iod,i − ilD,r − ilD,s) (6.8)
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vbq,i = r(ioq,i − ilQ,r − ilQ,s) (6.9)

where, ilD,r, ilQ,r, ilD,s, ilQ,s are the d and q axis line currents defined on the common reference

frame. Consider the distribution line segment between node i and j shown in Figure 6.1.

Dynamic equations of the d and q axis line currents between these two nodes are derived as,

Llr
dilD,r
dt

= vbD,i − vbD,j −RlrilD,r + LlrilQ,rωcom (6.10)

Llr
dilQ,r
dt

= vbQ,i − vbQ,j −RlrilQ,r − LlrilD,rωcom (6.11)

where, series inductance and resistance of the line segment are given by Llr and Rlr.

In this study, RL loads are considered to demonstrate the proposed concept which

could replace with any other type of load models. The state equations of the d and q axis

load currents (iLD,j and iLQ,j) through the series RL load connected to the node j in the

Figure 6.1 are,

LLj
diLD,j
dt

= vbD,j −RLjiLD,j + LLjiLQ,jωcom (6.12)

LLj
diLQ,j
dt

= vbQ,j −RLjiLQ,j − LLjiLD,jωcom (6.13)

where the inductance and the resistance of the RL load connected to the node j are given as LLj

and RLj respectively. In case of a motor load such as an induction motor, the corresponding

RL equivalent model in d-q reference frame can be utilized [166]. This completes the dynamic

modeling of the ACMG. Next section introduces the optimal control approach to transient

path optimization of the ACMG.

6.3 Proposed Local Optimal Control Approach for AC Microgrids

The objective is to derive optimal control trajectories for each local DG to drive

the system from a given initial condition to a desired final manifold. Further, it aims

to mitigate the voltage and frequency deviations caused by the traditional droop control

mechanism. Consider the state vector of a single DG as xi : [t0, tf ] → R6 with the initial

condition xi(t0), where the initial and final times are t0 and tf respectively. Then, finding

the admissible control ui : [t0, tf ]→ Ωi ⊆ R3 such that the cost functional given in (6.14) is

minimized while satisfying the dynamical constraints (6.7) can be defined as the optimal
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control problem [128,167].

Ji(ui) = θi(xi(tf )) +

∫ tf

t0

Υi(xi, ui, t)dt (6.14)

In (6.14) the fixed cost or the Mayer cost is denoted as θi(xi(tf )) which is a function of states

at the final time [168]. The variable or the transient cost from the initial time t0 to the final

time tf is given by Υ(xi, ui). Since this work mainly focuses on transient optimization, Mayer

cost is considered to be zero. Moreover, it is assumed that the initial time and the initial

state are specified and the fixed time problem will be considered.

The desired control and state of ith DG is defined as, ūi =
[
ω̄i v̄id,i v̄iq,i

]T
and

x̄i =
[̄
ild,i īlq,i v̄od,i v̄oq,i īod,i īoq,i

]T
. These desired values are computed to ensure the

d axis LC filter output voltage equals to the nominal system voltage (v̄od,i = vn), q axis

voltage equals to zeros (v̄oq,i = 0) and frequency equals to the nominal system frequency

(ω̄i = ωn). This makes the output voltage aligned with the d axis and output active and

reactive powers become proportional to output d and q axis currents respectively [29]. Steady

state desired values of the local DG systems can be found using any numerical method or a

power flow solution method developed for MGs [169,170]. A quadratic transient cost function

is constructed as,

Υi(xi, ui, t) = (xi − x̄i)TQi(xi − x̄i) + (ui − ūi)TRi(ui − ūi) (6.15)

where, Qi and Ri are positive definite weight matrices with appropriate dimensions. Now

each DG has its local state dynamics and cost functions defined as (6.7), (6.14) and (6.15).

Next, these systems need to be solved to obtain the optimal control trajectories which is

discussed in the next section.

6.4 Solution of the Local Optimal Control Problem

Solution of the proposed optimal control problem is found using the Pontryagin’s

minimum principle [128,167]. The the Pontryagin’s minimum principle provides a two point

boundary value problem (BVP) [128, 167] and using the solution of BVP, optimal control

signals can be extracted. The Pontryagin’s minimum principle gives only the necessary
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conditions for the optimality and the hence the control signals are open loop [128,167].

Definition 1 [128,167]: Hamiltonian function, Hi : Rn × Ωi × Rn × [t0, tf ]→ R,

Hi(xi, ui, λi, t) = Υi(xi, ui, t) + λTi fi(xi, ui) (6.16)

where, λi : [t0, tf ]→ Rn is the costate vector [128,167]. In this modeling, dimension of the

state vector n = 6 and the admissible control space Ωi ∈ R3.

Theorem 1 [128,167]: If the control u∗i : [t0, tf ]→ Ωi is optimal, then the following conditions

hold ∀t ∈ [t0, tf ].

ẋ∗i = ∇λiH∗i = fi(x
∗
i , u
∗
i ) (6.17)

x∗i (t0) = xi(t0) (6.18)

λ̇∗i = −∇xiH∗i (6.19)

the Hamiltonian has a global minimum with respect to ui at ui = u∗i i.e.,

Hi(x
∗
i , u
∗
i , λ
∗
i , t) ≤ Hi(x

∗
i , ui, λ

∗
i , t) ;∀ui ∈ Ωi (6.20)

In a free time problem, the Hamiltonian is zero along the optimal trajectory as in (6.21)

while in a fixed time problem Hamiltonian is a constant.

Hi(x
∗
i , u
∗
i , λ
∗
i , t) = 0 (6.21)

If the final state is specified (xi(tf )), then the boundary condition at the final time is given

by,

x∗i (tf ) = xi(tf ) (6.22)

If the final state is free, then the following holds,

∇xiθi(x
∗
i (tf ))− λ∗i (tf ) = 0 (6.23)

In the above relationships, ∇ is the gradient operator and the superscript (∗) denotes the

optimal condition. The proof of this Theorem can be found in [128] and [167]. The optimal
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controller u∗i can be explicitly obtained by evaluating,

∇uiHi = 0 (6.24)

Further, Mayer cost is considered to be zero, and hence (6.23) simplifies to λ∗i (tf) = 0.

Evaluation of (6.17) for the ith DG results in (6.7) with optimal state and control signals.

The costate dynamic equations of the ith DG given by (6.19) are,

λ̇∗1,i =
λ∗1,irf

Lfi
−
λ∗3,i
Cfi
− 2kld(i

∗
ld,i − īld,i) + λ∗2,iw

∗
i (6.25)

λ̇∗2,i =
λ∗2,irf

Lfi
−
λ∗4,i
Cfi
− 2klq(i

∗
lq,i − īlq,i)− λ∗1,iw∗i (6.26)

λ̇∗3,i =
λ∗1,i
Lfi
−
λ∗5,i
Lci
− 2kvd(vod,i − v̄od,i) + λ∗4,iw

∗
i (6.27)

λ̇∗4,i =
λ∗2,i
Lfi
−
λ∗6,i
Lci
− 2kvqvoq,i − λ∗3,iw∗i (6.28)

λ̇∗5,i =
λ∗5,i(r + rc)

Lci
+
λ∗3,i
Cfi
− 2kod(i

∗
od,i − īod,i) + λ∗6,iw

∗
i (6.29)

λ̇∗6,i =
λ∗6,i(r + rc)

Lci
+
λ∗4,i
Cfi
− 2koq(i

∗
oq,i − īoq,i)− λ∗5,iw∗i (6.30)

where, kld, klq, kvd, kvq, kod, koq are the state weight gains in the matrix Qi. The optimal

control is given by,

u∗i =



(λ∗2,ii
∗
ld,i − λ∗1,ii∗lq,i + λ∗6,ii

∗
od,i − λ∗5,ii∗oq,i + λ∗4,iv

∗
od,i − λ∗3,iv∗oq,i + 2kωωn)

2kω
−(λ∗1,i − 2Lfikvidv̄id,i)

2Lfikvid
−(λ∗2,i − 2Lfikviqv̄iq,i)

2Lfikviq

 (6.31)

where, kω, kvid and kviq are the control weights. Relations from (6.7), (6.21), (6.25) to (6.31)

generates a two point BVP set with the boundary conditions given by (6.18) and (6.22) or

(6.23). The overall process is summarized in Figure 6.2. The optimum trajectories are the

solution of the generated BVP equation set along with the network and load dynamics. Due
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to the high nonlinearities associated with the equations, obtaining a closed form analytical

solution is not feasible. Hence, corresponding numerical solution is obtained using the ”bvp4c”

two point BVP solver in Matlab [171]. The optimum trajectory calculation is an offline

process which generates family of optimum trajectories under different system contingencies.

Generated optimum trajectories can be used as references to maneuver each DG system along

the optimum path.

Start

Local Transient Objective 

Function

Steady State 

Desired Values

Hamiltonian

Local 

Dynamic 

Equations

Pontryagin’s Minimum Principle

Two Point BVP Set

Solve Two Point BVP 

Set

Network and 

Load Dynamics

Optimal Trajectories

Figure 6.2: Flowchart of the optimal trajectory generation process.

From the generated optimum trajectories, optimal control trajectories can be extracted

and stored for the control purpose. The generated d and q axis inverter terminal voltage

references (v∗id,i and v∗iq,i) are transformed to three phase abc domain voltages utilizing the

optimal frequency trajectory (ω∗i ) and the dq0 to abc transformation [164]. These abc domain

signals can be used as the modulation signals in the pulse width modulator (PWM) to

generate the optimal switching actions to the inverter [172].

6.5 Simulation Results

Example test cases were simulated in Matlab using the bvp4c function. Considered

inverter based DG test system is illustrated in Figure 6.3. LC filter parameters of all the
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Figure 6.3: Example test system.

DGs were considered same and are given in Table 6.1. DG 1 reference frame was selected as

the common reference frame and virtual resistor (r) was selected as 1000 Ω. Nominal rms

voltage and the system frequency were considered as 110 V per phase and 60 Hz respectively.

Steady state desired operating points given in Table 6.2 were considered when constructing

the local objective functions for the startup transient trajectory optimization. State and

control weight matrices were considered as identity matrices with appropriate dimensions.

The fixed final time problem for tf = 0.1 s was solved with free final state.

Table 6.1: LC Filter Parameters

Parameter Value

Lfi 1.35 mH

rfi 0.1 Ω

Cfi 50 µF

Optimal variation of DG frequencies are depicted in Figure 6.4. Based on the results,

it can be seen that all the DGs show a similar variation. The maximum and minimum

frequencies during the transient are observed as 377.5185 rad/s in DG2 and 375.8494 rad/s

in DG1 respectively. All the DGs gain their desired steady state value of 377 rad/s in 0.02

s. Figure 6.5 shows the optimal variations of d and q axis inverter terminal voltages. DG2
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Table 6.2: Desired Operating Points

īld,i īlq,i v̄od,i v̄oq,i īod,i īoq,i ω̄i v̄id,i v̄iq,i

DG1 3.4875 0.3084 190.5256 0 3.4875 -3.2829 376.9911 190.7174 1.8058

DG2 2.1221 3.0308 190.5256 0 2.1221 -0.5606 376.9911 189.1953 1.3831

DG3 4.0044 1.4932 190.5256 0 4.0044 -2.0981 376.9911 190.1661 2.1873
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Figure 6.4: Optimal Frequency Variation (ω∗).

d axis voltage shows the minimum voltage of 93.2330 V during the transient while DG1

shows the maximum d axis voltage of 268.1362 V. Maximum and minimum q axis voltages

during the transient are observed as 18.2785 V in DG3 and -9.4907 V in DG2. Corresponding

voltage profiles in the abc domain are shown in Figure 6.6. These voltages can be used as

the modulating signals in the PWM generator.

The optimal d and q axis LC filter output voltage variations are shown in Figure 6.7.

All the DGs show similar variation as seen by the results. Maximum d axis transient voltage

is observed in DG 2 which is 238.5204 V. Maximum q axis voltage during the transient is

observed as 7.5376 V in DG3 and the minimum of -13.2829 V is observed in DG2. Both d

and q axis output voltages reach desired values in 0.02 s.
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Figure 6.5: Optimal Inverter Terminal Voltage Variation. (a) v∗id and (b) v∗iq
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Figure 6.7: Optimal LC Filter Output Voltage Variation. (a) v∗od and (b) v∗oq
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Figure 6.8: Optimal DG Output Current Variation. (a) i∗od and (b) i∗oq
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Figure 6.8 depicts the optimal variations of d and q axis output currents. Maximum

d axis and minimum q axis currents are observed in DG1 which are 4.4424 A and -3.6715 A.

According to the results, two axis currents reach desired values within 0.04 s.

The variations in optimal output active and reactive powers are shown in Figure 6.9.

The DG1 depicts both maximum active and reactive powers during the transient which are

846.4406 W and 699.2405 var. Steady state active powers of DG1, DG2 and DG3 are 664.4

W, 404.5 W and 762.8 W. The reactive power productions of DG1, DG2 and DG3 are 625.4

var, 107 var and 399.6 var.
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Figure 6.9: Optimal DG Output Power Variation. (a) Active Power and (b) Reactive Power

6.6 Conclusion

In this chapter, an optimal control frame work was proposed to obtain the optimal

transient response of parallel connected inverter based DGs in an islanded MG. Main objective

of the proposed approach is to replace the traditional droop control in ACMG in order to

mitigating the voltage and frequency deviations. Parallel connected DGs were defined as local

subsystems in the islanded MG system. The dynamic model of the system and the individual

DG objective functions were modeled in the d-q reference frame. The Pontryagin’s minimum

124



principle was employed to obtain the optimal transient trajectories. Simulations were carried

out to investigate the performance of the proposed concept. Startup optimal transient

trajectory generation was presented with fixed final time and free final state. Implementation

of the proposed algorithm requires all the system parameters. In case of a parameter change,

the model need to be recomputed and new BVP set has to be obtained accordingly. Typically,

adaptive controllers are employed for the systems with uncertain parameters. Development

of an adaptive controller would be a possible future direction of this work.
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CHAPTER VII

CONCLUSION

In order to enhance the performances of the traditional droop control in MG, to

mitigate the major drawbacks of the droop control, and to enhance the active load operations

in MG domain, advance control and optimization methodologies have been proposed in

this dissertation. First, a NSGA II MOO based optimal droop coefficient computation

methodology was proposed to improve the traditional droop relationship. In this approach,

Pareto optimal front of the constructed MOO problem was obtained and a fuzzy membership

function approach was introduced to select a best compromise solution which is set of optimal

virtual resistances and reference voltage set points for the DGs in the MG. Further, a state

feedback linearized controller was proposed to replace the PI control loops in traditional droop

control to facilitate the control actions with the derived optimal droop relationships. Both

simulation and experimental results were given to validate the proposed concept. According

to the results it can be inferred that the proposed optimal droop relationships have better

performance than the traditional droop. Inclusion of a dynamic MOO technique to make the

droop coefficient calculation process online would be exciting future directions of this work.

Secondly, in order to mitigate the voltage degradation cased by the traditional droop

control, and to eliminate the issues with the PI control, a droop free approximate optima

feedback strategy was proposed for islanded MGs. This methodology replaces the conventional

droop control and PI control loops in MG and hence it eliminates the issues related to the PI

based droop control. A concurrent RL method has been employed to generate the solution

to the constrained input infinite horizon optimal control problem online. In the modeling the
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optimal value function and the optimal control law of each DG were approximated by two

separate LIP NNs. With these optimal control actions, DGs operations can be improved and

the simulation and experimental validations were presented to demonstrate the applicability

of the proposed concept. The results demonstrate excellent performances in both transient

and steady-state. Development of an advanced adaptive learning algorithm that does not

require exact knowledge of internal parameters or exact model of the system would be the

main future direction of this study.

Next, a decentralized feedback optimal control methodology was proposed to control

active loads in islanded DCMGs. The variable admittance representation of DC-DC converter

was employed to model the constant power load and the PEI attached to it. The desired input

admittance and internal energy storage of each load is computed and a decentralized optimal

feedback controller is proposed to regulate the input admittance to the desired value online.

A concurrent RL based approximate dynamic programming approach with constrained input

has been employed to solve the infinite horizon optimal regulation problem. As in the optimal

feedback control of DGs, two LIP NNs were used to approximate the optimal value function

and the control input. Several simulations were carried out to demonstrate the performance

of the proposed concept and results show better responses compared to the existing methods.

Improvement of the developed method to achieve plug and play capability with completely

unknown active load demand, and PEI parameter information would be an interesting future

direction of this work.

Finally, to eliminate the voltage and frequency deviations caused by the droop control,

a transient path optimization methodology for inverter-based DGs operate in islanded ACMGs

was presented. The dynamic model of the system and the individual DG objective functions

were modeled in the d-q reference frame. The Pontryagin’s minimum principle was employed

to obtain the optimal transient trajectories. Simulations were carried out and results were

given to demonstrate the performance of the proposed concept. Development of an adaptive

feedback controller would be a possible future direction of this work.

The proposed concepts are introduced to improve the control operations of MGs by

introducing advance control architectures, enhancing the traditional droop and introducing

alternatives to the droop control. The simulation and experimental results demonstrate the

expected outcomes and superior performances compared to the existing methods.
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[118] Fernando Jiménez, José L Verdegay, et al. Evolutionary techniques for constrained

multiobjective optimization problems. 1999.

[119] Yonas Gebre Woldesenbet, Gary G Yen, and Biruk G Tessema. Constraint handling in

multiobjective evolutionary optimization. IEEE Trans. Evol. Comput., 13(3):514–525,

2009.

[120] T Ray, K Tai, and C Seow. An evolutionary algorithm for multiobjective optimization.

Eng. Optim, 33(3):399–424, 2001.

[121] Quanyuan Jiang, Meidong Xue, and Guangchao Geng. Energy management of microgrid

in grid-connected and stand-alone modes. IEEE Trans. Power Syst., 28(3):3380–3389,

2013.

140



[122] Nimish Soni, Suryanarayana Doolla, and Mukul C Chandorkar. Improvement of

transient response in microgrids using virtual inertia. IEEE transactions on power

delivery, 28(3):1830–1838, 2013.

[123] Augustine M Egwebe, Meghdad Fazeli, Petar Igic, and Paul M Holland. Implementation

and stability study of dynamic droop in islanded microgrids. IEEE Transactions on

energy conversion, 31(3):821–832, 2016.

[124] Hongtao Shi, Fang Zhuo, Hao Yi, Feng Wang, Dong Zhang, and Zhiqing Geng. A

novel real-time voltage and frequency compensation strategy for photovoltaic-based

microgrid. IEEE Transactions on Industrial Electronics, 62(6):3545–3556, 2015.

[125] Xiao Sun, Lik-Kin Wong, Yim-Shu Lee, and Dehong Xu. Design and analysis of an

optimal controller for parallel multi-inverter systems. IEEE Transactions on Circuits

and Systems II: Express Briefs, 53(1):56–61, 2006.

[126] RB Godoy, CA Canesin, and JOP Pinto. Optimized dynamic response of parallel

operation of two single phase inverters based on evolutionary theory. In SPEEDAM

2010, pages 1135–1140. IEEE, 2010.

[127] Mahdi Kohansal, Javad S Moghani, Matin Rahmatian, and Gevorg B Gharehpetian.

Multi-objective optimization to improve transient performance of vsi in an off-grid

micro-gird using imperialist competitive algorithm. In The 2nd International Conference

on Control, Instrumentation and Automation, pages 536–541. IEEE, 2011.

[128] Donald E Kirk. Optimal control theory: an introduction. Dover, 2004.

[129] Frank L Lewis, Hongwei Zhang, Kristian Hengster-Movric, and Abhijit Das. Cooperative

control of multi-agent systems: optimal and adaptive design approaches. Springer Science

& Business Media, 2013.

[130] Guillermo Owen. Game Theory. Emerald Group Publishing Limited, 2013.

[131] Tamer Basar and Geert Jan Olsder. Dynamic noncooperative game theory, volume 23.

Siam, 1999.

141



[132] Zubair Md Fadlullah, Yousuke Nozaki, Akira Takeuchi, and Nei Kato. A survey of

game theoretic approaches in smart grid. In 2011 International Conference on Wireless

Communications and Signal Processing (WCSP), pages 1–4. IEEE, 2011.

[133] Hamidreza Nazaripouya and Shahab Mehraeen. Modeling and nonlinear optimal

control of weak/islanded grids using facts device in a game theoretic approach. IEEE

Transactions on Control Systems Technology, 24(1):158–171, 2016.

[134] Quanyan Zhu, Jiangmeng Zhang, Peter W Sauer, Alejandro Domı́nguez-Garćıa, and
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