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Abstract

Summary: The quantification of RNA sequencing (RNA-seq) abundance using a normalization

method that calculates transcripts per million (TPM) is a key step to compare multiple samples

from different experiments. TPMCalculator is a one-step software to process RNA-seq alignments

in BAM format and reports TPM values, raw read counts and feature lengths for genes, transcripts,

exons and introns. The program describes the genomic features through a model generated from

the gene transfer format file used during alignments reporting of the TPM values and the raw read

counts for each feature. In this paper, we show the correlation for 1256 samples from the TCGA-

BRCA project between TPM and FPKM reported by TPMCalculator and RSeQC. We also show the

correlation for raw read counts reported by TPMCalculator, HTSeq and featureCounts.

Availability and implementation: TPMCalculator is freely available at https://github.com/ncbi/

TPMCalculator. It is implemented in Cþþ14 and supported on Mac OS X, Linux and MS Windows.

Contact: veraalva@ncbi.nlm.nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-Generation Sequencing technologies are changing the way we

analyze biological systems. RNA sequencing (RNA-seq) has become

a standard procedure. Most RNA-seq experiments measure and

compare transcript abundance between samples, which is a critical

step for analyzing gene expression profiles under varying experimen-

tal conditions.

In 2008, Mortazavi et al. introduced a normalization method

designed to measure mRNA abundance and named the measure

‘reads per kilobase of exon model per million mapped reads’

(RPKM) (Mortazavi et al., 2008). This was later modified by

Trapnell et al. by an alternative method named ‘fragments per kilo-

base of transcript per million fragments sequenced’ (FPKM)

(Trapnell et al., 2010). Although both RPKM and FPKM offer prac-

tical ways to quantify mRNA abundance while comparing genomic

features in the same sample, they may present biased values when

comparing multiple samples (Wagner et al., 2012). Due to this

inconsistence, and the fact that RNA-Seq data analysis is more use-

ful when comparing multiple samples from different experimental

conditions, Wagner et al. introduced an alternative quantity to

RPKM and FPKM named ‘transcripts per million’ (TPM) that cor-

rects the inconsistences while comparing the RNA-seq abundance

among independent samples.

Despite the theoretical and empirical demonstration that the

units of mRNA abundance in terms of RPKM or FPKM differ be-

tween samples (Wagner et al., 2012), the most popular computa-

tional tools used by the research community still quantify the

RNA-Seq abundance in terms of RPKM or FPKM. Although, there

are emergent computational tools integrating TPM calculations in

their pipelines, such as Salmon (Patro et al., 2017), the application is

limited only to transcripts and cannot be used to estimate abundance

of any other genomic features. Researchers, who would like to use
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TPM for other quantifications, need to implement their own scripts

to calculate TPM values from raw read counts. This process requires

the use of third-party software to calculate the raw read counts by

introducing an additional step in the workflow pipeline. This is

prone to errors due to inconsistences on read assignment models and

the changing definition of genomic features in annotated databases

such as GenBank and RefSeq (Coordinators, 2018).

Considering the value of the RNA-Seq abundance quantification

and the lack of computational tools to process BAM files and calcu-

late accurate TPM values directly from the alignments, we have

developed a software package named TPMCalculator.

2 Materials and methods

TPMCalculator quantifies mRNA abundance directly from the

alignments by parsing BAM files. The input parameters are the same

gene transfer format (GTF) file used to generate the alignments, and

one or multiple input BAM file(s) containing either single-end or

paired-end sequencing reads. The TPMCalculator output is com-

prised of five files per sample reporting the TPM values and raw

read counts for genes, transcripts, exons and introns.

The model to describe the genomic features used for a gene is

created from the GTF provided by the user. TPMCalculator per-

forms two transformations which are executed on the genomic coor-

dinates generating regions for the genes that include the exons and

‘pure’ intron regions as shown in Supplementary Figure S1. The first

transformation creates overlapped exons for all alternative spliced

forms of the gene. A single gene model is generated with unique

exons and introns which includes the sequence of all exonic regions.

The second transformation creates a list of pure intron regions that

replace those generated by the first transformation. We should em-

phasize that only the intron regions included are from regions that

are not from overlapping exons of other genes. Reporting TPM val-

ues for these unique introns permits further identification of alterna-

tive splicing events such as intron retention. Additionally, a set of

non-overlapped gene features (exons and introns) are generated and

used for TPM calculation.

3 Results

TPMCalculator is a one-step software package to quantify mRNA

abundance for several genomic features including genes, transcripts,

exons and introns. The program processes RNA-Seq alignments in

BAM file format producing text files with TPM values, raw read

counts and feature lengths for each genomic feature.

To validate our software, we calculate the Pearson correlation

coefficient between TPM and FPKM for normalized expression val-

ues using RNA-Seq data of 1256 samples from the TCGA-BRCA

project (Koboldt et al., 2012). The FPKM values were calculated

using the RSeQC package (Wang et al., 2012) as described in the

Supplementary Material.

Figure 1 shows the correlation coefficients obtained in this com-

parison where 98.6% (1238 samples) correlated above 0.8 for the

MAPQ¼0. Though, for the rest of MAPQ values, all samples were

correlated with a correlation coefficient above 0.8 with the excep-

tion of the MAPQ¼255 where one sample correlated with 0.69.

Additionally, the correlation coefficients were calculated for the

raw reads counts reported by TPMCalculator, HTSeq (Anders et al.,

2015) and featureCounts (Liao et al., 2014). The correlation coeffi-

cient between raw read counts between TPMCalculator and HTSeq

was above 0.9 for 99.2% (1246) samples. Only 10 samples showed

no correlation with a coefficient below 0.2. TPMCalculator and

featureCounts correlation coefficients were above 0.99 for 99.9% of

the samples. Only one sample showed no correlation with correl-

ation coefficient¼0.1. Samples with low correlation are shown in

Supplementary Table S3.

TPMCalculator reports, in one single analysis, raw read counts

and TPM values for genes, transcripts, exons and introns. Currently

available tools are unable to generate a complete set of data for all

genomic features. Additionally, TPMCalculator reduces the com-

pute time and the resource requirements of RNA-Seq pipelines by

eliminating several steps. TPMCalculator processes BAM files of

size 7.0 GB in �20 min requiring only 4 GB of RAM. This is an open

source project available on the NCBI GitHub repository at https://

github.com/ncbi/TPMCalculator.
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