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Abstract

Background: The rapid development of genome sequencing technology allows researchers to access large
genome datasets. However, outsourcing the data processing o the cloud poses high risks for personal privacy.
The aim of this paper is to give a practical solution for this problem using homomorphic encryption. In our
approach, all the computations can be performed in an untrusted cloud without requiring the decryption key or
any interaction with the data owner, which preserves the privacy of genome data.

Methods: We present evaluation algorithms for secure computation of the minor allele frequencies and c2 statistic
in a genome-wide association studies setting. We also describe how to privately compute the Hamming distance
and approximate Edit distance between encrypted DNA sequences. Finally, we compare performance details of
using two practical homomorphic encryption schemes - the BGV scheme by Gentry, Halevi and Smart and the
YASHE scheme by Bos, Lauter, Loftus and Naehrig.

Results: The approach with the YASHE scheme analyzes data from 400 people within about 2 seconds and picks a
variant associated with disease from 311 spots. For another task, using the BGV scheme, it took about 65 seconds
to securely compute the approximate Edit distance for DNA sequences of size 5K and figure out the differences
between them.

Conclusions: The performance numbers for BGV are better than YASHE when homomorphically evaluating deep
circuits (like the Hamming distance algorithm or approximate Edit distance algorithm). On the other hand, it is
more efficient to use the YASHE scheme for a low-degree computation, such as minor allele frequencies or c2 test
statistic in a case-control study.

Introduction
The rapid development of genome sequencing technol-
ogy has led to the genome era. We expect that the price
of a whole genome sequence will soon be $1K in a day,
which enables researchers to access large genome data-
sets. Moreover, many genome projects like the Personal
Genome Project (PGP) [1] and the HapMap Project [2]
display genotypic information in public databases, so
genomic data has become publicly accessible.
While genome data can be used for a wide range of

applications including healthcare, biomedical research,
and forensics, it can be misused, violating personal privacy

via genetic disease disclosure or genetic discrimination.
Even when explicit identifiers (e.g., name, date of birth or
address) are removed from genomic data, one can often
recover the identity information [3-5]. For these reasons,
genomic data should be handled with care.
There have been many attempts to protect genomic

privacy using cryptographic methods. In particular, it has
been suggested that we can preserve privacy through (par-
tially) homomorphic encryption, which allows computa-
tions to be carried out on ciphertexts. Kantarcioglu et al.
[6] presented a novel framework that allows organizations
to support data mining without violating genomic privacy.
Baldi et al. [7] proposed a cryptographic protocol to deter-
mine whether there exists a biological parent-child rela-
tionship between two individuals. Ayday et al. [8] recently

* Correspondence: alfks500@snu.ac.kr
1Department of Mathematical Sciences, GwanAkRo 1, Seoul, Korea
Full list of author information is available at the end of the article

Kim and Lauter BMC Medical Informatics and Decision Making 2015, 15(Suppl 5):S3
http://www.biomedcentral.com/1472-6947/15/S5/S3

© 2015 Kim and Lauter. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/344795186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alfks500@snu.ac.kr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


conducted privacy-preserving computation of disease risk
based on genomic and non-genomic data. However, these
methods used homomorphic computation involving a
single operation on ciphertexts (e.g., either additions or
multiplications, not both), thus they could support a lim-
ited set of genomic queries.
Fully homomorphic encryption (e.g., [9-11]) permits

encrypted data to be computed on without decryption,
so it allows us to evaluate arbitrary arithmetic circuits
over encrypted data. Thus, we can privately perform all
types of genome analysis using Homomorphic Encryp-
tion (HE) cryptosystems. Moreover, we can delegate
intensive computation to a public cloud and store large
amounts of data in it.
Recently, many protocols to conduct privacy-preserving

computation of genomic tests with fully homomorphic
encryption have been introduced. Yasuda et al. [12] gave
a practical solution for computation of multiple Ham-
ming distance values using the LNV scheme [13] on
encrypted data, so to find the locations where a pattern
occurs in a text. Graepel et al. [14] and Bos et al. [15]
applied HE to machine learning, and described how to
privately conduct predictive analysis based on an
encrypted learned model. Lauter et al. [16] gave a solu-
tion to privately compute the basic genomic algorithms
used in genetic association studies. Cheon et al. [17]
described how to calculate edit distance on homomorphi-
cally encrypted data.
In this paper, we propose efficient evaluation algo-

rithms to compute genomic tests on encrypted data. We
first consider the basic tests which are used in Genome-
Wide Association Studies (GWAS). They are conducted
to analyze the statistical associations between common
genetic variants in different individuals. In particular, we
focus on the minor allele frequencies (MAFs) and c2

test statistic between the variants of case and control
groups. Secondly, we consider DNA sequence compari-
son which can be used in sequence alignment and gene
finding. We show how to privately compute the Ham-
ming distance and approximate Edit distance on
encrypted data. We also adapt these methods to the prac-
tical HE schemes − BGV scheme [18] by Gentry, Halevi
and Smart and YASHE scheme [19] by Bos, Lauter,
Loftus and Naehrig. Finally, we compare the performance
of the two encryption schemes in these contexts. In prac-
tice, we take advantage of batching techniques to paralle-
lize both space and computation time together.
One possible scenario could be of interest in situations

involving patients, a data owner (e.g., a healthcare organi-
zation or a medical center) and a public cloud. In our
solution, a data owner wants to store large amounts of
data in the cloud and many users may interact with the
same data over time. The cloud can handle all that inter-
action through computation on encrypted data, so it does

not require further interaction from the data owner. The
patients can upload their encrypted data directly to the
cloud using the public key. The genomic tests are per-
formed on the cloud and the encrypted results are
returned to the data owner. Finally, the data owner
decrypts the results using the secret key to share it with
the patient. All the computations in the cloud are per-
formed on encrypted data without requiring the decryp-
tion key, so the privacy of genomic data can be protected
by the semantic security of the underlying HE schemes.

Background
The iDASH (Integrating Data for Analysis, ‘anonymiza-
tion’ and SHaring) National Center organized the iDASH
Privacy & Security challenge for secure genome analysis.
This paper is based on a submission to the iDASH chal-
lenge which consisted of two tasks: i) secure outsourcing
of GWAS and ii) secure comparison between genomic
data.

Two tasks for iDASH challenge
Given the encrypted genotypes of two groups of indivi-
duals over many single nucleotide variants (SNVs), the
goal of the first task is to privately compute the MAFs
in each group and a c2 test statistic between the two
groups on each site.
Suppose that A and B are two alleles of the gene, and

let nAA, nAB, nBB denote the numbers of observed indivi-
duals for genotypes AA, AB, BB, respectively. The allele

counts of A and B are given by nA
let= 2nAA + nAB and

nB
let= 2nBB + nAB . Then the MAF of the given alleles is

defined by

min(nA,nB)
nA + nB

.

If we let N be the total number of people in a sample
population, the total number of alleles in the sample is
nA + nB = 2N, so we compute only one of two allele
counts in encrypted form. The minimum can then easily
be computed after decryption and we obtain the MAF
by one division by 2N .
The c2 test statistic in case-control groups is com-

puted based on the allelic contingency table (Table 1):

T(nAn′
B − nBn′

A)
R · S · G · K .

Algorithm 1 Hamming Distance Algorithm
1: h ← 0
2: for i ∈ L do
3: if (’xi.sv’ or ‘yi.sv’) in {’INS’, ‘DEL’} then
4: hi ← 0
5: else if ((xi or yi) == ‘∅’) or
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6: ((xi.ref == yi.ref) and (xi.alt ! = yi.alt)) then
7: hi ← 1
8: else
9: hi ← 0
10: end if
11: h ← h + hi
12: end for
13: return h
We observe that the test can be written as a function

of nA and n′
A . More precisely, it is expressed as

4N(nA(2N − n′
A) − n′

A(2N − nA))
2

2N · 2N · G · K
=

4N(nA − n′
A)

2

(nA + n′
A) · (4N − (nA + n′

A))
.

Let n(j)A and n′(j)
A

denote the allele counts of A at SNV
j in the case group and control group, respectively. As

discussed above, it suffices to compute (n(j)A + n′(j)
A ) and

(n(j)A − n′(j)
A ) over encrypted data.

The goal of the second task is to privately compute the
Hamming distance and approximate Edit distance
between the encrypted genome sequences. Suppose that
two participants have Variation Call Format (VCF) files
which summarize their variants compared with the refer-
ence genome (e.g., insertion, deletion, or substitution at a
given position of a given chromosome). If there is only
one record in the VCF files at a specified location, the
other one is considered to be an empty set (‘∅’). Let L
be a list indexed by the positions of two participants.
Then we can define the Hamming distance as described
in Algorithm 1, where “xi.sv” denotes the type of structural
variant relative to the reference, “xi.ref” the reference bases
and “xi.alt” the alternate non-reference alleles.
The standard dynamic programming approach to com-

pute the full Wagner-Fischer Edit distance [20] is com-
puted in a recursive way, so the multiplicative depth of
the circuit to be homomorphically evaluated is too large.
Recently, Cheon et al. [17] presented an algorithm to
compute the WF Edit distance over packed ciphertexts
but it took about 27 seconds even on length 8 DNA
sequences. On the other hand, in this task we are given
the distance to a public human DNA sequence (called
the reference genome), which allows us to efficiently
approximate the Edit distance using Algorithm 2. It is

calculated based on the set difference metric, which
enables parallel processing in computation.
Algorithm 2 Approximate Edit Distance Algorithm
1: e ← 0
2: for i ∈ L do
3: if xi == ‘∅’ then
4: D(xi) ← 0
5: else if ’xi.sv’ == ‘DEL’ then
6: D(xi) ← len(xi.ref)
7: else
8: D(xi) ← len(xi.alt)
9: end if
10: Define D(yi) with the same way as D(xi)
11: if ((xi.ref == yi.ref) and (xi.alt == yi.alt)) then
12: ei ← 0
13: else
14: ei ← max{D(xi), D(yi)}
15: end if
16: e ← e + ei
17: end for
18: return e

Practical homomorphic encryption
Fully Homomorphic cryptosystems allow us to homo-
morphically evaluate any arithmetic circuit without
decryption. However, the noise of the resulting ciphertext
grows during homomorphic evaluations, slightly with
addition but substantially with multiplication. For effi-
ciency reasons for tasks which are known in advance, we
use a more practical Somewhat Homomorphic Encryption
(SHE) scheme, which evaluates functions up to a certain
complexity. In particular, two techniques are used for
noise management of SHE: one is the modulus-switching
technique introduced by Brakerski, Gentry and Vaikunta-
nathan [21], which scales down a ciphertext during every
multiplication operation and reduces the noise by its
scaling factor. The other is a scale-invariant technique
proposed by Brakerski [22] such that the same modulus
is used throughout the evaluation process.
Let us denote by [·]q the reduction modulo q into the

interval (−q/2, q/2] ∩ Z of the integer or integer poly-
nomial (coefficient-wise). For a security parameter l, we
choose an integer m = m(l) that defines the m-th cyclo-
tomic polynomial Fm(x). For a polynomial ring
R = Z[x]/(�m(x)) , set the plaintext space to Rt := R/tR
for some fixed t ≥ 2 and the ciphertext space to Rq :=
R/qR for an integer q = q(l). Let c = c(l) denote a
noise distribution over the ring R. We use the standard
notation a ← D to denote that a is chosen from the
distribution D . Now, we recall the BGV scheme [18]
and the scale-invariant YASHE scheme [19].
The BGV scheme
Gentry, Halevi and Smart [18] constructed an efficient
BGV-type SHE scheme. The security of this scheme is

Table 1 Allelic Contingency Table

Allele type Total

A B

Case nA nB R = 2N

Control n′
A n′

B S = 2N

Total G = nA + n′
A K = nB + n′

B T = 4N
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based on the (decisional) Ring Learning With Errors
(RLWE) assumption, which was first introduced by Lyu-
bashevsky, Peikert and Regev [23]. The assumption is
that it is infeasible to distinguish the following two dis-
tributions. The first distribution consists of pairs (ai, ui),
where ai, ui ← Rq uniformly at random. The second dis-
tribution consists of pairs of the form (ai, bi) = (ai, ais +
ei) where ai ← Rq drawn uniformly and s, ei ← c . Note
that we can generate RLWE samples as (ai, ais+tei)
where t and q are relatively prime. To improve efficiency
for HE, they use very sparse secret keys s with coeffi-
cients sampled from {−1, 0, 1}.
Here is the SHE scheme of [18]:

• ParamsGen: Given the security parameter l,
choose an odd integer m, a chain of moduli q0 <q1 <
... <qL−1 = q, a plaintext modulus t with 1 <t <q0,
and discrete Gaussian distribution cerr . Output
(m, {qi}, t, cerr).
• KeyGen: On the input parameters, choose a ran-
dom s from {0, ± 1}�(m) and generate an RLWE
instance (a, b) = (a, [as + te]q ) for e ← cerr. We set
the key pair: (pk, sk) = ((a, b), s) with an evaluation

key evk ∈ R2
P·qL−2

for a large integer P.

• Encryption: To encrypt m ∈ Rt, choose a small
polynomial v and two Gaussian polynomials e0, e1
over Rq . Then compute the ciphertext given by Enc

(m, pk) = (c0, c1) = (m, 0) + (bv + te0, av +te1) ∈ R2
q .

• Decryption: Given a ciphertext ct = (c0, c1) at level
l, output Dec(ct,sk) = [c0 − s · c1]ql mod t where the
polynomial [c0 − s · c1]ql is called the noise in the
ciphertext ct.
• Homomorphic Evaluation: Given two ciphertexts ct =
(c0, c1) and ct’ = (c′0, c

′
1) at level l, the homomorphic

addition is computed by ctadd = ([c0 + c′0]ql , [c1 + c′1]ql) .
The homomorphic multiplication is computed
by ctmult = SwitchKey(c0 * c1, evk) where
c0 ∗ c1 = ([c0c′0]ql , [c0c

′
1 + c1c

′
0]ql , [c1c

′
1]ql) and the key

switching function SwitchKey is used to reduce the
size of ciphertexts to two ring elements. We also
apply modulus switching from qi to qi−1 in order to
reduce the noise. If we reach the smallest modulus
q0, we can no longer compute on ciphertexts.

Smart and Vercauteren [24] observed that Rt is iso-

morphic to
∏�

i=1
Zt[x]/fi(x) if Fm(x) factors modulo

t into ℓ irreducible factors fi(x) of the same degree.
Namely, a plaintext polynomial m can be considered as
a vector of ℓ small polynomials, m mod fi, called plain-
text slots. We can also transform the plain-text vector

(m1, . . . ,mr) ∈
∏�

i=1
Zt[x]/fi(x) to an element m ∈ Rt

using the polynomial Chinese Remainder Theorem (i.e.,
m = CRT(m1, ..., mr)). In particular, it is possible to add
and multiply on the slots: if m, m′ ∈ Rt encode (m1, ...,
mℓ) and (m′

1, . . . ,m
′
�) respectively, then we see that

m +m′ = mi +m′
i mod fi and m · m′ = mi · m′

i mod fi.

This technique was adapted to the BGV scheme.
The YASHE scheme
A practical SHE scheme, YASHE, was proposed in [19]
based on combining ideas from [22,25,26]. The security
of this scheme is based on the hardness of the RLWE
assumption similar to the one for BGV. It also relies on
the Decisional Small Polynomial Ratio (DSPR) assump-
tion which was introduced by Lopez-Alt, Tromer, and

Vaikuntanathan [26]. Let t ∈ R×
q be invertible in Rq,

yi ∈ Rq and zi = yi/t ( mod q) for i = 1, 2. For z ∈ Rq,
and, we define cz = c + z to be the distribution shifted
by z. The assumption is that it is hard to distinguish ele-
ments of the form h = a/b, where a ← y1 + tcz, b ← y2 +
tcz, from elements drawn uniformly from Rq . The
YASHE scheme consists of the following algorithms.

• ParamsGen: Given the security parameter l, choose
m to be a power of 2 (the m-th cyclotomic polyno-
mial is Fm(x) = xn + 1 (n = �(m) = m/2), modulus q
and t with 1 < t < q, truncated discrete Gaussian dis-
tribution cerr on R such that the coefficients of the
polynomial are selected in the range [−B(l), B(l)]),
and an integer base ω >1. Output (m, q, t, cerr, ω).
• KeyGen: On the input parameters, sample f′, g ←
{0, ± 1}�(m) and set f = [tf′ + 1]q. If f is not inverti-
ble modulo q, choose a new f′ and compute the
inverse f−1 ∈ R of f modulo q and set h = [tgf−1]q.

Let ℓω,q = [logω (q)] + 1 and define Pω,q(a) = ([aωi]q)
�ω,q−1

i=0
.

Sample e, s ← χ
�ω,q
err and compute γ = [Pω,q(f ) + e + hs] ∈ R

�ω,q
q .

Then we set the key pair: (pk, sk, evk) = (h, f, g).
• Encryption: To encrypt m ∈ Rt, choose e,
s ← cerr and then compute the ciphertext

Enc(m, pk) =
[⌊ q

t

⌋ · [m]t + e + hs
]
q ∈ Rq .

• Decryption: Given a ciphertext ct, output

Dec(ct, sk) =
⌊
t
q

· [f · ct]q
⌉

mod t. The inherent

noise in the ciphertext is defined as the minimum
value of infinite norm ||v||∞ = maxi{|vi|} such that

f · ct =
⌊q
t

⌋
· [m]t + v(mod)q

• Homomorphic Evaluation: Given two ciphertexts
ct and ct′, homomorphic addition is computed as
ctadd = [ct + ct’]q
• Homomorphic Evaluation: Given two ciphertexts
ct and ct′, homomorphic addition is computed as
ctadd = [ct + ct’]q . Homomorphic multiplication is
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computed as ctmult = SwitchKey
([⌊

t
qct · ct’

⌉]
q
, evk

)
where the key switching function SwitchKey is used
to transform a ciphertext decryptable under the ori-
ginal secret key f (see [19] for details).

Our methods for private genome analysis
In this section, we describe how to encode and encrypt
the genomic data for each task. Based on these methods,
we propose the evaluation algorithms to compute the
genomic tests on encrypted data.

Encoding genomic data
Lauter et al. [16] presented a method to encode a per-
son’s genotype given a candidate allele associated to a
specified disease. They used a binary dummy vector
representation, which makes the number of ciphertexts
too large. In contrast, we encode the genotypes as inte-
gers so that one can efficiently compute their sums and
differences over the integers. More precisely, for a bi-
allelic gene with alleles A and B, there are 3 possible
Single Nucleotide Polymorphisms (SNPs) - AA, AB, BB,
and they are encoded as follows: AA ® 2, AB ® 1,
BB ® 0. Figure 1 shows the file format of the data for
Task 1 and its encodings.
Now, we describe how genomic data can be encoded

for DNA comparison. The first step is to curate the data
using the positions in the VCF files of two participants.
In other words, the server should arrange the informa-
tion and make the merged list L so that each indivi-
dual can encode their genotypic information according
to the list. Let �(L) denote the length of the list L .
Then, for 1 ≤ i ≤ �(L) , we define two values

ei =
{
1 if posi ∈ L
0 o.w,

, fi =
{
0 if svi ∈ {INS, DEL}
1 o.w, .

The value ei defines whether the genotype at the spe-
cified locus is missing; the value fi specifies the variants
compared with the reference.
Since both VCF files are aligned with the same refer-

ence genome, we don’t need to compare the columns
of ‘REF’. To improve performance, we assume that it
suffices to compare 7 SNPs between two non-reference
sequences. In the following, we describe how to
encode the sequences. Each SNP is represented by two
bits as

A → 00, G → 01, C → 10, T → 11,

and then concatenated with each other. Next we pad
with 1 at the end of the bit string so as to distinguish
the A-strings. Finally, we pad with zeros to make it a
binary string of length 15, denoted by si. Let si[ j] denote
j-th bit of si. If a person’s SNV at the given locus is not
known (i.e., ei = 0), then it is encoded as 0-string. For
example, ‘GT C’ is encoded as a bit string 01||11||10||
10 ... 0, of length 15.
Finally, let us consider the i-th genotype lengths Di,

D′
i of two participants defined as follows: when it has no

variants at the given locus of the sequence, set zero as
the length at the locus. If it includes a deletion com-
pared with the reference, use the length of reference.
Otherwise, we take the length of the target sequence at
the current locus. In Figure 2, we illustrate the file for-
mat of the data for Task 2 and its encodings.

Homomorphic computation of the BGV scheme
We describe how to compute the genomic algorithms
described above on encrypted genetic data using the
BGV scheme.
Task 1: GWAS on encrypted genomic data
Using the encodings that we propose for practical HE, we
can homomorphically evaluate any function involving

Figure 1 A snapshot of the dataset for Task 1 and its encodings.
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additions and multiplications, but it is not known how to
perform homomorphic division of integer values. We
obtain the counts using a few homomorphic additions.
Let gj be the encoded value of SNV site j based on the

encoding method as described above. Then each person
packs gj into the j-th slot. Let s be the total number of
SNVs. Assuming that each ciphertext holds ℓ plaintext
slots for s ≤ ℓ, the i-th person encrypts the vector
(g(1)i , . . . , g(s)i , 0 . . . , 0) ∈ Z

�
t
using batching as

cti = Enc(CRT((g(1)i , . . . , g(s)i , 0 . . . , 0), pk).

Let cteval be a ciphertext given by the homomorphic
operation

cteval =
N∑
i=1

cti.

Note that the use of batching technique enables to
perform N aggregate operations in parallel. Next, let
m = Dec(cteval, sk) denote the decryption of the cipher-
text cteval and decode the s outputs from the output
plaintext polynomial as follows: let mj be the constant
coefficient of m mod fj for 1 ≤ j ≤ s. That is, we have

mj
let= m mod fj =

N∑
i=1

g(j)i .

Thus the MAF of SNV j in the group is computed as

min{mj, 2N − mj}
2N

.

For the homomorphic evaluation of c2 test, each
group performs aggregations over ciphertexts as shown
in (1). Let ctcase and ctcont denote the ciphertexts by the
evaluations in the case and control groups, respectively.
Then one can compute two ciphertexts by the homo-
morphic operations

ct+
let= ctcase + ctcont, ct− let= ctcase − ctcont.

The plaintext polynomial from ct+ can be decoded as

the plaintext slots which have (n(j)A + n
′(j)
A ) at the j-th

slot. In other words, we have

Dec(ct+, sk) mod fj =
N∑
i=1

(g(j)i − g
′(j)
i ) = (n(j)A − n

′(j)
A ).

Similarly, the plaintext polynomial from ct− is decoded
as the plaintext slots which has the value congruent to
(nA − n′

A) in the interval [0, t) ∩ Z . Thus, if the output

value is larger than t
2 , then subtract t from it; that is,

we have

Dec(ct−, sk) mod fj]t =
N∑
i=1

(g(j)i − g′(j)
i ) = (n(j)A − n′(j)

A ).

Task 2: secure DNA sequence comparison
We represent sequence comparison algorithms as binary
circuits and then evaluate them over encrypted data.
We use the native plaintext space of binary polynomials
(i.e., R2 = Z2[x]/(�m(x)) ), and denote XOR and AND
as ⊕ and ∧, respectively. For simplicity, you may con-
sider the plaintext space Z

�
2 supporting batching opera-

tion with ℓ slots.
For the homomorphic evaluation of Hamming dis-

tance, the genomic data of two participants, denoted

by (ei, fi, si) and (e′i, f
′
i , s

′
i) , are encrypted bit-wise. For

example, the encryptions of ei’s are in the form of

Enc (CRT(e1, . . . , e�), pk),

Enc (CRT(e�+1, . . . , e2�), pk) , . . . ,

Enc (CRT(e	�(L)/�
·�+1, . . . , e�(L), 0, . . . 0), pk).

Figure 2 A snapshot of the dataset for Task 2 and its encodings. (a) hu604D39 and (b) hu661AD0.
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This allows to compute the same function on ℓ inputs
at the price of one computation. Then one can evaluate
the following binary circuit over encryption:(

E(si, s’i) ∧ (ei ⊕ e′i ⊕ 1) ⊕ 1
) ∧ fi ∧ f ′

i

where E(si, s’i) = ∧15
j=1(si[j] ⊕ s’i[j] ⊕ 1) has 1 if and

only if si, s’i are the same. After homomorphic compu-
tations, the output can be decrypted with the secret key.
The plaintext polynomial has the Hamming distance
result of SNV site i at the i-th slot, so we need only
aggregate them.
Now, we consider the comparison binary circuit (described

in [17]) for the secure computation of the approximate
Edit distance. We express an unsigned μ-bit integer x in
its binary representation and denote the j-th coordinate of

x by x[j] (i.e., x =
∑μ

j=1
x[j] 2j−1, x[j] ∈ {0, 1}). For two

μ-bit integers x and y, the comparison circuit is defined by

C(x, y) =
{
1 if x < y,
0 o.w.,

and this is written recursively as C(x; y) := cμ where

cj = ((x[j] ⊕ 1) ∧ y[j]) ⊕ ((x[j] ⊕ 1 ⊕ y[j]) ∧ cj−1)

for j ≥ 2 with an initial value c1 = (x[1] ⊕ 1) ∧ y[1] .
Then the j-th bit of maximum value between two inputs
is defined as follows:

max{x, y}[j] = ((1 ⊕ C(x, y)) ∧ x[j]) ⊕ (c(x, y) ∧ y[j])

= x[j] ⊕ (C(x, y) ∧ (x[j] ⊕ y[j])).

For the bit-sliced implementation, all the lengths are
also expressed in a binary representation and we denote
the maximum length of SNPs by μ. It follows from
the primitive circuits that we can evaluate the circuits
homomorphically:(

E(si, s’i) ∧ (fi ⊕ f ′
i ⊕ 1) ⊕ 1

) ∧ max{Di,D′
i}[j].

Finally, one can decrypt the results and decode �(L)
values from the output plaintext polynomials. More pre-
cisely, let �i,j be the value at i-th slot which corresponds

to the j-th bit. We see that
∑μ

j=1
�i,j · 2j−1 is the

approximate Edit distance of SNV site i, hence we need
only perform aggregation operations over them.

Homomorphic computation of the YASHE scheme
We explain how to evaluate the genomic algorithms
homomorphically using the YASHE scheme.
Task 1: GWAS on encrypted genomic data
Lauter et al. [13] introduced a method how to pack m
bits b0, ..., bm−1 into a single ciphertext that encodes the

polynomial b(x) =
∑m−1

i=0
bixi . We note that polynomial

addition corresponds to simple component-wise addi-
tion of the vectors. Since a case-control study requires
only additions, this method can be used for our case.
When using a ring polynomial xn +1 with a power-of-

two n, we can embed data of n′ let=
⌊n
s

⌋
persons into a

single plaintext polynomial. Namely, one can encrypt
the polynomial

pm
(
g1 =

(
g(1)
1 , . . . , g(s)

1

)
, . . . , gn′ =

(
g(1)
n′ , . . . , g

(s)
n′

))
let=

n′∑
i=1

s−1∑
j=0

g(
j)

i xj+s·(i−1).

The simple aggregation operations are performed over
packed ciphertexts. Now, let

m =
n′s−1∑
j=0

mjxj ∈ Rt

denote the decryption result of the evaluated cipher-
text. Then, for 1 ≤ j ≤ s, one can aggregate n’ data from
the output plaintext polynomial by computing

mj ←
n′−1∑
i=0

mj+is,

which is the allele counts of A at the SNV site j.
Notice that if n′ = 1 , then we don’t need to do the
above operations. Hence, the MAF of the SNV j in the
group is computed as

min{mj, 2N − mj}
2N

.

Similarly, let ct+ and ct− denote the ciphertexts computed
by the homomorphic additions and subtractions after
simple aggregations. As we have demonstrated, we need
additional aggregation processes after decryptions. Let

m+ =
n′ s−1∑
j=0

m+
j x

j , m− =
n′ s−1∑
j=0

m−
j x

j

denote the decryption polynomials of ct+ and ct−,
respectively. Then, for 1 ≤ j ≤ s, one can obtain the
allele counts by computing as

n(
j)

A + n′(j)
A =

n′−1∑
i=0

m+
j+is, n(

j)
A − n′(j)

A =

[
n′−1∑
i=0

m−
j+is

]
t

.

Task 2: secure DNA sequence comparison
Since polynomial multiplication does not correspond to
component-wise multiplication of the vectors, we have
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to consider another packing method instead of [13]. Let
us consider the polynomial-CRT packing method. The
m-th cyclotomic polynomial �m(x) factors modulo 2
into a product of the same irreducible factors (i.e.,
�m (x) = xn + 1 = (x + 1)n mod 2); so we cannot apply
batching technique with these parameters. We can
instead do that if taking a prime t (not 2) such that the
polynomial splits into the distinct factors modulo t, but
the use of a different message space leads to change our
primitive circuits.
As noted in [27], we see that for x, y ∈ {0, 1} , the fol-

lowing properties hold: x ⊕ y = (x − y)2 and x ∧ y = x · y
where − and · are arithmetic operations over integers.
From these observations, we can amend the evaluation
circuit for the Hamming distance as follows:(

E(si, s′i) ·
((
ei − e′i

)2 − 1
)
+ 1

)
· fi · f ′

i

where E
(
si, s’i

)
=

∏15

j=1

(
1 − (

si
[
j
] − s’i

[
j
])2)

.

We note that for μ-bit integer x and y, the comparison
circuit C(x; y) = cμ can be expressed as

cj =
(
1 − x

[
j
]) · y [

j
]
+

(
1 − (

x
[
j
] − y

[
j
])2) · cj−1.

for j ≥ 2 with c1 = (1 − x [1]) · y [1] Since it is avail-
able to compute on large integer inputs, the maximum
value is defined by

max
{
x, y

}
=

(
1 − C

(
x, y

)) · x + C
(
x, y

) · y
= x + C

(
x, y

) · (
y − x

)
.

Using these circuits, we compute the ciphertext given
by the homomorphic operations(

1 + E (si, s’i) ·
((
fi − f ′

i

)2 − 1
))

· max
{
Di,D′

i
}
.

Then we get the encryptions of the approximate Edit
distance result of SNV i.

Results and discussion
In this section, we explain how to set the parameters for
homomorphic evaluations and present our experimental
results. We used BGV scheme with Shoup-Halevi’s HE
library [28] (called HELib). HELib is written in C++ and
based on the arithmetic library NTL [29] over GMP.
Our experiments with BGV were performed on a Linux
machine with an Intel Xeon 2.67 GHz processor. We
also implemented YASHE scheme with ARITH library
in C. The measurements were done in an Intel Core
3.60GHz, running 64-bit Windows 7.
The dataset used for Task 1 consists of 200 case group

(constructed from 200 participants from PGP) and 200
control group (simulated based on the haplotypes of 174

participants from CEU population of apMap Project).
The dataset for Task 2 consists of two individual gen-
omes randomly selected from PGP.

Theoretical comparison between BGV and YASHE
BGV scheme has a chain of ciphertext moduli by a set
of primes of roughly the same size, p0, ..., pL−1, that is,

the i-th modulus qi is defined as qi =
∏i

k=0
pk . For sim-

plicity, assume that p is the approximate size of the pis.
Given the lattice dimension n = φ(m) , the plaintext
modulus t, and the Hamming weight h of the secret
key, it follows from Theorem 3 in [27] that the depth of
a classical homomorphic multiplication is

dn,t ≈
⌈
log2

(
h · n · t4)

2log2
(
p
)

⌉
≈

⌈
log2

(
h · n · t4)
36

⌉
,

so the total number of modulus switching operations
during the M-levels of multiplications is about M·dn,t.
Since we first should do one modulus switching to the
initial ciphertext before homomorphic computation, we
see that L = M · dn,t + 2. Thus we can approximate the
size of the ciphertext modulus qBGV in the BGV scheme
(from C.3 in [18]) as follows:

log2qBGV ≈ 24 +
3
2
log2n + (L − 2) · (11 +

1
2
log2n)

< (L + 1) · (11 +
1
2
log2n)

Since a fresh ciphertext in BGV consists of a pair of
polynomials over RqL−1, the size of ciphertext from the
above inequality is about

|ctBGV| ≈ 2n · log2qBGV ≈ 2n (L + 1) · (11 +
1
2
log2n)

Similarly, [19, Lemma 9] provides a theoretical upper
bound on the noise growth after M multiplicative levels
for YASHE as (nt)2(M−1) · (12n2tsℓω,qωM) when taking
B = 6s as the coefficient bound of error polynomials. It
should be less than the ratio of qYASHE to t so that the
decryption procedure works; we should select a cipher-
text modulus qYASHE so as to satisfy

log2qYASHE ≈ 2M · log2nt + log2
(
12σ�ω, qωM

)
≥ 2M · (

log2nt
)

Since a ciphertext consists of only a single ring ele-
ment, the size is about

|ctYASHE| ≈ n · log2qYASHE ≈ 2nM · (
log2nt

)
.

We summarize the above results in Table 2.
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Note that it is difficult to compare these two schemes
because their parameters depend on at least 4 variables:
the plaintext modulus, t, the dimension, n, the Hamming
weight, h, and the number of multaplicative levels to be
evaluated, M. However we observe that, in the case that
log2 n ≈ 14 and h = 64, we have:

log2qYASHE − log2qBGV

≈ 2M · (
log2nt

) − (
M · dn,t + 3

) · (11 +
1
2
log2n)

≈ 2M · (
14 + log2t

) − (
M · dn,t + 3

) · 18
= 2M · (

14 + log2t − 9 · dn,t
) − 54

≈ 2M
(
14 + log2t − 9 ·

(
20 + 4 log2t

36
+ η

))
− 54

= 18M (1 − η) − 54 for some 0 ≤ η < 1.

Hence, if M is large, we can use a smaller ciphertext
modulus to evaluate M-levels of multiplications with
BGV in comparison to YASHE; however, the YASHE
scheme has smaller ciphertexts than BGV. This follows
from the fact that

|ctBGV| − |ctYASHE|
≈ 2

(
M · dn,t + 3

) · (11 +
1
2
log2n) − 2M · (log2nt)

≈ 2M · (
18 · dn,t − 14 − log2t

)
+ 108

≈ 2M · (
log2t + 18η − 4

)
+ 108

For some 0 ≤ h < 1; if log2 t ≥ 4, then log2 t + 18h -
4 ≥ 0; otherwise, we have dn ,t = 1 and so
18 · dn,t − 14 − log2t > 0.
Let us contrast the complexity of homomorphic multi-

plication operations for the two schemes. One of the
new optimizations for BGV is to convert polynomials
between coefficient and evaluation representations. Most
of the homomorphic operations are performed in the
more efficient evaluation representation, but it some-
times requires coefficient representation. Note that these
conversions take the most time in execution. In more
detail, at the l-th level of this scheme, the key switching
procedure requires O (l) Fast Fourier Transforms (FFTs)
and the modulus switching operation requires (l + 1)
FFTs. Since HElib uses the Bluestein FFT algorithm [30]
(with run-time complexity of O (n log n)), this yields an
overall complexity of O (ln log n) for a multiplication of
ciphertexts.

For the polynomial multiplication in the base ring Rq =
ℤq[x]/(x

n + 1), we implemented the FFT algorithm by Nuss-
baumer [31] based on recursive negacyclic convolutions

(with run-time complexity 9
2n log n log log n +O(n log n)

of arithmetic operations in ℤq). The homomorphic multi-
plication in YASHE includes a costly key switching opera-

tion which is an inner product on R�ω,q
q , hence we obtain a

total cost of �ω,q · (9
2n log n log log n +O (

n log n
))

operations for a ciphertext multiplication. Therefore, BGV
is expected to be faster than YASHE for a ciphertext multi-
plication if we take similar parameters with q and n.

How to set parameters
The security of BGV relies on the hardness of the
RLWE assumption. Similarly, YASHE is provably secure
in the sense of IND-CPA under the RLWE assumption
and DSPR assumption. The main difference between
the schemes is that BGV uses an odd integer m while
YASHE chooses m to be a power-of-two with a prime
integer q such that q ≡ 1 (mod m). In [23], it was
shown that the hardness of RLWE with the cyclotomic
polynomial Fm(x) = xj(m) + 1 can be established by a
quantum reduction to shortest vector problems in ideal
lattices. This means that YASHE is believed to be secure
as long as the lattice problems are hard to solve.
Parameters of the BGV scheme
To homomorphically evaluate the algorithms for Task 1,
we first choose sufficiently large t so that no reductions
modulo t occurs in the plaintext slots. For example, we
take t as the smallest power-of-two which satisfies the
following inequalities:

n(j)A =
200∑
i=1

g(j)i ≤
200∑
i=1

2 = 400 < t

since the total number of people in the same group is
N = 200. So it suffices to take t = 29 for privately com-
puting the minor allele counts. In the case of c2 test, we
have

n(j)A + n
′(j)
A =

200∑
i=1

g(j)i +
200∑
i=1

g
′(j)
i ≤ 2

200∑
i=1

2 = 800 < t,

thus we set the parameter t = 210. For the second task,
we used t = 2 to evaluate binary circuits.
Now, we derive a lower-bound on j(m) such that

φ (m) ≥
(
L

(
logm + 23

) − 8.5
) · (λ + 110)

7.2
. (2)

from the security analysis of [18] based on Lindner
and Peikert’s method [32]. For the efficiency of the
implementation, we choose the smallest integer m so as
to satisfy Inequality (2) and pack the message into

Table 2 The theoretical sizes of ciphertext modulus and a
ciphertext

BGV YASHE

Log2 q (M · log2(h·n·t4)
36 + 3) · (11 + 1

2 log2n) 2M · log2 nt

|ct| 2n(M · log2(h·n·t4)
36 + 3) · (11 + 1

2 log2n) 2nM · log2 nt
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plaintext slots as many as possible. Next, we define a
ladder of moduli to make the correct decryption after
computation with L levels (see [18] for details). Finally,
we consider the discrete Gaussian distribution cerr = Dℤ,

s with mean 0 and standard deviation s = 3.2 over the
integers to sample random error polynomials.
Parameters of the YASHE scheme
As discussed before, t = 210 will suffice to compute the
MAFs and c2 statistic. For the second task, we look for
the parameter t ≠ 2 which maximizes the number of
slots we can handle in one go. We fix the word ω =
2128 for the evaluation key and the standard deviation
s = 8 for the error distribution cerr.
Since we can estimate the size of noise during homo-

morphic operations, we get the lower bound on q to
ensure the correctness. We also have maximal values of
q to ensure the desired security using the results of [33],
so that we can have more loose bound than that from
LP’s method. Then we set m as a power-of-two to get a
non-trivial interval for q and then select a smallest q in
this interval.

Implementation results
We present the parameter setting and performance
results for secure genome analysis in Table 3 and 4. All
the parameters provide 80-bit security level. We give the
plaintext modulus t, the size of the ciphertext modulus q,
the lattice dimension n = j(m), and the number of plain-
text slots ℓ. We also give the circuit depth L so that HE
scheme can correctly evaluate such a computation on
encrypted data. In particular, it can be considered as the
number of ciphertext moduli in the BGV scheme. We
consider the ciphertext size in kBytes for a set of para-
meters. The last columns give the timings for the key
generation, encryption, evaluation and decryption.
Performance results of Task 1
In Table 3 the top four rows refer to the results using
BGV, and the bottom four rows refer to results using
YASHE for computing the MAFs and c2 statistic in case-
control groups. Note that the number of slots means that
how many messages we can pack into one single cipher-
text. When using YASHE, we can evaluate simulta-
neously by embedding the data into the coefficients of

plaintext polynomial; the maximal degree of plaintext
polynomial in this case is considered to be the number of
slots.
In practice, we need to apply one more modulus-

switching during homomorphic additions for the BGV
scheme, so the total number of ciphertext moduli is
L = 1 + 2 = 3. On the contrary, L means the levels of
multiplications in YASHE (without taking into account
the additions). In other words, when evaluating a poly-
nomial of degree d on encrypted data, we have L ≈ log
d levels of multiplications by computing in a binary tree
way. Thus, L = 0 suffices to support such homomorphic
additions in Task 1. Thus we don’t need to generate the
evaluation key, which enables to take less time for key
generation than BGV. Moreover, the evaluation perfor-
mance of YASHE is much better since BGV requires a
costly modulus switching operations even for computing
simple homomorphic additions.
Performance results of Task 2
Table 4 presents the parameter setting and performance
results for secure DNA sequence comparison using
BGV and YASHE. We evaluated the performance with
the input data of different sizes 5K and 10K. We imple-
mented the comparison circuit with the same method as
described in [17, Lemma 1] in order to reduce the cir-
cuit depth over encryption.
As discussed before, given the parameter L, we

obtain the approximate size of ciphertext modulus as
log2 q ≈ 43 + 18 · (L − 2) for BGV when using t = 2
and R = ℤ[x]/(F8191(x)). Since it should support L = 7
or 8 to correctly evaluate genomic algorithms of
Task 2, we use the modulus q around 130 to 150. On
the other hand, the size of the parameter q in YASHE
should be strictly larger than 2L log2 (nt) ≈ 52L with
t = 29 and R = ℤ[x]/(x8192 + 1). So we used a 384-bit
prime q such that q ≡ 1 (mod 214).
In the implementation of YASHE scheme, computing

the inverse of f modulo q turns out to be the most-time
consuming part of the key-generation, which runs in
around 128.34 seconds(s). In total, it takes about
130.59s to generate the public key, secret key and eva-
luation keys, while the key generation of the BGV
scheme takes about 3.41s in order to support 8 levels.

Table 3. Implementation results of Task 1 using BGV and YASHE

s t log2 q n ℓ L |ct| KeyGen Encrypt Eval Decrypt

BGV MAF 311
610

29 60
61

5292
8190

378
630

3 78 kB
122 kB

6.92s
10.28s

11.90s
14.85s

29.99 ms
33.36 ms

290.06 ms
690.23 ms

c2 311
610

210 60
61

5292
8190

378
630

3 78 kB
122 kB

6.35s
12.27s

11.61s
15.13s

30.05 ms
38.17 ms

560.10 ms
720.33 ms

YASHE MAF 311
610

210 48 1024 1024 0 6 kB 0.01s
0.04s

1.63s
4.10s

5.74 ms 16.98 ms 33.71 ms
16.78 ms

c2 311
610

0.01s
0.04s

1.61s
4.12s

5.99 ms
17.20 ms

16.73 ms
17.01 ms
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There is also quite a big gap between the two schemes
in timings for a multiplication of ciphertexts: BGV takes
around 0.07s, while YASHE takes around 1.75s (including
the key switching step) under the parameter settings used
in Task 2. For the efficiency of the YASHE scheme, we
might avoid a costly key switching step during the homo-
morphic multiplication; however, it supports a limited
number of homomorphic multiplications without the key
switching step. This follows since the noise grows expo-
nentially with the multiplicative depth through such con-
secutive operations. One alternative is to use a hybrid
approach, in which we leave out key switching in certain
places but do it in others using the evaluation key with a
power of the secret key so that one can keep the cipher-
text noise small for correct decryption. As a result, poly-
nomial multiplication modulo xn + 1 takes about 0.64s,
but it is still slower than that in BGV. As expected, BGV
is faster than YASHE to evaluate the genomic algorithms
for DNA sequence comparison.

Conclusions
In this paper, we discussed how to privately perform
genomic tests on encrypted genome data using homo-
morphic encryption. In addition to the efficient imple-
mentations of BGV and YASHE, we compared two
schemes both theoretically and practically. We found
that there is a trade-off between the security and perfor-
mance. YASHE uses a power-of-two dimension n which
defines the 2n-th cyclotomic polynomial; this is a good
choice for providing strong security, but it requires larger
parameters to ensure correctness than BGV, and the
homomorphic multiplication in YASHE is slower than
that in BGV. Therefore, the performance numbers for
BGV are better than YASHE when homomorphically
evaluating deep circuits (like the Hamming distance algo-
rithm or approximate Edit distance algorithm). On the
other hand, it is more efficient to use the YASHE scheme
for a low-degree computation, such as minor allele fre-
quencies or c2 test statistic in a case-control study.
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