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Abstract: Leaf area index (LAI) is an important vegetation leaf structure parameter in forest and
agricultural ecosystems. Remote sensing techniques can provide an effective alternative to field-based
observation of LAI. Differences in canopy structure result in different sensor types (active or passive),
platforms (terrestrial, airborne, or satellite), and models being appropriate for the LAI estimation
of forest and agricultural systems. This study reviews the application of remote sensing-based
approaches across different system configurations (passive, active, and multisource sensors on
different collection platforms) that are used to estimate forest and crop LAI and explores uncertainty
analysis in LAI estimation. A comparison of the difference in LAI estimation for forest and agricultural
applications given the different structure of these ecosystems is presented, particularly as this relates
to spatial scale. The ease of use of empirical models supports these as the preferred choice for forest
and crop LAI estimation. However, performance variation among different empirical models for
forest and crop LAI estimation limits the broad application of specific models. The development of
models that facilitate the strategic incorporation of local physiology and biochemistry parameters for
specific forests and crop growth stages from various temperature zones could improve the accuracy of
LAI estimation models and help develop models that can be applied more broadly. In terms of scale
issues, both spectral and spatial scales impact the estimation of LAI. Exploration of the quantitative
relationship between scales of data from different sensors could help forest and crop managers more
appropriately and effectively apply different data sources. Uncertainty coming from various sources
results in reduced accuracy in estimating LAI. While Bayesian approaches have proven effective
to quantify LAI estimation uncertainty based on the uncertainty of model inputs, there is still a
need to quantify uncertainty from remote sensing data source, ground measurements and related
environmental factors to mitigate the impacts of model uncertainty and improve LAI estimation.
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1. Introduction

Forest and agricultural systems are dominant components of the global ecosystem [1],
and understanding how management actions impact their growth patterns [2,3] and their effect
on global climate is important [4–6]. Leaf area index (LAI) is one of many biophysical parameters that
play a significant role in monitoring plant nutritional and health status and can serve as an indicator of
stress and damage [7,8]. Moreover, LAI is an important input to many climate [9,10], ecological [11],
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terrestrial primary production [12,13] and crop growth [14] models. Since the 1990s, LAI estimation has
been widely studied in forest [15,16] and agricultural [17,18] systems. Breda [19], Jonckheere et al. [20],
Weiss et al. [21], Chen [22], and Qu [23] reviewed experiment design, sampling methods, instruments,
and estimation theories for ground-based measurements of LAI. Ground LAI measurement methods
are generally divided into two major categories: direct and indirect [24]. Direct measurements include
destructive sampling and litterfall collection and are more accurate than indirect methods [20]. Indirect
measurements include using optical instruments and estimation models [20,25]. Several devices have
been created to improve the efficiency of ground-based measurements of LAI [26]. Based on the
gap fraction, which describes light penetration and the amount and distribution of openings in the
canopy [27], indirect ground measurements quantify effective LAI (eLAI). Effective LAI is a reduction of
true LAI based on the clumping index, which characterizes the effect of nonrandom spatial distribution
of foliage on LAI measurements [25]. Therefore, eLAI is smaller than true LAI [25]. Yan et al. [26]
describe popular methods, recent advances, challenges, and perspectives of indirect optical ground
measurement of LAI, and present clumping correction methods to explain the conversion from eLAI to
true LAI. However, ground LAI measurements are labor-intensive, time-consuming, and may only be
appropriate for small areas and small stature crops rather than the large extents typical of forests and
many agricultural applications.

The development of remote sensing techniques has provided powerful and effective tools for
estimating the spatial distribution of LAI for large areas and how LAI changes over time [15,16,28,29].
The increased availability of a large number of sensors with diverse spatial, spectral, temporal,
and radiometric characteristics has led to consideration of spatial and spectral scale effects becoming
a crucial focus for effectively applying remote sensing data [30]. Furthermore, the impact of these
scale effects varies from model to model [31] when remote sensing data is used for LAI estimation.
Prior studies have explored the field of LAI estimation from remotely sensed data. Baret and Buis [32]
described methods and challenges with canopy characteristic estimation from remote sensing
observations, and suggested ways to improve retrieval performance, including using prior information,
and incorporating spatial or temporal constraints. Zheng and Moskal [27] reviewed inversion theories
and methods of LAI estimation from different sensors and concluded that lidar data could provide
accurate, timely, and meaningful information to improve LAI estimation. Song [33] reviewed the use
of optical remote sensing in mapping LAI and discussed empirical approaches using spectral and
spatial information, as well as semi-empirical and biophysical approaches. Song [33] anticipated that
new algorithms using complementary information from different sensors would lead to the generation
of better global LAI products. Chen [22] presented LAI principles and algorithms and highlighted
issues associated with LAI retrieval using remote sensing data, including the differences among
existing global LAI products and distorted seasonal variations of LAI. This paper updates and extends
these prior studies by exploring recent advances of LAI estimation in forest and agricultural systems.
We review and compare different remote sensing-based approaches to estimate LAI from passive and
active detection systems. In addition, based on the synthesis of information from 190 papers published
over the past three decades, we present the advantages, disadvantages, and research trends in the
application of different sensor types and models, discuss scale and uncertainty issues, and propose
future directions of LAI estimation to support forest and crop management.

2. Materials and Methods

This study performed a title and key word search using “LAI estimation” or “leaf area index
estimation” of the Web of Science and Google Scholar databases with a date limit of 1990–2019.
This search yielded 314 results from Web of Science and 590 from the Google Scholar database.
These results were filtered to eliminate review papers, conference proceedings, LAI estimated for
vegetation cover types not of interest (e.g., grasslands and wetlands), studies focused on LAI application
for estimating other parameters, and ground-based LAI estimates from handheld devices. This reduced
the dataset to 190 papers from 20 journals (Table 1). Based on the number of published papers, the top
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five journals were Remote Sensing of Environment, followed by Remote Sensing, International Journal
of Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, and the International Journal
of Applied Earth Observation and Geoinformation.

Table 1. Journal list and the number of papers (#) for forest and crop LAI estimation from 1990–2019.

Name of Journal # Name of Journal #

Remote Sensing of Environment 51 Computers and Electronics in
Agriculture 1

Remote Sensing 28 Ecological Applications 1

International Journal of Remote Sensing 19 Ecological Indicators 1

IEEE Transactions on Geoscience and
Remote Sensing 13 Environmental Monitoring and

Assessment 1

International Journal of Applied Earth
Observation and Geoinformation 10 Estuarine, Coastal and Shelf Science 1

Agricultural and Forest Meteorology 8 European Journal of Agronomy 1

IEEE Journal of Selected Topics in
Applied Earth Observations and

Remote Sensing
8 Field Crops Research 1

Canadian Journal of Remote Sensing 6 Geophysical Research Letters 1

ISPRS Journal of Photogrammetry and
Remote Sensing 6 International Journal of

Biometerorology 1

GIScience & Remote Sensing 4 Journal of environmental management 1

Remote Sensing Letters 4 Journal of Forestry Research 1

Forest Ecology and Management 2 Journal of Geography, Environment and
Earth Science International 1

Forests 2 Journal of Integrative Agriculture 1

Geocarto International 2 Journal of Quantitative Spectroscopy
and Radiative Transfer 1

Journal of Geophysical Research:
Biogeosciences 2 Journal of Remote Sensing 1

Annals of Forest Science 1 Journal of Sustainable Forestry 1

Aquatic Botany 1 Plant Methods 1

Boreal Environment Research 1 Precision Agriculture 1

Chinese Journal of Geophysics 1 Sensors 1

Chinese Science Bulletin 1 Silva Fennica 1

3. Remote Sensing Data Sources and Limitations

3.1. Trends in Data Applied to Estimating Forest and Crop LAI

This paper reviews 225 studies (in 190 papers, where 32 papers examined multiple data sources
with a single model) from the past three decades that focused on LAI estimation; of these about 60%
related to forests and 40% to crops (Table 2). A full list of the papers used to generate the data in
Table 2 is provided in Supplementary Table S1. The full list also presents whether each paper used true
LAI or eLAI ground data sources. Where there was no description regarding correction from eLAI to
LAI, we assumed the measurement was eLAI. Of the 190 papers, 178 used optical-based devices to
quantify eLAI to generate data for model building and model validation (Supplementary Table S1).
Only 12 papers quantified true LAI using direct methods.
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Table 2. Summary of the application of types of different detection systems and platforms used to estimate LAI in forest and crops from 1990–2019.

Detection System Platform
Number of Studies

Advantages Disadvantages
Forest Crop

Passive
remote sensing

Airborne

Manned 13 7 Suitable for forests and crops, including
complex vegetation types and structures

Limited data access for real-time
monitoring

Unmanned 2 9
Optimum spatial and spectral data resolution

with quick turnaround times that supports
real-time crop management

Negative impact from complicated
background and vegetation types

Satellite 70 54 Better for multi-temporal analysis, especially for
large extents

Limited access to high spatial and
spectral resolution data

Total 85 70

Active
remote sensing

Terrestrial Lidar 13 3 Provides three-dimensional distribution of
plant canopies at individual tree or stand levels Complicated data processing

Airborne
Lidar 17 3

Provide information about canopy structure

Limited data access; complicated data
processing; discrete lidar tends to have

poor penetration in short, dense
vegetation

Radar 0 2 Limited data access; complicated data
processing;

Satellite
Lidar 3 0 Provide information about canopy structure

over large extents Complicated data processing; limited
availability of data

Radar 3 5 Provide information about canopy structure
over large extents; avoid cloud issues

Total 36 13

Multi-source 9 12 Combine advantages of multiple data sources No general methods to integrate data
sources

Grand Total 130 95
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Remote sensing devices are fundamentally divided into two categories: passive and active
detection systems. Both types have more applications to forest systems in terms of the number of
published LAI-focused studies. Table 2 summarizes the number of studies and the key advantages and
disadvantages in the application and use (e.g., access to data, data processing, and types of products
generated) of different sensor types for forest and crop LAI estimation that were reported in the
literature over the past three decades. Passive remote sensing data sources are the most widely used
source for LAI estimation in both forest and agricultural systems, with smaller proportions of studies
using active and multisource remote sensing. This review shows that the number of LAI estimation
studies using passive remote sensing increased from the 1990s to 2010s for both forest (11–42 studies)
and crop (1–48 studies) applications (Figure 1). This trend also occurred for active remote sensing from
the 1990s to 2010s for both forest (0–28 studies) and crop (1–12 studies) applications (Figure 1, Table S1).
Similarly, forest and crop LAI estimation applications of multiple data source remote sensing also
showed an increasing trend from 1990 to 2019.
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Figure 1. Temporal trends of the application of different detection systems for forest and crop LAI
estimation from 1990–2019.

In general, agricultural systems are more homogeneous and more easily accessible than forest
systems. High accessibility in particular tends to support application of unmanned airborne passive
data for crop LAI estimation, while the complicated vegetation types in forests have more frequently
been observed using manned airborne passive data. The number of passive satellite data sources
that are now freely available have supported wide use in both forest and crop LAI estimation. Of the
225 studies cited in this paper, the number of forest and crop LAI estimation studies using passive
remote sensing is almost three times as many as active remote sensing studies. In terms of active remote
sensing, lidar data are more widely used for forest systems than for agricultural systems. Lidar can
detect complex forest canopy structure, which facilitates observation of significant parameters and
researchers have sought ways to use lidar data to improve forest LAI estimation through improving
modeling [34] and mitigating the impact of saturation [35]. Radar systems have also been used for both
forest and crop LAI estimation. Since agricultural systems are very dynamic throughout the growing
season and vary from field to field or even within individual fields [36], radar systems that mitigate
cloud concerns are useful for crop LAI estimation, especially for time-series crop monitoring analysis.
However, the large extent of many forests creates challenges associated with obtaining and processing
radar data, which currently limits their use to estimate forest LAI.

3.2. Passive Remote Sensing

This section describes the application of airborne and space-based spectroscopy from passive
remote sensing devices to support LAI measurement, including hyperspectral and multispectral data.
The different platforms vary in applicability to support different forest and agricultural system usage.
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Manned and unmanned airborne system (UAS) data have been applied for both forest and crop LAI
estimation. Forests are often managed or monitored over larger areas than crops, and thus there
are practical limits in the application of airborne-based remote sensing for forest LAI estimation,
particularly if multi-temporal analysis is required. Due to improvement in unmanned aerial vehicles
(UAV), sensors, and UAS data processing software (e.g., the very popular Pix4D mapper [37]) over the
last 10 years, the UAS platform facilitates optimum spatial and spectral data resolution with quick
turnaround times that support real-time crop management. Zhang and Kovacs [38] discussed the
advantages of using UAS-based sensors with ultra-high spatial resolution (e.g., centimeters) and
relatively low operational costs for LAI estimation. Roosjen et al. [39] generated potato LAI from UAS
data with R2 = 0.91 and RMSE = 0.70, which showed good potential for LAI estimation from UAS data.
Tian et al. [40] evaluated mapping mangrove forest LAI using a UAS-based multispectral sensor (6 bands
with 1 cm pixel size) and WorldView-2 imagery (WV2, 8 bands, 1.8 m). Their results showed that the
UAS-based system (coefficient of determination (R2) = 0.82, root mean square error (RMSE) = 0.42)
performed better than WV2 imagery (R2 = 0.78, RMSE = 0.42) in areas with homogeneous mangrove
species, but the WV2 imagery performed better than the UAS-based data for sites with a variety of
mangrove species. Based on the summary of studies reported in Supplementary Table S1, all of the
UAS-based LAI applications reported were in the past 10 years, with approximately 70% focused on
crop LAI estimation. Uniformity of background and vegetation types appear to be two critical factors
constraining the application of UAS data for forest LAI estimation. Forests tend to be more complex
with variability in vegetation type and structure, while crops often have more uniform characteristics
with a singular vegetation type and homogeneous background [40,41]. However, the continued
development of UAS platform hardware will likely improve forest and crop LAI estimation and
enhance forest and agricultural management.

Since the launch of the first Landsat satellite in the early 1970s, the field of space-borne optical
remote sensing has made significant progress [42]. Free data sources such as the various Landsat and
Sentinel sensors, as well as lower spatial resolution Moderate Resolution Imaging Spectroradiometer
(MODIS) and Medium Resolution Imaging Spectrometer (MERIS) data have been more popular for
forest and crop LAI estimation than commercial satellites such as QuickBird, IKONOS and SPOT.
Radiometric, geometric, and atmospheric corrections that are now applied to available Landsat
and Sentinel data reduce the time associated with data preprocessing but also makes these passive
satellite data sources more easily and consistently used [43,44]. Currently, the Landsat Collection
2 includes Landsat Level-1 data for all sensors since 1972 and global Level-2 surface reflectance
since mid-2020, which can be downloaded from the United States Geological Survey Earth Explorer
(https://earthexplorer.usgs.gov/). Level-2A Sentinel-2 data are available for download from the
European Space Agency Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home).

Researchers have used remotely sensed data to estimate LAI across a range of scales (noted in
Supplementary Table S1). While the majority of studies (178) focused on local scale analysis, research
was also conducted at regional (five studies) and global (seven studies) scales. MODIS, MERIS, and other
coarse data have particular application for generating global LAI products because the data choice is
often based on the study area extent. The high temporal resolution of these datasets also helps detect
global LAI changes based on time-series images. Campos-Taberner et al. [45] provided a quantitative
assessment of the quality of MODIS (MOD15A2), Copernicus PROBA-V (GEOV1), and the recent
EUMETSAT Polar System (EPS) LAI products for rice LAI estimation and concluded that these three
products were closely related to LAI estimates from Sentinel-2 and Landsat 7/8 (R2

≈ 0.90, RMSE ≈ 0.50).
Fang et al. [46] provide an overview of the methods, validation, and applications of global LAI products.
They concluded that new algorithms are needed to advance LAI estimation and also expressed a need
to address the inadequacy of current validation studies. MODIS (250 m–1 km) and MERIS (300 m)
data are not widely used for precision agriculture research, particularly for small study sites, because
the spatial resolution is often too coarse for such applications.

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
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3.3. Active Remote Sensing

Active remote sensing has two common systems: radio detection and ranging (radar) and light
detection and ranging (lidar). Both radar and lidar systems can detect canopy structure because the
range response captured generates both horizontal and vertical information [27,47,48]. Based on
the atmospheric window within the microwave portion of the spectrum [49], radar systems emit
long wavelength electromagnetic energy and identify the range to the target by capturing reflected
waves [27]. Lidar systems are based on an application of light amplification by stimulated emission
of radiation (laser) [50] and actively emit shorter wavelength energy (such as green or near infrared
wavelengths). This section discusses the application of active remote sensing to forest and crop LAI
estimation from terrestrial, airborne, and satellite platforms.

Active terrestrial remote sensing applications in LAI estimation are primarily limited to lidar
systems. Terrestrial lidar provides three-dimensional (3D) distribution of plant canopies at individual
tree or stand levels and has been widely used for quantifying vegetation LAI through direct measurements
of gap fraction with R2 up to 0.98 [51–54]. Although terrestrial lidar can deliver the finest characteristics
of forest structure, including tree trunks, branches, twigs, and leaves, it is difficult to fully recover all
the tree components because of occlusion from nearer-range vegetative elements [55,56], which may
limit broad application.

Numerous researchers have applied airborne lidar data for forest LAI estimation (e.g., [57–60]).
However, there are fewer applications reported in agricultural systems. This may be because discrete
lidar data tend to have poor penetration ability in short, and dense vegetation [61–63]. Previous studies
have also proposed derivation of LAI from airborne radar data. Hosseini et al. [64] successfully used
different L-band polarizations of a UAS-mounted synthetic aperture radar (SAR) to estimate LAI for
corn canopies (R2 = 0.58–0.86) but their analysis failed for soybean (R2 = 0–0.14). Hosseini et al. [64]
suggested that L-band data may be more suitable for larger canopies in both horizontal and vertical
dimensions, a conclusion that was consistent with another study performed by Paloscia [65]. While these
examples show some applications for estimating crop LAI using airborne radar data, applications of
this data for forest LAI estimation are more limited and the suitability of airborne radar data for both
forest and crop LAI estimation needs further research.

The Geoscience Laser Altimeter System (GLAS), a satellite-based laser altimeter and lidar sensor
on the Earth Observing System (EOS) ICESat mission [66] that operated from January 2003 to August
2010 proved useful for vegetation-focused analysis. Tang et al. [67] used ICESat data in a study to
estimate LAI over conifer-dominated forests and validated the application of GLAS as an accurate
standalone LAI sensor (R2 = 0.84, RMSE = 0.33). Compared to forest applications, the complexity
of data processing, the limited availability of data, and the rapid changes in LAI over short time
periods appear to have hindered research in crop LAI estimation from satellite-based lidar data.
The follow-on to the ICESat mission, ICESat-2, was launched on September 2018 and carries the
Advanced Topographic Laser Altimeter System (ATLAS). This sensor is expected to provide vegetation
canopy information (https://www.nasa.gov/content/goddard/icesat-2-technical-requirements/) that
will have value for LAI estimation.

Satellite-based radar data are less influenced by the atmosphere [64] and are more widely
used for LAI estimation than satellite-based lidar data. Inoue et al. [68] found rice paddy LAI
was closely related (R2 = 0.84) to C-band backscattering coefficients from the Radarsat-2 sensor but
suggested that the limited spatial resolution of early SAR sensors led to low accuracy and inconsistency,
which limited operational applications to LAI estimation. Difficulties associated with data processing
and acquisition have historically limited wide application of radar for forest and crop LAI estimation.
With improvements in resolution and access, the distinct advantages of satellite-based radar systems to
provide forest and crop information under cloudy weather conditions may be more readily harnessed,
which will likely lead to improved forest and crop LAI estimation.

https://www.nasa.gov/content/goddard/icesat-2-technical-requirements/
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3.4. Multi-Source Remote Sensing

As described above, individual remote sensing data have distinct advantages and disadvantages
for forest and crop LAI estimation. A common approach applied to mitigate the limitations of
single-sensor analysis is fusion of spatial, spectral, or temporal information from multiple sensors [69].
For example, Gray and Song [69] developed a method to use spectral information from Landsat
(8 bands, 30 m), spatial information from IKONOS (1–4 m), and temporal information from MODIS
(daily, 250 m) in order to generate maps of forest LAI (R2 = 0.73) at Landsat spatial resolution (30 m)
with daily temporal resolution. This combination of spatial and temporal resolutions cannot be
accomplished through single sensor analysis. Chai et al. [70] fused different LAI products, including
SPOT VEGETATION LAI and MODIS LAI products to offset the limitation caused by spatial or
temporal discontinuities in LAI derived from a single data source, successfully generating spatially
continuous LAI estimates for different vegetation types (R2

≈ 0.9 and RMSE ≈ 0.3). The combination of
active and passive data can also be used for LAI estimation (R2 = 0.68) [71], and this approach has been
applied to both forest and agricultural systems. Gao et al. [72] proposed a modified vegetation index
(VI) to estimate maize LAI using both multispectral remote sensing data from the HJ-1 small-sat and
HV cross-polarization of RADARSAT-2 data in order to overcome saturation limitations from optical
VIs, which increased R2 from 0.25 to 0.52. Yang et al. [73] found ~65 m ICESat/GLAS full waveform
data often included discontinuous forest patches but combining these data with Landsat images that
provided crown coverage information within the GLAS footprint improved forest LAI estimation
(R2 = 0.83, RMSE = 0.39).

4. LAI Estimation Models

4.1. Trends in Models Applied to Estimating Forest and Crop LAI

LAI estimation models mainly fall into three categories: empirical, physical, and hybrid models [74].
Empirical models seek to establish a relationship between LAI and spectral reflectance or some
transformation of reflectance, e.g., VIs, using regression methods [75]. Physical models are based on
radiative transfer theory, which accounts for the interaction of electromagnetic radiation with plant
leaves associated with various biophysical and biochemical parameters [76]. Hybrid models estimate
LAI based on simulated spectra from physical models. All three model types are widely used for LAI
estimation using remote sensing data sources.

Table 3 lists the number of studies focused on forest and crop LAI estimation using empirical,
physical, hybrid, and other models, provides the accuracy range and one recent example for each category,
and summarizes the methods used in these models over the past three decades. Model performance
was quantified by R2 and RMSE, though the majority of the studies did not perform any independent
validation. Of the 190 papers, eight performed validation using independent datasets and forty-eight
papers used classical cross validation methods (e.g., leave-one-out [77], k-fold [78], and hold-out [70]
methods) that divide a dataset repeatedly into training, validation, and testing parts. Based on the
conclusions reported in these studies, where possible, we recommend maximizing the range of LAI
values in the field data collected to enhance model robustness. We also recommend conducting
validation using independent data where possible. However, given the frequent challenges in data
access, if independent data is not available, cross validation has value to evaluate model overfitting.
The total number of estimation models reported in Table 3 (227) is higher than the number of papers
reviewed because 29 papers examined multiple models with a single data source. A full list of the
papers used to generate the data in Table 3 is provided in the Supplementary Table S2. There has
been a dramatic increase in the number of studies exploring different models for forest and crop LAI
estimation each decade over the past 30 years, particularly in exploration of new VIs and models.
Empirical models are the most widely used for LAI estimation in both forest (67%) and agricultural
(56%) systems (Figure 2). The percentage of empirical models for forest LAI estimation is higher than
for crops while the percentage of physical, especially PROSPECT+SAIL (PROSAIL) and hybrid, models
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for forest LAI estimation is lower than that for crops. These differences may reflect the relatively
smaller individual management area of agricultural systems as well as the more complicated structure
of forest systems. Figure 3 shows the temporal trends of the number of papers that applied each type
of model for estimating forest and crop LAI. As can be seen in this figure, there is a trend of increasing
applications of all model types, with the greatest growth being the application of empirical models for
crop LAI estimation, where the number of studies during the past decade is six times greater than
during the 2000s.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 32 
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Table 3. Summary of models and model performance for forest and crop LAI estimation reported from 1990–2019.

Model Sensors
Forest Crop Algorithms

N R2 RMSE Examples N R2 RMSE Examples

Empirical
Models

Reflectance-based 13 0.59–0.97 0.10–1.08 Korhonen et al. [79] 7 0.59–0.82 0.53–1.52 Li et al. [80] Regression

VIs-based 39 0.14–0.97 0.05–2.41 Meyer et al. [81] 31 0.45–0.95 0.02–1.81 Qiao et al. [82] Wide range of VIs

Derived metrics 29 0.58–0.98 0.01–1.46 Zhang et al. [83] 3 0.36–0.95 0.16–0.45 Li et al. [84] Regression

Machine learning models 7 0.85–0.93 0.48–1.94 Neinavaz et al. [85] 12 0.58–0.97 0.1–1.94 Lin et al. [86] ML algorithms

Total 88 0.14–0.98 0.01–2.41 53 0.36–0.97 0.02–1.94

Physical
(radiative
transfer)
Models

DART 2 0.60–0.72 0.50–1.20 Banskota et al. [87] 0 look-up tables (LUTs)

4-Scale bidirectional
reflectance distribution (BRD) 2 0.80–0.85 0.79–1.30 Liu et al. [88] 1 0.85 1.30 Deng et al. [89]

Iterative optimization,
LUTsPROSPECT+DART 1 0.77 0.46 Banskota et al. [90] 0

PROSAIL 2 0.80 0.41–0.47 Le Maire et al. [91] 11 0.82–0.99 0.13–1.48 Su et al. [92]

Other models 8 0.72–0.95 0.82–0.93 Ma et al. [93] 5 0.83 0.34–0.93 Liu et al. [94] LUTs,
dynamic model, etc.

Total 15 0.60–0.95 0.41–1.3 17 0.83–0.99 0.14–1.94

Hybrid
Models

Empirical+

4-Scale BRD 2 0.42–0.59 0.30–1.08 Gonsamo and Chen [95] 2 0.42–0.59 0.3–1.08 Gonsamo and
Chen [95]

Regression and ML
algorithms

PARAS 3 0.71–0.85 0.48–0.52 Varvia et al. [96] 0

PROSAIL 6 0.64–0.91 0.27–1.15 Xing et al. [97] 15 0.62–0.96 0.3–1.15 Xu et al. [98]

Other
models 7 0.20–0.99 0.20–1.85 Shi et al. [99] 7 0.58–0.94 0.01–1 Qu et al. [100]

Total 18 0.20–0.99 0.20–1.85 24 0.42–0.96 0.01–1.15

Other Models 11 0.49–0.96 0.01–0.90 Wang et al. [101] 1 0.50 Liu et al. [102]
Regional phenology
model, path length

distribution model, etc.

Grand Total 132 0.14–0.99 0.01–2.41 95 0.36–0.99 0.01–1.94
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4.2. Empirical Models

The empirical models most commonly used to estimate LAI use spectral reflectance-based
parameters [103], vegetation indices [104], derived metrics, and machine learning methods. The R2

range of empirical models is 0.14–0.98 and the RMSE range is 0.01–2.41, which indicate the variable
performance of different empirical models (Table 3). In terms of R2, machine learning methods
provide relatively consistent performance (0.85–0.93). Simple reflectance-based models utilize ordinary
regression or partial least square regression to establish the relationship between spectral reflectance
and LAI [105]. Korhonen et al. [79] found the Sentinel-2 red-edge band (R2

≈ 0.70) and the Landsat
TM green band (R2

≈ 0.70) were closely related to boreal forest LAI based on regression analysis.
Several studies have also used regression approaches to demonstrate the relationship between radar
data from airborne- and satellite-based platform and LAI [64,65,106]. Vegetation indices are another
commonly used input for estimating LAI using an empirical approach. VIs combine surface reflectance
from multiple bands and are designed to maximize information about canopy characteristics and
minimize interference factors from the atmosphere and soil [94]. Kross et al. [107] compared the ability
of seven VIs to estimate corn and soybean LAI using RapidEye data and demonstrated the instability
and variable sensitivities of using VI-based methods for LAI estimation. It appears that no VI can be
applied generally: specific indices are needed for specific regions and crop types.

Derived metrics-based models are frequently applied to lidar data. Such models utilize regression
techniques to estimate LAI from calculated metrics such as canopy height, cover metrics, height
distribution metrics, penetration rate, number of ground returns, total returns, and texture
information [60,108]. Solberg et al. [109] found penetration rate calculated from airborne lidar data was
closely related to LAI (R2 > 0.9). Wulder et al. [110] related NDVI from CASI images to conifer and
deciduous forest LAI, and found that R2 value increased from 0.67 to 0.92 when texture information
was added. Similarly, for mixed forest stands, the addition of texture information increased R2 value
between NDVI and LAI from 0.01 to 0.44 [111].

Within the different types of models, the rapid development of machine learning methods has
influenced the algorithms utilized for estimating forest and crop LAI. Machine learning models are
often used in empirical approaches to explore optimal models based on experiments using training,
validation and test datasets [112]. The most popular methods include artificial neural networks
(ANNs), Gaussian processes regression (GPR), Bayes algorithm, support vector regression (SVR),
and random forest (RF) regression. Verrelst et al. [112] compared four machine learning regression
algorithms (ANN, SVR, kernel ridge regression (KRR), and GPR) using Sentinel–2 and –3 data for
estimating biophysical parameter retrieval and concluded that GPR had the best performance (relative
RMSE ≈ 0.2) when compared to the other three methods. Wang et al. [113] used a neural network
approach to combine HJ-1 CCD, GF-1, Landsat TM, Landsat Enhanced Thematic Mapper Plus (ETM+),
and MODIS data, which enabled them to fill in missing data in the Landsat images in order to generate
continuous time series (8 days) crop LAI with 30 m resolution (RMSE = 0.30).

4.3. Physical (Radiative Transfer) Models

In contrast to empirical models, physical models based on physical principles of radiative transfer
are run in forward mode to simulate reflectance and transmittance with the input of vegetation
biophysical and biochemical parameters and other related environmental parameters [114]. In terms of
R2 (0.60–0.95) and RMSE (0.41–1.3) range, physical models provide more consistent performance than
empirical models (Table 3). Researchers have explored physical models at both leaf and canopy levels.
Table 4 summarizes some of the key forward physical models that are discussed further in this section.
Other models that are less frequently reported in the literature include the Geometric Optical Mutual
Shadowing (GOMS) model [115,116], Kuusk–Nilson forest reflectance model [117,118], Geometric
Optical and Radiative Transfer (GORT) model [119,120], and a two-layer canopy-reflectance model
(ACRM) [94,121]. DART is a 3D canopy reflectance model developed by Gastellu-Etchegorry et al. [122]
and supports consideration of vertical information. The 4-Scale BRD model is a forest-specific physical
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model so named because it considers four-scales: tree groups, tree crowns, branches, and shoots.
PARAS is another forest reflectance model used to estimate LAI that takes into account the effect of
within-shoot scattering on coniferous canopy reflectance.

Table 4. Summary of popular physical models for characterizing LAI.

Model Name Origin Application Reference

DART Discrete anisotropic
radiative transfer Forest/crop Gastellu-Etchegorry et al. [122]

PROSPECT+DART PROSPECT+DART Forest/crop Banskota et al. [90]

4-Scale BRD Four-scale bidirectional
reflectance model Forest Chen and Leblanc [123]

PARAS Parameterization model Forest Rautiainen and Stenberg [124]

PROSAIL PROSPECT+SAIL Forest/crop
Verhoef [125];

Jacquemoud and Baret [76];
Jacquemoud et al. [114]

Some studies have combined leaf and canopy models to simulate canopy reflectance in order
to account for light transmission influenced by various canopy physiological and biochemistry
parameters [39,126]. The PROSAIL model merges the PROSPECT leaf optical properties model
and the SAIL canopy bidirectional reflectance model. Due to its ease of use, general robustness,
and consistent results, the PROSAIL model has become a particularly popular radiative transfer
tools [114]. In addition, the model is open-source, which makes it easier for people to utilize and
explore new methods. Mananze et al. [127] estimated maize LAI using the PROSAIL model and
found PROSAIL led to satisfactory accuracy (RMSE ≈ 0.2) while overcoming the reliance on field
measurements inherent in developing VI-based empirical models.

Another relatively new combined approach uses the PROSPECT and DART models. Following a
similar framework as the PROSAIL model, this new approach uses PROSPECT for calculating leaf
hemispherical reflectance and transmittance and combines this with DART parameters (LAI, leaf angle
distribution, soil reflectance, and crown cover) to simulate canopy reflectance and transmittance.
As mentioned in Section 4.3, the vertical information provided by DART could help improve crop LAI
information. Therefore, the use of the combined PROSPECT and DART model for estimating forest
and crop LAI should be explored in future research.

Several inversion algorithms have been applied based on the forward mode of physical
models [128]. These include numerical optimization and look-up tables (LUTs). Iterative optimization
is a classic technique to invert physical models. Iterative optimization aims to create an optimal
solution by minimizing a merit function that estimates the difference between measured and estimated
variables in successive iterations [128]. However, the time-consuming nature of the process, especially
for complex physical models, constrains its application [129]. LUTs generate a training table with
forward radiative transfer models for a discrete set of input variables covering their prescribed range
of variation [114]. The use of an LUT involves minimization of a merit function that minimizes the
summed differences between simulated and measured reflectance for all wavelengths. LUTs are used
extensively to speed up the inversion process because they can pre-define model reflectance for a
large number of combinations of parameter values [130], but the process of searching for the optimal
solution for complex models is time-consuming.

4.4. Hybrid Models

An alternative to using empirical or physical models alone are hybrid models that combine
the two techniques. Combining the two fundamental approaches takes advantage of the generic
properties of physical-based methods and the flexibility and computational efficiency of empirical
methods including various VIs and machine learning models [112,131–134]. Physical models are used
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for simulating spectra dataset based on the input of various vegetation biophysical and biochemical
parameters. Compared with empirical and physical models, hybrid models provide a compromise
in performance (R2 range is 0.20–0.99 and RMSE range is 0.01–1.85, Table 3). Hybrid models could
be utilized to analyze the performance of VIs, help calibrate traditional VIs [91], and create new VIs
based on running forward physical models with specific data sources. Chaurasia and Dadhwal [131]
demonstrated that a multi-band principal component inversion (PCI) approach based on the PROSAIL
model performed better (RMSE = 0.38) for crop LAI estimation than empirical models based on
NDVI (RMSE = 2.28) and SR (RMSE = 0.88). In terms of machine learning methods, ANNs are the
most prevalent in the literature related to LAI estimation. ANNs mimic the way that information is
processed in the brain through a network of interconnected neurons [135,136]. Previous research has
reported that ANNs can estimate biophysical variables more accurately than empirical methods [103].
ANNs have been applied to LAI estimation at a variety of scales, from local or regional projects up to
global products, such as that produced by Baret et al. [137]. Xu et al. [98] estimated rice LAI using a
Bayesian network and the cost function method based on the PROSAIL model. Their results indicated
that the Bayesian network provided better performance (R2 = 0.81) than the cost function method
(R2 = 0.51). Hybrid models take advantage of the strengths of both empirical and physical models.
The practical challenge in applying this knowledge is that the optimal VIs identified based on the
physical model may not have corresponding bands in the remote sensing data due to the limited
spectral resolution of the most commonly available datasets.

5. Scale Effect

Lam and Quattrochi [138] describe scale from three perspectives: spatial, temporal, and spatiotemporal.
Complicating this further, the development of remote sensing technology has led to additional
considerations since remote sensing devices also vary in terms of spectral, temporal, and radiometric
characteristics. This review focuses on spectral and spatial scale effects, which have been reported
as being significant in remote sensing-based LAI observation. Radiometric resolution, which refers
to sensitivity in terms of reflectance levels, of many sensor systems, such as those on the Landsat
missions, has increased over time. Additionally, since high-radiometric-resolution data may not be
critical for LAI estimation [139], this study does not provide more details about radiometric resolution
issues. There is often a tradeoff between spatial resolution and temporal resolution. High-temporal
remote sensing images could provide more information for monitoring seasonal dynamic changes in
LAI. However, few LAI-focused studies specifically reported temporal scale impacts and this may be
an area for future analysis.

5.1. Spectral Scale Effect

Remote sensing devices can be divided based on spectral characteristics, e.g., hyperspectral versus
multispectral observation capability. Most hyperspectral data are acquired from airborne platforms,
e.g., CASI and AVIRIS [140,141], which have limited capacity over large spatial extents. There have been
some satellite-based hyperspectral sensors, such as Earth Observing 1 (EO-1) Hyperion [142,143] and
TianGong-1 on the Shenzhou-8 satellite [144], but there are limited available data—both temporally and
spatially—from these systems. Pu et al. [142] demonstrated that the Hyperion sensor outperformed two
multispectral sensors (Advanced Land Imager and Landsat ETM+) for coniferous forest LAI estimation.
For their study area, Pu et al. [142] found that the most important bands were in the shortwave
infrared (SWIR) region. Relationships between tropical rainforest LAI and spectral reflectance near
the red edge region (R2 = 0.67, RMSE = 0.72) and most SWIR bands (R2 = 0.72, RMSE = 0.60)
from Hyperion data were also observed by Twele et al. [145]. Gong et al. [146] concluded that in
addition to SWIR response, the NIR region is also important for estimating LAI. They also found that
narrow band indices performed better than broadband indices. Lee et al. [141] compared AVIRIS
data with ETM+ and MODIS data for crop LAI estimation using a regression model. Their results
indicated that the number of bands appeared to be the most important advantage for AVIRIS data
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producing the best estimation model, containing 23 bands, which had an R2 of 0.88. Compared with
multispectral data, the narrower bandwidth of hyperspectral data provides more detailed spectral
information for improving LAI estimation, especially in the red edge, NIR, and SWIR regions. However,
Lee et al. [141] also expressed some concern that their model may be overfitting. The development
of UAV hyperspectral sensors also show potential to improve LAI estimation [105,147]. However,
the relatively higher cost of hyperspectral sensors has likely hindered application for forest and crop
LAI estimation. While numerous studies have illustrated that spectral sampling is important for LAI
estimation, there have not been any studies published that focus on quantifying these spectral effects
for different sensors. This may be a valuable area for further research, but one of the challenges in
developing such an analysis is the limited access to hyperspectral data.

5.2. Spatial Scale Effect

Thenkabail [148] divided data into five spatial resolution classes—0.5–4.9 m, 5.0–9.9 m, 10.0–39.9 m,
40.0–249.9 m, and 250 m–1.5 km—that serve as a convenient characterization for discussion. A pixel
obtained from a higher resolution sensor is likely to cover relatively homogeneous land cover,
whereas a pixel in a lower resolution image may cover a wide range of land cover types and be
very heterogeneous [31]. This difference in spatial heterogeneity is the primary driver of the spatial
scale effects that can influence LAI estimation accuracy and LAI validation [149]. However, spatial
heterogeneity is not only dependent on differences in spatial resolution [150], but also varies with plant
canopy size [151], canopy heterogeneity [152], and topography [153]. Friedl et al. [154] found that
compared to Landsat TM data, LAI calculated from NDVI derived from lower resolution advanced
very high resolution radiometer (AVHRR) reflectance data tended to slightly underestimate (~15%) LAI
values. Chen et al. [155] showed that LAI estimated from coarser resolution pixels had errors as high as
25–50%, which they attributed to surface heterogeneity. Tian et al. [156] and Liu et al. [88] showed that
LAI is always underestimated when derived from MODIS data and the magnitude of underestimation
increased as heterogeneity increased. Spatial scale effects also cause issues during the validation of LAI
estimates [157]. The challenge is that the scale of ground LAI measurements is generally different from
the spatial resolution of remotely sensed imagery [158]. The Validation of Land European Remote
sensing Instruments (VALERI) project proposed a two-step sampling strategy for validation of global
products that relates high spatial resolution products to lower resolution products in order to obtain a
validation map for the LAI derived from coarse-scale satellite images [159]. Xu et al. [160] proposed an
approach (Grading and Upscaling of Ground Measurements, GUGM) that resolves the scale-mismatch
issue and maximizes the utility of time-series of site-based LAI measurements.

The demand for up-scaling (moving from a fine to a coarser scale) and down-scaling (from coarse
to finer scale) has driven exploration of scale transformation methods to predict the scale at which
data are desired [161,162]. Some studies have explored the relationship between products derived
using empirical models based on inputs with different spatial resolution [74,88,163,164]. However,
these models use a large amount of sample data and lack a clear theoretical interpretation. Physical
models, e.g., mathematical and biophysical mechanism-based models, tend to be better for exploring
scale analysis because of their robustness. Fractal theory, which includes the property of self-similarity
meaning that any part of the feature is statistically indistinguishable from the feature as a whole [165],
is also used for scale transformation. Wu et al. [149] developed an LAI scaling transfer model based
on fractal theory that performed well in estimating LAI values from different spatial resolution
pixels with a maximum RMSE of 0.278. Fractal theory does provide a direction to further explore
scale transformation. However, due to variation in the optical parameters of different satellites and
different LAI estimation models, the parameter normalization of scaling transfer models still needs
further exploration [149].

A large number of studies have analyzed spatial scale effects and many of these studies show that
for similar vegetation types, LAI estimated from imagery with similar spatial resolution characteristics
provides similar LAI estimation results. Soudani et al. [166] calculated LAI for temperate coniferous
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and deciduous forest from IKONOS, SPOT, and ETM+ data and these three data inputs showed similar
predictive ability with an uncertainty (RMSE) of about 1.0. The performance of Landsat TM (30 m) and
SPOT5 (10 m) data for rice LAI estimation based on the PROSAIL physical model also demonstrated
strong correlations (R2 > 0.92) by Campos-Taberner et al. [74]. However, as spatial resolution changes,
so too do the estimated LAI values. For example, Fernandes et al. [163] concluded that there was a
poor correspondence between spatial patterns of LAI derived from the CASI (2 m) datasets and from
the Landsat (30 m) imagery across the varying scales.

Table 5 summarizes the performance of single satellite-based passive remote sensing data sources
with different pixel size for forest and crop LAI estimation. Of the 150 studies, about 60% were
related to forest LAI estimation and 40% to crop LAI estimation. One recent example is provided
for each image source. Since we did not find studies that used data with pixel size of 40.0–249.9 m,
this range was not included. The results presented in the literature suggest that we cannot simply
conclude that finer spatial resolution is better than coarser resolution data. Based on the range of R2

values in Table 5 for forest and crop LAI estimation, finer spatial resolutions tended to generate more
consistent forest LAI estimates than coarser resolution data. Similarly, crop LAI estimation tended
to have smaller R2 ranges across all pixel sizes compared to forest systems. This is likely tied to the
fact that LAI varies with species and land cover tends to be more complicated in forest systems than
in agricultural systems [20]. Supplementary Table S1 lists the forest type for the 123 forest-focused
papers in this review. For boreal coniferous forests, Schulze [167] reported LAI values ranging from 3
to 19, with the highest values being reported for Pseudotsuga menziesii, but a later study of P. menziesii
reported a 95% confidence interval for LAI estimates of ~7–11 with variability across years [168].
The observed maxima of LAI value for deciduous canopies are typically 6–8, compared to LAI values
of 2–4 for crops [169]. The scale effect appears to play a more important role for forest LAI estimation as
compared to agricultural applications. The R2 range (0.14–0.96) of forest LAI estimation studies using
data sources with 0.5 m–1.5 km pixel size is wider than crop LAI estimation (0.45 to 0.98), which is
likely related to the impact of the greater pixel heterogeneity typical in forests.
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Table 5. The performance of single satellite-based passive remote sensing data sources with different pixel size for forest and crop LAI estimation.

Pixel Size Sensors
Forest Crop

N R2 RMSE Examples N R2 RMSE Examples

0.5–4.9 m

IKONOS 5 0.58–0.73 1.19 Soudani et al. [166] 1 0.62 N/A Colombo et al. [170]
QuickBird 1 0.84 0.41 Zhou et al. [171] 1 0.78 0.08 Wu et al. [172]

World-View-2 3 0.75–0.78 0.05–0.42 Tian et al. [40] 0

Total 9 0.58–0.78 0.05–1.19 2 0.62–0.78 0.08

5.0–9.9 m
ZY-3 1 0.74 0.57 Wang et al. [101] 0

RapidEye 1 0.94 0.51 Tillack et al. [173] 3 0.62–0.93 0.01–1.07 Dong et al. [174]

Total 2 0.74–0.94 0.51–0.57 1 3 0.62–0.93 0.01–1.07

10.0–39.9 m

ALI 1 0.3 0.72 Pu et al. [142] 1 0.94 0.44 Liang et al. [175]
ASTER 1 1.94 Menzies et al. [176] 2 0.85 0.4–1.94 Han and Qu [177]
CHRIS 2 0.78–0.92 0.49–0.53 Wang et al. [178] 1 0.91 0.55 Lin et al. [86]

DEIMOS-1 0 1 0.58 1 Vuolo et al. [179]
EO-1 Hyperion 6 0.3–0.71 0.52–0.7 Varvia et al. [96] 3 0.51–0.70 0.55 Wu et al. [180]

GF-1 0 1 0.87 0.14 He et al. [181]
HJ-1 0 4 0.76–0.89 0.13–0.61 He et al. [181]

IRS P6 LISS 3 2 0.63–0.85 0.61 Zhang et al. [83] 1 0.45–0.66 Rao et al. [182]
Landsat 22 0.24–0.96 0.14–0.93 Blinn et al. [183] 17 0.66–0.98 0.13–0.93 Su et al. [92]
Sentinel 2 0.45–0.79 0.70–0.88 Meyer et al. [81] 9 0.54–0.95 0.36–0.84 Pasqualotto et al. [184]

SPOT 9 0.2–0.94 0.45–1.2 Gu et al. [185] 2 0.88–0.94 0.14–0.78 Houborg et al. [186]

Total 45 0.2–0.96 0.14–1.94 42 0.45–0.98 0.14–1.94

250 m–1.5 km

AVHRR 1 0.46 N/A Wang et al. [187] 0
MERIS 1 0.64 1.15 Bacour et al. [126] 1 0.64 1.15 Bacour et al. [126]
MISR 2 0.42–0.83 0.30–0.93 Liu et al. [94] 2 0.42–0.83 0.3–0.93 Liu et al. [94]

MODIS 21 0.14–0.91 0.2–2.41 Alexandridis et al. [188] 14 0.60–0.93 0.01–0.64 Qiao et al. [82]
SPOT VEGETATION 3 0.46–0.85 1.1–1.3 Baret et al. [137] 2 0.85 1.1–1.3 Baret et al. [137]

Total 28 0.14–0.91 0.2–1.15 19 0.68–0.93 0.01–1.3

Grand Total 84 0.14–0.96 0.14–1.94 66 0.45–0.98 0.01–1.94
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6. Challenges and Future Research

Accurately estimating LAI can improve forest and agricultural management and health monitoring.
Increasing access to remote sensing technology facilitates large area estimation and provides an
objective means to evaluate resources. This section presents limitations and future research directions
for forest and crop LAI estimation from four aspects: data source, estimation models, scale effects,
and uncertainty issues.

6.1. Data Source

Agricultural systems often have singular vegetation type, greater homogeneity, and are frequently
more easily accessible than forest systems. Therefore, this tends to make application of a wide range
of remote sensing data appropriate for agricultural systems. Another advantage of the often-smaller
agricultural management areas is that this can make it easier for crop managers to obtain high
quality time-series information, for example using unmanned airborne optical systems. Conversely,
the complex structure and frequent mixing of species found in forest systems can provide challenges for
passive data, hence lidar data has proved to be particularly important to detect forest canopy structure
and generate LAI data for forest systems. Compared to optical data sources, active data can mitigate
the impact of saturation problems and radar data can provide particular advantages for crop managers
to acquire LAI information when working under cloudy weather conditions [35,58,64,189–191].
The increasing availability of active remote sensing data is likely to stimulate greater application of
radar and lidar data for forest and crop LAI estimation. The fusion of multiple data sources, such as
data with different spatial, spectral, or temporal resolutions, and the combination of active and passive
data, is also likely to be a continued research direction.

6.2. Model Comparison and Application

Empirical, physical, and hybrid models all have advantages and application limitations. Section 4.2
showed that empirical methods are flexible and effective approaches across a range of data types
and applications in identifying the relationship between LAI and spectral reflectance data. However,
these methods are based on a large amount of statistical data and can only be applied within a
relatively localized area because their performance is highly dependent on vegetation types, canopy
structures, sensors, and temporal change [70]. The model performance variations are also illustrated
in Table 3. In addition, redundant independent variables can give rise to models that overfit and
thus have reduced prediction ability. Another limitation of empirical methods relates to saturation
problems. Although some studies indicated that modified indexes can mitigate saturation [192–195],
this problem cannot be totally avoided when using optical imagery. The majority of the literature
focuses on conventional statistically focused empirical models. The application of machine learning
in empirical models provides avenues for estimating forest and crop LAI. However, regardless of
the method applied, the need for global training dataset acquisition remains a challenge for training
empirical models [112].

In contrast to empirical methods, the theoretical foundation of physical models for LAI estimation
generally result in a solution developed without strong reliance on field measurements [127]. The great
promise of the physically based methods is that they can be better generalized in space and time than
empirical methods, which tend to be site-, time-, and sensor-specific [196] (Table 3). Several physical
models were presented in Section 4.3. Table 3 shows that PROSAIL is the most popular radiative
transfer model, with the next being the four-scale model [89] that has been used for generating global
LAI products, e.g., GLOBCARBON [89]. A defined physical basis gives physical models stronger
spatial and temporal capability, but they are complicated, have many data input requirements, and are
time-consuming to utilize [70]. Another challenge in using physical models is the so called “ill-posed”
problem [13,197]. The ill-posed problem comes from the large number of input parameters that
are often required within the physical model [198,199]. Researchers have found that utilizing prior
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knowledge is an effective way to reduce the complexity and computation time associated with the
physical model, but challenges remain [200,201]. Research to better quantify the weight and clear
function of each parameter could also help improve radiative transfer methods. Inversion algorithms
are also an important part for LAI retrieval based on physical models. Current inversion algorithms
are computationally intensive compared with empirical models [202], primarily due to the excessive
model input parameterization needed to find an optimal solution.

Hybrid models combine empirical methods, including regression and various machine learning
methods, and physical models. As mentioned in Section 4.4, the current trend for forest and crop
LAI estimation is the exploration of new algorithms based on machine learning methods, especially
for big data calculation. However, there are still challenges with the use of hybrid models; because
hybrid models integrate the methods of empirical models, they tend to inherit the critical problems
of instability, which is demonstrated in Table 3 in terms of model performance, and overfitting.
Exploration of new inversion algorithms and future advancement of physical models that can reduce
complexity and explain radiative transfer methods with simple and more explicit functions could help
improve the efficiency and accuracy of LAI estimation.

Empirical, physical, and hybrid models have all been applied to forest and crop LAI estimation.
Based on the range of R2 and RMSE for different models (Table 3), when compared to forest LAI
estimation, crop LAI estimation provided a small variation across different models and it is likely
that uniformity of background and vegetation types of crops reduce model uncertainty. Forest and
agricultural managers need to select a model that best matches the demands of their application.
Empirical models are often the preferred choice because they are relatively simple to apply. The number
of VIs proposed for both forest and crop LAI estimation indicates the significance of exploring simple
models. However, these models are not universally applicable and need ground LAI measurements
and additional time for calibration. Although there are still challenges with the use of physical models
that need to be resolved, the current trend for forest and crop LAI estimation appears to be moving in
this direction because physical models are based on physical mechanisms that do not depend on field
measurements [202]. The advancement of the integration of machine learning-based algorithms with
physical models provides a future direction for producing general models that can be trained locally to
estimate forest and crop LAI.

6.3. Scale Effect

Hyperspectral remote sensing data can record detailed spectral information, hence changes in
spectral scale impact optimal band selection. However, the limited access to hyperspectral data sources
has hindered deep exploration of spectral scale effects. A much larger number of studies have used
data from sensors with a wide range of spatial resolutions to explore the impact of spatial scale
on LAI estimation. Unfortunately, while these studies led to general conclusions, such as models
that use lower spatial resolution inputs tend to underestimate LAI [88,156,203], factors such as pixel
heterogeneity and model robustness that also impact how effective a dataset will be for estimating
forest and crop LAI are not well characterized. Chai et al. [70] and Gray and Song [69] took advantage
of multiple data sources, including high spatial and high temporal resolution datasets, to reduce the
scale effects observed in low spatial resolution information and improve LAI estimation. However,
there is still a need to consider how to build LAI estimation models that are applicable across different
spatial scales or explore how to utilize scale transformation algorithms to make different spatial scales
compatible with LAI estimation models. Empirical methods, mathematical models, and fractal theory
have been explored to characterize the relationship between different scales for LAI estimation, but the
quantitative impact of variation of different scales of remote sensing data is still unknown.

Ground validation is also a factor in considering scale effects on LAI estimation. Baret et al. [159]
and Xu et al. [160] explored ground sampling and upscaling methods to mitigate the scale effects
stemming from the mismatched scale between remote sensing data sources and ground measurements.
However, while these studies provide an important step forward, a fundamental issue that remains
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unresolved is quantifying the relationship between scales. Future studies need to focus on this in order
to make full use of remote sensing data from different sensors. Quantifying the scale relationships will
facilitate greater flexibility in terms of incorporating multi-sensor data into a single model. Exploring
quantitative scale effects can also help to improve the accuracy of continuous forest and crop LAI
estimation and help forest and agricultural managers efficiently incorporate multiple data sources.

6.4. The Uncertainty of LAI Estimation

The uncertainty in LAI products can be categorized as theoretical or physical [204]. Theoretical
uncertainty is caused by both uncertainty in the input data and from model imperfections and is usually
evaluated by model builders. Sources of theoretical uncertainty include ground LAI measurements [205],
remote sensing data source, data preprocessing, model parameters, model saturation, model internal
mechanisms, environmental factors (e.g., weather condition), topography effects, and the range of
natural variation in biophysical parameters not accounted for in the model [177,206]. By comparison,
physical uncertainties are evaluated by model users through comparison with ground validation
data, such as field measurements or estimations from higher-resolution imagery [207]. The physical
uncertainty is often characterized by predictive performance, e.g., RMSE. Yan et al. [26] reviewed
indirect ground LAI measurement methods and concluded that sampling and scale effect are critical
issues in terms of indirect ground LAI measurements, yet these factors have been minimally studied
and more research is needed. Yan et al. [26] also suggested that consistent methods and instruments
are critical for ground LAI collection.

Building from the advantages and disadvantages of different detection systems presented
previously (Table 2), Table 6 summarizes the main sources uncertainty source for different detection
systems. This table highlights the increased sources of uncertainty in passive remote sensing data
compared to active remote sensing data. The improvement of data preprocessing and the exploration
of standard procedures for radiometric, geometric, and atmospheric correction during the last three
decades has reduced uncertainty associated with the use of remote sensing data [208–210]. To explore
spatial scale effects, Yao et al. [211] determined corn LAI inversion physical uncertainty within mixed
pixels and concluded that the absolute error of LAI estimation could decrease by up to 0.4 as the
vegetation percentage in a mixed pixel increased. While there have been studies that explored the
variation of LAI estimation across different spatial resolutions, quantitative estimates of physical
uncertainty and the spatial scale effect on LAI estimation has not been investigated. Furthermore,
few studies have considered if there are differences in terms of scale impact for forest versus crop LAI
estimation. Within a given ground sample, unit forest systems tend to have higher heterogeneity due
to a more complex structure and background compared to agricultural systems, hence differences
are likely.

Table 6. Uncertainty sources for different detection systems.

Passive Remote Sensing
Active Remote Sensing

Lidar Radar

Data processing × × ×

Saturation ×

Weather × ×

Topography effects * × × ×

Spatial scale effects * × × ×

* Denotes effects that are more significant for forest than crop LAI estimation.

Estimation models impact LAI uncertainty since different models will derive different results
even from the same or similar data sources. For example, most global LAI products are derived from
coarse resolution data but Chen [22] indicated that there are large differences among existing global
LAI products and the model applied is one of the factors that led to these differences. With respect to
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physical models, which are analyzed from a radiative transfer viewpoint and tend to provide more
stable results for LAI estimation than empirical models, it is critical to understand the importance of
variables included and their effect on uncertainty. Wang et al. [206] proposed a stabilized uncertainty
function to demonstrate that accurate specification of algorithm input uncertainty is critical for LAI
estimation and that the more accurate inputs are, the more accurate the algorithm output will be.

Local topography can also have significant effects on field measurements of LAI and remote
sensing-based LAI estimation models [46]. For example, derived layers such as the enhanced vegetation
index (EVI) that are often used in empirical LAI estimation models are sensitive to topographic effects,
yet available products, e.g., MODIS EVI, are not corrected for this factor [212]. Topographic effects are
particularly problematic for forest LAI estimation over mountain areas and across different spatial
scales [213]. The review by Fang et al. [46] suggests several approaches for mitigating topographic
effects including performing topographic corrections of field or remote sensing data, incorporating
topographic variables in models, and creating models for different classes of topographic variables.

LAI uncertainty is also dependent on the natural variation in LAI associated with growth stages
and vegetation type. Green et al. [28] and Fang et al. [46] found that high precision values were
found at low LAI values due to the saturation issues in estimating high LAI values. Yao et al. [214]
used Bayes theorem to apply a priori knowledge in the model inversion and demonstrated that some
models performed better for LAI estimation at early growth stages compared to later growth stages.
Fang et al. [207] used product quantitative quality indicators to assess LAI product uncertainty and
their results showed that the highest relative uncertainty usually appeared in ecological transition
zones. Chen [22] identified different LAI seasonal variation patterns for conifer and deciduous forest.
These studies suggest that the uncertainty of LAI estimation is impacted by vegetation type as well as
time within the growing season. For example, forest LAI was underestimated by as much as 1.5 in the
summer due to the seasonal decrease of the red reflectance attributed to the background (all the materials
below the forest canopy). Conifer forest LAI was underestimated by nearly 100% in the winter due to
the snow cover [215]. However, knowing that this is not the only source of LAI uncertainty, quantifying
uncertainty for different vegetation types is challenging. As discussed earlier in the paper, uncertainty
can be characterized from theoretical and physical perspectives. While physical uncertainty is likely
more of interest to the user community, exploration of theoretical uncertainty can help understand
sources of physical uncertainty and improve LAI estimation. Bayesian approaches could provide
theoretical uncertainty measures from posterior distribution and concurrent estimation of LAI based on
uncertainty of input parameters [96,177,216,217]. Han and Qu [177] and Qu et al. [217] used Bayesian
approaches to conclude that the addition of high-resolution remote sensing observation data improved
LAI estimation models and increase model reliability. The study performed by Varvia et al. [218]
showed that Bayesian LAI estimates that account for model uncertainties outperformed conventional
estimates based on VI regression methods.

The number of studies that focus on uncertainty in LAI estimation is small. There are limited
studies that explore quantification of uncertainty in model inputs and other sources, including
parameters mentioned at the beginning of this section. The quantitative effects on the LAI estimation
from these parameters are still unresolved. However, those studies that have explored this area indicate
that Bayesian approaches are a critical area for further research and have a bright future for analysis of
the uncertainty of LAI estimates.

7. Conclusions and Recommendations

Improving forest and crop LAI estimation from remotely sensed data depends on greater
utilization of diverse data sources, continued model enhancement, and further exploration of scale
effects. There are few studies that report the use of lidar remote sensing for crop LAI estimation,
while radar remote sensing has limited application for forest LAI estimation. The expanded use and
fusion of different data sources and data types provides opportunities to improve LAI estimation
accuracy, consistency, and efficiency.
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Beyond the data applied, there are opportunities to improve LAI estimation through continued
development of empirical, physical, and hybrid models. In the short-term, without general models,
empirical models that require local validation are currently recommended for forest and crop managers.
However, continued work is needed to focus on using new inversion algorithms based on machine
learning methods to develop general models that mitigate the “ill-posed” problem associated
with physical model inversion. This will require the study of physical mechanisms of radiative
transfer to integrate local physiology and biochemistry parameter datasets from different sites and
temperature zones.

A challenge in creating more generally applicable LAI estimation models is quantifying the scale
effects arising from application of images with various resolutions that lead to variable accuracy for
LAI estimation. Quantitative exploration of the scale relationship from different sensors can facilitate
the utilization of multiple data sources. Spatial scale effects appear to play a more important role for
forest LAI estimation as compared to agricultural applications, which is likely related to the impact of
the greater pixel heterogeneity typical in forests.

More extensive use of methods to quantify uncertainty is needed to improve rigor in forest and
crop LAI estimation and validation. Bayesian approaches have been demonstrated as an effective
method to quantify the uncertainty of LAI estimation based on the uncertainty of the input parameters
that affect LAI estimation. Further analysis is needed in order to better analyze the quantitative
effects of remote sensing data source, ground measurements, and related environmental factors on
LAI estimation.

The theoretical uncertainty of ground measurements, influence of scale mismatches, and the
uncertainty of LAI estimation are all interrelated. It is necessary to establish an appropriate experimental
design to explore scale effects, while taking into account the quantitative uncertainty of input factors
in order to better understand and mitigate these challenges. Through enhancing data applications,
models, and uncertainty source analysis, remote sensing-based forest and crop LAI estimation models
will have greater potential to provide critical support of forest and agricultural management practices.
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