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ABSTRACT

When abnormal events occur in a nuclear power plant, operators must conduct appropriate abnormal
operating procedures. It is burdensome though for operators to choose the appropriate procedure
considering the numerous main plant parameters and hundreds of alarms that should be judged in a
short time. Recently, various research has applied deep-learning algorithms to support this problem by
classifying each abnormal condition with high accuracy. Most of these models are trained with simulator
data because of a lack of plant data for abnormal states, and as such, developed models may not have
tolerance for plant data in actual situations. In this study, two approaches are investigated for a deep-
learning model trained with simulator data to overcome the performance degradation caused by
noise in actual plant data. First, a preprocessing method using several filters was employed to smooth the
test data noise, and second, a data augmentation method was applied to increase the acceptability of the
untrained data. Results of this study confirm that the combination of these two approaches can enable
high model performance even in the presence of noisy data as in real plants.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A nuclear power plant (NPP) comprises a large variety of sys-
tems such as the reactor coolant system, the main steam system,
and so on. Within each system, there are hundreds of components
such as pumps, valves, and tubes, and each of these components
can exhibit errors such as trip, leakage, or failure that can lead to an
abnormal NPP state. If an abnormal state exceeding an allowable
range is detected, alarms and plant parameter changes inform
operators of the corresponding plant state. In this way, the NPP can
be put into an abnormal state for a variety of reasons. When such a
state occurs, operators have to conduct the appropriate abnormal
operating procedure (AOP) to return the NPP to a normal state [1].

States of an NPP consist of a large number of key parameters and
hundreds of alarms. Entry conditions to the AOPs are guided by
alarms and symptoms to determine which specific abnormal state
the current plant state corresponds to. For example, there are a total
of 82 AOPs in the case of the Advanced Power Reactor 1400, with
many AOPs including two or more stages. In the event of alarms
with corresponding parameter changes, operators have to choose
the appropriate AOP based on whether the current plant state
satisfies particular entry conditions. To do so, operators must
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recognize and judge a large amount of information within a given
time. Such a task can be burdensome for operators [2,6].

In order to relieve this difficulty in abnormal state diagnosis,
many operator support systems have been developed. Most
recently, deep learning has been applied to the classification of
plant states. Deep learning refers to a type of artificial intelligence
algorithm mainly used to classify datasets with neural networks.
When applied in the nuclear field, as a first step, models are
generally trained with datasets including all plant parameter in-
formation that corresponds to each abnormal state. When an ab-
normality similar to model training occurs, all plant parameter
information is used as input data, and the deep-learning model
predicts the specific abnormal state based on a trained weight
structure. In addition to this type of abnormal state diagnosis, deep
learning enables the classification of other various states, such as
transient, through the same model algorithm [3—5].

Kwak et al. [7] proposed using convolutional neural networks
(CNN) algorithms for crack detection. The CNN is one type of deep-
learning algorithm that excels in learning and classifying image
features. The above work showed that, after training the model
with video frame images, the CNN is able to detect cracks in the
reactor with good performance at about 98.3% accuracy to support
operators with NPP component inspection. Yang et al. [8] classified
five initiating events of an NPP using a long short-term memory
deep-learning algorithm, with the trained model classifying the
labels with over 80% accuracy. As these studies demonstrate,
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classification can be attempted using various types of deep-
learning algorithms, but performance can differ for each algo-
rithm type depending on the characteristics of the input data to be
classified.

The accuracy of any given model is determined not only by the
choice of deep-learning algorithm, but also by the preprocessing of
the training dataset. There are over 2000 parameters in a plant,
which all need to be normalized in various ways for data pre-
processing; the range of parameter values varies greatly, such as
comparing a binary parameter to a numerical parameter. Because
of this, the ranges of some parameters exceed 1000 with various
unit sizes. It is thus important to select the important or repre-
sentative parameters so that the model only considers necessary
data for more efficient classification.

The specific type of artificial neural networks selected for these
deep-learning models is largely determined by the type and
amount of data for training. In order for the model to be trained
reliably, the data must vary within the same label, while addi-
tionally the amount of data in each label must be equal. Only a small
fraction of abnormal states has occurred in NPPs generally designed
with safety as a top priority. For this reason, there are no abnor-
mality cases for all the thousands of components, and thus, this
presents a challenge to consider abnormal situations. It is impos-
sible to obtain data by artificially generating an abnormal situation
that has not occurred in a real NPP. In other words, the amount of
existing real plant data corresponding to each abnormal state is
currently insufficient and uneven to train deep-learning models.
For this reason, most prior research has used simulator data for
model training. Simulators are useful to not only produce as much
data as desired for abnormal cases, but also to adjust for abnor-
mality degree, ramp time, and so on.

However, a problem arises in that real plant data can vary
depending on data issues such as output noise, outliers, and the
offset of transmitters. Fig. 1 below shows an example of variation in
flow rates between simulator and plant data for the same abnormal
state. While the trends are similar, the plant data contain some
noise, while the simulator data do not. It is unknown whether most
models trained with simulator data can yield tolerant performance
in prediction using plant data containing noise, and accordingly,
consideration of the differences between plant and simulator data
is required before applying diagnosis models to real NPPs. With
respect to the deep-learning model in this work, the diagnostic
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Fig. 1. Flow rate changes in the feedwater pump for plant data (red) and simulator
data (blue) in a main feedwater pump trip state [9]. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of this
article.)
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performance of our gated recurrent unit (GRU) network model
deteriorated with increasing levels of general noise in the test data.

In this study, we suggest a way for a deep-learning model
trained with simulator data to overcome the performance degra-
dation caused by noise in actual NPP data. To improve the degraded
model performance following noise inclusion, two methods were
tested: data preprocessing and augmentation. When the test data
with noise was preprocessed through smoothing filters, the accu-
racy of the model moderately increased compared with no pre-
processing. Then, by training with noisy data along with existing
data, the modified model was able to diagnose untrained test data,
showing improved performance.

2. Base model

In [10,11], Kim et al. found that the performance of the principal
component analysis (PCA) data preprocessing method showed high
accuracy in a GRU model for abnormal state diagnosis in NPPs. GRU
networks consist of two gates, the update gate and the reset gate,
which determine the information to be considered for the output.
This architecture can solve the vanishing gradient problem of
recurrent neural networks [12,13]. In addition, as GRU has a
recurrent loop structure like a recurrent neural networks, it is
suitable to consider time series data. Therefore, as the current study
considers parameter information observed over time, the GRU
networks was chosen as the algorithm for the base model [14,15].

To determine the effect of noise on the GRU model, this study
needed a model with good performance in abnormal state classi-
fication using simulator data. However, when we trained rough
data for over 1000 parameters in the basis GRU model, the model
accuracy was very poor at 13.3%. Therefore, it was necessary to
improve the performance of the model by only using the principal
components of the data. Generally, PCA is a way to reduce data
dimensions while maintaining as much information as possible,
and is thus a good tool to solve the curse of high dimensionality by
linearly transforming data onto a new axis that preserves the
variance of the raw data [16]. With the PCA preprocessing method,
the large amount of information from the over 1000 parameters
chosen in this study can be concisely expressed. Based on this,
among various algorithms and preprocessing methods, the basic
model of the current study employed a GRU algorithm and the PCA
preprocessing method.

2.1. Basic model training

The training dataset was generated using a generic pressurized
water reactor 1400 MWe simulator made by the Western Services
Corporation [17]. A total of eight abnormal states were labeled in
the generated data: steam generator tube rupture (SGTR), charging
water system (CHRG) abnormality, letdown water system (LTDN)
abnormality, condensate system (CDS) abnormality, pilot-operated
safety relief valve (POSRV) abnormality, circulating water system
(CWS) abnormality, main steam isolation valve (MSIV) abnormality,
and main steam system (MSS) abnormality. Each state contained
200 datasets that covered about 1004 parameters over 60 s for use
in model training.

The data produced above was then used to train the GRU model;
Table 1 lists the model hyper-parameters. In data preprocessing, the
normalization result of the test data should not be drastically
influenced by the noise to be added; therefore, this study judged
that normalization that only fits the training data is not suitable for
incoming test data. First, all data was normalized using the
maximum and minimum values for the general broad ranges each
parameter value can have, and the principal components of the
data were extracted with 20 components for each data by PCA as
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Table 1
Experimental model hyper-parameters.
Input shape (60, 20)
Nodes in hidden layers 100
Activation function (GRU) tanh
Recurrent activation function (GRU) sigmoid
Kernel initializer Xavier Initialization
Recurrent initializer Orthogonal
Bias initializer Zeros
Activation function (Dense) Softmax
Loss function Categorial cross-entropy
Optimizer Adam
Learning rate 0.001
Epoch 100 epochs with early stopping
Batch size 28

mentioned above.

The results of training the GRU model with all preprocessed
datasets are as follows. As shown in Fig. 2(a), the model achieved
over 90% accuracy for all labels. The confusion matrix in Fig. 2(b)
shows that the model classified the validation datasets with good
performance. Based on these results, it was determined that the
GRU model can effectively diagnose abnormal states, and therefore
this research was conducted using this model with a test dataset
that includes noise, as described in the next section.

2.2. Effect of noise

As seen in Fig. 1, plots of the plant parameters are not smooth
due to shifting and noise. In this study, among the various causes of
discrepancy between simulator data and plant data, the effect of
noise on the GRU model was examined. Because of the confidential
nature of actual NPP data, the data in Fig. 1 was referenced in this
study. Since all noise types for each instrument in NPPs could not be
considered, we used white noise for the instruments, which is an
additive noise that does not have an outlier and is not constantly at
the same level. For that, a random number having a standard dis-
tribution for the x% size of each parameter value was added to the
simulator data. In other words, the noise of actual power plant data
was replaced with Gaussian noise.

Using the average of each parameter in the learning interval
(60 s), the degree of each parameter shift in the plant data from the
simulator data can be estimated. In this study, the difference be-
tween shifted values was ignored by zeroing using the calculated
shifting degree. Then, by calculating the absolute values of the
differences between the plant data and the simulator data, the
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degree of noise in the plant data could be measured. In order to
determine the effect of this noise level, test datasets were gener-
ated to contain 1-5% Gaussian noise. The accuracy of the model
with an increase in noise was found as follows.

As a result of calculation, the plant data had an average noise
degree of about 0.0135 compared to the simulator data. Expressed
as Gaussian noise, this is about 2.91%, which was subsequently the
level of noise applied to the test data in this research in order to
confirm model performance before application to a real power
plant.

As seen in Fig. 3, the accuracy of the model drastically decreased
as the degree of noise in the test data increased. With even just 1%
noise, the accuracy dropped from over 99% to under 79%. In other
words, a model trained only with simple simulator data may be
very poor in terms of stability with the addition of even minor
levels of noise to the data. Furthermore, the accuracy of the model
tested with data containing 2% and 3% noise, which is similar to the
noise level of actual power plant data as described above, was
55.55% and 41.15%, respectively. In practice, based on these results,
even if a given model shows a high performance of over 90% with
simulator data, its accuracy when applied to real plant data may
only be about 40%. It is therefore necessary to mitigate the effect of
noise on diagnosis models.
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Fig. 3. Model accuracy by degree of noise.
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Fig. 2. (a) GRU model accuracy and (b) confusion matrix.
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3. Methodology
3.1. Smoothing filters for noise

One method commonly employed to solve noise problems in
data is the use of smoothing filters. Noisy data can be smoothed and
cleaned by passing it through several kinds of filters [18,19]; this
work separately applied four different types of smoothing filters for
odd window, the size including the center and sides. The first was
the moving average (MA) filter, in which the result of filtering yya ;
can be calculated by Eq. (1) as:

1 w-1

Kijruyt
Jj=0

" (1a)

YMAi =

for some parameter value x; at time j. Here, w is the window size of
the filter that has the same weight at all window points. Window
size means number of parameter values in the filter. In order to
minimize the difference between filtering result and raw data, the
average of all point values in the window is equivalent to the
filtering result of the point value located in the center of the
window.

The second filter was the triangular moving average (TMA) filter,
in which the ypy, ; filtering result is given as the average of the MA
filter, as follows in Eq. (2).

1 w-1
If, ymai=; D Xijua (1b)
o

(2)

-l w—1
then, yrya; =W % YMAi—k st

When calculating Eq. (2), the weights of the window points
create a triangle. In other words, the further away from the point to
be filtered, that is the middle point of the window section, the
lower the weight.

The third filter was the Gaussian filter, in which each point in the
window has a weight corresponding to the G value in a Gaussian
distribution. For the following one-dimensional Gaussian distri-
bution equation (Eq. (3)), the ¢ value of the Gaussian distribution is
determined according to the window size w:

1 _2
e 202
oV 2T
Similar to the MA filter, the filtering result y¢; can be calculated
as an average of values multiplied by each weight and parameter
value in the window, as follows in Eq. (4).

G()= (3)

Yei= T G(j)xi (4)

The last filter used was the Savitzky—Golay filter, which has a
coefficient of local least-square polynomial fit as the weight for
each point in the window [20]. While applying various other types
of filters such as finite impulse response or Kalman filters may be
possible, this work preprocesses the noisy data using the above four
filters that are most commonly used for general noise. Fig. 4 plots
the results of smoothing the noisy data with the four filters.

It should be noted that one important aspect in the smoothing
filters is the window size, which refers in each above equation to
the total number of points, including the surrounding values, that
are referenced to filter out the corresponding point values with
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noise. The degree of smoothing depends on the window size: the
larger the window of the filter, the less noise in the data trends by
preprocessing. However, an excessive window size may affect the
trend characteristics of the data by excessive smoothing. Therefore,
it is necessary to select an appropriate window size. When we
tested each smoothing filter with window sizes of 55,7 s, and 9 s
with a simple classification model, the model showed better noise
data classification with the 9 s filtering window size. For longer
window sizes, any data points that change after the 10 s window
from changes in NPP abnormalities are reflected as one data point;
we judged that this was not suitable for our diagnosis model using
data of short length, 60 s. For this reason, the window size in each
filter was set to 9 s in this work.

3.2. Data augmentation

Image classification can be conducted with a deep-learning al-
gorithm like a CNN. However, even images with the same label can
be easily mislabeled by issues such as a deformation of the shape, a
darker image, different angles of the same object, cropping, and so
on. While models should be able to classify deformed or altered
images with the same label, it is difficult for a trained model to
make good judgments about untrained data. Similarly, for the
classification of time series data, model diagnosis may become
inaccurate for data with increased complexity; above, for example,
we confirmed that the diagnostic performance of the GRU model
was poor for simulator data containing noise. Alternatively stated,
when a model classifies new data, the greater the variance of the
shape of the new data from the training data, the harder it will be to
make the right judgment.

In image classification, limited amounts of training data can be
transformed in various ways, such as left/right inversion or
brightness adjustment, to make the images as diverse as possible
[20]. Used to increase the amount of training data, the data
augmentation process allows a given model to be prepared for new
data that differs from its limited training data. In this way, when the
amount of data per label is insufficient to classify various types of
images, data augmentation is a way to inflate the raw data to
improve the performance of the model [21—24]. Similar to this
approach, time-series data can be transformed into various data by
adding noise, inverting, or changing the scale of the data values
[25]. Fig. 5 shows an example of how one time-series data can be
augmented into four different data in various ways.

This study applied similar data augmentation to simulator data
for training the GRU model [26]. Simulator data is not wide enough
to classify plant data with shifted differences or other variation, and
it is also assumed that differences between plant and simulator
data cannot be known by any other means. Because the shape of
plant data is unknown, this study used data augmentation to add
random values to the data values, i.e. augmented the data with
noise. Gaussian noise, the most common form, was added to the
simulator data to double the quantity of the training data. With the
use of such augmented data for training, it was necessary to verify
that the model was able to be well trained and that the trained
model could classify not only the trained data but also untrained
noisy data. Which particular augmented data type that best covers
the noise of plant data should also be determined.

3.3. Experiment setup

Preprocessing with a smoothing filter is one approach to reduce
the degree of noise in test data and represents Method 1 in this
work. This step was performed before the other preprocessing
steps, namely normalization and PCA. Method 2 involved data
augmentation, in which the limited amount of training data was
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Fig. 5. Example of data augmentation [20].

increased in quantity to improve the performance of classification
of untrained test data with noise. Augmentation was conducted
between the training data generation and preprocessing steps.
After testing these two methods separately, this study then com-
bined them into Method 3 with optimized features for better re-
sults. An overview of each method is shown in Fig. 6.

4. Results
4.1. Data preprocessing (Method 1)
The first method used test datasets with 1-5% noise pre-

processed through four kinds of smoothing filters. The window size
of all filters was 9 s. The test datasets were predicted by a base GRU
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model trained with raw simulator data.

Table 2 shows the noise degrees as calculated by the noise
measurement method in Section 2.2. The mean results are given for
the four filters for test datasets with 1-5% noise added. With the
MA filter, which gave the overall largest decreases, the noise de-
grees lowered to 0.93% and 2.24% for the 1% and 5% raw data noise
degrees. As can be seen from the table, the noise degrees of all the
data preprocessed with the filters were reduced.

For the 1-5% noisy data preprocessed with smoothing filters,
the overall model accuracy improved by an average of 11.5%, from
each improvement in Fig. 7. The MA filter, which gave data the most
similar to the raw data (as discussed in the previous paragraph, also
see Fig. 4(a)), showed the highest performance improvement.
However, the performance improvement with this method was
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Table 2

Noise degree after preprocessing using each filter.
No filter 1% 2% 3% 4% 5%
Moving avg. 0.93% 1.25% 1.57% 1.92% 2.24%
Triangular moving avg. 0.93% 1.27% 1.64% 2.03% 2.37%
Gaussian 0.97% 1.38% 1.79% 2.22% 2.63%
Savitzky—Golay 0.80% 1.31% 1.85% 2.37% 2.89%

slight when compared to the preprocessing load required by each
filter, and furthermore, although the noise degree of all parameters
was reduced, errors different from real parameter tendencies may
occur by the window size of the filter.

4.2. Data augmentation (Method 2)

This second method verified the performance of the model
trained with noisy data together with existing training data. In
other words, the model was trained with twice as much training
data as the model in Method 1. Table 3 shows the details of the data
augmentation for each training dataset.

Table 4 shows the accuracy of classification for test datasets with
0—5% noise added into each model trained with augmented
training datasets 1 to 3.

Results showed a high accuracy for test data with noise similar
to that of the augmented training data. In addition, it showed a high
accuracy for test data without noise; that is, it performed well for
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Fig. 7. Model accuracy following data preprocessing.
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Table 3
Data augmentation.

Nuclear Engineering and Technology 53 (2021) 11811188

Name Augmented type Augmented data Total data of each label
Raw dataset None None 200
Training dataset 1 Added 1% noise 200 400
Training dataset 2 Added 2% noise 200 400
Training dataset 3 Added 3% noise 200 400
Table 4
Model accuracy following training data augmentation.
Test data noise (%) Training dataset 1% 2% 3% 4% 5%
None 78.37% 55.55% 41.15% 27.49% 23.38%
Training dataset 1 97.19% 78.37% 63.78% 53.12% 44.89%
Training dataset 2 87.90% 93.95% 76.06% 66.21% 58.10%
Training dataset 3 85.85% 83.98% 92.08% 72.07% 66.02%

the trained level of data. Even for untrained levels of noise, the test
data with 5% noise showed a good improvement in accuracy, as
seen with the 66% level of accuracy. In other words, it can be seen
that data augmentation for training can improve classification
performance even for untrained data. On average over the 1-5%
noisy test data, this method resulted in a 29.45% accuracy
improvement, which was better than the previous filtering
approach.

4.3. Data preprocessing and augmentation (Method 3)

The third method was to apply Methods 1 and 2 simultaneously.
Such a combination was thought to be advantageous as data
augmentation improves the tolerance of the model itself to noise
contained in the test data, while preprocessing with filters allows
the model to classify plant states more easily by lowering the noise
degree of the test data.

With noisy data augmentation, the model learns with the same

Table 5
Model accuracy following model tuning for performance improvement.

label for data that are different from the raw data. Like this, when
raw data and the data with a large noise difference are trained
together, overfitting may occur because of the increasing
complexity of the training data. Therefore, an appropriate training
epoch number is required. In this study, in order to prevent over-
fitting, which means focusing on training data only, model training
was stopped when the loss values for the validation dataset did not
further decrease after a certain number of iterations. In Table 5,
model tuning was additionally performed by adjusting the node
number and dropout degree to obtain the best improvement by
preventing overfitting. By reducing the node number in the GRU
model layer, the model capacity was adjusted, which reduced the
complexity of the artificial neural networks. In addition, some of
the networks were dropped so that model did not focus on specific
neurons.

The training datasets 1 to 3 in this case were the same as in
Method 2 (Table 3). As shown in Table 5, results showed high ac-
curacy overall, higher than using either of the other methods.

Model Hyperparameter Test data noise (%)

Training dataset Filter Nodes Dropout 1% 2% 3% 4% 5%

Training dataset 1 Moving average Filter 100 0 90.77% 86.91% 84.35% 78.18% 72.63%
100 0.3 91.08% 87.09% 83.92% 77.31% 71.70%
100 0.5 90.02% 86.35% 84.48% 77.87% 72.82%
50 0 90.09% 87.59% 83.42% 77.37% 71.13%
50 0.3 91.33% 87.66% 85.10% 77.43% 70.95%
50 0.5 91.46% 88.09% 85.16% 77.74% 71.95%
30 0 91.40% 87.84% 83.60% 76.62% 72.26%
30 0.3 91.15% 86.91% 83.10% 77.49% 71.38%
30 0.5 91.40% 87.22% 82.86% 77.49% 71.13%

Training dataset 2 Moving average Filter 100 0 84.29% 79.24% 77.37% 76.25% 75.12%
100 0.3 87.53% 81.86% 82.23% 79.05% 77.93%
100 0.5 86.60% 81.48% 80.49% 78.62% 77.56%
50 0 89.84% 87.22% 83.17% 79.68% 76.62%
50 0.3 85.91% 83.85% 82.54% 79.05% 77.06%
50 0.5 86.66% 83.48% 81.61% 78.68% 77.00%
30 0 87.97% 85.47% 83.73% 80.86% 77.68%
30 0.3 87.34% 84.10% 83.92% 80.05% 76.93%
30 0.5 85.04% 81.23% 83.04% 79.30% 77.43%

Training dataset 3 Moving average Filter 100 0 84.66% 79.47% 78.62% 76.93% 75.56%
100 0.3 86.41% 80.49% 79.99% 76.37% 75.00%
100 0.5 84.54% 80.36% 79.30% 76.25% 74.81%
50 0 88.40% 83.73% 81.23% 76.31% 72.94%
50 0.3 89.96% 85.10% 82.92% 79.49% 77.31%
50 0.5 86.91% 83.85% 82.23% 79.86% 77.93%
30 0 88.28% 84.73% 84.04% 79.43% 77.87%
30 0.3 89.46% 86.41% 84.98% 79.93% 77.81%
30 0.5 88.84% 85.41% 84.41% 80.55% 78.93%
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Notably, over 70% accuracy was achieved for the 5% noisy data,
compared to the 23.38% accuracy of the base model.

Table 3 shows that the MA filter in Method 1 was able to
smoothen the 1% and 3% noisy data to 0.97%—1.57%, respectively.
Results of Method 2 showed the highest accuracy for training
dataset 1 (added 1% noisy data) for low levels of noise. Therefore, as
seen in Table 5, the combination applying of the MA filter for pre-
processing and 1% noisy data augmentation gave the best result for
the 1% to 3% noisy test data.

However, the third combination result, with 3% noisy data
augmentation, showed a low accuracy. Table 5 shows that data
augmentation with 3% noise resulted in relatively lower perfor-
mance improvement for the test data with 1%—2% noise. This in-
dicates that data augmentation with unnecessary or excessive noise
lowers the accuracy improvement compared to appropriate noisy
data augmentation when testing low-noise data through the MA
filter.

Consequently, an appropriate combination of the approaches is
needed through an analysis of plant noise levels. Previous mea-
surements inferred that plant data would have about 2.91% noise
when compared to simulator data with Gaussian noise; accord-
ingly, the combination of the MA filter with 1% noise data
augmentation and the model with 0.5 dropout using 50 nodes,
which consistently performed the best at 2%—3% noise levels,
should be used when applying the model to real plants.

5. Discussion and conclusion

In this study, we proposed a method for diagnosing abnormal
states from actual NPP data using the developed GRU model. The
focus is on reducing the difference between the training data and
the actual data to be diagnosed. First, the noise contained in the
actual data, which is the data to be diagnosed, was preprocessed by
smoothing. Then, by adding example data including noise to the
training data, model robustness against actual data noise was
effectively improved.

Using these two methods simultaneously, this study was able to
calibrate the trained model to make the test data smoother and to
be more tolerant to noise. An appropriate combination increased
model performance as compared with either individual method, to
achieve over 70% accuracy for a wide range of noise in the test data.
Specifically, the combination using training data with 1% noise
added to the raw data and preprocessing the test data with the
moving average filter showed the best performance in the overall
noise range. The proposed model is expected to help recently
developed deep-learning models overcome the noise level of real
NPPs.

While the method proposed in this study showed good perfor-
mance, certain issues remain to be solved before application of the
deep-learning model to actual NPPs. It should be noted that there
exist other kinds of differences between simulator and plant data in
addition to noise, such as shifted values by different zero points,
offset of a transmitter, or outliers, which represent characteristics of
real data for which future considerations will be essential. In
addition, this study only conducted the classification of 10
abnormal state labels. However, as there are 82 AOPs in the APR-
1400, for example, real NPPs clearly require greater classification
of abnormalities. Therefore, the proposed method needs to be re-
validated for deep-learning models extended to the classification
of the entire range of AOPs.
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