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Summary

Aging is associated with marked deficiency in circulating IGF-1,

which has been shown to contribute to age-related cognitive

decline. Impairment of moment-to-moment adjustment of cere-

bral blood flow (CBF) via neurovascular coupling is thought to

play a critical role in the genesis of age-related cognitive

impairment. To establish the link between IGF-1 deficiency and

cerebromicrovascular impairment, neurovascular coupling mech-

anisms were studied in a novel mouse model of IGF-1 deficiency

(Igf1f/f-TBG-Cre-AAV8) and accelerated vascular aging. We found

that IGF-1-deficient mice exhibit neurovascular uncoupling and

show a deficit in hippocampal-dependent spatial memory test,

mimicking the aging phenotype. IGF-1 deficiency significantly

impaired cerebromicrovascular endothelial function decreasing

NO mediation of neurovascular coupling. IGF-1 deficiency also

impaired glutamate-mediated CBF responses, likely due to dys-

regulation of astrocytic expression of metabotropic glutamate

receptors and impairing mediation of CBF responses by eicosa-

noid gliotransmitters. Collectively, we demonstrate that IGF-1

deficiency promotes cerebromicrovascular dysfunction and neu-

rovascular uncoupling mimicking the aging phenotype, which are

likely to contribute to cognitive impairment.

Key words: arachidonic acid metabolites; astrocyte; endo-

thelial dysfunction; functional hyperemia; Insulin-like growth
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Introduction

Vascular cognitive impairment (VCI) in the aging population poses a

serious challenge to developed countries around the world. With the

expansion of the aging population, understanding potentially reversible

and preventable vascular contributions to age-related cognitive impair-

ment and dementia is of critical importance.

There is increasing evidence that in addition to pathologies affecting

the larger cerebral arteries (e.g. atherosclerosis), pathophysiological

alterations of the cerebral microcirculation have a critical role in age-

related decline in brain function (Gorelick et al., 2011). Among them,

age-related functional changes in the neurovascular unit that have the

potential to impair local regulation of cerebral blood flow are of great

importance (Iadecola et al., 2009). The energy requirements of neurons

are high. Yet, the brain contains little energy reserves and, during

neuronal activation, there is a need for rapid increases in oxygen and

glucose delivery. This is ensured by neurovascular coupling, a vital feed-

forward control mechanism involving neuronal signaling via neurotrans-

mitters, which adjusts local cerebral blood flow (CBF) to the energy

requirements of activated neurons. The resulting functional hyperemia is

responsible for maintenance of an optimal local microenvironment in the

cerebral tissue by increasing delivery of oxygen and glucose and removal

of potentially deleterious by-products of cerebral metabolism. Aging is

associated with significant impairment of functional hyperemia (termed

‘neurovascular uncoupling’), and the ensuing disruption of the cerebral

microenvironment likely contributes to impairment of higher cerebral

function in elderly patients and aged laboratory animals (Zaletel et al.,

2005; Park et al., 2007; Topcuoglu et al., 2009; Fabiani et al., 2013;

Sorond et al., 2013; Stefanova et al., 2013; Toth et al., 2014a). Yet, the

specific age-related mechanisms responsible for neurovascular uncou-

pling are not yet understood.

There is increasing evidence suggesting that neuroendocrine mech-

anisms have an important role in age-related vascular alterations

(Ungvari & Csiszar, 2012; Sonntag et al., 2013). In particular, the age-

related decline in circulating insulin-like growth factor-1 (IGF-1) levels

appears to contribute significantly to age-related microvascular changes

and cognitive decline (reviewed recently in Sonntag et al. (2013)).

Neurovascular coupling depends on an intact functional network of

neurons, vascular endothelial cells, and astrocytes (Attwell et al., 2010;

Chen et al., 2014). Although these cell types abundantly express IGF-1

receptors and are known targets of IGF-1 (Sonntag et al., 2013), the role

of IGF-1 in the regulation of functional hyperemia in response to

neuronal activation is not well understood. The cellular mechanisms

underlying neurovascular coupling include endothelial production of

nitric oxide (NO) (Ma et al., 1996; Stobart et al., 2013; Chen et al.,

2014) as well as astrocytic production of vasodilator metabolites of

arachidonic acid, including epoxygenase-derived epoxyeicosatrienoic

acids (EETs) and cyclooxygenase-derived prostaglandins (Peng et al.,

2002; Zonta et al., 2003; Takano et al., 2006). Importantly, previous

studies demonstrate that IGF-1 deficiency leads to endothelial dysfunc-

tion and impaired bioavailability of NO in the peripheral circulation

(reviewed in Ungvari & Csiszar (2012)). IGF-1 was also shown to regulate

cellular arachidonic acid metabolism (Tahara et al., 1991; Berenbaum

et al., 1994; Damke et al., 1994; Sharma et al., 1997). Despite these

advances, the effects of IGF-1 deficiency on the cerebral microcirculation
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and mediation of neurovascular coupling by NO, EETs, and eicosanoid

gliotransmitters remain elusive.

This study was designed to test the hypotheses that IGF-1 regulates

synthesis/release of NO and vasodilator eicosanoid gliotransmitters in the

cerebral microcirculation and that low circulating IGF-1 levels impair

neurovascular coupling in the brain, mimicking the aging phenotype. To

test our hypotheses, we used a novel mouse model of adult-onset,

isolated endocrine IGF-1 deficiency induced by adeno-associated viral

knockdown of IGF-1 specifically in the liver of postpubertal mice using

Cre-lox technology (Igf1f/f + TBG-Cre-AAV8) (Toth et al., 2014b). Neu-

rovascular coupling, synthesis of eicosanoid gliotransmitters, astrocytic

gene expression, and cerebromicrovascular endothelial function were

tested. To substantiate our findings, behavioral studies known to be

sensitive for neurovascular uncoupling (tests indicative for learning and

memory) were conducted.

Results

IGF-1 deficiency impairs neurovascular coupling and

cognitive function

Figure 1A shows that mice receiving TBG-Cre-AAV8 had significantly

lower serum IGF-1 levels compared with control mice receiving TBG-

eGFP-AAV8. Both groups had similar serum IGF-1 levels prior to the

administration of liver-targeted viruses (data not shown). Consistent with

the concept that circulating IGF-1 contributes to the maintenance of

(A)

(C)

(E) (F)

(D)

(B)

Fig. 1 IGF-1 deficiency impairs neurovascular coupling and cognitive function. Panel A shows that adeno-associated viral knockdown of hepatic Igf1 (Igf1f/f + TBG-Cre-

AAV8) decreases significantly the level of circulating IGF-1 compared to control animals (Igf1f/f + TBG-eGFP-AAV8) (*P < 0.05 vs. control). (B) Representative traces of

cerebral blood flow (CBF) measured with a laser Doppler probe above the whisker barrel cortex during contralateral whisker stimulation (5 Hz) in control and IGF-1-deficient

mice. 1 AU corresponds to ~5% increase in CBF from baseline. Right panel depicts the summary data of the CBF responses (DAUC as % of baseline; n = 12, *P < 0.001 vs.

control). (C–D) Spontaneous and evoked neural activity is not altered in IGF-1-deficient mice. (C) The amplitude and frequency distribution of neocortical electrical activity are

nearly identical in control and IGF-1-deficient mice (inlet shows original recording of electrocorticograms, n = 6, P = 0.4). (D) The somatosensory evoked potential (SEP)

responses in the somatosensory cortex evoked by contralateral whisker pad stimulation are comparable in control and IGF-1-deficient mice. The arrow indicates the

application of the stimulus. The amplitude of the negative wave of the field potentials (N1) does not differ between control and IGF-1-deficient mice (n = 6, P = 0.6). (E–F)
Spatial memory testing of mice in Y-maze. The IGF-1-deficient animals (Igf1f/f + TBG-Cre-AAV8) exhibited impaired spatial memory as shown by the decreased number of

entries in novel arm (E; * P = 0.001 vs. control) and shorter exploratory time spent in novel arm of the Y-maze during retrieval trial (F; and P = 0.01 vs. control). Data are

mean � S.E.M., n = 20 in each group.
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IGF-1 levels in the brain (Nishijima et al., 2010), we found that mice

receiving TBG-Cre-AAV8 also had significantly lower tissue IGF-1 levels in

the cerebral cortex comparedwith controlmice receiving TBG-eGFP-AAV8

(4.8 � 1.7 and 11.4 � 2.4 pg mg�1 of tissue, respectively; P = 0.03).

Changes in CBF in the whisker barrel cortex in response to

contralateral whisker stimulation were significantly attenuated in IGF-

1-deficient mice (Fig. 1B), indicating that IGF-1 deficiency leads to

neurovascular uncoupling, mimicking the aging phenotype (Toth et al.,

2014a). IGF-1 deficiency could reduce functional hyperemia by impairing

neural activity evoked by whisker stimulation. To examine this possibility,

we recorded spontaneous and evoked neural activity in control and IGF-

1-deficient mice. We found that the amplitude and frequency distribu-

tion of the electrocorticogram and the amplitude of the somatosensory

field potentials produced by the activation of the whisker pad do not

differ between control and IGF-1-deficient mice (Fig. 1C–D). Therefore,

IGF-1 deficiency is unlikely to contribute to impaired functional hyper-

emia by modulating the neural activity evoked by whisker stimulation.

Our recent studies demonstrate that selective experimental disruption

of neurovascular coupling responses is associated with significant

impairment of cognitive function, recapitulating neurological symptoms

and signs observed in brain aging (Tarantini, Ungvari and Toth,

manuscript in preparation 2015). In this study, for the hippocampal-

dependent spatial memory test, the control mice entered the novel arm

more often than the IGF-1-deficient mice following the intertrial interval

(Fig. 1C). The control mice also spent significantly more time in the novel

arm than the previously visited arms, whereas the IGF-1-deficient mice

spent significantly less time in the novel arm (Fig. 1D), indicating that

neurovascular uncoupling induced by IGF-1 deficiency is also associated

with impaired spatial working memory and novelty-seeking behavior.

Previous studies using the Morris water maze (Trejo et al., 2007) and the

Barnes maze (Sonntag and Csiszar, unpublished data, 2012) also yielded

similar results, showing that IGF-1-deficient mice exhibit impaired spatial

working memory. Learning and/or memory deficits were also observed in

GH/IGF-1-deficient Lewis dwarf rats (Nieves-Martinez et al., 2010),

spontaneously dwarf SD rats (Li et al., 2011), and in Ames dwarf mice in

some (Derenne et al., 2011), but not all (Sharma et al., 2010), studies.

IGF-1 deficiency impairs cerebromicrovascular endothelial

function: role in neurovascular uncoupling

We found that in control animals, the administration of the NO synthase

inhibitor L-NAME significantly decreased CBF responses in the barrel

cortex elicited by contralateral whisker stimulation (Fig. 2A). In IGF-1-

deficient animals, the effect of L-NAME was blunted (Fig. 2A), suggest-

ing that IGF-1 deficiency impairs NO mediation, which contributes to

neurovascular uncoupling. Topical application of the endothelium-

dependent vasodilator agent acetylcholine (ACh; 10�5 mol L�1) resulted

in a significant increase in CBF in the barrel cortex of control mice

(Fig. 2B). ACh-induced CBF responses were significantly attenuated in

IGF-1-deficient mice (Fig. 2B), supporting the concept that IGF-1

deficiency impairs cerebromicrovascular endothelial function, mimicking

the aging phenotype (Toth et al., 2014a). Previously, it has been found

that in models of vascular aging in the periphery, IGF-1 decreases

vascular oxidative stress and improves endothelial function (Ungvari &

Csiszar, 2012), whereas it does not significantly affect endothelium-

independent vasodilation elicited by NO donors (Bailey-Downs et al.,

2012). We found that in IGF-1-deficient mice, 3-nitrotyrosine content in

the cerebral cortex is significantly elevated (Fig. 2C) consistent with

increased oxidative/nitrosative stress in the brain, which mimics the

aging phenotype (Toth et al., 2014a). IGF-1 deficiency was associated

(A)

(C) (D)

(B)

Fig. 2 IGF-1 deficiency impairs

cerebromicrovascular endothelial function:

role in neurovascular uncoupling. (A)

L-NAME-sensitive, NO-mediated portion of

the CBF response (calculated based on the

percentage decline in CBF in the presence

of L-NAME) measured above the barrel field

of the primary somatosensory cortex in

response to whisker stimulation in control

and IGF-1-deficient (Igf1f/f + TBG-Cre-

AAV8) mice (n = 6, * P < 0.05 vs. control; #

P < 0.05 vs. control w/o drug; &P < 0.05 vs.

Igf1f/f + TBG-Cre-AAV8 w/o drug). (B) CBF

responses elicited by topical administration

of acetylcholine to the barrel field of control

and IGF-1-deficient mice (n = 6, *P < 0.05

vs. control). (C) Protein 3-nitrotyrosine

content, a biomarker of increased ONOO-

formation, in cortical tissue of IGF-

1-deficient and control mice (n = 5,

*P < 0.05 vs. control). (D) qPCR data

showing mRNA expression of the

endothelial nitric oxide synthase (Nos3) and

the NADPH oxidase subunits Nox1, Nox2,

and Nox4 in cortical samples of

IGF-1-deficient and control mice. Data are

mean � S.E.M. (n = 5, *P < 0.05 vs.

control).
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with decreased expression of Nos3 (Fig. 2D). In IGF-1-deficient mice, the

expression of Nox1 and Nox2 subunits of the NADPH oxidase tended to

increase; however, the differences did not reach statistical significance

(Fig. 2D).

IGF-1 deficiency impairs glutamate-mediated CBF responses:

role in neurovascular uncoupling

Astrocytes were suggested to sense neuronal-derived glutamate through

metabotropic glutamate receptors (mGluR) and NMDA receptors,

leading to increased production of vasodilator gliotransmitters that

contribute to neurovascular coupling (Petzold & Murthy, 2011). In

support of this concept, we found that in control mice, the metabotropic

Glu receptor blocker MPEP and NMDA receptor blocker D-APV

significantly decreased CBF responses in the barrel cortex elicited by

contralateral whisker stimulation (Fig. 3A). In IGF-1-deficient animals,

the effect of MPEP plus D-APV was significantly decreased (Fig. 3A),

suggesting that IGF-1 deficiency impairs glutamate-mediated neurovas-

cular coupling. Further support for this concept is provided by the

findings that in IGF-1-deficient mice, glutamate-induced CBF changes

(A) (B)

(C)

(E)

(D)

Fig. 3 IGF-1 deficiency impairs glutamate-

mediated CBF responses: role in

neurovascular uncoupling. (A) Effects of

treatment with antagonists of

metabotropic glutamate receptors (MPEP,

5 9 10�5 mol L�1) and NMDA receptors

(N-methyl-D-aspartate, D-APV,

5 9 10�5 mol L�1) on cerebral blood flow

(CBF) responses measured above the barrel

field of the primary somatosensory cortex in

response to whisker stimulation in control

and IGF-1-deficient mice (Igf1f/f + TBG-Cre-

AAV8). The inlet shows the glutamate-

mediated part of the neurovascular

response in each group (n = 6 in each

group, *P < 0.05 vs. control; #P < 0.05 vs.

Igf1f/f + TBG-Cre-AAV8). (B) CBF responses

measured above the barrel field of the

primary somatosensory cortex elicited by

topical administration of L-glutamate

(500 lmol L�1) in control and IGF-1-

deficient mice (n = 6 in each group,

*P < 0.05 vs. control). Panel C Original

recordings of changes in extracellular

glutamate in response to whisker

stimulation (5 Hz, 2 min) measured by

amperometry using a glutamate biosensor

inserted into the barrel cortex of mice (see

Methods for details). ‘Null sensor’ indicates

a biosensor constructed the same way as

the glutamate sensors but without any

enzymes for biosensing. Summary data are

shown in Panel D. No significant differences

(P = 0.4) were observed between cortical

glutamate signals induced by whisker

stimulation in control (n = 5) and IGF-1-

deficient mice (Igf1f/f + TBG-Cre-AAV8,

n = 7). (E) qPCR data showing mRNA

expression of NMDA receptors (Grin1,

Grin2A, Grin2B), metabotropic glutamate

receptors (Grm1, Grm2, Grm3, Grm4,

Grm5), and glutamate transporters (Slc1a1,

Slc1a2) on astrocytes isolated from control

and IGF-1-deficient animals (n = 5).

*P < 0.05 vs. control. Data are

mean � S.E.M. for every panel of the

figure.
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were also significantly impaired (Fig. 3B). IGF-1 deficiency did not alter

glutamate release induced by neuronal activation (Fig. 3C–D), whereas it

dysregulated the astrocytic expression of metabotropic glutamate

receptors (Grm2, Grm4, Grm5) and NMDA receptors (Grin1 and Grin2;

Fig. 3E).

IGF-1 deficiency impairs mediation of CBF responses by

eicosanoid gliotransmitters: role in neurovascular uncoupling

Upon activation by neuronal-derived glutamate, astrocytes were shown

to convert arachidonic acid by cyclooxygenases to vasodilator prosta-

glandins and by P450 epoxygenase to vasodilator EETs (Petzold &

Murthy, 2011). Consistent with this concept, we found that in control

animals, the administration of the cyclooxygenase inhibitor indometh-

acin (Fig. 4A) and P450 epoxygenase inhibitor MS-PPOH (Fig. 4B)

significantly decreased CBF responses in the barrel cortex elicited by

contralateral whisker stimulation. In IGF-1-deficient animals, the effects

of indomethacin (Fig. 4A) and MS-PPOH (Fig. 4B) were significantly

decreased, suggesting that IGF-1 deficiency impairs the mediation of

neurovascular coupling by prostaglandins and EETs. The astrocyte-

derived vasoconstrictor eicosanoid 20-HETE can also negatively impact

neurovascular coupling. Using the cytochrome P450 x-hydroxylase
inhibitor HET0016, we found that IGF-1 deficiency tended to increase

the HET0016-sensitive component of the CBF response, indicating that a

20-HETE-dependent constrictor response is present in IGF-1-deficient

mice (Fig. 4C). LC/MS/MS measurements demonstrated that IGF-1

deficiency resulted in a diminished cerebral production of the potent

vasodilator 14,15-EET (which is the most prevalent among the four EET

regioisomers in the murine brain) in response to glutamate stimulation of

brain slices (Fig. 4D). IGF-1 deficiency also tended to increase the

cerebral production of 20-HETE (Fig. 4E). Among the investigated

factors known to be involved in the synthesis of eicosanoid gliotrans-

mitters, the expression of Cyp2c55 decreased, whereas the expression of

the 20-HETE-producing x-hydroxylase Cyp4a10 increased in IGF-1-

deficient mice (Fig. 4F).

Discussion

Circulating IGF-1 concentrations decrease significantly with age, due to

decreases in GH levels, both in humans and in laboratory animals

(Sonntag et al., 2005, 2013). There is substantial evidence that

circulating IGF-1 is an important vascular protective factor and that the

age-related decline in IGF-1 levels contributes to vascular aging,

promoting atherogenesis and development of cardiovascular disease

and stroke (reviewed recently in Ungvari & Csiszar (2012) and Sonntag

et al. (2013)). Here, we show for the first time that circulating IGF-1

deficiency also leads to profound neurovascular dysregulation, charac-

terized by impaired CBF responses induced by synaptic activity (Fig. 1),

which mimics the cerebromicrovascular aging phenotype (Toth et al.,

2014a). Impairment of a key homeostatic mechanism matching energy

supply with the needs of active neuronal tissue is predicted to have

deleterious effects on brain function. Indeed, there is strong evidence

that in elderly patients, impaired neurovascular coupling (Zaletel et al.,

2005; Topcuoglu et al., 2009; Stefanova et al., 2013) associates with

decline in higher cortical functions including cognition. Importantly,

neurovascular uncoupling in IGF-1-deficient mice also associates with

impaired cognitive function (Fig. 1), mimicking the aging phenotype

(Csiszar et al., 2013).

Although IGF-1 deficiency may impact multiple aspects of neuronal

function (Sonntag et al., 2013), our recent studies strongly suggest that

a direct mechanistic link exists between neurovascular uncoupling and

cognitive decline. Accordingly, recently we found that experimentally

induced acute neurovascular uncoupling in mice, in the absence of

alterations in synaptic function, leads to impaired performance in tests

relevant for hippocampal- and cortical-dependent tasks of learning and

memory (Tarantini, Ungvari and Toth, manuscript in preparation 2015).

In humans, IGF-1 deficiency is associated with progressive cognitive

dysfunction that can be reversed by increasing circulating IGF-1 levels

(reviewed in Sonntag et al. (2013)). Rodents have a similar decrease in

circulating IGF-1 levels with age and treatment of aged F344xBN rats

with IGF-1 was shown to improve cognitive function (reviewed in

Sonntag et al. (2013)). Thus, further studies are warranted to determine

whether in the aforementioned models treatment with IGF-1 rescues

neurovascular coupling and to establish a causal link between IGF-1-

dependent changes in functional hyperemia and cognitive function. In

addition to exerting protective effects on neurovascular coupling

responses, IGF-1 may also protect brain function by additional mecha-

nisms, including exerting trophic effects on central glutamatergic

synapses (Trejo et al., 2007) and/or preventing blood brain barrier

disruption and neuroinflammation (Toth et al., 2014b).

The effects of IGF-1 deficiency on the cellular mechanisms involved in

neurovascular coupling are likely multifaceted. Microvascular endothelial

cells are directly exposed to circulating IGF-1 and are known to

abundantly express IGF-1 receptors (Ungvari & Csiszar, 2012). Impor-

tantly, there is growing experimental evidence that NO production by

cerebromicrovascular endothelial cells has an important role in functional

hyperemia (Girouard et al., 2007; Longden & Nelson, 2011; Stobart

et al., 2013). This concept is supported by our observation that inhibition

of NO synthesis significantly reduces neurovascular coupling in control

animals (Fig. 2). It is significant that impaired endothelial NO production

was shown to contribute to age-related neurovascular uncoupling in

mice (Park et al., 2007; Toth et al., 2014a). The findings that in IGF-1-

deficient mice (Fig. 2), the L-NAME-sensitive, NO-mediated portion of

the neurovascular coupling response was decreased suggest that

cerebromicrovascular endothelial dysfunction also contributes to neuro-

vascular uncoupling in IGF-1 deficiency (Park et al., 2007), mimicking the

aging phenotype (Park et al., 2007; Toth et al., 2014a). The mechanisms

by which IGF-1 deficiency impairs cerebromicrovascular endothelial

function likely involve an increased breakdown of NO by elevated levels

of ROS. Several lines of evidence support this concept. First, IGF-1-

deficient mice, similar to aged mice (Park et al., 2007; Toth et al.,

2014a), exhibit increased production of ROS (Csiszar et al., 2008).

Second, the treatment of primary endothelial cells with IGF-1 signifi-

cantly attenuates cellular ROS generation (Csiszar et al., 2008). Third, in

the microcirculation, endothelium-derived NO was shown to react with

increased O2
.� forming ONOO�, thus decreasing the bioavailability of

NO (Csiszar et al., 2002; Pacher et al., 2007). The brains of IGF-1-

deficient mice, similar to aged mice (Toth et al., 2014a), exhibit an

increased 3-nitrotyrosine content (Fig. 2), a biomarker of increased

ONOO� formation, indicating that increased scavenging of vasodilator

NO contributes to impaired endothelial mediation of cerebromicrovas-

cular dilation in IGF-1 deficiency. Previous studies suggest that increased

activity/expression of NADPH oxidases and increased ROS production by

mitochondrial sources contribute significantly to aging-induced micro-

vascular oxidative stress (Park et al., 2007; Ungvari & Csiszar, 2012; Toth

et al., 2014a). Accordingly, the findings that treatment with a pharma-

cological inhibitor of cellular ROS production is able to improve

functional hyperemia provide direct evidence for the role of increased

oxidative stress in neurovascular uncoupling both in IGF-1-deficient mice

and in aged mice (Toth et al., 2014a). Importantly, impaired endothelial

IGF-1 deficiency and neurovascular uncoupling, P. Toth et al.1038
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(A)

(D) (E)

(F) (G)

(B) (C)

Fig. 4 IGF-1 deficiency impairs mediation of CBF responses by eicosanoid gliotransmitters: role in neurovascular uncoupling. (A) Indomethacin-sensitive, prostaglandin-

mediated portion of the CBF response (calculated based on the percentage decline in CBF in the presence of INDO) measured above the barrel field of the primary

somatosensory cortex in response to whisker stimulation in control and IGF-1-deficient (Igf1f/f + TBG-Cre-AAV8) mice (n = 6 in each group, *P < 0.05 vs. control; #P < 0.05

vs. control w/o INDO; &P < 0.05 vs. Igf1f/f + TBG-Cre-AAV8 w/o INDO). (B) MS-PPOH-sensitive, EET-mediated portion of the CBF response (calculated based on the

percentage decline in CBF in the presence of MS-PPOH) measured above the barrel field of the primary somatosensory cortex in response to whisker stimulation in control

and IGF-1-deficient (Igf1f/f + TBG-Cre-AAV8) mice (n = 6 in each group, *P < 0.05 vs. control; #P < 0.05 vs. control w/o MS-PPOH; &P < 0.05 vs. Igf1f/f + TBG-Cre-AAV8 w/

o MS-PPOH). (C) HET0016-sensitive, 20-HETE-mediated portion of the CBF response (calculated based on the percentage decline in CBF in the presence of the cytochrome

P450 x-hydroxylase inhibitor HET0016) measured above the barrel field of the primary somatosensory cortex in response to whisker stimulation in control and IGF-1-

deficient (Igf1f/f + TBG-Cre-AAV8) mice (n = 6 in each group, *P < 0.05 vs. control; #P < 0.05 vs. control w/o HET0016; &P < 0.05 vs. Igf1f/f + TBG-Cre-AAV8 w/o

HET0016). (D–E) Production of 14,15 EET (D) and 20-HETE (E) in glutamate-activated brain slices from control and Igf1f/f + TBG-Cre-AAV8 mice as measured by liquid

chromatography/mass spectrometry (LC/MS) (n = 6 in each group; *P < 0.05 vs. control; see Methods). (F) qPCR data showing mRNA expression of cyclooxygenase-1 and

cyclooxygenase-2 (Ptgs1, Ptgs2) and EET-producing epoxygenases (Cyp2j6, Cyp2c55) in isolated astrocytes, and 20-HETE-producing x-hydroxylases (Cyp4a10, Cyp4a12,
Cyp4a14) in cortical samples of control and IGF-1-deficient mice (n = 5 in each group). *P < 0.05 vs. control. Data are mean � S.E.M. (G) Proposed mechanisms by which

age-related IGF-1 deficiency may impair neurovascular coupling responses (see Discussion). The model predicts that IGF-1 deficiency both alters astrocytic production of

eicosanoid gliotransmitters and impairs cerebromicrovascular endothelial function.
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function and increased oxidative stress are also manifest in the peripheral

circulation in IGF-1 deficiency (Gong et al., 2014) (reviewed in Ungvari &

Csiszar (2012)). In addition to its vasodilator action, NO also confers

multifaceted endothelial protective effects, including pro-angiogenic,

anti-apoptotic, and anti-inflammatory effects (Ungvari & Csiszar, 2012;

Sonntag et al., 2013). Thus, it is likely that impaired endothelial function

associated with IGF-1 deficiency has complex phenotypic consequences

in the cerebral microcirculation (e.g., alterations in microvascular density

(Ungvari & Csiszar, 2012)), which should be elucidated by future studies.

In addition to the microvascular endothelial cells, the activation of

astrocytic production of vasodilator arachidonic acid metabolites (EETs,

prostaglandins) by neuronal-derived glutamate also has an important

role in neurovascular coupling (Petzold & Murthy, 2011). Here, we

provide the first evidence that IGF-1 deficiency alters the phenotype of

astrocytes, impairing the astrocyte-mediated portion of neurovascular

coupling. We found that IGF-1 deficiency impairs glutamate-mediated

gliovascular coupling responses (Fig. 3A), but it does not affect

glutamate release from neurons (Fig. 3C), suggesting a primary astro-

cytic deficit. Our findings indicate that the likely mechanisms by which

IGF-1 deficiency impairs glutamate-mediated gliovascular coupling

responses include decreased expression of astrocytic glutamate receptors

(Fig. 3D) and dysregulation of astrocytic synthesis of eicosanoid

gliotransmitters, likely due to altered expression of cytochrome P-450

enzymes in the astrocytes (Fig. 4). On the basis of the aforementioned

findings, one would predict that restoration of circulating IGF-1 levels in

aging would positively impact astrocyte function, improving gliovascular

coupling. This hypothesis needs to be experimentally tested in future

studies. It should be noted that NO per se is likely to regulate the

metabolism of arachidonic acid by cytochrome P-450 enzymes in the

vasculature, inhibiting the production of vasoconstrictor 20-HETE. Thus,

future studies should also determine whether decreased bioavailability of

NO contributes to increased production of 20-HETE in the brains of IGF-

1-deficient mice.

In conclusion, our results add to the growing evidence that IGF-1

exerts an important cerebromicrovascular protective effect (Toth et al.,

2014b), which likely supports multiple aspects of brain health. The

findings that isolated circulating IGF1 deficiency results in functional and

phenotypic alterations in endothelial cells and astrocytes and leads to

neurovascular uncoupling have important clinical relevance for cognitive

impairment associated with both aging and genetic IGF-1 deficiency

(e.g., Laron dwarfism). Our findings, taken together with the results of

earlier studies (reviewed in Sonntag et al. (2013)), point to potential

benefits of interventions preventing age-related IGF-1 deficiency and

promoting microvascular health for the prevention of cognitive decline in

the elderly.

Experimental procedures

All procedures were approved by and followed the guidelines of the

Institutional Animal Care and Use Committee of OUHSC in accordance

with the ARRIVE guidelines.

Postdevelopmental liver-specific knockdown of Igf1 in mice

Male mice homozygous for a floxed exon 4 of the Igf1 gene (Igf1f/f) in a

C57BL/6 background were used (Toth et al., 2014b). These mice have

the entirety of exon 4 of the Igf1 gene flanked by loxP sites, which allows

for genomic excision of this exon when exposed to Cre recombinase.

Transcripts of the altered Igf1 gene yield a protein upon translation that

fails to bind the IGF receptor. Animals were housed in the Rodent Barrier

Facility at OUHSC, on a 12-h light/12-h dark cycle, and given access to

standard rodent chow (Purina Mills, Richmond, IN, USA) and water

ad libitum. To target hepatocytes, adeno-associated viruses (AAVs) were

purchased from the University of Pennsylvania Vector Core (Philadelphia,

PA, USA). At 2 months of age, approximately 1.3 9 1010 viral particles

(as assayed by genome content at the University of Pennsylvania) of

AAV8.TBG.PI.Cre.rBG or AAV8.TBG.PI.eGFP.WPRE.bGH were adminis-

tered to Igf1f/f mice to knockdown IGF-1 or as a control, respectively, as

described (Toth et al., 2014b). While AAV8 is effective at transducing

multiple tissues after i.v. delivery, including liver, the thyroxine-binding

globulin (TBG) promoter restricts the expression solely to hepatocytes, as

described (Toth et al., 2014b). Experiments were conducted 3 months

postknockdown of Igf1.

Measurement of circulating and tissue IGF-1 levels

Venous blood was collected from the submandibular veins of animals

from both groups (Medipoint, Mineola, NY, USA). Whole blood was

centrifuged at 2500 g for 20 min at 4°C to collect serum, which was

then stored at �80°C. IGF-1 levels in sera and cortical tissue samples

were measured by ELISA (R&D Systems, Minneapolis, MN, USA)

according to the manufacturer’s protocol and are reported in ng mL�1

and pg mg�1 tissue, respectively.

Spatial memory testing of mice in Y-maze

Three months after IGF-1 knockdown, animals were tested for spatial

working memory in the Y-maze as described (Csiszar et al., 2013). In

brief, a Y-maze apparatus, made up of three enclosed transparent

Plexiglas arms (40 cm length 9 9 cm width 9 16 cm height) with

extra-maze visual cues around the maze, was used to assess hippocam-

pal-dependent spatial recognition memory. The test consisted of two

trials separated by an intertrial interval (4 h). All mice were transported

to the behavioral testing room in their home cages at least 1 h before

testing. In the first training (acquisition) trial, mice were placed in the

maze facing the end of a pseudorandomly chosen start arm and allowed

to explore the maze for 5 min with one of the arms closed (novel arm).

Mice were returned to their home cage until the second (retrieval) trial,

during which they could explore freely all three arms of the maze. The

time spent in each arm and number of entries were measured and

analyzed from video recordings (Ethovision, Noldus Information Tech-

nology Inc., Leesburg, VA, USA). Mice were required to enter an arm

with all four paws in order for it to be counted as an entry. The results

are expressed as number of entries (entry) and time spent (dwell) in the

novel arm as % of all entries and time spent in novel and other arm

(Sarnyai et al., 2000). Entering the novel arm more frequently and for

longer periods of time indicates intact memory and novelty-seeking

behavior because of the innate tendency of mice to explore. The maze

was cleaned with 70% ethanol between the trials.

Surgical procedures

Mice in each group were anesthetized with a-chloralose (50 mg kg�1,

i.p.) and urethane (750 mg kg�1, i.p.), endotracheally intubated, and

ventilated (MousVent G500; Kent Scientific Co, Torrington, CT, USA).

Rectal temperature was maintained at 37°C using a thermostatic heating

pad (Kent Scientific Co). End-tidal CO2 (including dead space) was

maintained between 3.2% and 3.7% to keep blood gas values within the

physiological range (PaCO2: 36.18 � 1.8 mmHg, PaO2: 109.8 �
3.1 mmHg). Mice were immobilized, placed on a stereotaxic frame (Leica
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Microsystems Inc, Buffalo Grove, IL, USA), the scalp and periosteum were

pulled aside and the skull was removedover the barrel cortex, and the dura

was gently removed. The cranial window was superfused with artificial

cerebrospinal fluid (ACSF, composition: NaCl 119 mM, NaHCO3 26.2 mM,

KCl 2.5 mM, NaH2PO4 1 mM, MgCl2 1.3 mM, glucose 10 mM, CaCl2
2.5 mM, pH = 7.3, 37°C). The right femoral artery was cannulated for

arterial blood pressure measurement (Living Systems Instrumentations,

Burlington, VT, USA). The blood pressure was within the physiological

range throughout the experiments (90–110 mmHg).

Cerebral blood flow responses to whisker stimulation and

pharmacological studies

To assess neurovascular coupling, a laser Doppler probe (Transonic

Systems Inc., Ithaca, NY, USA) was placed above the barrel cortex (1–

1.5 mm posterior and 3–3.5 mm lateral to bregma), and the contralat-

eral whiskers were stimulated for 1 min at 5 Hz from side to side.

Changes in CBF (n = 7–8 mic in each group) were assessed in three trials

(5- to 10-min intervals). CBF responses to whisker stimulation were

repeated in the presence of the following inhibitors administered

topically onto the brain surface of separate groups of animals: HET0016

(inhibitor of 20-hydroxyeicosatrienoic acid (20-HETE) production,

10�6 mol L�1 for 30 min; Cayman Chemicals, Ann Arbor, MI, USA)

(Liu et al., 2008), MS-PPOH (inhibitor of EET production,

20 9 10�6 mol L�1 for 30 min; Cayman Chemicals) (Shi et al., 2008),

L-NAME (Nx-Nitro-L-arginine methyl ester, inhibitor of nitric oxide

synthase, 10�4 mol L�1 for 20 min; Sigma-Aldrich, St. Louis, MO,

U.S.A.), apocynin (inhibitor of NADPH oxidases, 3 9 10�4 mol L�1 for

30 min; Cayman Chemicals), fluoroacetate sodium (inhibitor of the

tricarboxylic acid cycle predominantly in glial cells, 10�4 mol L�1 min;

Sigma-Aldrich, St. Louis, MO, U.S.A.) (Fonnum et al., 1997; Lecrux et al.,

2012), indomethacin (cyclooxygenase inhibitor, 5 9 10�4 mol L�1;

Sigma-Aldrich, St. Louis, MO, U.S.A.) (Kitaura et al., 2007), MPEP (6-

Methyl-2-(phenylethynyl)pyridine hydrochloride, group I metabotropic

glutamate receptors (mGluR) subtype 5 antagonist, 5 9 10�5 mol L�1)

(Zonta et al., 2003), and the NMDA (N-methyl-D-aspartate) receptor

antagonist D-APV (D-2-Amino-5-Phosphonovaleric acid,

5 9 10�5 mol L�1; Cayman Chemicals) (Stobart et al., 2013). In a

separate series of experiments (n = 8 in each group), CBF responses to

topical administration of L-glutamate (500 lmol L�1) (Hall et al., 2014)

were determined in the absence and presence of MPEP

(5 9 10�5 mol L�1) and D-APV (5 9 10�5 mol L�1) (Stobart et al.,

2013). CBF responses to acetylcholine (ACh; 10�5 mol L�1) were also

obtained to assess maximal endothelial NO-mediated responses.

Changes in CBF are expressed as percent (%) changes from baseline.

Spontaneous neuronal activity and evoked field potentials

(SEP) in the primary somatosensory cortex

The animals were surgically prepared and ventilated as described above,

and a glass-insulated tungsten microelectrode (impedance, 2–3 MΩ;
Kation Scientific, LLC, Minneapolis, MN, USA) was inserted into the left

barrel cortex (1–1.5 mm posterior and 3–3.5 mm lateral to bregma)

through the ACSF-perfused open cranial window for recording local field

potentials. An Ag/AgCl electrode inserted in the neck muscles served as

reference. After basal activity was recorded, the right whisker pad was

stimulated by a bipolar stimulating electrode placed to the ramus

infraorbitalis of the trigeminal nerve and into the masticatory muscles.

The stimulation protocol used to investigate neurovascular coupling and

somatosensory evoked field potentials consisted of 10 stimulation

presentation trials with an intertrial interval of 70 s, each delivering a

15-s train of electrical pulses (2 Hz, 0.2 mA, intensity, and 0.3ms pulse

width) after a 10-s prestimulation baseline period. The signal was

amplified with an AC/DC differential amplifier (high pass at 1 Hz, low

pass at 1 kHz) (Model 3000; A-M Systems, Inc. Carlsborg, WA, USA) and

digitalized by the PowerLab/Labchart data acquisition system (ADInstru-

ments, Colorado Springs, CO, USA) with a sampling rate of 40 kHz.

Basal activity was analyzed as distribution of wave amplitude as a

function of frequency (Park et al., 2008), and the negative amplitude in

the somatosensory evoked field potential response was considered as

the excitatory postsynaptic potential (fEPSP) (Lind et al., 2013). Analyses

were performed on the average of 10 stimulation trials.

Cerebral glutamate release to whisker stimulation

In a separate cohort of animals, we assessed changes in extracellular

glutamate signal in response to whisker stimulation. The cranial window

was superfused continuously with ACSF. The glutamate sensor is a

platinum electrode encapsulated in a biolayer containing glutamate

oxidase and protected against the interference with ascorbate, urate,

dopamine, and 5-hydroxytriptamine. Glutamate is oxidized into hydrogen

peroxide which is sensed by the electrode. In the morning of the

experiments, the working electrode (Sarissa GLU Biosensor, 25 lm tip;

Sarissa Biomedical, Coventry, UK) was calibrated according to the

manufacturer’s guidelines in vitro, and then, it was inserted 1.5 mm

caudal and 3 mm lateral from bregma into the cerebral tissue about

500 lmdeep.Glutamate null sensors (lack of any enzymes for biosensing)

were used as controls. The reference electrode (Ag/AgCl)was inserted into

the cerebral tissue elsewhere, and the auxiliary electrode (Ag/AgCl) was

placed between the scalp and the skull. The potential was set at 0.5 V vs.

Ag/AgCl. A 3-electrode potentiostat (Quadstat) with an eDAQ data

acquisition system (eDAQ Pty Ltd., Colorado Springs, CO, USA) was used

for constant potential amperometry. Following the insertion of the

electrodes, we waited about 2-3 min until a stable baseline developed.

Then, we stimulated the right whiskers for 1 min at 5 Hz, in three

consecutive trials divided by 5- to 10-min intervals. The response was

recorded in nA and converted to lM of glutamate using the calibration

curve. Basal glutamate measurements preceding the evoked glutamate

signal were included only, and amplitudes were calculated by obtaining

the maximum increase from baseline (Onifer et al., 2012).

Astrocyte isolation

Astrocytes were immunopurified from the cortex of the experimental

animals by targeting the extracellular epitope of Glast, a glutamate

transporter specifically found on astrocytes. Cortices were isolated in ice-

cold HBSS, enzymatically digested in L15 media with 0.05% trypsin for

20 min at 37°C, titurated, and filtered through 0.7-lm mesh cell

strainer. The remaining cells were pelleted, resuspended in 100 lls of

HBSS with 0.5% BSA, and incubated with anti-Glast-PE (1:10; Miltenyi

Biotech, Bergisch Gladbach, Germany) for 10 min at 4°C. Anti-PE

microbeads (Miltenyi Biotech) were then added and incubated for an

additional 10 min at 4°C. Cells were pelleted and washed three times

with PBS with 0.5% BSA before magnetic bead column purification

(Miltenyi Biotech).

Quantitative real-time RT–PCR

A quantitative real-time RT–PCR technique was used to analyze mRNA

expression of nitric oxide synthase, NADPH oxidases, NMDA receptors,
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metabotropic glutamate receptors, cyclooxygenases, epoxygenases, and

x-hydroxylases in cortical samples and isolated astrocytes from each

experimental group using a Strategen MX3000 platform, as previously

reported (Toth et al., 2013b). In brief, total RNA was isolated with a Mini

RNA Isolation Kit (Zymo Research, Orange, CA, USA) and was reverse-

transcribed using Superscript III RT (Invitrogen, Burlington, ON, Canada)

(Toth et al., 2013a,b). Amplification efficiencies were determined using

a dilution series of a standard vascular sample. Quantification was

performed using the efficiency-corrected DDCq method. The relative

quantities of the reference genes Hprt, Ywhaz, B2 m, and Actb were

determined, and a normalization factor was calculated based on the

geometric mean for internal normalization. Fidelity of the PCR was

determined by melting temperature analysis and visualization of the

product on a 2% agarose gel.

Measurement of the production of arachidonic acid

metabolites in brain slices

To determine how IGF-1 deficiency affects the synthesis of eicosanoid

gliotransmitters, horizontal hippocampal slices of 400 lm thickness

from mice in each cohort were prepared in ice-cold solution

containing (in mmol L�1) sucrose 110, NaCl 60, KCl 3, NaH2PO4

1.25, NaHCO3 28, sodium ascorbate acid 0.6, glucose 5, MgCl2 7,

and CaCl2 0.5 using a HM650V vibrating microtome (Thermo

Scientific, Burlington, ON, Canada). Slices were then transferred to

a custom-made chamber which contained oxygenated artificial cere-

brospinal fluid (aCSF) of the following composition (in mM): NaCl 126,

KCl 2.5, NaH2PO4 1.25, MgCl2 2, CaCl2 2, NaHCO3 26, glucose 10,

pyruvic acid 2, and ascorbic acid 0.4. To stimulate astrocytes,

glutamate (3 9 10�4 mol L�1) was added to the chamber. The

samples were weighed and snap-frozen for further analysis.

The samples were homogenized in ice-cold phosphate buffer (pH

6.8). Thousand units of E. coli b-glucuronidase was added to the tissue

extract to release 20-HETE from conjugation with glucuronide. After

incubation at 37°C for 2 h, the pH in the solution was adjusted to 3 by

the addition of acetic acid. [2H4]-20-HETE (10 ng) was added, and the

sample was extracted with acidified CHCl3/CH3OH (2:1) and purified by

silica solid-phase extraction. Different samples were placed into ice-cold

0.15M KCl. After homogenization, synthetic [2H11]-labeled 14,15-DHET

(5 ng) was added as internal standard. The EETs and DHETs were

extracted from the tissue homogenates with acidified CHCl3/CH3OH

(2:1) and purified by silica solid-phase extraction, separating EETs and

DHETs.

Quantification was performed by LC/MS/MS using Acquity BEH C18

columns (1.0 9 100 mm; 1.7 lm) connected to a TSQ-Quantum

Vantage triple quadrupole spectrometer (ThermoScientific) with a linear

solvent gradient that went from 70% 15 mM aqueous ammonium

acetate (pH 8.5), 30% acetonitrile to 40% 15 mM aqueous ammonium

acetate (pH 8.5), 60% acetonitrile in 6 min and at a flow of 0.18 mL/

min. For 20-HETE analysis, we utilized collision-induced fragmentation of

20-HETE at m/z 319 and the [2H4]-20-HETE internal standard at m/z 325.

The ratio of the area of the 20-HETE peak compared to the area of the

corresponding deuterated 20-HETE was used for quantification. For EET

analysis, the EETs were converted to the corresponding DHETs by

treatment with acetic acid overnight. Then, we utilized collision-induced

fragmentation of the DHETs at m/z 337 and the [2H11]–DHET internal

standards at m/z 448. Diagnostic selective product ion analysis was

performed at m/z 206 for 14,15-DHET. These same product ions were

also used for the deuterated internal standards. Quantifications were

performed using the ratio of the area of the DHET peaks compared to

the area of the corresponding deuterated DHET peaks (Capdevila et al.,

1991; Nakagawa et al., 2006).

Determination of cerebral oxidative stress

To characterize the effect of IGF-1 deficiency on cerebral oxidative stress,

the marker for peroxynitrate action, 3-nitrotyrosine (3-NT), was assessed

in homogenates of cortical samples using OxiSelect Protein Nitrotyrosine

ELISA Kits (Cell Biolabs, San Diego, CA, U.S.A.) following the manufac-

turer’s guidelines, as previously described (Toth et al., 2013b).

Statistical analysis

Statistical analysis was carried out by unpaired t-test or two-way ANOVA

for repeated measures followed by Bonferroni multiple comparison test,

as appropriate, using Prism 5.0 for Windows (Graphpad Software, La

Jolla, CA, USA). A P value <0.05 was considered statistically significant.

Data are expressed as mean � S.E.M.
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