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Abstract:

Background:

Bis-pyridinium aldoximes are reactivators of the paraoxon-inhibited butyrylcholinesterase enzyme. Paraoxon is the active product of parathion, a
widely used insecticide.

Objective:

The objective of this study is to examine the dose-dependent distribution of K117, a bis-pyridinium aldoxime in rat tissues.

Materials and Methods:

White male Wistar rats were intramuscularly injected with various doses of K117; the animals were sacrificed 30 minutes after injections. The
dose-dependent body distribution of K117 was determined using reversed-phase HPLC.

Results:

Dose-dependent  distribution  of  K117  in  body  tissues  was  linear  in  the  serum  and  other  body  tissues  throughout  the  whole  range  of  the
concentrations studied. However, the of distribution was not observed in the brain and cerebrospinal fluid, especially with high doses.

Conclusion:

The body distribution of K117 significantly depends on doses used, the p-value is: 500 nmol, i.m., when applied in the range of 100 to 10,000
nmol.
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1. INTRODUCTION

There are two types of cholinesterase enzymes in humans
and  animals.  The  acetylcholinesterase  enzyme  (AcChE,  EC
3.1.1.7) is  located  in many tissues (red blood cell membranes,
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the central nervous system, peripheral organs, cholinergic and
non-cholinergic fibers etc.) and functions postsynaptically with
an  extremely  high  catalytic  activity  at  nerve  synapses  to
terminate  the  effect  of  acetylcholine  by  its  hydrolyzation.

The  butyrylcholinesterase  enzyme  (BuChE,  EC  3.1.1.8),
also known as pseudocholinesterase or plasma esterase, serves
as  a  backup for  AcChE  [1].  It  is  responsible  for  the  quick
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Fig. (1). Chemical structure of K117 and that of K127.

inactivation through the hydrolysis of different endogenous and
exogenous esters in the blood plasma. The potential poisons of
AcChE  are  scavenged  by  BuChE,  and  the  human  body  has
BuChE (approximately 680 nanomoles) about tenfold as much
as  AcChE  [2].  BuChE  also  plays  en  essential  role  in
metabolizing cocaine, heroin, mivacurium, succinylcholine and
procaine. BuChE-deficiency results in increased sensitivity to
succinylcholine  (a  widely  used  depolarizing  neuromuscular
blocking agent in clinical practice). It is generally accepted that
BuChE  has  an  essential  role  in  the  inactivation  of  toxic
compounds  including  organophosphorous  esters.  Measuring
BuChE serves  as  a  biomarker  for  organophosphate  exposure
[3].  Either  AcChE- or  BuChE-deficiency is  an indicator  of  a
special depression that is common in pesticide handlers [4].

Reactivation  of  AcChE-  or  BuChE-deficiency  caused  by
insecticide  poisoning is  crucial  to  the  survival  of  a  poisoned
patient. Karasova et al. [5] reported that both K117 and K127
were  among  the  best  reactivators  of  BuChE,  when  some
currently available and several newly synthesized pyridinium
aldoximes  were  studied  on  rats  intoxicated  by  tabun.  The
reactivation  efficiency  of  K117,  and  also  that  of  HI-6,
obidoxime,  triedoxime,  K127,  K206,  K250,  K251,  K269,
K347,  K628,  were  experimentally  determined  in  plasma and
the brain by Kovarik et al. [6]. K117 showed similar effectivity
as HI-6 in peripheral tissues. Jun et al. [7] compared the react-
ivation  potency  of  several  pyridinium  aldoximes  in  vitro  on
paraoxon-inhibited  human  AcChE  and  BuChE.  Two  of  the
reactivators  (obidoxime  and  trimedoxime)  worked  well  on
inhibited  AcChE,  giving  a  reactivation  rate  over  75%  when
used  in  a  concentration  of  100  µM  concentration.  However,
none  of  the  classical  pyridinium  aldoximes  (pralidoxime,
methoxime,  obidoxime,  trimedoxime,  HI-6)  produced  the
reactivation  rate  of  BuChE  over  10%,  even  when  they  were
used in a concen-tration of 100 µM. Kuca et al. [5, 7, 8] found

that  K117 and atropine co-doses  work efficiently  in  vitro  on
rats intoxicated by tabun.

Sakurada et al. [9, 10] were the first to detect and measure
that  pralidoxime  penetrated  through  the  blood-brain  barrier.
Similar determinations and statements were made by Kalász et
al.  [11,  12],  who  expanded  the  analysis  of  pyridinium
aldoximes  on  the  cerebrospinal  fluid.

This paper presents a dose-dependent tissue penetration of
the  K117  from  the  site  of  its  intramuscular  application  to
various  target  organs.

2. MATERIALS AND METHODS

2.1. Chemicals and Solvents

All solvents and chemicals were bought from commercial
sources  in  the  best  possible  quality.  Pyridinium  aldoximes
(K117 and K127) were supplied by the Department of Chemis-
try, University of Hradec Kralove, Czech Republic. The che-
mical structures of these two compounds are given in Fig. (1).

2.2. Animals and Animal Treatment

White  male  Wistar  rats  weighing  180-199  grams  were
obtained  from  Toxicoop  (Budapest,  Hungary).  Two  animals
were treated intramuscularly (i.m.) with an adequate dose of a
freshly prepared aqueous solution of K117 (0.1, 0.3, 1.0, 3.0
and 10.0 µmol for each pair of rats). The rats were sacrificed
30  minutes  after  treatment,  keeping  the  ethical  regulation  of
Semmelweis  University.  Body  fluids  (serum,  cerebrospinal
fluid) were taken and certain organs/tissues (brain, eyes, lungs,
testes, liver, kidneys and inner ear) were dissected and treated
with  perchloric  acid,  homogenized  and  centrifuged.  HPLC
determinations of K117 were done using K127 as an internal
standard (Figs. 2 and 3), as detailed in our previous publication
[13].

K117 

K127 
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Fig. (2). Calibration curve of K117 determination. R2 ˃ 0.99.

Fig. (3). Representative chromatograms of K117 and the internal standard K127. (A) rat serum (340 ng/mL K117), (B) rat kidney homogenate (3430
ng/mL K117), (C) calibration sample (500 ng/mL K117), (D) blank serum.
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Table 1. Dose-dependence of tissue and body fluid concentrations of K 117 injected intramuscularly to rats.

Sample (tissue or
body fluid)

Concentration (µg/ml± SD)
Determined by HPLC-UV

Tissue Concentration
(ng/ml)

Tissue concentration
related to the serum
concentration (%)

Concentration. related to
the dose of 1 µmol

Dose: 0.1 µmol
Serum 0.011±0.005 110 100.0 0.567
Brain 0.011±0.005 55 50.00 3.235
CSF 0.010±0.000 50 45.45 5.880
Eyes 0.010±0.002 50 45.45 0.990
Lung 0.055±0.004 275 250.0 2.350
Testis 0.006±0.004 30 27.27 5.450
Liver 0.043±0.005 215 195.5 39.09

Kidney 0.340±0.012 1700 1545 42.50
Inner ear 0.079±0.005 395 359.0 3.361

Dose: 0.3 µmol
Serum 0.022±0.008 220 100.0 0.378
Brain 0.015±0.004 75 34.09 1.470
CSF 0.012±0.003 60 27.27 2.352
Eyes 0.014±0.005 70 31.82 0.460
Lung 0.051±0.002 255 115.9 0.720
Testis 0.009±0.004 45 20.45 2.727
Liver 0.077±0.027 385 175.0 3.208

Kidney, 0.768±0.009 3840 1745 0.920
Inner ear 0.088±0.010 440 200.0 0.838

Dose: 1.0 µmol
Serum 0.194±0.003 1940 100.0 1.00
Brain 0.034±0.003 170 8.762 1.00
CSF 0.017±0.011 85 4.381 1.00
Eyes 0.101±0.013 505 26.03 1.00
Lung 0.234±0.006 1170 60.30 1.00
Testis 0.011±0.004 55 2.835 1.00
Liver 0.080±0.010 400 20.61 1.00

Kidney, 2.781±0.026 13905 716.7 1.00
Inner ear 0.235±0.006 1175 60.56 1.00

Dose: 3.0 µmol
Serum 0.576±0.013 5760 100.0 0.989
Brain 0.083±0.006 415 7.204 0.813
CSF 0.023±0.016 115 1.996 0.451
Eyes 0.222±0.005 1111 19.28 0.733
Lung 0.601±0.013 3005 52.17 0.856
Testis 0.093±0.009 465 8.072 2.818
Liver 0.194±0.020 970 16.84 0.808

Kidney 4.698±0.159 23490 407.8 0.563
Inner ear 0.442±0.064 2210 38.36 0.626

Dose: 10.0 µmol
Serum 2.289±0.121 22890 100.0 1.179
Brain 0.360±0.004 1800 7.863 1.058
CSF 0.075±0.004 375 1.638 0.441
Eyes 0.763±0.035 3815 16.66 0.755
Lung 1.788±0.033 8940 39.05 1.770
Testis 0.484±0.003 2420 10.57 4.400
Liver 0.153±0.002 765 3.342 0.190

Kidney 11.219±0.099 56095 245.06 0.403
Inner ear 1.246±0.047 6230 27.21 0.530
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3. RESULTS

Dose-dependence of K117 levels in various body compart-
ments of rats is given in Table 1.

Table 1 shows very high levels of K117 in the lungs, liver,
kidney  and  Inner  ear  compared  to  those  in  serum.  These
relatively  high  levels  continuously  decrease  with  time in  the
lungs and inner ear, while they continue to increase in the liver
and kidney.

4. DISCUSSION

During their in vitro experiments, Jun et al. [7] compared
AcChE  and  BuChE  reactivating  process  of  several  K-
compounds against paraoxon-inhibition, using a concentration
as high as  100 µM, as  the overall  (in  vivo)  toxicity  does not
limit the dose used. However, studying the dose-dependence in
in vivo experiments injections up to 100 µM could be applied,
as higher doses of K117 were toxic [6]. Horn et al. [14] experi-
mentally proved that K117 fulfils one of the basic requirements
of an adequate antidote, it does not even influence the enzyme
activity  of  BuChE  in  excess  (1,000  µM).  Thereby,  K117
belongs  to  the  group  of  pyridinium  aldoximes  that  can  be
potentially used (K27, K48, K74, K75, K99, K127, K203, etc.)
in medical practice. The BuChE reactivation power of K117 is
preferable  in  paraoxon-inhibited  BuChE,  while  its  (in  vitro)
activity on tabun-inhibited enzyme is not significant.

It is the circulating blood that supplies K117 from the site
of  i.m.  injection  to  each  organ,  tisssue  and  cell  of  rats.
However,  special  barriers  of  the  organism  (e.g.  blood-brain
barrier, blood-testis barrier etc.) can either totally or partially
hinder the transfer of K117 to special organs such as the central
nervous system and the organs of reproduction. Each biological
barrier has its own characteristics. When brain concentrations
are compared to the serum levels of K117 no proportionality
can be observed. About 50% of K117 could penetrate into the
brain when a dose of 0.1 µmol was given. However, this ratio
decreased to 9% when 1 µmol and to 7% when 10 µmol K117
were applied, respectively. This dynamic function of the blood-
brain-barrier  was even more expressed for CSF; at  a dose of
0.1  µmol.  The  relative  concentration  of  K117  in  the  CSF
compared to that  in the serum, was 45%, however,  this  ratio
decreased to 5% and 1.6% using doses of 1 µmol and 10 µmol,
respectively.  Lorke  et  al.  [15]  also  demonstrated  dynamic
changes  in  blood-brain  barrier  and  blood-CSF  barrier
functions.  The  relatively  high  proportion  of  K-117  in  the
kidneys,  30  minutes  following  intramuscular  administration,
compared  to  serum and  the  liver  versus  serum,  indicates  the
essential role of the kidneys in the removal of K117 from the
organism.  It  also  indicates  that  K117  is  hydrophilic  and,
therefore,  is  excreted  from  the  body  via  the  kidney.

The inner ear has a multi-compartmental structure (peri-,
endolymph) with several different barrier systems (e.g. blood-
endolymph, blood-perilymph, CSF-perilymph) [16, 17], which
makes  the  explanation  of  the  relatively  high  K117
concentrations  in  the  inner  ear  difficult.  Experimental  data
suggest that a much slower elimination from the perilymph [18,
19]  is  presumably  a  major  factor  in  the  development  of
substance  accumulation  in  the  inner  ear.

CONCLUSION

The  analysis  of  tissue  concentrations  of  K117  levels
relative  to  serum concentrations  is  a  useful  method to  deter-
mine  the  special  characteristics  of  the  penetration  of  this
compound  into  critically  important  organs  and  tissues.  The
validated  reversed-phase  HPLC  bioanalytical  method  deve-
loped was sensitive and selective enough for detailed pharma-
cokinetic measurements.
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