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Abstract 

In recent years, the development of energy systems with improved efficiency has become an 

important issue in the industrial manufacturing field due to the depletion of traditional energy fuels and 

ever-increasing commercial demands. Amid this sweeping trend, nanomaterials, which can exert 

different novel properties to those in conventional macroscopic materials, can be utilized for various 

energy applications. Nanomaterials play a major role in energy release and energy source. For 

application in energy release and energy sources, nanomaterials need to release high thermal energy 

from a relatively low energy level of external shocks or need to exert a high specific capacity and power 

density, respectively. In other words, nanomaterials for energy applications are required to have high 

energy density. To enhance their energy density, several nanomaterial candidates have been considered 

and synthesized. However, there are several difficulties in testing all the candidates due to time 

constraints and economic issues. Thus, for a more efficient development of the target nanomaterial, a 

process to screen the candidates is necessary, and reaction mechanistic studies can be conducted as 

additional processes to advance real experiments. These studies facilitate maximization of energy 

density in nanomaterials from investigation of thermodynamically and kinetically efficient reaction 

pathway and comparison of energy surfaces among reaction intermediates. Moreover, theoretical 

methods can prove to be helpful for reaction mechanistic studies. In this doctoral dissertation, reaction 

mechanistic studies in energy applications of nanomaterials have been conducted via multi-scale 

molecular simulation technique, which can prove to be a powerful tool to understand the physico-

chemical phenomena for the reaction mechanistic studies of nanomaterials in energy applications.  

In Chapter 2, we theoretically tracked the reaction process of Ni-Al nanoalloys. Molecular 

dynamics simulations had been applied to investigate the characteristics depending on molar ratio of Ni 

and Al, the bilayer thickness of nanolayer, and ignition temperature. It was found that the variation of 

stoichiometry between Ni and Al had marginal effects on the overall process of reaction coordinates, 

however, the reaction rate and intermixing regions were different in each system. In addition, 

quantitative analysis on the reaction kinetics and thermodynamics were performed under different 

reaction and structural conditions. In this theoretical study, the reaction characteristics of Ni-Al 

nanolayers were quantified with systematic calculations. Therefore, it was expected to contribute to 

fabricate more advanced Ni-Al nanolayer products. 

In Chapter 3, we investigated the explosion characteristics of a nanobomb. In a nanobomb, 

nitromethane is constantly protected from the external environment due to stable mechanical and 

thermal properties of carbon nanotube (CNT) and is confined with the built-up pressure. After injection 

of thermal energy into confined nitromethane (NM) at various densities, the nanobomb was completely 
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decomposed along the bursting process. The results show that the explosion time was reduced at a 

higher density and initial temperature. While NM was being decomposed into intermediates, Stone-

Wales (SW) defects or high-order rings were randomly constructed at both the cap and side wall of 

CNT. Subsequently, carbon atoms at defect sites were functionalized by the reaction intermediates, 

where nanoholes were generated and burst at the end of bursting phenomena. 

Next, physicochemical modification of CNT was considered to improve the performance of the 

nanobomb. Chirality, nitrogen-doping, and monovacancy defect were introduced into CNT. All types 

of modifications on CNT brought time reduction in bursting of nanobomb although there was similarity 

on overall bursting mechanism. Among modifications on CNT, monovacancy defect exhibited the most 

striking effects on the enhancement of bursting. This suggests that chemical reactivity increased 

drastically around the defect sites. To intensively study the reason for this difference, SW defect 

formation energy and the adsorption energies of radical products on CNT were calculated for each 

modification. Both the formations of SW defects and bindings of the products were more favorable on 

monovacancy defect and nitrogen-doping site than the sites in pristine CNT. Furthermore, two heating 

methods were examined (e.g. electric spark and electromagnetic induction) as the additional external 

shocks on nanobomb. Bursting of nanobomb with electromagnetic induction occurs much rapidly due 

to oscillating frequency under a continuous electric field.  

Additionally, synergistic effects on the bursting of nanobombs with NM-detonating molecule 

mixed inside CNT were investigated. Detonating molecule candidates were initially filtered by 

comparing detonation velocity and pressure derived from Kamlet–Jacobs (K–J) equations. When bulk 

mixtures which contain NM and detonating molecules were constructed and decomposed at high 

temperatures, HMX or RDX showed a faster decomposition rate than that of NM and supported 

acceleration in NM decomposition rate. Furthermore, nanobombs in which HMX or RDX is confined 

with NM in CNT were heated by thermal energy from CNT, and their decomposition processes were 

compared with pure NM nanobomb. After the confined molecules were heated, detonating molecules 

were decomposed prior to NM and contributed to enhanced decomposition of NM. Eventually, CNT 

with the detonating molecule burst by continuous functionalization of reaction intermediates in much 

short time than pure NM nanobomb. We believe that our theoretical explorations to improve the 

explosion performance of nanobomb enable much feasible manipulation of nanostructured HEMs.  

In Chapter 4, reaction pathways in quinary molten-salt electrolyte-based Li−CO2 battery with Ru 

catalyst were theoretically estimated, in which nitrate-based molten salt and Ru catalyst were introduced. 

This led to a significantly improved performance compared to previous Li−CO2 batteries. Additionally, 

the number of battery cycles that can be operated was increased, but the reasonable electrochemical 

reaction behind its charge and discharge process was still veiled. From DFT calculation, three plausible 
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reaction pathways in charge processes depending on operation temperature of battery cell were derived. 

For the discharge process, each free energy diagram with and without Ru surface was compared to 

probe the catalytic role of Ru nanoparticle. Consequently, Ru surface strongly reduced the energy in 

thermodynamic barrier of discharge process, and this was because movement of electrons from CO2
− 

to Ru surface energetically stabilized CO2
−. We believe that mechanistic understanding of 

electrochemical reactions in charge and discharge processes will provide significant information for 

further development of Li−CO2 battery cell. 
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pristine CNTs were considered to investigate the effect of the chirality; 1% and 2% 

nitrogen-doping and monovacancies and hydrogenated monovacancies were considered 

to investigate the effect of the concentration of the dopant and vacancies, respectively. 

The carbon, nitrogen, and hydrogen atoms of the CNT are represented by gray, blue, and 

orange, respectively and carbon atoms constituting the monovacancy defects are 

indicated by green. The carbon, nitrogen, oxygen, and hydrogen of NM are represented 

by gray, blue, red, and white, respectively. Copyright ©  2020, American Chemical 

Society. 

Figure 3.2.5 Radial temperature distributions for NM in (20,20) pristine nanobomb during the 

heating-up period at (a) 2000K, (b) 2250K, (c) 2500K over time. Radius of CNT is about 

12~15 Å. Copyright ©  2020, American Chemical Society. 
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Figure 3.2.6 (a) Temperature profiles of NM, molar fractions of (b) NM and (c) H2O in (20,20) 

pristine nanobomb during NERMD simulation vs simulation time depending on heat up 

temperature. Heat up period and decomposition period are shown by dashed line and 

solid line respectively. Vertical dashed lines indicate the time of the burst of CNT heated 

to 2500 K. Copyright ©  2020, American Chemical Society. 

Figure 3.2.7 NERMD simulation data for nanobomb with physicochemical modifications at the 

heating temperature of 2500 K. (a) Temperature profiles of NM, molar fractions of (b) 

NM and (c) H2O in nanobomb with chirality modification, respectively. (d) Temperature 

profiles of NM, molar fractions of (e) NM and (f) H2O in nanobomb with N-doping 

modification, respectively. (g) Temperature profiles of NM, molar fractions of (h) NM 

and (i) H2O in nanobomb with monovacancy defect modification, respectively. (20,20), 

(35,0), N 1%, N 2%, Mono 1%, and Mono 2% represent the (20,20) pristine nanobomb, 

(35,0) pristine nanobomb, nitrogen-doped nanobombs with 1% and 2% dopant 

concentration, and monovacancy nanobombs with 1% and 2% vacancy concentration, 

respectively. The heat up period and decomposition period are indicated by dashed line 

and solid line, respectively. Vertical dashed lines indicate the time required for the CNT 

to burst for each system. Copyright ©  2020, American Chemical Society. 

Figure 3.2.8 (a) Temperature profiles of NM, molar fractions of (b) NM and (c) H2O in nanobomb 

with hydrogenated monovacancy modification during NERMD simulation vs simulation 

time at the heating temperature of 2500 K. (20,20), H-Mono 1%, and H-Mono 2% 

represent for (20,20) pristine nanobomb, and hydrogenated monovacancy nanobombs 

with 1% and 2% concentration, respectively. Heat up period and decomposition period 

are shown by dashed line and solid line respectively. Vertical dashed lines indicate the 

time of the burst of CNT for each system. Copyright ©  2020, American Chemical 

Society. 

Figure 3.2.9 Molar fractions of CO, H, and OH in nanobomb with physicochemical modifications 

during NERMD simulation vs simulation time. (a) CO, (b) H, and (c) OH profiles for 

nanobomb with chirality modification. (d) CO, (e) H, and (f) OH profiles for nanobomb 

with N-doping modification. (g) CO, (h) H, and (i) OH profiles for nanobomb with 

monovacancy modification. (20,20), (35,0), N 1%, N 2%, Mono 1%, and Mono 2% 

represent the (20,20) pristine nanobomb, (35,0) pristine nanobomb, nitrogen-doped 

nanobombs with 1% and 2% dopant concentration, and monovacancy nanobombs with 

1% and 2% vacancy concentration, respectively. The heat up period and decomposition 

period are indicated by dashed line and solid line, respectively. Vertical dashed lines 
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indicate the time required for the CNT to burst for each system. Copyright ©  2020, 

American Chemical Society. 

Figure 3.2.10 Molar fractions of (a) CO, (b) H, and (c) OH in nanobomb with hydrogenated 

monovacancy modification during NERMD simulation vs simulation time at the heating 

temperature of 2500 K. (20,20), H-Mono 1%, and H-Mono 2% represent for (20,20) 

pristine nanobomb, and hydrogenated monovacancy nanobombs with 1% and 2% 

concentration, respectively. Heat up period and decomposition period are shown by 

dashed line and solid line respectively. Vertical dashed lines indicate the time of the 

burst of CNT for each system. Copyright ©  2020, American Chemical Society. 

Figure 3.2.11 Mechanistic models of bursting for each physicochemical modification of CNT at the 

heating temperature of 2500 K. (a) (20,20) pristine nanobomb, (b) (35,0) pristine 

nanobomb, (c) N-doped nanobomb with 2% dopant, and (d) monovacancy nanobomb 

with 2% vacancy. The four simulation snapshots of each system show the moments of 

adsorption of the internal products, pore generation, pore expansion, and initial bursting, 

respectively, in time order. The carbon, oxygen, nitrogen, and hydrogen atoms are 

represented by gray, red, blue, and white, respectively. Copyright ©  2020, American 

Chemical Society. 

Figure 3.2.12 Bursting mechanistic models of nanobomb system. Representative snapshots with time 

evolution are taken from (20,20) nanobomb system at 2500 K. The carbon, oxygen, 

nitrogen, and hydrogen atoms are colored in gray, red, blue, and white, respectively. Red 

dashed boxes represent the location of bursting for the clear view. Green dashed-circle 

at 305.2 ps represents unstable 7-7 carbon atoms ring. The reaction mechanism was 

depicted with functionalization of reaction intermediate to unstable carbon atoms ring at 

305.2 ps, generation of nanopore by the continuous functionalization of intermediate at 

343.1 ps, growth of nanopore by the internal pressure at 349.8 ps, start of eruption with 

intermediate in nanopore at 350.8 ps, ejection of inner product and rapid tearing of 

nanopore at 352.1 ps, and termination of bursting at 398.2 ps. Copyright ©  2020, 

American Chemical Society. 

Figure 3.2.13 Simulation snapshots from the nanobomb with hydrogenated monovacancy defect 

modification at 95.2 ps. (a) Adsorption of internal products to deprotonated site. (b) C-

C bond cleavage at bursting site. The carbon, nitrogen, and hydrogen atoms are colored 

in gray, blue, and white, respectively. Copyright ©  2020, American Chemical Society. 
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Figure 3.2.14 Mechanism of formation of SW defect on carbon cluster model. (a) Relative energy 

diagram according to reaction coordinates. (b) Optimized carbon clusters with single 

SW defect. At the bottom of each figure, Ea and ΔE denote the activation and formation 

energies (in units of kcal mol−1) for the SW defect, respectively. For a clear view, the 

carbon atoms in the SW defect and doped nitrogen atoms are indicated by green and blue 

ball-and-sticks, respectively. The carbon and hydrogen atoms are represented by gray 

and white sticks, respectively. Copyright ©  2020, American Chemical Society. 

Figure 3.2.15 (a) Optimized carbon clusters with adsorbed products, i.e. O, OH, H, and CO, depending 

on CNT modifications. Colors of atoms are the same as those in Figure 3.2.11. Among 

the three products, each O and CO form a bridge with two carbon atoms on each carbon 

cluster (magnified for clear view). (b) Binding energies of products with carbon-cluster, 

calculated using optimized models in (a). Cyan-colored bar is the binding energy where 

O substitutes the monovacancy defect site of carbon-cluster, and the inset figure shows 

the corresponding optimized structure. Copyright ©  2020, American Chemical Society. 

Figure 3.2.16 NERMD simulation data for nanobomb under electric spark and electromagnetic 

induction. (a) Temperature profiles of NM, molar fractions of (b) NM and (c) H2O in 

nanobomb with 6 V nm-1 field strength, respectively. (d) Temperature profiles of NM, 

molar fractions of (e) NM and (f) H2O in nanobomb with 7 V nm-1 field strength, 

respectively. (g) Temperature profiles of NM, molar fractions of (h) NM and (i) H2O in 

nanobomb with 8 V nm-1 field strength, respectively. EM induction represent for 

electromagnetic induction. Heat up period and decomposition period are shown by 

dashed line and solid line respectively. Vertical dashed lines indicate the time of the 

burst of CNT for each system. Copyright ©  2020, American Chemical Society. 

Figure 3.2.17 Molar fractions of NM and temperature profiles of NM in nanobomb with (a) electric 

spark and (b) electromagnetic induction during NERMD simulation vs simulation time. 

The strength of the electric field was set at 6, 7, and 8 V nm−1. ES and EMI represent 

“electric spark” and “electromagnetic induction”, respectively. The rate of NM 

decomposition in each nanobomb is represented by translucent solid line. Vertical 

dashed lines indicate the bursting time of the CNT for each system. Copyright ©  2020, 

American Chemical Society. 

Figure 3.2.18 Schematic illustration of bursting mechanism of the (20,20) nanobomb under 6 Vnm−1 

electric field. Bursting of nanobomb (a) under electric spark, and (b) under 

electromagnetic induction. The atoms in CNT and NM molecules are represented by 
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stick and ball-and-stick models, respectively. The carbon, oxygen, nitrogen, and 

hydrogen atoms are colored in gray, red, blue, and white, respectively. The orange arrow 

represents the direction of electric field. Copyright ©  2020, American Chemical Society. 

Figure 3.3.1 Explosive and detonating molecules considered in this study. The carbon, oxygen, 

nitrogen, and hydrogen atoms are colored in gray, red, blue, and white, respectively. 

Copyright ©  2019, The Korean Society of Industrial and Engineering Chemistry. 

Published by Elsevier B.V. 

Figure 3.3.2 Relaxed bulk systems of pure NM and mixtures. (a) Pure NM bulk system. (b) HMX-

mixed bulk systems. (c) HNS-mixed bulk systems. (d) PETN-mixed bulk systems. (e) 

RDX-mixed bulk systems. (f) TNT-mixed bulk systems. The values of lattice parameter 

are written with arrows. NM, HMX, HNS, PETN, RDX, and TNT are colored in light 

gray, orange, blue, red, green, and magenta, respectively. Copyright ©  2019, The Korean 

Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

Figure 3.3.3 Front (left) and side views (right) of relaxed nanobomb models. (a) Pure NM nanobomb. 

(b) 25 wt% HMX-mixed nanobomb. (c) 50 wt% HMX-mixed nanobomb. (d) 25 wt% 

RDX-mixed nanobomb. (e) 50 wt% RDX-mixed nanobomb. The values of diameter and 

periodic length of CNT are written on the side view of (a), and the others are identical 

to (a). CNTs are colored in dark gray depicted with line and NM, HMX, and RDX are 

colored in light gray, orange, and green depicted with ball-and-stick. Copyright ©  2019, 

The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

Figure 3.3.4 Molecular fraction of NM in the bulk systems over simulation time for 200 ps. (a)–(c) 

Decomposition of 25 wt% mixture at (a) T = 2000 K, (b) T = 2500 K, and (c) T = 3000 

K. (d)–(f) Decomposition of 50 wt% mixture at (d) T = 2000 K, (e) T = 2500 K, and (f) 

T = 3000 K. Copyright ©  2019, The Korean Society of Industrial and Engineering 

Chemistry. Published by Elsevier B.V. 

Figure 3.3.5 PE curves of the bulk systems by the simulation time for 200 ps. (a)–(c) Decomposition 

of 25 wt% mixture at (a) T = 2000 K, (b) T = 2500 K, and (c) T = 3000 K. (d)–(f) 

Decomposition of 50 wt% mixture at (d) T = 2000 K, (e) T = 2500 K, and (f) T = 3000 

K. Copyright ©  2019, The Korean Society of Industrial and Engineering Chemistry. 

Published by Elsevier B.V. 

Figure 3.3.6 Fractions of produced water from the bulk systems by the simulation time for 200 ps. 

Decomposition of 25 wt% mixture at (a) T = 2000 K, (b) T = 2500 K, and (c) T = 3000 
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K. Decomposition of 50 wt% mixture at (d) T = 2000 K, (e) T = 2500 K, and (f) T = 

3000 K. Copyright ©  2019, The Korean Society of Industrial and Engineering Chemistry. 

Published by Elsevier B.V. 

Figure 3.3.7 Temperature profiles of the contents in nanobomb systems for heating temperatures of 

(a) T = 2000 K, (b) T = 2500 K, and (c) T = 3000 K. Vertical dashed lines in (c) represent 

the bursting time. Copyright ©  2019, The Korean Society of Industrial and Engineering 

Chemistry. Published by Elsevier B.V. 

Figure 3.3.8 Fractions of the contents in nanobomb at a heating temperature of 2000 K. (a) Fractions 

of NM during decomposition simulation (i.e. heat-up and decomposition periods). 

Fractions of NM and HMX of (b) 25 wt% and (c) 50 wt% HMX-mixed nanobomb during 

the heat-up period. Fractions of NM and RDX of (d) 25 wt% and (e) 50 wt% RDX-

mixed nanobomb during the heat-up period. For clarity, the heat-up and decomposition 

periods are represented by dashed and solid lines, respectively. Copyright ©  2019, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

Figure 3.3.9 Fractions of the contents in nanobomb at a heating temperature of 2500 K. (a) Fractions 

of NM during decomposition simulation (i.e. heat-up and decomposition periods). 

Fractions of NM and HMX of (b) 25 wt% and (c) 50 wt% HMX-mixed nanobomb during 

the heat-up period. Fractions of NM and RDX of (d) 25 wt% and (e) 50 wt% RDX-

mixed nanobomb during the heat-up period. For clarity, the heat-up and decomposition 

periods are represented by dashed and solid lines, respectively. Copyright ©  2019, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

Figure 3.3.10 Fractions of the contents in nanobomb at a heating temperature of 3000 K. (a) Fractions 

of NM during decomposition simulation (i.e. heat-up and decomposition periods). 

Fractions of NM and HMX of (b) 25 wt% and (c) 50 wt% HMX-mixed nanobomb during 

the heat-up period. Fractions of NM and RDX of (d) 25 wt% and (e) 50 wt% RDX-

mixed nanobomb during the heat-up period. For clarity, the heat-up and decomposition 

periods are represented by dashed and solid lines, respectively. Copyright ©  2019, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

Figure 3.3.11 Number of major reaction intermediates observed during the heat-up period in HMX-

mixed nanobombs. (a) 25 wt% HMX-mixed nanobomb with 2000 K heating. (b) 50 wt% 

HMX-mixed nanobomb with 2000 K heating. (c) 25 wt% HMX-mixed nanobomb with 

2500 K heating. (d) 50 wt% HMX-mixed nanobomb with 2500 K heating. (e) 25 wt% 
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HMX-mixed nanobomb with 3000 K heating. (f) 50 wt% HMX-mixed nanobomb with 

3000 K heating. Copyright ©  2019, The Korean Society of Industrial and Engineering 

Chemistry. Published by Elsevier B.V. 

Figure 3.3.12 Number of major reaction intermediates observed during the heat-up period in RDX-

mixed nanobombs. (a) 25 wt% RDX-mixed nanobomb with 2000 K heating. (b) 50 wt% 

RDX-mixed nanobomb with 2000 K heating. (c) 25 wt% RDX-mixed nanobomb with 

2500 K heating. (d) 50 wt% RDX-mixed nanobomb with 2500 K heating. (e) 25 wt% 

RDX-mixed nanobomb with 3000 K heating. (f) 50 wt% RDX-mixed nanobomb with 

3000 K heating. Copyright ©  2019, The Korean Society of Industrial and Engineering 

Chemistry. Published by Elsevier B.V. 

Figure 3.3.13 Mechanistic snapshots of NM and reactive intermediate (NO) made from HMX 

observed in reactive MD simulation. The number below each figure represents the 

simulation time obtained from the 50 wt% HMX-mixed nanobomb under a heating 

temperature of 2500 K. Color scheme is same as Figure 3.3.1. Copyright ©  2019, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

Figure 3.3.14 Number of water molecules produced from the nanobomb under heating temperatures 

of (a) 2000 K, (b) 2500 K, and (c) 3000 K. For the clear view, heat-up and decomposition 

periods are presented by dashed and solid lines, respectively. Copyright ©  2019, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

Figure 3.3.15 Mechanistic models in bursting with each physicochemical modification of CNT at the 

heating temperature of 3000 K: (a) pure-NM nanobomb, (b) 50 wt% HMX-mixed 

nanobomb, (c) 50 wt% RDX-mixed nanobomb. The three simulation snapshots in each 

system show the moments of the adsorption of internal products, pore generation, and 

expansion of the pore to burst, in chronological order. The carbon, oxygen, nitrogen, and 

hydrogen atoms are colored gray, red, blue, and white, respectively. Copyright ©  2019, 

The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 
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Chapter 4 

Figure 4.1   Li2CO3 model systems employed for reaction step calculation. (a)-(b) Unit cell structure 

(a) for monoclinic Li2CO3 (space group - C2/c), and slab model (b) of three layered 

Li2CO3 on (001) direction. Carbon, oxygen, and lithium atoms are colored in light gray, 

pink, and sky blue, respectively. For clear view in (b), top layer is presented by ball-and-

stick style, and bottom two layers, which are fixed in position, are displayed in stick 

style. Copyright ©  2020, Springer Nature. 

Figure 4.2  Optimized configurations of each molecule adsorbed on Ru (101) surface for discharge 

process. The empty region was treated by the COSMO method to impose the explicit 

molten salt phase. To balance an atomic charge, K+ ion was added in explicit solvent 

phase of each model wherever necessary. Nitrogen, carbon, oxygen, ruthenium, lithium, 

and potassium atoms are colored in blue, light gray, red, dark cyan, purple, and yellow, 

respectively. For the clear view, Ru atoms in the top layer were colored in mint green. 

Copyright ©  2020, Springer Nature. 

Figure 4.3 Comparison of the electrochemical reaction step and reaction step of Li2CO3 

decomposition on the surface at 100 °C. (a) Optimized configurations of the extraction 

of Li reactions. (b) Optimized configurations of the reaction mechanism between CO3
2− 

and NO2
− to produce CO2 and NO3

−. The states and relative energies are written in the 

top and bottom of each figure. NO2 IS, NO2 TS, and NO2 FS represent initial state, 

transition state, and final state, respectively. Nitrogen, potassium, carbon, oxygen, and 

lithium atoms are colored in green, purple, light gray, pink, and sky blue. And, for the 

clear view, the carbon, oxygen, and lithium atoms which participate in the reaction are 

colored in dark gray, red, and blue. Copyright ©  2020, Springer Nature. 

Figure 4.4   Reaction mechanism of Li2CO3 decomposition. (a) Reaction coordinate of one possible 

path a to produce CO2 and NO3
− (black line) at 100 °C. (b) Reaction coordinate of three 

plausible pathways (i.e. path a, path b to produce C2O5
2− and NO3

− (red line), and path c 

to produce C2O6
2− (blue line)) at 150 °C. (c) Optimized configurations on three plausible 

pathways for reaction step corresponding to (a) and (b). IS, IM, and FS in each reaction 

mechanism represent the initial state, intermediate state, and final state, respectively. 

The yellow dotted line is the boundary between the Li extraction step and the reaction 

step, and the numbers represent the relative free energies based on that of bare surface 

in (a) and (b). Nitrogen, potassium, carbon, oxygen, and lithium atoms are colored in 

green, purple, light gray, pink, and sky blue. And, for the clear view, the carbon, oxygen, 
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and lithium atoms which participate in the reaction are colored in dark gray, red, and 

blue. Arrow dotted lines represent the movement of molecules from state to state. For 

the clear view, the molecules except reacting molecules were made to be translucent in 

(c). Copyright ©  2020, Springer Nature. 

Figure 4.5  Experimental characterizations of Li−CO2 battery using quinary molten salt electrolyte. 

(a) DEMS result of the Li−CO2 cell containing quinary molten salt electrolyte at 

different operating temperatures during charge process. The green dots correspond to the 

theoretical amount of CO2 evolution. (b)-(c) High-resolution XPS Li1s (b) and N1s (c) 

spectra of the carbon cathodes after 1000 mAh g−1 discharge and charge processes. The 

black and red lines indicate the results at operating temperatures of 100 and 150 °C, 

respectively. Copyright ©  2020, Springer Nature. 

Figure 4.6 Optimized configurations of three plausible pathways for reaction step of Li2CO3 

decomposition. (a)-(c) Reaction path a (a), reaction path b (b), and reaction path c (c) 

which produce NO3
− and CO2, NO3

− and C2O5
2−, and C2O6

2−, respectively. The names of 

states are written on the top of each figure. IS, IM, TS, and FS in each reaction 

mechanism represent the initial state, intermediate state, transition state, and final state, 

respectively. Color scheme is same with Figure 4.3. Copyright ©  2020, Springer Nature.  

Figure 4.7 Free energy diagrams of the discharge process at 100 and 150 °C. (a)–(b) The 

electrochemical reaction starts from CO2. The black numbers in (a) and the red numbers 

in (b) below each energy state represent the relative free energies compared to each 

initial state at 100 and 150 °C. Oxygen, carbon, nitrogen, and lithium atoms are colored 

in red, gray, blue, and purple, respectively. Copyright ©  2020, Springer Nature. 

Figure 4.8 Free energy diagrams of discharge process from CO2 reduction to one Li2CO3 formation 

at 100 °C and 150 °C. Electrochemical reaction starts from CO2 at 100 °C (a) and 150 °C 

(b), respectively. The black and green numbers in each (a) and (b) represent the relative 

free energies compared to each initial state of molten salt only and Ru (101) surface. 

Oxygen, carbon, nitrogen, lithium atoms are colored in red, gray, blue, and purple, 

respectively. Red arrow and number represent the change of G in potential determining 

step. Copyright ©  2020, Springer Nature. 

Figure 4.9 Electrochemical performance of Li−CO2 battery cell with quinary-molten salt electrolyte. 

Profile of operating voltage and power density versus current density of the Li-CO2 
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battery at 150 °C with scan rate of 0.01 mA s−1 without Ru nanoparticle (a) and with Ru 

nanoparticle (b). Copyright ©  2020, Springer Nature. 

Figure 4.10 Atomic charges and configurations of CO2−Ru surface (a) and CO2
−−Ru surface (b). 

Integrated DOS of all Ru atoms in CO2−Ru surface and CO2
−−Ru surface (c). Copyright 

©  2020, Springer Nature. 
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Chapter 1. Introduction 

1.1 General Introduction 

At the present time, witnessing the 4th industrial revolution, the development of new materials is 

the most important factor in the various fields of industrial manufacturing. In particular, the 

development of nanomaterials has been one of the important issues in the last few decades since 

nanomaterials can exert novel properties that are superior to conventional macroscopic materials. 

Among applications of nanomaterials, their energy applications are especially important due to the 

increase in the demands of energies under the current circumstances of depletion of fossil fuels (e.g. 

crude oil and coal) (Figure 1.1).1 Nanomaterials can be utilized in energy applications such as energy 

generation (e.g. thermoelectric, piezoelectric, and triboelectric materials),2-4 energy conversion (e.g. 

fuel cells and solar cells),5,6 energy source (e.g. supercapacitors and batteries),7,8 energy transmission 

(e.g. superconductivity and insulating materials),9,10 and energy saving (e.g. nanolubricants, 

nanorefrigerants, and smart windows)11-13 with high energy efficiency and enhanced performance 

(Figure 1.2).14 Although nanomaterials have been widely applied in various fields of energy 

engineering, the level of development is still very low to meet the commercial demands. Therefore, the 

development of nanomaterials with improved performance and efficiency is continuously required. 

 

 

Figure 1.1 World consumption of energies reported in 2018. Culled from BP Statistical Review of 

World Energy.1 
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Figure 1.2 Various energy applications, such as energy generation, energy conversion, energy storage, 

energy saving and energy transmission. Reproduced from ref. 14 with permission from The Royal 

Society of Chemistry. Copyright ©  2020, Royal Society of Chemistry. 

 

1.2 Energetic Applications of Nanomaterials 

As mentioned above, nanomaterials can be applied to various energy applications to increase 

energy efficiency of commercial devices. Among them, in this dissertation, energetic nanomaterials and 

Li−air batteries, which are the representative cases of nanomaterials in energy applications, will be 

covered in detail in Chapter 1.2. 

1.2.1 Energetic Nanomaterials 

Energetic materials are materials that can show exothermic properties when reacted with thermal 

or mechanical external stimuli.15-18 However, the conventional energetic materials have some 

shortcomings as they have a relatively low energy density by limited enthalpy from their restricted size 

and form of species. Therefore, in order to maximize reaction enthalpy, energetic materials or energetic 

nanomaterials, at the nanoscale, have been developed in the recent decades. Energy density of devices 

with energetic nanomaterials can be maximized to 50 MJ/kg, which is much higher than those in 

classical energetic materials.19 Additionally, the burning rate in the combustion of energetic 
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nanomaterials is extremely rapid compared to conventional materials.20 For the fabrication of energetic 

nanomaterials with enhanced high energy density and kinetics, it is necessary to understand the reaction 

characteristics of energetic nanomaterials in detail. Recently, with the advancement of experimental 

equipment, analysis methods have been applied to observe the reaction process and structural analysis 

of phases generated during the reaction.21,22 However, it is still quite complex to interpret reaction 

characteristics (e.g. mass and thermal diffusion, phase transformation) of energetic nanomaterials via 

experimental methods at the atomic level. To complement this, theoretical interpretation methods, 

especially molecular simulation approaches, can be promising. 

 

Figure 1.3 Energetic nanomaterials. (a) reactive multilayer nanofoil (b) HEMs. Reproduced from ref. 

15 with permission from the PCCP Owner Societies and from ref. 16, 17, and 18 with permission from 

John Wiley and Sons, respectively. Copyright ©  2019, The Royal Society of Chemistry. Copyright ©  

2018, John Wiley and Sons. Copyright ©  2019, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

 

1.2.2 Li-CO2 Battery 

Rechargeable battery cells, represented by Li−ion batteries, are prospective materials that can 

perform in products by cutting-edge technologies such as portable electronic devices, electric motor 

vehicles, and energy storage systems.23-25 However, the energy densities of ordinary Li−ion batteries are 

insufficient to handle the rapidly increasing demand for commercial use.26 Therefore, rechargeable 

batteries with a much higher energy density are required. Li−air battery is the next-generation 

rechargeable battery that can meet the commercial demand, and Li−O2 battery is one of the 

representative Li−air batteries (Figure 1.4).27 Li−O2 batteries have ultra-high energy density (3860 mAh 

g−1)28 and are exceedingly light in weight because gas cathode consists of the battery, compared to those 

in the pre-existing Li−ion battery. However, as the battery cells continue to operate, by-products (e.g. 

lithium carbonate (Li2CO3)) from unintended reaction accumulate, reducing the capability and 

deteriorating the chemical stability of the battery cell.29-31 

(a) (b)

Explosives Propellants Pyrotechnics
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Figure 1.4 Rechargeable lithium−air batteries. Reproduced from ref. 27 with permission from John 

Wiley and Sons. Copyright ©  2019, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. 

In order to overcome these shortcomings, lithium-carbon dioxide (Li−CO2) batteries that can be 

charged and discharged through the decomposition and formation process of Li2CO3, unlike Li−O2 

batteries, have been recently developed (Figure 1.5).32 Li−CO2 batteries are advantageous as they have 

a high energy density and are eco-friendly since they can capture carbon dioxide (CO2), which is a cause 

of global warming, as they operate.33 Despite these promising advantages, Li−CO2 batteries have a 

limitation that they are forced to operate at a low current density due to their insulating properties and 

the insolubility of lithium carbonate, when aprotic solvent is used as electrolyte inside the battery. In 

addition, unwanted parasitic reactions occur, leading to a decrease in the efficiency of battery 

performance.34-37 In this respect, a smart design of a Li−CO2 batteries is essential to maintain their high 

energy density and avoid side reactions. For this, theoretical research on the reaction mechanistic 

domains on charge/discharge process of Li−CO2 battery cells is essential. 
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Figure 1.5 Schematic illustration of Li−CO2 battery. Reproduced from ref. 32 with permission from 

The Royal Society of Chemistry. Copyright ©  2019, Royal Society of Chemistry. 
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1.3 Multi-Scale Molecular Simulation Approach 

Solutions with computational simulations play a very powerful role in the development of 

nanomaterials for energy applications, with the connection between dramatic increase in computational 

performance and hardened theories over time. These solutions cannot only select nanomaterial 

candidates prior to production, but also screen the candidates that exhibit the most suitable physical and 

chemical properties, according to the product needs. In addition, they can be applied to trace backwards 

through the process of nanomaterials synthesis or fabrication through experiments. Among these 

theoretical approaches, multi-scale molecular simulation approach is an optimized method to 

investigate the physicochemical phenomena of nanomaterials at the atomic level based on quantum 

mechanics and statistical mechanics. Multi-scale molecular simulation approaches include density 

functional theory, molecular dynamics simulation, and reactive molecular dynamics simulation (Figure 

1.6 and Table 1.1). More details will be covered in the sub-sections below. 

 

 

 

Figure 1.6 Multi-scale molecular simulation approach on time and length scale. 
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Table 1.1. Multiscale simulation methods, applications, and simulation codes.  

Simulation methods Applications Simulation codes 

Density functional theory (DFT) 

(LDA, GGA, hybrid functional, etc.) 

Analysis of electronic structure 

and energy states of molecules 

ADF, CASTEP,  

DMol3, Gaussian, 

Quantum Espresso, VASP, 

etc. 

Molecular dynamics (MD) 

(Universal, COMPASS II,  

AMBER, OPLS, EAM, MEAM, etc.) 

Thermodynamics properties and 

collective dynamic properties 

FORCITE, GROMACS, 

GULP, LAMMPS, etc. 

Reactive molecular dynamics (RMD) 

(ReaxFF, AIREBO, etc.) 

Tracking of chemical reactions 

between molecules 

ADF, LAMMPS, GULP, 

etc. 

 

 

1.3.1 Density Functional Theory 

Density functional theory (DFT) is one of the first principle calculation methods based on quantum 

mechanics. DFT calculation is based on the principle of finding the initial electron density using the 

wave function of the electrons, calculating each potential term, and finally solving the Kohn-Sham 

equation from the given potential to find the electron density that minimizes the total energy of the 

system. The Kohn-Sham equation can be written as follows: 

2
2[ ( ) ( ) ( )] ( ) ( )

2
ext H XC i i iV r V r V r r r

m
  −  + + + =                (1.1) 

where i(r) is Kohn-Sham’s orbital,  is Planck’s constant, m is the mass of an electron, Vext(r) is 

external potential, VH(r) is Hartree potential, VXC(r) is exchange-correlation potential, and i(r) is 

eigenvalue.38 DFT calculation is an excellent analytical technique for predicting the stable structure of 

a system and analyzing chemical reactions because it can grasp the electronic structure of atoms. In the 

energy application of nanomaterials, DFT calculation can provide specific information, such as direct 

electron structure (e.g. molecular orbitals and density of states (DOS)) of the system. In addition, 

analysis on energetics can be done by comparing surface energy for stable plane of crystal and binding 

energy between different sets of molecules. Moreover, reaction mechanism can be predicted with the 

calculation of relative energy of reactants, intermediates, and products in each reaction pathway. 
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1.3.2 Molecular Dynamics 

Molecular dynamics (MD) simulation is a theoretical approach that calculates the forces acting on 

atoms and predicts their positions by integrating over time based on Newton’s equation of classical 

mechanics, that is, the velocity-Verlet algorithm. MD simulation describes the interaction between 

atoms through the difference of interatomic potentials, or a force field. Formalism of force field consists 

of the following terms,39,40 

   Etotal = Evalence + Enon-bond                          (1.2) 

where Evalence is the potential energy in bonded interactions and Enon-bond is the potential energy in non-

bond interactions, respectively. Evalence can be expressed as, 

 Evalence = Ebond + Eangle + Etorsion + Einversion                      (1.3) 

where Ebond is the energy for bond stretch, Eangle is the energy for angle bend, Etorsion is the energy for 

torsion, and Einversion is the energy for inversion, respectively. Enon-bond can be expressed as, 

Enon-bond = EvdW + ECoulomb                                       (1.4) 

where EvdW is the energy for van der Waals (vdW) interactions, and ECoulomb is the energy for electrostatic 

interactions (Coulombic interactions), respectively. 

Through MD simulation, it is possible to measure atomic momentum and to obtain thermodynamic 

properties and collective dynamic properties (e.g. mass diffusion, viscosity, and thermal conductivity) 

over time by integrating the position and velocity of the atoms constituting the nanomaterial. 

Additionally, in the force field called embedded atom method (EAM), total potential energy is expressed 

as follows, 

 
1

( ) ( )
2i i jtotal S i S S ij

i j i j

E F V r
 

= +                     (1.5) 

where 𝐹𝑆𝑖
 is the embedding energies of atom i into the host electron density, �̅�𝑖 is the host electron 

density, and 𝑉𝑆𝑖𝑆𝑗
(𝑟𝑖𝑗) is the pair interactions between atom i and j with chemical species Si and Sj.

41 

MD calculations based on EAM are mainly applied to the examination of physical and chemical 

properties of pure metal or metal alloy systems. With EAM force field, reaction properties of system 

can be additionally investigated with the mixing of atoms. 
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1.3.3 Reactive Molecular Dynamics 

Reactive molecular dynamics (RMD) simulation is a type of MD simulation, but unlike classical 

MD, it is possible to observe and track the reaction of molecules regardless of the initial connectivity 

of the atoms. In particular, in RMD simulation based on force field called ReaxFF, the formation and 

dissociation a of chemical bond can be observed. This is because ReaxFF is based on the bond order of 

covalent bonds between atoms and the information is updated by each simulation time step. Total 

potential energy of ReaxFF can be described as shown in equation (1.6),42-44 

Etotal = Ebond + Eover + Eangle + Etors + EvdWaals + ECoulomb + Especific               (1.6) 

where Ebond is the bond energy, Eover is an energy penalty to prevent over-coordination of each atom 

according to the rules of atomic valence, Eangle is the valence angle energy, Etors is the torsional angle 

energy, EvdWaals is the vdW energy, ECoulomb is the electrostatic energy, and Especific is the compensation 

energy for specific system, respectively. To be specific, the concept, bond order can be introduced as 

follows, 

,2 ,4 ,6

,1 0 ,3 0 ,5 0exp[ ( / ) ] exp[ ( / ) ] exp[ ( / ) ]bo bo bop p p

ij bo ij bo ij bo ijBO p r r p r r p r r  =  +  +      (1.7) 

where BO is the bond order between atom i and j, rij is the interatomic distance between atom i and j, 

r0 is the distance in equilibrium state, and p is the empirical parameter, respectively. According to this 

equation, since the bond order of each single bond (sigma bond), double bond (pi bond), or triple bond 

(double pi bond) depending on the distance between atoms is calculated at every time step, updated 

bond order affects bonded interactions and thus chemical reactions can be effectively tracked. For 

nanomaterials, RMD simulation can be used to grasp complex reactions in-silico over time which can 

occur on their surfaces and interfaces. Particularly, since explosive reactions in harsh conditions can 

also be simulated, reaction trajectories and following thermodynamic properties in energetic materials 

with high energy density (e.g. explosives) can be examined. 
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1.4 Outline of Dissertation 

Identifying and examining the reaction mechanistic domain of nanomaterials are one of the 

essential elements toward the development of advanced nanomaterials for energy applications. This 

doctoral dissertation includes a reaction mechanistic study of energetic nanomaterials and Li−CO2 

battery through a multi-scale molecular simulation approach. In Chapter 2, the reaction characteristics 

of Ni-Al nanolayers were theoretically quantified. In Chapter 3, we investigated explosion dynamics 

of nanobomb, where NM is encapsulated in CNT nanocontainer, under several conditions such as 

packing density of NM and ignition temperature, physicochemical modification of nanocontainer and 

external shocks, co-encapsulation of detonator and NM. In Chapter 4, we studied electrochemical 

reaction mechanism in each charge and discharge process of rechargeable Li−CO2 battery. 
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Chapter 2. Reactive Process of Ni-Al Alloys 

This chapter includes the following content: 

Jung, G. Y.†; Jeon, W. C.†; Lee, S.; Jung, S.-H.; Cho, S. G.; S. K. Kwak, J. Ind. Eng. Chem. 2018 57, 

290–296 (†: equally contributed). Reproduced with permission from Elsevier. Copyright © 2017, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

 

2.1 Introduction 

Reactive multilayer foils are exothermal materials self-propagated and reacted by thermal or 

mechanical stimuli from external environment.1-4 The reactive multilayer foils, which consist of 

alternating layers of two or more solid reactants, are manufactured by vapor deposition methods via 

sputtering,5-7 mechanical processing techniques such as rolling,8-10 compacting,11 and etc. They exhibit 

specific characteristics of large heat of mixing, fast burn rate, and high power,12 thus have many 

potential applications in military and industrial fields such as eco-friendly lead-free primers and 

detonators,13,14 projectiles,15,16 welding or joining,17,18 soldering,19 heat source for clinical usage,20 and 

etc. There have been many studies including fundamental ones because of their complex reaction 

pathways involving melting, mass and thermal diffusions, and phase transition in initiation and 

progression of self-propagating exothermic reactions.21 In particular, Ni-Al systems have attracted 

much attention because of high thermal and acidic stabilities in the formation process of intermetallic 

phase.22,23 Recently, several experiments made significant progresses of the layer systems in nanoscale 

in terms of heat of reactions and speed of reaction by using high-end characterization methods such as 

differential scanning calorimetry (DSC) and in-situ XRD.24-26 

However, experimental approach to the nanoscale system still has a limit to interpret the reaction 

phenomena originated from the atomistic level. In that respect, molecular simulation approach came 

into play; MD simulation is a suitable computational technique to observe physical and chemical 

phenomena in the atomic scale. In particular, by using the EAM potential developed by Purija and 

Mishin,27 fundamental mechanism of Ni-Al multilayer system was actively studied. For example, Zhao 

et al. elucidated a mechanism of shock-induced alloying reaction involving pore effects.20 Cherukara et 

al. studied exothermicity, reaction speed, and structural change in terms of temperature, periodic length, 

and defects.28 A few important factors such as stoichiometry and ignition temperature have a strong 

influence on reaction but still crucial data are largely deficient in this area. Especially, the quantitative 

correlation between structural properties and reaction characteristic is very much critical information 

yet missing. 
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There are representative phases in Ni-Al binary systems, which are Ni3Al, NiAl, and NiAl3.
29 Out 

of them, B2-NiAl phase is energetically the most stable while Al-rich NiAl3 is unstable.27 Thus, by the 

change of stoichiometry, the product phase is expected to be varied. In this study, therefore, we set up 

the Ni-Al bulk nanolayers to have three stoichiometric ratios of NiAl (1:1), Ni3Al (3:1), and NiAl3 (1:3), 

where the bilayer thickness are changed, under the variation of ignition temperature. The reaction 

thermodynamics of model systems was explored in terms of the heat of reaction, which was obtained 

by estimating the enthalpy change in the reaction process. Also, the reaction kinetics was investigated 

by estimating the reaction time and diffusion coefficients as a function of ignition temperature and 

bilayer thickness. In summary, the reaction kinetics and thermodynamics were quantitatively 

investigated in terms of the variation of ignition temperature, stoichiometry, and bilayer thickness in 

Ni-Al nanolayers.  

 

2.2 Simulation Details 

Figure 2.1 shows the model systems of Ni-Al nanolayers used in the MD simulations. The Ni-Al 

nanolayers were constructed to confront the most stable (111) surfaces of Ni and Al.30 Two supercells 

of Ni 6×10×1 and Al 5×9×1 were first put together in order to minimize the lattice mismatch (i.e. ~ 

2 %). Then, by controlling the number of atoms, three different stoichiometric systems (i.e. NiAl, Ni3Al, 

and NiAl3) were modelled to have the different values of bilayer thickness (i.e. 10, 20, and 30 nm) in z-

direction, which contain from 17280 to 63360 atoms. Note that all lengths in x- and y-directions were 

kept for 5.1 nm. The basic information of the model systems used in MD simulation is provided in 

Table 2.1. 
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Figure 2.1 Schematics of model systems used in MD simulations. Three stoichiometric ratios (i.e. NiAl, 

Ni3Al, and NiAl3) with the variation of bilayer thickness (i.e. 10, 20, and 30 nm) were considered. Ni 

and Al atoms are colored as dark blue and pink, respectively. Copyright ©  2017, The Korean Society 

of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

For MD simulation, we have used EAM potential developed by Purija and Mishin27 in the 

LAMMPS package.31 In order to mimic heating and igniting processes, NVT (i.e. canonical – constant 

temperature) and NVE (i.e. microcanonical – constant energy) ensembles were consecutively applied in 

the MD simulation. First, MD with NVT ensemble was run for initial 5 ps at 1000, 1400, and 1700 K. 

This step can be considered as a thermal shock, starting from no mixing at the interface. The Nose-

Hoover thermostat with coupling constants of 0.1 ps was used to control the temperature. Next, MD 

with NVE ensemble was run until the temperature and pressure values converged, indicating the 

alloying reaction was completed. In this calculation process, thermal energy accumulated in Ni and Al 

atoms in the heating (NVT MD) process was transformed into kinetic energy, which in turn triggers 

mixing of Ni and Al atoms, at conserved total energy. The time step for all MD simulation was set to 

be 1 fs.  

When thermal shock is applied to the Ni-Al nanolayers, temperature rises by mixing of Ni and Al, 

which undergoes phase transition from solid to liquid. In order to quantify the reaction kinetics, the 

reaction time () was estimated at the point where a constant final temperature was reached, which is 
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the average temperature for last 0.1 ns during MD simulation. Subsequently, the ’s were compared by 

varying the ignition temperature, bilayer thickness, and stoichiometry. 

 

Table 2.1 Summary of model systems used in MD simulations. Three stoichiometric ratios (i.e. NiAl, 

Ni3Al, and NiAl3) with the variation of bilayer thicknesses (i.e. 10, 20, and 30 nm) and ignition 

temperatures (i.e. 1000, 1400, and 1700 K) were considered. Copyright ©  2017, The Korean Society of 

Industrial and Engineering Chemistry. Published by Elsevier B.V. 

No. 

Ignition  
temperature 

(Ti, K) 
Stoichiometry 

Final 
 temperature 

(Tf, K) 

Cell dimensions 

(nm
3
) 

Total number 

of atoms 

1 

1000 

NiAl 

1955.6 5.1 × 5.1 × 10.4 19320 

2 1986.5 5.1 × 5.1 × 20.9 38640 

3 2030.1 5.1 × 5.1 × 31.0 57600 

4 
Ni3Al 

1701.3 5.1 × 5.1 × 10.4 21720 

5 1452.2 5.1 × 5.1 × 21.1 43440 

6 1273.0 5.1 × 5.1 × 30.6 63360 

7 
NiAl3 

1520.8 5.1 × 5.1 × 10.2 17280 

8 1551.9 5.1 × 5.1 × 20.5 34560 

9 1577.7 5.1 × 5.1 × 30.8 51840 

10 

1400 

NiAl 

2371.1 5.1 × 5.1 × 10.4 19320 

11 2416.7 5.1 × 5.1 × 20.9 38640 

12 2431.8 5.1 × 5.1 × 31.0 57600 

13 
Ni3Al 

2067.6 5.1 × 5.1 × 10.4 21720 

14 2064.7 5.1 × 5.1 × 21.1 43440 

15 2042.4 5.1 × 5.1 × 30.6 63360 

16 
NiAl3 

1917.2 5.1 × 5.1 × 10.2 17280 

17 1940.1 5.1 × 5.1 × 20.5 34560 

18 1980.0 5.1 × 5.1 × 30.8 51840 

19 

1700 

NiAl 

2784.6 5.1 × 5.1 × 10.4 19320 

20 2718.3 5.1 × 5.1 × 20.9 38640 

21 2734.5 5.1 × 5.1 × 31.0 57600 

22 
Ni3Al 

2366.0 5.1 × 5.1 × 10.4 21720 

23 2356.5 5.1 × 5.1 × 21.1 43440 

24 2281.8 5.1 × 5.1 × 30.6 63360 

25 

NiAl3 

2316.3 5.1 × 5.1 × 10.2 17280 

26 2261.1 5.1 × 5.1 × 20.5 34560 

27 2299.9 5.1 × 5.1 × 30.8 51840 
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2.3 Results and Discussion 

2.3.1 Reaction Mechanism by Stoichiometry 

Figure 2.2 shows the mixing behaviour in the reaction process of NiAl 20 nm system with the 

ignition temperature of 1000 K. A series of snapshots from NVE MD simulation are shown in Figure 

2.2(a), and the time evolution of overall temperature and pressure in the system is shown in Figure 2.2 

(b). As reported in previous studies,32-34 the exothermic reaction pathway of Ni-Al nanolayers can be 

discretely divided into several reaction steps. Initially, the mixing between Ni and Al occurred at the 

interface and during this stage, the temperature and pressure changed very slowly. In the second stage 

(from 3.15 ns), the Al region began to melt with a continuous rise in temperature and the rapid increase 

in pressure. Note that since the total volume of the system is fixed, the structural expansion by melting 

induces the pressure to increase, as previously reported by Zhao et al..34 At 5.35 ns, a sudden dip of 

temperature and a pronounced peak of pressure were observed, indicating the melting transition in the 

Al region. 

In the next step, as the Ni atoms gradually diffused into the liquid Al region, the alloying reaction 

was significantly accelerated, confirmed by a rapid rise in temperature and a sharp decrease in the 

pressure. Simultaneously, a stable B2-NiAl phase (i.e. ordered equiatomic bcc phase) was locally 

formed at the interface and served as a barrier to prevent the diffusion of Ni into Al (~ 7.73 ns). However, 

a continuous temperature rise due to alloying reaction caused the solid Ni and B2-NiAl phases to melt. 

At 8.16 ns, the interdiffusion of Ni and Al occurred in the liquid state, leading to the more rapid increases 

in temperature. Finally, at 10 ns, it was confirmed that the fully mixed state of NiAl liquid phase was 

generated by convergence of temperature and pressure values. 

Figure 2.2(c) shows the time evolution of relative changes in total internal energy (Etot), potential 

energy (Epot), kinetic energy (Ekin), and enthalpy (H). In the NVE ensemble, since the total internal 

energy and the volume of system are fixed, the pressure changes dependently with energy release. The 

relative changes of the potential energy and kinetic energy in the reaction process decreased and 

increased by exactly the same amount (Epot = -Ekin). In addition, the enthalpy change was apparently 

depended on the pressure (H = VP) and showed a negative change indicating the exothermic reaction, 

which was estimated as the heat of reactions (to be discussed later). 
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Figure 2.2 (a) MD simulation snapshots for NiAl stoichiometric system with 20 nm bilayer thickness 

at the ignition temperature of 1000 K. Light yellow region at 7.73 ns represents the B2-NiAl crystalline 

phase at the interface. (b) The time evolution of temperature and pressure of NiAl system during MD 

simulation for 10 ns. The blue arrows represent the sudden dip and pronounced peak in temperature and 

pressure, respectively. (c) The time evolution of relative changes in total internal energy (Etot), 

potential energy (Epot), kinetic energy (Ekin), and enthalpy (H) of NiAl stoichiometric system during 

the reaction. Copyright ©  2017, The Korean Society of Industrial and Engineering Chemistry. 

Published by Elsevier B.V. 

 

Figure 2.3 shows the mixing behaviour in the reaction process of Ni- and Al-rich systems of Ni-

Al nanolayers (i.e. Ni3Al and NiAl3) with the ignition temperature of 1000 K. In analogous with NiAl 

stoichiometry, the overall alloying reaction was discretely divided into a series of reaction steps and 

followed a similar sequence of reactions. After the initial mixing occurred at the interface, the Al layer 

fully melted, followed by diffusion of Ni atoms into liquid Al, formation of B2-NiAl boundary, and 

interdiffusion of Ni and Al in the liquid state. 
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Figure 2.3 (a) MD simulation snapshots for Ni3Al stoichiometric system with 20 nm bilayer thickness 

at the ignition temperature of 1000 K. (b) The time evolution of temperature and pressure of Ni3Al 

system during MD simulation for 10 ns. The blue arrows represent the sudden dip and pronounced peak 

in temperature and pressure, respectively. Light yellow regions at 5.96 and 10.0 ns represent the B2-

NiAl crystalline phase at the interface. (c) MD simulation snapshots for NiAl3 stoichiometric system 

with 20 nm bilayer thickness at the ignition temperature of 1000 K. Light yellow regions at 8.56 and 

10.8 ns represent the B2-NiAl crystalline phase at the interface. (d) The time evolution of temperature 

and pressure of NiAl3 system during MD simulation for 15 ns. Copyright ©  2017, The Korean Society 

of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

 

For Ni-rich system (i.e. Ni3Al), the sudden dip and pronounced peak in the temperature and 

pressure were found early (3.56 ns), indicating the melting transition of Al layer (Figure 2.3(a), (b)). 

Note that since the Al ratio was not large, the induction time required to Al melting process was much 

shorter. Subsequently, Ni diffused into the liquid Al, but the reaction rate was relatively slow due to 

large portion of Ni. As a result, the local stoichiometric ratio at the interface became closer to equiatomic, 

resulting in the crystallization of B2-NiAl boundary all across the interface (5.96 ns). After all, Ni 

diffusion failed to proceed and finally the alloying reaction was terminated with partially mixed state 

(10 ns). 
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For Al-rich system (i.e. NiAl3), the induction time required for Al melting was prolonged due to 

the high amount of Al, confirmed by a late occurrence of sudden dip of temperature and pronounced 

peak of pressure (8.56 ns). However, unlike the case of Ni-rich system, the B2-NiAl boundary was only 

locally formed at the interface due to faster reaction rate, and thus the diffusion of Ni into Al occurs 

unceasingly, reaching a fully mixed state of the NiAl3 liquid phase (15 ns). Therefore, it is found that 

the exothermic reaction in the Ni-Al nanolayers proceeds through similar reaction pathways irrespective 

of stoichiometry. However, the reaction rate and extents of reaction truly changed by stoichiometry even 

at the same ignition temperature. 

 

2.3.2 Reaction Characteristics by Ignition Temperature and Bilayer thickness 

Figure 2.4(a)-(c) show the time evolution of temperature for three stoichiometric systems of Ni-

Al nanolayers with 20 nm bilayer thickness by varying the ignition temperature (i.e. 1000, 1400, and 

1700 K). Overall, the largest increase of reaction temperature was found for NiAl while similar 

increases were found for Ni3Al and NiAl3 with different reaction speeds. At 1000 K (Figure 2.4(a)), 

the reaction times were remarkably slow due to the existence of induction time required for Al melting. 

On the other hand, at above 1400 K (Figure 2.4(b), (c)), since Al layer melted rapidly at the early stage, 

the alloying reaction was easily accelerated by interdiffusion of Ni and Al in the liquid state. Figure 

2.4(d) shows the reaction time () as a function of the reciprocal values of ignition temperature (1/Ti). 

As expected, the reaction time decreased rapidly with increasing ignition temperature. Interestingly, for 

Al-rich NiAl3 system, the reaction time was the slowest at 1000 K due to the longer induction time for 

Al melting, but at above 1400 K, it became faster than other stoichiometric systems due to the greater 

diffusivity of Al. Thus, as the Al ratio became larger, the variation width of reaction time with respect 

to the temperature gradually increased. 
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Figure 2.4. (a)-(c) The time evolution of temperature for three stoichiometric Ni-Al nanolayers (i.e. 

NiAl, Ni3Al, and NiAl3) with 20 nm bilayer thickness at different ignition temperatures (Ti) of (a) 1000 

K, (b) 1400 K, and (c) 1700 K. Dotted lines and circles represent the reaction times estimated at the 

asymptotic final temperatures. (d) The reaction time () as a function of reciprocal values of ignition 

temperature (1/Ti) for three stoichiometric Ni-Al nanolayers with 20 nm bilayer thickness. Copyright ©  

2017, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

 

Figure 2.5(a)-(c) show the time evolution of temperature for three stoichiometric systems of Ni-

Al nanolayers by varying the bilayer thickness (i.e. 10, 20, and 30 nm) at the ignition temperature of 

1000 K. Except for Ni3Al, the temperature rise was similar for all ranges of bilayer thickness. Note that 

in Ni3Al, as the bilayer thickness increased, the temperature rise was considerably reduced since the 

fraction of unreacted Ni region increased due to the formation of B2-NiAl boundary. Figure 2.5(d) 

shows the reaction time as a function of bilayer thickness. The reaction time gradually increased with 

increasing bilayer thicknesses due to the increasing amount of Ni and Al in the system. However, it was 

difficult to corroborate the quantitative relationship between reaction time and stoichiometry at 1000 K 

since the reaction time of Ni3Al might be underestimated due to the partially mixed state. Thus, we also 
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compared the reaction time as a function of bilayer thicknesses at above 1400 K (Figure 2.6). As a 

result, the reaction time was found to be shorter in order of increasing Al ratio, due to higher diffusivity 

of Al compared to Ni.28 

 

 

Figure 2.5 (a)-(c) The time evolution of temperature for three stoichiometric systems of Ni-Al 

nanolayers including (a) NiAl, (b) Ni3Al, and (c) NiAl3 by varying the bilayer thicknesses (i.e. 10, 20, 

and 30 nm). Dotted lines and circles represent the reaction times estimated at the asymptotic final 

temperatures. (d) The reaction time () as a function of bilayer thickness of three stoichiometric Ni-Al 

nanolayers at the ignition temperature of 1000 K. Copyright ©  2017, The Korean Society of Industrial 

and Engineering Chemistry. Published by Elsevier B.V. 
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Figure 2.6 The reaction time () as a function of bilayer thickness for three stoichiometric sy

stems of Ni-Al nanolayers at the ignition temperature of (a) 1400 K and (b) 1700 K.  

Copyright © 2017, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevi

er B.V. 

 

 

2.3.3 Reaction Thermodynamics and Kinetics 

To investigate the reaction thermodynamics of Ni-Al nanolayers, we compared the heats of 

reactions with different bilayer thicknesses and ignition temperatures (Figure 2.7). The heats of 

reactions (-H) were determined by estimating the absolute changes in total enthalpy during reactions 

in the NVE MD simulations. Several features have been deduced from the thermodynamic analysis of 

various temperatures and structural conditions. First, the general tendency of heats of reactions with 

stoichiometry was found in the order of NiAl, Ni3Al, and NiAl3. It was also agreed well with the trends 

of formation energy for crystalline phases corresponding to each stoichiometric ratio, as previously 

calculated by Purija and Mishin (i.e. -0.61 eV for B2-NiAl, -0.45 eV for L12-Ni3Al, and -0.27 eV for 

L12-NiAl3, respectively).27 Note that the formation energies were represented as the dotted lines in 

Figure 2.7 by converting the units to J/g. Further, the heats of reactions exhibited relatively similar 

values irrespective of ignition temperature and bilayer thicknesses, except for Ni3Al. It implied that 

energy release during exothermic reaction was more directly affected by stoichiometric change than the 

variation of thickness or temperature. Notably, for Ni3Al systems at the ignition temperature of 1000 K 

(Figure 2.7(a)), the heats of reaction were substantially reduced with increasing bilayer thickness since 

the extents of reaction decreased due to the crystallization of B2-NiAl boundary at the interface. 
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Figure 2.7 The heats of reactions for three stoichiometric systems of Ni-Al nanolayers (i.e. NiAl, Ni3Al, 

and NiAl3) with different ignition temperatures at (a) 1000 K, (b) 1400 K, and (c) 1700 K. ‘NiAl (expt.)’ 

denotes the reference values from experimental DSC traces,24 represented as white boxes with an error 

bar. The black solid lines represent the fitting lines of experimental values. Note that the experimental 

values were normalized by factor 2 to be compared with same scale in the MD simulation. ‘NiAl (calc.)’, 

‘Ni3Al (calc.)’, and ‘NiAl3 (calc.)’ denotes the calculated values from our MD simulations for three 

stoichiometric systems. The black, blue, and red dotted lines represent the formation energies of 

crystalline phases corresponding to each stoichiometric ratio, previously calculated by Purija and 

Mishin27 (i.e. -0.61 eV for B2-NiAl, -0.45 eV for L12-Ni3Al, and -0.27 eV for L12-NiAl3, respectively). 

Copyright ©  2017, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier 

B.V. 

  

When we compared the heats of reactions from our MD simulations with those from experimental 

DSC traces,24 the increasing tendency with increasing bilayer thickness was found in the experimental 

values (available data was found only for NiAl). The reason of this increasing trend is due to the 

existence of premixed regions that forms during deposition, which reduces the overall exothermicity of 

alloying reaction.24 As the bilayer thickness decreased, the volume fraction of premixed region became 

larger, resulting in the increasing trends for heat of reaction. Although the heat of reactions of NiAl 

obtained from MD simulations were relatively larger than experimental values, it is reasonable to 

speculate that they were within in a similar range considering the premixed region was not employed 

in the MD simulation. 

Next, in order to quantify the reaction kinetics of Ni-Al nanolayers, the reaction times of three 

stoichiometric systems were estimated for different ignition temperatures and bilayer thicknesses. The 

reaction time () can be expressed as a function of the square of transport distance (), which is a half 

of bilayer thickness, by following the equation reported by Cherukara et al.,28 
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 2 D  =   (2.1) 

where D is the diffusion coefficient and  is an exponent value which is close to 1. By fitting the MD 

simulation data to above equation, the correlation plots between  and  were obtained (Figure 2.8(a)-

(c)). In general, the reaction time () increases as Ti decreases and  increases. In addition, the exponent 

 exhibited similar values with 1 (between 1.05 and 1.28), indicating the transport nature was not 

severely affected by stoichiometry. It became more closer to 1 when the Ti increased, implying that the 

mass diffusion behaviour occurred more ideally at higher temperature.  

From the slope between  and , the diffusion coefficients (D) can be obtained, while fixing 

the exponent  = 1.28 Also, D can be described by following Arrhenius relation,  

 0 exp aE
D D

kT

− 
=  

 
 (2.2) 

where Ea is the activation energy, k is the Boltzmann constant, T is the absolute temperature, and D0 is 

the Arrhenius pre-exponential factor. Figure 2.8(d) shows the Arrhenius plot between the reciprocal 

values of ignition temperatures (1/Ti) and diffusion coefficient in log scale (ln D). Overall, as the portion 

of Al ratio becomes larger, the diffusivity becomes faster. However, at the same time, the variation 

width of diffusivity with respect to temperature became much larger, leading to the higher activation 

energy to react (i.e. 56.5 kJ/mol for NiAl3, 46.0 kJ/mol for NiAl, and 44.8 kJ/mol for Ni3Al, 

respectively). This result is attributed to the induction time during Al melting process. At low 

temperature (1000 K), the longer induction time is required as the Al ratio becomes larger, slowing 

down the diffusivity of Al-rich system. Meanwhile, at higher temperature (>1400 K), the induction time 

becomes very short since the diffusion of liquid Al occurs immediately, leading to the higher diffusivity 

for Al-rich system. To sum up with the above results, for Ni-rich systems (i.e. Ni3Al), the exothermicity 

can be hindered by the crystallization of B2-NiAl boundary at the interface. Meanwhile, for Al-rich 

system (i.e. NiAl3), the reaction kinetics were limited by the induction time during Al melting process. 

Based on the results, NiAl was found to be the best stoichiometry in respect of both thermodynamic 

and kinetic points of view.  
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Figure 2.8 (a)-(c) The correlation plots between reaction time () and squares of transport distance () 

of three stoichiometric systems of Ni-Al nanolayers, including (a) NiAl, (b) Ni3Al, and (c) NiAl3. Three 

different ignition temperatures (i.e. 1000, 1400, and 1700 K) were considered. (d) Arrhenius plots 

between reciprocal values of ignition temperatures (1/Ti) and diffusion coefficients in a log scale (ln D). 

The activations energies from the slopes are labelled in the figure. Energy values are in kJ/mol. 

Copyright ©  2017, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier 

B.V. 
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2.4 Conclusion 

In this study, the reaction characteristics of Ni-Al nanolayers (i.e. temperature rise, reaction time, 

heat of reaction, diffusion coefficient, and activation energy) were theoretically investigated by MD 

simulation. First, we explored the reaction mechanisms of Ni-Al nanolayers by stoichiometry. 

Interestingly, the sequence of the overall reaction mechanism by stoichiometry was found to be similar, 

but the reaction rate and the extents of intermixing were changed even at the same ignition temperature. 

Next, we also compared the reaction characteristics by varying the ignition temperatures and bilayer 

thicknesses. While the temperature rises remained constant, the reaction times decreased with 

increasing ignition temperature or decreasing the bilayer thicknesses. Lastly, the reaction 

thermodynamics and kinetics in terms of heats of reactions, diffusion coefficients, and activation 

energies were investigated. The overall reaction thermodynamics was found to be more directly affected 

by stoichiometry than the changes of thickness or ignition temperatures. For reaction kinetics, since the 

temperature dependence of diffusivity was crucially related to the Al ratio, the activation energy was 

found to be maximized in the Al-rich system. Thus, in both thermodynamic and kinetic point of view, 

NiAl was found to be the best stoichiometry for Ni-Al nanolayers. In conclusion, the reaction 

characteristics of Ni-Al nanolayers were theoretically quantified by various structural and reaction 

conditions (i.e. stoichiometry, bilayer thickness, and ignition temperature). From these fundamental 

understanding about the underlying complex reaction phenomena, we expect that these theoretical 

quantification of reaction characteristics will provide an insight into manufacturing more advanced 

nanolayer systems. 
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Chapter 3. Explosion Dynamics of Nanobomb 

3.1 Effect of Packing Density of Nitromethane and Ignition Temperature 

This chapter includes the published contents: 

Lee, J. H.†; Kim, J. C.†; Jeon, W. C.†; Cho, S. G.; Kwak, S. K. J. Phys. Chem. C 2017, 121, 6415-6423 

(†: equally contributed). Reprinted with permission from J. Phys. Chem. C 2017, 121, 6415–6423. 

Copyright © 2017, American Chemical Society. 

___________________________________________________________________________ 

 

3.1.1 Introduction 

Nitromethane (NM), which is the simplest type of nitro compound in high explosive energetic 

material (HE), has been used for years in explosion-related applications. Many researchers have 

conducted experimental and theoretical studies on, to name a few, optical1 and thermal decompositions2-

8 as well as phase transitions including melting9,10 and solidification11 (or crystallization). Recently, 

specific interest was begun on the behavior of NM in confinement environment by focusing on the 

decomposition activity. For instances, Liu et al.7 conducted ab initio molecular dynamics (AIMD) to 

show fast decomposition of NM between functionalized graphene sheets. Smeu et al.12 showed the 

stabilizations of several HEs (e.g. FOX-7, RDX, HMX etc.) encapsulated in carbon nanotube (CNT) 

and graphene bilayer by DFT calculations. Especially, via MD, NM confined in CNT was found to 

undergo special intermolecular arrangement13,14 and to have low activation energy for reaction.15,16 In a 

way, the idea of nanobomb, which is composed of nanocontainer and enclosed HEs, has been already 

shown17 but it was not concretely realized even in in silico studies. Under the encapsulation, HE is 

expected to be intact from outside by nanocontainer, which prohibits the change of chemical properties 

of confined molecules, at normal conditions. However, when in use, the effect of explosion would be 

enhanced by the built-up pressure (i.e. by decomposition of HE) inside before the burst of nanobomb. 

In order to model the conceptual nanobomb, we define a nanocontainer, which is a small container 

and can encapsulate a few tens to hundreds of molecules. A promising nanocontainer, CNT, is a good 

candidate because of its excellent thermal and mechanical properties.18 In particular, it can endure 

internally developed pressures of 30−100 GPa because of high axial tensile strength in intrinsic 

structural stability.19 Furthermore, CNT with cap is expected to transport encapsulated materials safely 

by making isolated conditions.20 In this study, therefore, we conceptually constructed a nanobomb with 

NM and CNT as the explosive and nanocontainer, respectively. 
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In general, thermal decompositions of HE materials follow very complex reaction mechanisms, 

which are very difficult to trace at harsh condition of high pressure and temperature under confined 

environment. Also, there have been few data of confined NM on fundamental knowledge of 

decomposition phenomena including detailed interaction mechanism and information on various 

intermediates and products. In order to capture the desired information, temporal and methodological 

limits of generic MD and DFT must be lifted. To do so, reactive force field (denoted as ReaxFF) 

developed by van Duin et al.21 was considered for this study since it can handle reactive dynamics of 

atoms via the bond order information describing the interatomic pair force. So far, reactive behaviors 

of HEs such as NM,5, 6 TNT,22, 23 and RDX24, 25 have been studied with ReaxFF. Strachan et al.24 reported 

shock-induced decomposition mechanism of RDX thin layer. Han et al.5 and Rom et al.6 studied the 

decomposition pathway of compressed NM. Recently, compression-dependent decomposition product, 

namely Buckybomb (dodecanitrofullerene, C60(NO2)12), was investigated by nonequilibrium reactive 

MD (NERMD) simulation.26 In this regard, ReaxFF, which can provide details of dynamics of the 

reactive system, was adopted to the study of the nonequilibrium behavior of nanobomb. 

 

3.1.2 Simulation Details 

First, we have modeled an explosive nanocontainer, CNT, via generic MD and grand canonical 

Monte Carlo (GCMC) simulations (see Chapter 3.1.2.1), where COMPASS force field27,28 was used 

via Materials Studio 2016.29 Especially, GCMC was employed to confirm the number of NMs that can 

be stably packed into the CNT by computing required energies for the insertion and deletion of NMs 

(Table 3.1.1). After the preparation of nanobomb including NM and CNT, NERMD simulation with 

ReaxFF was conducted for the decomposition of initially heated system. For this calculation, we used 

LAMMPS program.30,31 Potential energy parameters were taken from Rom et al.’s work.6 The internal 

density of NM in the nanocontainer and initial heating temperature were varied to investigate their 

effects on the explosion, where the decomposition mechanism and bursting phenomena were 

investigated. The bursting mechanism of the nanobomb was confirmed by investigating all 

configurations, which were generated during simulation. The procedure of the theoretical study is 

discussed in more detail below.  
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3.1.2.1 Criteria of Proper Diameter of Nanobomb 

As an initial step prior to system modeling, we chose the appropriate size (radius or chiral index) 

of the CNT to contain enough NM molecules to be ruptured itself by the heat released from the internally 

contained NM. The number of NM loaded in the unit length of CNT with each radius was confirmed 

through the GCMC simulation, and the maximum heat of reaction was calculated. Reaction enthalpy of 

NM was estimated when NM was exactly decomposed in the form of gas molecules.6 

 
3 2 2 2 2 Rxn

1 1CH NO CO  +  N   +  H O  +  H ΔH = -67 kcal/mol
2 2

→    (3.1.1) 

Bond dissociation energy (BDE) of the C-C bond in CNT was calculated using following form of 

the overall reaction 

*

2 2 RxnCNT  +  O CNT   +  CO  ΔH = -63.703 kcal/mol→        (3.1.2) 

CNT* referred to the CNT that one carbon was removed, and the above heat of reaction was 

obtained from DFT calculation using generalized gradient approximation (GGA) and 

Perdew−Burke−Ernzerhof (PBE)32 functional. The BDE of the O=O bond in O2 and the C-O bond in 

CO2 are known as 117.577 kcal/mol and 353.919 kcal/mol, respectively. Thus, the above equation can 

be separated into the following three elementary reactions. 

2 Rxn

2 Rxn

*

Rxn

        O 2O        ΔH =  117.577 kcal/mol

   C  +  2O CO       ΔH = -707.838 kcal/mol

CNT CNT   +  C    ΔH = 3 BDE  kcal/molc c−

→

→

→ 

        (3.1.3) 

Since three C-C bonds are broken when one carbon atom is separated from the CNT, the BDE of 

the C-C bond of CNT is calculated to be about 218 kcal/mol. This means that 218 kcal/mol is required 

to cut one side of the armchair CNT with a width of one C-C bond in the zigzag direction. The number 

of NM that can be loaded into CNT with one C-C bond width for each chiral index is estimated by 

GCMC simulation, and the maximum reaction heat of each number is calculated (Table 3.1.1). From 

our calculation, over (17,17) armchair CNT can be self-decomposed by the heat emitted from 

encapsulated NM. However, in a real system, decomposition takes place through various pathways, and 

a product having a high energy can be generated as a final product, so the total heat of reaction is 

expected to be reduced. Therefore, (20,20) CNT was selected as the nanocontainer that encapsulates 

proper amount of NM in this study. 
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Table 3.1.1. GCMC results for system modeling. Copyright © 2017, American Chemical Society. 

Chiral index # of loaded NM (/1 bond CNT) Ideal heat of reaction 
(6, 6) 0.209 13.984 
(7, 7) 0.278 18.611 
(8, 8) 0.389 26.056 
(9, 9) 0.659 44.183 

(10, 10) 0.884 59.224 
(11, 11) 1.156 77.471 
(12, 12) 1.485 99.491 
(13, 13) 1.813 121.482 
(14, 14) 2.189 146.663 
(15, 15) 2.567 171.996 
(16, 16) 2.996 200.747 
(17, 17) 3.650 244.550 
(18, 18) 4.037 270.469 
(19, 19) 4.690 314.200 
(20, 20) 5.335 357.472 

 

 

3.1.2.2 Modeling of nanocontainer 

From the result of GCMC, (20,20) CNT has been selected as a nanocontainer for the nanobomb 

system. Since we have defined the nanocontainer as an isolated molecule with a finite length that can 

completely enclose a few hundreds of NM, it is necessary to consider the cap structure, which has been 

frequently ignored in other study due to the high aspect ratio of CNT.33,34 For finding the right cap 

structure, the isolated pentagon rule is the most applicable one, which indicates whether the arrangement 

of adjacent pentagons is energetically favored or not. There have been previous studies using this rule33-

38 and among them, the solution of Thomson problem38 was employed to construct the reasonable cap 

of the CNT. In a brief introduction of Thomson’s method, it is called tube Thomson point ( tube

TN ) if the 

Thomson point is located at CNT wall. The other one is cap Thomson point ( cap

TN ), which is located at 

the arbitrary hemisphere-shaped surface. In this study, we have set 215 cap

TN  ’s to model the cap 

structure of the (20, 20) CNT. Stable configuration comprising cap

TN  ’s was obtained by following 

Robinson et al.’s work,38 where the energy minimization and optimization were performed for the 

arrangement of cap Thomson points. The capped CNT was then built by locating carbon atoms on the 

lattice points, which were obtained by the intersection points of the vertical bisector of the triangulated 

Thomson points (i.e. connecting all of Thomson points to nearest neighbors) (Figure 3.1.1). 
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Figure 3.1.1 CNT cap model constructed in this study using the solution of Thomson problem. 5-7 

carbon atoms rings are colored as blue and red lines, respectively. Copyright © 2017, American 

Chemical Society. 

 

3.1.2.3 Construction of Nanobomb System 

To control the internal density of NM in nanocontainer, the cavity volume of the capped CNT was 

calculated by obtaining Connolly surface (Figure 3.1.2). Note that a probe atom with certain radius (i.e. 

1.0 Å in diameter) rolls on the van der Waals surface of the target system and the sum of probed 

trajectories produces Connolly surface.39 Default packing density of NM was selected as 1.137 g/cm3 

and higher densities (i.e. 1.2, 1.3, 1.5, and 1.7 g/cm3) of compressed NM were also considered for 

further simulations. Number of NM molecules corresponding to density (Table 3.1.2) was randomly 

packed inside the CNT. To prevent undesired decomposition during relaxation simulation, generic MD 

simulation was conducted to stabilize the systems by annealing at temperatures between 300 K and 500 

K with the time step of 1 fs. The relaxed NM-encapsulated nanocontainer is shown in Figure 3.1.3.  

 

CNTCap

Side view Front view
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Figure 3.1.2 Connolly surface and cavity volume of CNT container. (a) Gold area is the Connolly 

surface of CNT container. (b) Cavity volume of nanobomb, which is the enclosed region of Connolly 

surface drawn as the shaded yellow. NM molecules are packed in the shaded yellow region. Copyright 

© 2017, American Chemical Society. 

  

b)

a)

(a)

(b)
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Table 3.1.2 Density and the number of confined NMs in capped (20, 20) CNT used in explosion 

dynamics simulation. Inner volume was estimated by Connolly volume calculation. Copyright © 2017, 

American Chemical Society. 

Density (g/cm3) Inner volume (Å
3
) of CNT no. of NM 

1.137 

28750 

323 
1.200 340 
1.300 369 
1.500 425 
1.700 482 

 

 
Figure 3.1.3 Side (left) and front (right) views of NM encapsulated (density = 1.137 g/cm3) (20, 20) 

armchair CNT model with caps, which were constructed by following the solution of Thomson problem. 

Copyright © 2017, American Chemical Society. 

 

3.1.2.4 Reactive Dynamics Simulation 

Unlike MD using classical force fields, ReaxFF takes into account the dynamic bond order, which 

is renewed at each simulation step, to calculate the bond and non-bond energies.21 For atomic partial 

charges, electronegativity equalization method (EEM),40,41 which reflects the influence of the 

electrostatic field by the neighboring atoms, is employed and the atomic charge was updated at every 

time step, which was set to 0.1 fs. Berendsen thermostat was used to keep temperature constant. We 

have performed three steps for the reactive dynamics. The detailed procedure of the simulation is listed 

below.  

Relaxation: The energy of the nanobomb system (i.e. NM-encapsulated CNT), which was 

relaxed with MD, was minimized once again via ReaxFF with conjugate gradient algorithm. 

Then, NVT simulation at room temperature was performed during 50 ps of simulation time 

27.2 Å

68.5 Å
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while preventing initial reaction due to high internal energy.  

Heat-up: The temperature of each system was rapidly raised to the target temperature (i.e. 2500 

K, 3000 K, 3500 K and 4000 K) within a short period of time (100 fs) to impose similar effect 

of heating the system through the detonation wave. In this step, some portions of NM were 

decomposed. 

Thermal decomposition: In this step, NERMD was applied to nanobomb system during 200 ps. 

We observed that the energy released from the decomposition of NM contributed to the 

additional rise of the system temperature, resulting in the explosion phenomena. Note that the 

time step employed in this step was adequate to ensure the conservation of the total energy 

(maximum 3.6% variation in Table 3.1.3). 

 

Table 3.1.3 Energy conservation test from non-equilibrium reactive MD simulation for 200 ps. 

Copyright © 2017, American Chemical Society. 

Model system 
Initial 

(kcal/mol) 

Max. energy 

(kcal/mol) 
diff (%) 

Min. energy 

(kcal/mol) 
diff (%) Density 

(g/cm3) 

Initial heating 

temperature 

1.137 

2500 -615263.170  -607067.470  1.332  -615276.150  0.002  

3000 -602429.720  -587248.200  2.520  -602510.150  0.013  

3500 -589173.600  -569645.290  3.315  -589242.210  0.012  

4000 -574882.670  -558511.100  2.848  -574973.550  0.016  

1.2 

2500 -624571.900  -615250.190  1.492  -624574.180  0.000  

3000 -610880.390  -592457.540  3.016  -610887.000  0.001  

3500 -597690.250  -576010.330  3.627  -597725.730  0.006  

4000 -583722.720  -573991.810  1.667  -583818.540  0.016  

1.3 

2500 -639339.010  -628286.480  1.729  -639349.130  0.002  

3000 -625412.870  -603669.090  3.477  -625426.940  0.002  

3500 -611041.450  -596486.970  2.382  -611121.260  0.013  

4000 -597139.620  -586345.130  1.808  -597209.490  0.012  

1.5 

2500 -667982.730  -658170.830  1.469  -667993.600  0.002  

3000 -652376.690  -637216.170  2.324  -652419.040  0.006  

3500 -636864.430  -628365.290  1.335  -636901.740  0.006  

4000 -621000.440  -611432.000  1.541  -621049.940  0.008  

1.7 

2500 -695501.820  -684883.790  1.527  -695517.480  0.002  

3000 -679307.440  -669631.650  1.424  -679316.560  0.001  

3500 -662427.870  -654184.330  1.244  -662467.830  0.006  

4000 -644397.430  -634575.360  1.524  -644427.130  0.005  
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3.1.3 Results and Discussion 

3.1.3.1 Decomposition Behavior of Confined NM 

Five NM systems at different densities were run with NERMD simulations after introducing initial 

heating at four different temperatures. We analyzed two aspects of thermal decomposition; 

decomposition behavior of internal species and bursting mechanism of the nanocontainer over time. 

Since there is no concept on explicit bond in ReaxFF, the species generated from the reaction were 

recognized by the bond order, for which their cut-off value for each atom pair were presented in Table 

3.1.4. The numbers of molecules (molecular fragments) during NERMD simulation were normalized 

by the initial number of NM molecules with respect to each NM density.  

 

Table 3.1.4 Bond order cut-off value for species analysis. Copyright © 2017, American Chemical 

Society. 

Bond Cut off 
C-N 0.30 
C-C 0.55 
C-O 0.80 
C-H 0.40 
O-O 0.65 
N-O 0.55 
O-H 0.40 
H-H 0.55 
H-N 0.55 
N-N 0.55 

 

3.1.3.1 Decomposition behavior of confined NM 

Figure 3.1.4 shows the decomposition rate of NMs as a function of time during thermal 

decomposition simulation. Clearly, the decomposition occurred earlier as the initial temperature became 

higher. In terms of density, the decomposition rate at the initial stage was relatively slow at high NM 

density. This trend was similar to the case of uni-molecular reaction described in Rom et al.’s work,6 

which explained the heat removal of neighboring molecules working as a thermal bath, so that the 

reaction rate was decelerated at high density. However, at a later stage, the reaction rate at high densities 

of NM was reversed. Interestingly, as the initial temperature increased, the decomposition of NM at 
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initial stage was faster for the confined NM compared to liquid NM in bulk.6 We conjecture that CNT 

played a role to induce high thermal vibration for NM, where the confined system at low density was 

highly influenced, to exhibit the large decomposition at initial stage.  

 

 

 

Figure 3.1.4 Molar fraction of NM by the decomposition during NERMD simulation vs. simulation 

time for 200 ps. Temperatures indicate initially given temperatures. Copyright © 2017, American 

Chemical Society. 

 

Variations of kinetic and potential energies and temperature over time were also analyzed to 

observe detailed information on decomposition reaction. During NERMD simulation, the potential 

energy was converted into the kinetic energy (see Figure 3.1.5 for the variation of potential energy), 

which was directly related to the temperature elevation (Figure 3.1.6). We observed three distinctive 

signatures in the temperature profile, i.e. slight drop at initial, gradual increase at middle, and sudden 
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increase at final stage. The temperature changes were directly related to the reactions inside and outside 

the nanocontainer. For all systems, temperatures were slightly dropped down at the beginning of the 

reaction. This phenomenon was driven by the following three endothermic reactions, which were 

suggested by previous experimental work2 and also confirmed from the observation of the dominant 

species in the simulation results (Figure 3.1.7 – 3.1.11). 

 3 2 3 2CH NO CH  + NO→  (3.1.4) 

 3 2 2CH NO H C=O + HNO→  (3.1.5) 

 3 2 3CH NO CH NO + O→  (3.1.6) 

 

 

Figure 3.1.5 Potential energy profile of the system at density of (a) 1.137 g/cm3, (b) 1.2 g/cm3, (c) 1.3 

g/cm3, (d) 1.5 g/cm3, and (e) 1.7 g/cm3, respectively. Copyright © 2017, American Chemical Society. 
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Figure 3.1.6 Temperature profiles at different densities vs. simulation time for 200 ps. Initial 

temperature is (a) 2500 K, (b) 3000 K, (c) 3500 K and (d) 4000 K. Vertical dashed-lines indicate the 

time of the burst of CNT. Copyright © 2017, American Chemical Society. 
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Figure 3.1.7 Reaction intermediates at density = 1.137 g/cm3 with initial heating temperature of (a) 

2500 K, (b) 3000 K, (c) 3500 K, and (d) 4000 K, respectively. Arrows in each figure indicate the relevant 

same color of lines for three main initial intermediates, i.e. CH2O for purple, CH3NO for deep blue, and 

HNO for light brown, respectively. Copyright © 2017, American Chemical Society. 
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Figure 3.1.8 Reaction intermediates at density = 1.2 g/cm3 with initial heating temperature of (a) 2500 

K, (b) 3000 K, (c) 3500 K, and (d) 4000 K, respectively. Arrows in each figure indicate the relevant 

same color of lines for three main initial intermediates, i.e. CH2O for purple, CH3NO for deep blue, and 

HNO for light brown, respectively. Copyright © 2017, American Chemical Society. 
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Figure 3.1.9 Reaction intermediates at density = 1.3 g/cm3 with initial heating temperature of (a) 2500 

K, (b) 3000 K, (c) 3500 K, and (d) 4000 K, respectively. Arrows in each figure indicate the relevant 

same color of lines for three main initial intermediates, i.e. CH2O for purple, CH3NO for deep blue, and 

HNO for light brown, respectively. Copyright © 2017, American Chemical Society. 
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Figure 3.1.10 Reaction intermediates at density = 1.5 g/cm3 with initial heating temperature of (a) 2500 

K, (b) 3000 K, (c) 3500 K, and (d) 4000 K, respectively. Arrows in each figure indicate the relevant 

same color of lines for three main initial intermediates, i.e. CH2O for purple, CH3NO for deep blue, and 

HNO for light brown, respectively. Copyright © 2017, American Chemical Society. 
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Figure 3.1.11 Reaction intermediates at density = 1.7 g/cm3 with initial heating temperature of (a) 2500 

K, (b) 3000 K, (c) 3500 K, and (d) 4000 K, respectively. Arrows in each figure indicate the relevant 

same color of lines for three main initial intermediates, i.e. CH2O for purple, CH3NO for deep blue, and 

HNO for light brown, respectively. Copyright © 2017, American Chemical Society. 
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In general, the breakage of C–N bond (equation (3.1.4)) dominantly occurred in all systems, but 

concerted molecular elimination (equation (3.1.5)) and oxygen atom elimination (equation (3.1.6)) took 

place more frequently as the density of NM inside the CNT increased.  

The species in the process of the decomposition of NM were checked in order to see the effect by 

the confinement of CNT and temperature rise. We examined all species, which have been produced over 

3% of the initial NM, from initial to certain period of simulation time (Figure 3.1.7 – 3.1.16). We could 

not observe significant change in the type of reaction intermediates by the confinement, but the amount 

and production time of products were reduced because of elevated temperature during NERMD 

simulation. CH3 (green line) and NO2 (brown line) were generated from the break of C-N bond in NM 

at the initial stage of the reaction (~10 ps). Those were converted into another species in further reaction. 

Interestingly, because of high molecular stability, the life time of NO2 was relatively longer than that of 

CH3. Thus, the amount of NO2 was sustained up to 15 % at 100 ps of 2500 K.  

As the temperature of each system was increased, the number of C–N bond-breaking was increased. 

As a result, the amounts of CH3 and NO2 at initial state were also increased. However, their maximum 

composition was not highly increased above 3500 K because of the rapid reaction inducing the 

occurrence of subsequent reaction. Oppositely, it was shown that the formations of CH2O (purple line), 

CH3NO (deep blue line), and HNO (light brown line) species were decreased. In terms of density, as 

the internal density of NM in the CNT increased, the compositions of products (i.e. CH3NO, CH2O) 

generated from bimolecular reactions were increased. In particular, the amount and formation rate of 

CH2O and CH3NO were greater than those of CH3 at 1.5 and 1.7 g/cm3 and 2500 K. Note that similar 

trend of the decomposition of liquid NM in bulk6 was also observed in our simulation except the 

explosion phenomenon of the nanocontainer. 

After the initial period, cascading release of the potential energy resulted in the significant rise of 

the reaction temperature, which induced the acceleration of the decomposition of NM. It was 

conjectured that there was a correlation between temperature and the amount of water, which was one 

of the most stable products formed from the decomposition of intermediates such as CH3NO and CH2O. 

Since the interval between temperature rise and the time of rapid formation of water coincided, the 

formation reaction of water was considered as a major contributing factor to the increase in temperature 

(Figure 3.1.6 and 3.1.12–3.1.16). As the NM density increased, the production rate of water was 

accelerated and the rate of temperature elevation also quickened.  
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Figure 3.1.12 Stable products at density = 1.137 g/cm3 at initial heating temperature of (a) 2500 K, (b) 

3000 K, (c) 3500 K, and (d) 4000 K, respectively. Orange dashed-line represents the bursting time. 

Copyright © 2017, American Chemical Society.  
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Figure 3.1.13 Stable products at density = 1.2 g/cm3 at initial heating temperature of (a) 2500 K, (b) 

3000 K, (c) 3500 K, and (d) 4000 K, respectively. Orange dashed-line represents the bursting time. 

Copyright © 2017, American Chemical Society.  
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Figure 3.1.14 Stable products at density = 1.3 g/cm3 at initial heating temperature of (a) 2500 K, (b) 

3000 K, (c) 3500 K, and (d) 4000 K, respectively. Orange dashed-line represents the bursting time. 

Copyright © 2017, American Chemical Society. 
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Figure 3.1.15 Stable products at density = 1.5 g/cm3 at initial heating temperature of (a) 2500 K, (b) 

3000 K, (c) 3500 K, and (d) 4000 K, respectively. Orange dashed-line represents the bursting time. 

Copyright © 2017, American Chemical Society. 
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Figure 3.1.16 Stable products at density = 1.7 g/cm3 at initial heating temperature of (a) 2500 K, (b) 

3000 K, (c) 3500 K, and (d) 4000 K, respectively. Orange dashed-line represents the bursting time. 

Copyright © 2017, American Chemical Society. 
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At the final stage of the decomposition reaction, the burst of CNT (i.e. explosion), indicated by the 

sudden increase of temperature, was observed (see Table 3.1.4 for the bursting time). Interestingly, the 

explosive power determined by the density affected the composition of final species, making a 

difference in the rate of temperature rise. The rate of temperature elevation at the density of NM above 

1.5 g/cm3 was greater than that at lower density. They showed explosive bursting, so there was no loss 

of internal species in high density systems. On the contrary, internal species appeared to be weakly 

released from torn CNT at low densities. At this point, the decomposition of H2O into another species 

such as H2 and CO occurred as indicated by the change in composition after the orange dashed-line 

shown in Figure 3.1.12–3.1.14. Therefore, the decomposition of water during the weak explosion at 

low density induced the slow increase of the temperature. 

 

Table 3.1.4 Simulation time (ps) of the burst of CNT from each system. The time is the same as the 

dashed-lines shown in Figure 3.1.6. Copyright © 2017, American Chemical Society. 

NM density 

(g/cm3) 

Initial Temperature (K) 

2500 3000 3500 4000 

1.137 - - 179.4  106.7  

1.200 - - 168.5  33.3  

1.300 - - 77.0  27.4  

1.500 131.4  91.1  14.2  10.1  

1.700 107.7  33.5  12.1  4.6  

  

We further identified the differences in the intermediates and final products due to the change in 

the reaction path originated from temperature and internal density. The final numbers of stable species 

from each system are shown in Figure 3.1.17. Overall reaction was terminated with relieving 

accumulated pressure when CNT burst, and final products were mainly composed of hydrogen and 

water molecules in most cases. Water was generated with the regular amount of 60−70 % from any 

density conditions also as confirmed from Rom et al.’s work.6 Meanwhile, a large number of hydrogen 

molecules were originated from the excess number of intermolecular collisions between intermediates 

under confinement inside the nanocontainer. In addition, there was a characteristic change in the 

proportion of the radical products when nanobomb burst, which was similar to the sudden increase in 

the temperature profile (Figure 3.1.6). Unstable radical products such as H and CO, which were less 

produced from bulk decomposition reaction, were more created (see Figure 3.1.12−3.1.16 for time-

dependent amounts of radical species). Conversely, OH radicals and NH3 molecules were slightly 

decreased right after the bursting. It was observed that OH and NH3 combined with torn CNT containers 
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because they were easily functionalized on the walls of the container. Therefore, the portion of final 

products except water, OH and NH3 were increased after the explosion. 

From Figure 3.1.17(c) and 3.1.17(d), it is noteworthy that the number of COs in the final product 

was significantly increased from our result compared to previous study,6 where CO was produced less 

than 10% of initial NM. In order to clarify this phenomenon, we traced carbon atoms during simulation. 

Figure 3.1.18 describes the number of carbon atoms in CNT, which was originally composed of 2336 

C atoms, and CO molecules during NERMD simulation. Since the numbers of two species oppositely 

changed, it was considered that CO was created by the reaction between oxygen atom from NM and 

carbon atoms of torn CNT container. In addition, when NM molecules were decomposed, some 

intermediates were attached to the container wall as demonstrated in previous studies.7,8 Thus, the total 

number of carbon atoms in CNT can be seen to be slightly increased, but its number was significantly 

reduced after the explosion of nanobomb due to the generation of CO.  
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Figure 3.1.17 Final amount of stable species acquired at each density. Initial temperature is (a) 2500, 

(b) 3000, (c) 3500, and (d) 4000 K. Copyright © 2017, American Chemical Society. 
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Figure 3.1.18 The number of carbon atoms in CNT (upper panel) and CO (lower panel) during 

simulation time for each system. Green dashed-line represents the bursting time. Copyright © 2017, 

American Chemical Society. 
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From the results shown above, we realized that the bursting of CNT and decomposed product and 

intermediate were related. Thus, the bursting mechanisms of nanocontainer of all systems were 

compared to draw a general view. Even though each of the systems showed different processes of the 
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Figure 3.1.19 shows four representative models at the initiation stage of the CNT bursting. The 

bursting of CNT began with a transformation from two hexagonal 6 carbon atoms ring to one 5−7 

carbon atoms ring, which is referred to as the Stone−Wales (SW) defect.43 The deformation of carbon 
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functionalization of the reaction intermediates. The starting point of the explosion reaction was found 
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(1) Transformation from 6 carbon atoms ring to 5−7 carbon atoms ring due to the 

functionalization of intermediate from NM at the cap junction of CNT  

(2) Spontaneous conversion of the ring structure from two 6 carbon atoms rings to 5−7 carbon 

atoms rings 

(3) Production of two 7 carbon atoms ring caused by the attachment of CH from intermediate of 

NM into the CNT wall  

(4) Functionalization of the CNT wall by NH and OH groups  

 

 

Figure 3.1.19 Initial 5−7 carbon atoms ring generation stage of the CNT bursting mechanism. Carbon, 

hydrogen, oxygen, and nitrogen atoms are colored gray, white, red, and blue, respectively. Copyright © 

2017, American Chemical Society. 
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Through four paths as described above, the SW defect, which was energetically less stable, was 

commonly generated, and the bursting phenomenon of nanocontainer occurred. Defect generation and 

decomposition of these unstable rings simultaneously and randomly occurred at multiple sites of the 

container.  

Overall mechanism of the bursting is illustrated by the representative system with respect to 

simulation time (Figure 3.1.20). The nanobomb systems at 53.2 ps (Figure 3.1.20(a)) and at 15.3 ps 

(Figure 3.1.20(b)) show unstable sites of the CNT. After the initiation state, the reaction intermediates, 

such as OH, H2O, CO, and NH, functionalized 5−7 carbon atoms rings and unstable rings of carbon 

atoms consisting of more than 8 atoms as shown at 53.6 ps (Figure 3.1.20(a)) and 20.1 ps (Figure 

3.1.20(b)). These intermediates prevented the recombination of cleaved C−C bonds at the rings. The 

broken C−C bond contributed to cleave other adjacent bonds and triggered the formation of small 

nanopore on the CNT wall. After that, the sizes of these pores became larger with cleaving C−C bond 

by additional functionalization of the unstable species. When the diameter of the nanopore was 

increased to 8 Å, light gases (e.g. H, H2, N2, H2O etc.) were outpoured from the pores. In this step, the 

pore edge was saturated by the intermediates to form −OH, −H and =O groups. 

To be more specific, the mechanism for the bursting of nanocontainer was separately investigated 

by the location of the generated nanopore, where the ejection of intermediates took place. For type 1 

(Figure 3.1.20(a)), which showed a nanopore on the container cap, remaining gas molecules were 

ejected regardless of the species after the diameter of nanopore was expanded to 15 Å (77.7 ps). The 

pore was not grown further after the diameter reached to about 20 Å, where the ejection of interior 

materials occurred while the terminal of pore edge was detached in forms of C=C, CO, and H2O (94.8 

ps). When the outpouring was almost completed, C−C bonds, which were cleaved by bursting, were 

restored despite of loss of 20 carbon atoms from the container. At 198.9 ps, the bursting was terminated 

and the pore size was gradually reduced. For type 2 (Figure 3.1.20(b)), which showed a nanopore on 

the side of the container, neighboring nanopores were merged and the container was sharply torn about 

a half in the zigzag direction (27.3 ps). Note that CNT is mechanically fragile in that direction.45 In this 

type, the pore with much larger size (i.e. about 10 Å × 25 Å) permitted encapsulated materials to eject 

freely. Unlike type 1, we observed that the pore was enlarged continuously up to 50−60 Å and the 

functional groups attached to the pore edges were detached as small molecular fragments like C=C, CO, 

H2O and etc. (28.4 ps). At 150.1 ps, the recombination of the broken C−C bonds was largely observed 

at the termination of the outpouring. 
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Figure 3.1.20 Mechanistic model of CNT bursting (a) near the CNT cap, and (b) at the CNT side. 

Representative pictures and times are taken from (a) 1.3 g/cm3 at 3500 K and (b) 1.3 g/cm3 at 4000 K. 

Color scheme is the same as in Figure 3.1.19. Red solid boxes represent the location of bursting. For 

a), the reaction mechanism was depicted with unstable sites in the cap at 53.2 ps, functionalization of 

reaction intermediate to unstable carbon atoms ring at 53.6 ps, generation of nanopore up to 8 Å by the 

outpouring of light gas molecules at 75.1 ps, growth of nanopore up to 15 Å by the ejecting products at 

77.7 ps, detachment of the pore edge at 94.8 ps, and termination of bursting at 198.9 ps. For b), the 

reaction mechanism was depicted with formation of 5−7 carbon atoms ring at 15.3 ps, functionalization 

of reaction intermediate to 5−7 carbon atoms ring at 20.1 ps, generation of nanopore by the outpouring 

of light gas molecules at 25.4 ps, tearing of CNT about 10 Å × 25 Å in zigzag direction along with 

detachment of the pore edge at 27.3 ps, enlargement of pore width about 50 Å at 28.4 ps, and termination 

of bursting at 150.1 ps. Copyright © 2017, American Chemical Society. 
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Lastly, we considered the effect of vacancy defect on the explosion of nanocontainer. Vacancy 

defect, which can change mechanical properties of CNT, is inevitably generated during the synthesis of 

the CNT. From our simulation results, the bursting of defective CNT required low initial heating, for 

example, at 3000 K, whereas the pristine CNT required initial heating at 3500 K (Figure 3.1.21). 

Nevertheless, the bursting mechanism of defective CNT was similar to that of pristine CNT, where SW 

defect was generated. For direct comparison, simplified bursting mechanisms of pristine and defective 

CNTs were examined at 3500 K (Figure 3.1.22). It took less than 30 ps for the defective CNT to burst 

in comparison to 179.4 ps for the pristine CNT. Neighboring vacancy defects spontaneously induced 

5−7 carbon atoms rings during the heat-up process as analogous to the case shown in Figure 3.1.19(b), 

and nanopore was generated after the attachment of hydrogen or oxygen atoms. Thereafter, the ejection 

of intermediates was observed at 30.6 ps in defective CNT, which was a considerably earlier time 

compared to that of pristine CNT. 

 

 

 
Figure 3.1.21 Temperature profile for reactive dynamics with and without point defect for density = 

1.137 g/cm3. Light color ones represent the results from non-defective system, and deep ones are the 

result from 0.5% point defect systems. Copyright © 2017, American Chemical Society. 
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Figure 3.1.22 CNT bursting mechanism of (a) defective and (b) pristine container at 1.137 g/cm3 3500 

K. For (a) and (b), initial state before thermal decomposition process, consolidation of 5−7 carbon 

atoms ring defects (5 ps for (a) and 160 ps for (b)), nanopore formation step (15.2 ps for (a) and 174 ps 

for (b)), and nanopore extension and emission of the product (30.6 ps for (a) and 178 ps for (b)). 

Copyright © 2017, American Chemical Society. 
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3.1.4 Conclusion 

In this study, the nanobomb architecture including NM and nanocontainer was theoretically 

modeled and investigated by NERMD simulations on the explosion dynamics. Along with the 

decomposition of NM, the explosiveness has been traced in terms of reaction temperature by varying 

initial density and initial heating temperature. In all cases, the reaction temperature was elevated more 

than 1000 K from the initial temperature, maximally from 2500 to 4200 K at 1.7 g/cm3 of NM and from 

4000 to 5600 K at 1.137 g/cm3. During simulation for 200 ps, we observed three distinct signatures in 

temperature profile, which represented the endothermic reaction at initial stage, the formation of 

intermediates at middle stage, and the explosion of the nanobomb followed by isothermal process from 

middle to final stage. Notably, the CNT nanocontainer started forming defects of SW type (5−7 carbon 

atoms ring) or high order rings at the middle stage. Then, the defects worked as seeds to form nanoholes, 

where the generated intermediates functionalized unstable carbon atoms. Finally, the nanocontainer 

burst when nanohole was larger than about 8 Å. As inspired by this phenomenon on the pristine CNT 

nanocontainer, we further investigated defective CNT nanocontainer, which enabled to reduce the 

explosion time, and demonstrated high efficiency to explode the nanobomb. NM-encapsulated CNT 

nanocontainer modeled in this theoretical study is simply one of many similar types, which might open 

a new field for the application study of nanoscale explosion. 



66 

  

3.1.5 References 

1. Nelson, T.; Bjorgaard, J.; Greenfield, M.; Bolme, C.; Brown, K.; McGrane, S.; Scharff, R. J.; 

Tretiak, S. Ultrafast Photodissociation Dynamics of Nitromethane. J. Phys. Chem. A 2016, 120, 

519−526. 

2. Hu, W.-F.; He, T.-J.; Chen, D.-M.; Liu, F.-C. Theoretical Study of the CH3NO2 Unimolecular 

Decomposition Potential Energy Surface. J. Phys. Chem. A 2002, 106, 7294−7303. 

3. Manaa, M. R.; Reed, E. J.; Fried L. E.; Galli, G.; Gygi, F. Early Chemistry in Hot and Dense 

Nitromethane: Molecular Dynamics Simulations. J. Chem. Phys 2004, 120, 10146–10153. 

4. Chang, J.; Lian, P.; Wei, D.-Q.; Chen, X.-R.; Zhang, Q.-M.; Gong, Z.-Z. Thermal Decomposition 

of the Solid Phase of Nitromethane: Ab Initio Molecular Dynamics Simulations. Phys. Rev. Lett. 

2010, 105, 188302. 

5. Han, S.-p.; van Duin, A. C. T.; Goddard, W. A. III.; Strachan, A. Thermal Decomposition of 

Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics. J. 

Phys. Chem. B 2011, 115, 6534–6540. 

6. Rom, N.; Zybin, S. V.; van Duin, A. C. T.; Goddard, W. A. III.; Zeiri, Y.; Katz, G.; Kosloff, R. 

Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations 

Based on ReaxFF. J. Phys. Chem. A 2011, 115, 10181–10202. 

7. Liu, L.-M.; Car, R.; Selloni, A.; Dabbs, D. M.; Aksay, I. A.; Yetter, R. A. Enhanced Thermal 

Decomposition of Nitromethane on Functionalized Graphene Sheets: Ab Initio Molecular 

Dynamics Simulations. J. Am. Chem. Soc. 2012, 134, 19011−19016. 

8. Zhang, C.; Wen, Y.; Xue, X. Self-Enhanced Catalytic Activities of Functionalized Graphene 

Sheets in the Combustion of Nitromethane: Molecular Dynamic Simulations by Molecular 

Reactive Force Field. ACS Appl. Mater. Interfaces 2014, 6, 12235−12244. 

9. Agrawal, P. M.; Rice, B. M.; Thompson, D. L. Molecular Dynamics Study of the Melting of 

Nitromethane. J. Chem. Phys. 2003, 119, 9617−9627. 

10. Zheng, L.; Luo, S.-N.; Thompson, D. L. Molecular Dynamics Simulations of Melting and the 

Glass Transition of Nitromethane. J. Chem. Phys. 2006, 124, 154504. 

11. Siavosh-Haghighi, A.; Sewell, T. D.; Thompson, D. L. Molecular Dynamics Study of the 

Crystallization of Nitromethane from the Melt. J. Chem. Phys. 2010, 133, 194501. 

12. Smeu, M.; Zahid, F.; Ji, W.; Guo, H.; Jaidann, M.; Abou-Rachid, H. Energetic Molecules 

Encapsulated inside Carbon Nanotubes and between Graphene Layers: DFT Calculations. J. Phys. 

Chem. C 2011, 115, 10985–10989. 

13. Liu, Y.; Lai, W.; Yu, T.; Ge, Z.; Kang, Y. Structural Characteristics of Liquid Nitromethane at 

the Nanoscale Confinement in Carbon Nanotubes. J. Mol. Model. 2014, 20, 2459. 



67 

  

14. Liu, Y.; Lai, W.; Yu, T.; Kang, Y.; Ge, Z. Interactions of Carbon Nanotubes with the 

Nitromethane−Water Mixture Governing Selective Adsorption of Energetic Molecules from 

Aqueous Solution. Phys. Chem. Chem. Phys. 2015, 17, 6995–7001. 

15. Wang, L.; Xu, J.; Yi, C.; Zou, H.; Xu, W. Theoretical Study on the Thermal Decomposition of 

Nitromethane Encapsulated inside Single-Walled Carbon Nanotubes. J. Mol. Struct.: 

THEOCHEM 2010, 940, 76–81. 

16. Wang, L.; Yi, C.; Zou, H.; Xu, J.; Xu, W. Rearrangement and Thermal Decomposition of 

Nitromethane Confined inside an Armchair (5,5) Single-Walled Carbon Nanotube. Chem. Phys. 

2010, 367, 120–126. 

17. Bae, S. W.; Cho, S. G. Molecular Dynamics Study of the Behavior of Nitromethanes Enclosed 

Inside Carbon Nanotube Containers. J. Mol. Model. 2016, 22, 147. 

18. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 

2006, 106, 1105−1136. 

19. Chen, N.; Xu, Q.; Ye, X. Single-Walled Carbon Nanotubes as High Pressure Nanocontainer. Int. 

J. Mod. Phys. B 2014, 28, 1450074. 

20. Hilder, T. A.; Hill, J. M. Modeling the Loading and Unloading of Drugs into Nanotubes. Small 

2009, 5, 300−308. 

21. van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. III. ReaxFF: A Reactive Force Field 

for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396−9409. 

22. Rom, N.; Hirshberg, B.; Zeiri, Y.; Furman, D.; Zybin, S. V.; Goddard, W. A. III.; Kosloff, R. 

First-Principles-Based Reaction Kinetics for Decomposition of Hot, Dense Liquid TNT from 

ReaxFF Multiscale Reactive Dynamics Simulations. J. Phys. Chem. C 2013, 117, 21043−21054. 

23. Guo, D.; An, Q.; Zybin, S. V.; Goddard, W. A. III; Huang, F.; Tang, B. The Co-Crystal of 

TNT/CL-20 Leads to Decreased Sensitivity toward Thermal Decomposition from First Principles 

Based Reactive Molecular Dynamics. J. Mater. Chem. A 2015, 3, 5409–5419. 

24. Strachan, A.; van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; Goddard, W. A. III. Shock 

Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX. Phys. Rev. 

Lett. 2003, 91, 98301. 

25. Xue, X.; Wen, Y.; Long, X.; Li, J.; Zhang, C. Influence of Dislocations on the Shock Sensitivity 

of RDX: Molecular Dynamics Simulations by Reactive Force Field. J. Phys. Chem. C 2015, 119, 

13735−13742. 

26. Chaban, V. V.; Fileti, E. E.; Prezhdo, O. V. Buckybomb: Reactive Molecular Dynamics 

Simulation. J. Phys. Chem. Lett. 2015, 6, 913−917. 

27. Sun, H.; Ren, P.; Fried, J. R. The COMPASS Force Field: Parameterization and Validation for 

Phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229−246. 



68 

  

28. Sun, H. COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase Applications 

Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 

7338−7364. 

29. Materials Studio 2016; BIOVIA Inc., San Diego, CA, 2016. http://www.materials-studio.com/ 

(accessed March 7, 2017). 

30. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 

1995, 117, 1−19. 

31. Aktulga, H. M.; Fogarty, J. C.; Pandit, S. A.; Grama, A. Y. Parallel Reactive Molecular Dynamics: 

Numerical Methods and Algorithmic Techniques. Parallel Comput. 2012, 38, 245−259. 

32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. 

Rev. Lett. 1996, 77, 3865−3868. 

33. Melle-Franco, M.; Brinkmann, G.; Zerbetto, F. Modeling Nanotube Caps: The Relationship 

Between Fullerenes and Caps. J. Phys. Chem. A 2015, 119, 12839−12844. 

34. Reich, S.; Li, L.; Robertson, J. Structure and Formation Energy of Carbon Nanotube Caps. Phys. 

Rev. B 2005, 72, 165423. 

35. Brinkmann, G.; Fowler, P. W.; Manolopoulos, D. E.; Palser, A. H. R. A Census of Nanotube 

Caps. Chem. Phys. Lett. 1999, 315, 335−347. 

36. Lair, S. L.; Herndon, W. C.; Murr, L. E.; Quinones, S. A. End Cap Nucleation of Carbon 

Nanotubes. Carbon 2006, 44, 447−455. 

37. Peszke, J.; Stobinski, L.; Tomasik, P.; Kurzydlowski, K. J. Designing Patterns of the Isomeric 

Carbon Nanotube Caps. Phys. Status Solidi A 2011, 208, 1801−1803. 

38. Robinson, M.; Suarez-Martinez, I.; Marks, N. A. Generalized Method for Constructing the 

Atomic Coordinates of Nanotube Caps. Phys. Rev. B 2013, 87, 155430. 

39. Connolly, M. L. Solvent-Accessible Surfaces of Proteins and Nucleic Acids. Science 1983, 221, 

709-713. 

40. Mortier, W. J.; Ghosh, S. K.; Shankar, S. Electronegativity-Equalization Method for the 

Calculation of Atomic Charges in Molecules. J. Am. Chem. Soc. 1986, 108, 4315−4320. 

41. Janssens, G. O. A.; Baekelandt, B. G.; Toufar, H.; Mortier, W. J.; Schoonheydt, R. A. 

Comparison of Cluster and Infinite Crystal Calculations on Zeolites with the Electronegativity 

Equalization Method (EEM). J. Phys. Chem. 1995, 99, 3251−3258. 

42. Melius, C. F. Thermochemistry and Reaction Mechanisms of Nitromethane Ignition. J. Phys. IV 

1995, 5, 535–552. 

43. Stone, A. J.; Wales, D. J. Theoretical Studies of Icosahedral C60 and Some Related Species. Chem. 

Phys. Lett. 1986, 128, 501−503. 

44. Zhou, L. G.; Shi, S.-Q. Formation Energy of Stone−Wales Defects in Carbon Nanotubes. Appl. 

Phys. Lett. 2003, 83, 1222−1224. 



69 

  

45. Zhao, H.; Min, K.; Aluru, N. R. Size and Chirality Dependent Elastic Properties of Graphene 

Nanoribbons under Uniaxial Tension. Nano Lett. 2009, 9, 3012−3015. 

  



70 

  

3.2 Effect of Physicochemical Modification of Nanocontainer and External 

Shocks 

This chapter includes the published contents: 

Jeon, W. C.†; Lee, J. H.†; Kim, J. C.†; Jung, S.-H.; Cho, S. G.; Kwak, S. K. J. Phys. Chem. C 2020, 124, 

3341-3351 (†: equally contributed). Reprinted with permission from J. Phys. Chem. C 2020, 124, 

3341-3351. Copyright © 2020, American Chemical Society. 

___________________________________________________________________________ 

 

3.2.1 Introduction 

The development of high-energy materials (HEMs) and improving their performance are important 

undertakings for the development of defense technology. HEMs can be classified into propellants, 

explosives, and pyrotechnics depending on their application and performance. Explosives are 

characterized by a rapid reaction rate and ability to detonate.1 Ideal explosives should have a high 

detonation velocity and pressure, while having low sensitivity to external stimuli such as heat, impact, 

and friction. In other words, it is necessary for explosive to improve sensitivity parameter to ensure 

safety, while still maintaining high explosion performance. In order to overcome this challenge, several 

groups, for example, Pagoria, Chavez, and Klapötke have been made efforts to synthesize new HEM 

molecules.2-4 However, these groups have mainly focused on varying molecular structure itself. The 

explosion performance and sensitivity of explosives also can be significantly improved depending on 

how they are assembled on a nanoscale, i.e. nanoenergetic materials. Some groups have attempted to 

make nanoenergetic materials composed of a typical HEM having a controlled nanostructure. Bolton et 

al. succeeded to synthesize cocrystal consisting of CL-20:HMX, which kept low sensitivity and much 

improved detonation properties compared to pure β-HMX.5 Liu et al. showed that the impact sensitivity 

of nanonitramine explosives could be reduced to less than half of that of conventional nitramine 

explosives.6 In another case, an energetic metal−organic framework (MOF), containing an energetic 

material as a linker that provided a platform for making various nanostructures, was found to exhibit 

excellent structural stability and produce a large amount of heat energy.7 

In a previous study, we applied in silico design to a nanobomb composed of NM and carbon 

nanotubes (CNTs).8 A nanobomb is a new type of nanoenergetic material system, where a few tens to 

hundreds of NM molecules are confined in a nanometer-sized CNT. Nanobombs reportedly stabilized 

NM because of the stable thermal and mechanical properties of the CNTs that acted as nanocontainers. 

In the nanobomb, NM is isolated from the external environment under normal conditions, but when the 
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nanobomb is stimulated by thermal shock, the built-up pressure due to the CNT nanocontainer results 

in enhanced explosive power. Further, when NM or other HEMs were associated with CNTs or 

graphene sheets, unique structural arrangements and positive effects on the explosion reaction were 

achieved. Smeu et al. theoretically showed that several HEMs were stabilized by confinement between 

CNTs and a graphene bilayer.9 Liu et al.10 and Zhang et al.11 theoretically predicted that the 

decomposition of NM molecules could be accelerated by functionalized graphene sheets. In addition, 

Um et al. experimentally synthesized a CNT-RDX (i.e. 1,3,5-trinitroperhydro-1,3,5-triazine) composite. 

They reported increased release of energy during explosion.12 With this background, the aim of the 

present study is to investigate and to improve the explosion performance (temperature elevation, 

decomposition of NM, and bursting time) of a nanobomb by physicochemical modification of the CNT 

component based on chirality, doping with heteroatoms (i.e. nitrogen), and defects (i.e. monovacancy). 

The method of synthesis significantly influences the mechanical13,14 and electrical properties,15,16 as well 

as the reactivity,17,18 of the CNTs.  

To assess the effect of the properties of the nanocontainer on the performance and reactivity of the 

nanobomb, appropriate detonation methods for initiating the explosion reaction should also be taken 

into account. In many previous studies, the decomposition reaction was triggered by applying 

intensified physical or chemical shock to the HEM, such as thermal energy,19−23 mechanical impact,24 

an electric spark,25 electromagnetic induction,26,27 or compressive shear.28 Herein, the nanobombs with 

CNT nanocontainers having different mechanical and electrical properties are subjected to thermal 

shock-induced decomposition to evaluate the effect of the type of physicochemical modification on the 

decomposition rate and mechanism. To mimic the transfer of heat energy from the detonator during 

thermal shock-induced bursting, the decomposition paths of the nanobombs exposed to an external heat 

source are investigated through NERMD simulation and DFT calculations. In addition, the effects of 

an electric spark and electromagnetic induction on the decomposition reaction of the nanobomb exposed 

to an electric field were evaluated.  
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3.2.2 Simulation Details 

For the simulations of interest, classical MD simulations were conducted with the COMPASS II 

force field29 in the Materials Studio 2019 package.30 NERMD simulations were conducted with the 

ReaxFF force field, which was previously used by Rom et al.,21 in the LAMMPS31 package. DFT 

calculations were performed with the DMol3 program.32,33 

3.2.2.1 Model Systems 

Considering the high aspect ratio of CNTs synthesized via the conventional approach,34−37 the CNT 

container was modeled as having infinite length in the z-direction by applying the periodic boundary 

condition. The physicochemical modifications considered in this work are changes in the chirality, 

nitrogen-doping, and introduction of monovacancy defects (Figure 3.2.1). Nitrogen-doping was 

expected to facilitate charge transfer between NM and the CNTs during decomposition of the NM 

molecules. To verify our expectation, preliminary DFT calculations were conducted with the carbon-

cluster model (see Chapter 3.2.2.4 for the detailed modeling procedure and Figure 3.2.2 for the cluster 

models). It was found that N-doping could enhance the feasibility of electron transfer (see Chapter 

3.2.2.2 and Figure 3.2.3). 

According to our previous study, the armchair (20,20) CNT configuration is large enough to 

undergo explosion due to the heat of reaction of NM confined in the inner volume.8 To investigate the 

effect of chirality, two CNT containers (i.e. armchair (20,20) and zigzag (35,0)) with the same diameter 

were modeled. For the models with nitrogen-doping and monovacancy defects, considering the 

experimental concentrations of doping38 and defect sites,39 1% and 2% nonvicinal carbon atoms in the 

CNTs were randomly substituted with nitrogen atoms or removed, respectively. In addition, to compare 

the effect of hydrogenation on the defective sites, hydrogenated monovacancy systems, where carbon 

atoms with dangling bonds were saturated with additional hydrogen atoms, were considered. To reduce 

the strain effect in the periodic direction, the modeled CNTs were relaxed by the following procedures. 

First, the structures were consecutively relaxed using the COMPASS II force field and ReaxFF force 

field used by Rom et al.20 Subsequently, RMD simulations were carried out at 298 K for 50 ps with the 

NPzzT ensemble, in which the x- and y- axes of the system box were fixed to 500 Å  for nonperiodicity 

of the CNT model, and only 1 atm pressure was applied to the z axis through a Berendsen40 thermostat 

and barostat (see Chapter 3.2.2.3 for a detailed description of the RMD simulation). 
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Figure 3.2.1 Relaxed CNT models with (a) chirality modification, (b) N-doping modification, (c) 

monovacancy modification, and (d) monovacancy modification with hydrogenation. For each CNT 

model, front and side views are represented, respectively. The values of diameter and periodic length 

of each CNT are written on the side view with arrows. The carbon, nitrogen, and hydrogen atoms are 

colored in gray, blue, and orange, respectively and carbon atoms constituting monovacancy defect are 

colored in green. Copyright © 2020, American Chemical Society. 
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Figure 3.2.2 Carbon cluster models for (a) (20,20) pristine, (b) (35,0) pristine, (c) N-doped, and (d) 

monovacancy CNTs. For the clear view, carbon atoms around the doped N (blue ball) or vacant site are 

shown by green ball-and-sticks. Except these atoms, carbon and hydrogen atoms are colored in gray 

and white sticks, respectively. Copyright © 2020, American Chemical Society. 

 

The nanobomb was constructed by packing NM inside the CNT obtained through the relaxation 

process. NM molecules were randomly packed into the void space determined by Connolly surface 

calculation according to the vdW radius of the carbon or nitrogen atoms. Note that a probe atom with a 

diameter of 1.0 Å  was used to produce the Connolly surface, which was rolled on the van der Waals 

surface of the CNT.41 The density of NM confined in the CNT of each model system was set to 1.3 g 

cm−3, which is slightly larger than the density of liquid NM under ambient conditions (i.e. 1.1 g cm−3), 

because the density of the confined fluid increases to some extent. Table 3.2.1 shows the modeling 

information for each system. The numbers of NMs encapsulated in the CNTs with N-doping, 

monovacancy defects, and hydrogenated monovacancy defects were set to the same value of NMs in 

the pristine (20,20) CNT (N = 453) ignoring the marginal differences caused by the N-dopant atoms 

and vacant sites.  

After the nanobomb systems were modelled, thermal annealing simulation was conducted in the 

temperature range of 300−500 K for 100 ps with classical MD to relax the systems. Finally, classical 

MD simulation with the NVT (i.e. isothermal) ensemble was performed for 100 ps at 298 K to complete 

the relaxation of each system. Figure 3.2.4 shows the schematics of the relaxed nanobomb systems 

with the physicochemically modified CNTs. 
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Table 3.2.1 Modeling information of nanobomb systems depending on physicochemical modifications 

of CNT. Copyright © 2020, American Chemical Society. 

 

Type of structural 

modification 

Inner volume of CNT 

(Å 3) 

no. of atoms in 

CNT 

no. of 

NM 

Chiral index 
(20,20) 35337.0 2400 453 

(35,0) 35387.8 2380 454 

Nitrogen-doping 
 

1.0% 

35337.0 

2376 

453 
2.0% 2352 

Monovacancy 

defect 

1.0% 2376 

2.0% 2352 

 

 

 

Figure 3.2.3 DFT calculations for bond dissociation energy of C−N bonds in NM molecule. 

Calculation models for (a) (20,20) pristine, (b) N-doping. The carbon, oxygen, nitrogen, and hydrogen 

atoms are colored in gray, red, white, and blue, respectively. (c) Bond dissociation energy (BDEC-N) and 

charge of NM molecule (qNM) with each carbon-cluster model. For the clear view, carbon atoms around 

the doped N site are shown by green ball-and-sticks. Copyright © 2020, American Chemical Society. 
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Figure 3.2.4 Schematic modeling of NM encapsulated in periodic CNT (upper figures) and types of 

physicochemical modifications of CNT (lower figures). Representative image in the upper figure 

corresponds to a nanobomb system with (20,20) pristine CNT. (35,0) pristine CNTs were considered to 

investigate the effect of the chirality; 1% and 2% nitrogen-doping and monovacancies and hydrogenated 

monovacancies were considered to investigate the effect of the concentration of the dopant and 

vacancies, respectively. The carbon, nitrogen, and hydrogen atoms of the CNT are represented by gray, 

blue, and orange, respectively and carbon atoms constituting the monovacancy defects are indicated by 

green. The carbon, nitrogen, oxygen, and hydrogen of NM are represented by gray, blue, red, and white, 

respectively. Copyright ©  2020, American Chemical Society. 
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3.2.2.2 Bond Dissociation Energy of C−N Bond 

The C-N bond dissociation energy (BDEC-N) of NM molecule at around the CNT wall was estimated 

with and without nitrogen atom at cluster model (Figures 3.2.3(a) and (b)). When NM molecule was 

adsorbed on the CNT, trace amount of electron was transferred to the NM molecule, while transferred 

electron was increased as the C-N bond was elongated to about 4.5 Å. As expected, electron transfer 

was more active in the N-doped carbon-cluster model, which resulted in less energy required for bond 

dissociation from 79.6 kcal/mol to 74.8 kcal/mol (Figures 3.2.3(c)). 

 

3.2.2.3 RMD Simulation 

RMD simulations were conducted using the ReaxFF force field, where the bond is automatically 

calculated based on the bond order determined by the distance between the atoms, and the atomic charge 

is updated at each time-step via the EEM.42 The RMD simulation using ReaxFF is widely used to study 

HEMs because the reaction of molecules can be analyzed under various conditions.8,11,19,20,22–26,28,42–51 

In the current study, ReaxFF was employed to investigate the shock-induced bursting of the modified 

nanobombs. Berendsen thermostat was used with a time step of 0.1 fs. Before induction of the 

nanobomb reaction by external shock, the nanobomb system was relaxed by NVT-RMD simulation for 

100 ps at 298 K. Thereafter, the RMD simulations were independently performed with three shock-

induced methods based on the type of external shock applied. First, to mimic actual decomposition in 

explosive device, where decomposition of explosive is initiated by external heat source, we defined 

CNT and contents as “hot” and “cold” regions following Zhou et al.’s work.52 The temperature of the 

CNT was maintained at 2000, 2250, and 2500 K using NVT ensemble, whereas NM molecules were 

naturally heated by the hot CNT using NVE ensemble (i.e. heat up period of 39−57 ps). Thereafter, 

NERMD simulations (i.e. decomposition period) were conducted with the heated system using the NVE 

ensemble for 300 ps (350 ps for the (20,20) pristine nanobomb at 2500 K). Second, to realize an electric 

spark, constant electrical field was applied to the whole system along the x-direction, which was 

perpendicular to the principal axis of the CNT, under NVE ensemble until the temperature reached the 

decomposition temperature following Li et al.’s work.25 The electric field was then removed, and the 

NERMD simulation was conducted. To determine proper range of the electric field strength to be 

applied to the nanobomb, electric-field-associated DFT calculation of the dissociation of the C−N bond 

in NM was conducted, and it was found that an electric field of at least 25 V nm−1 was required as the 

material was in the gas phase. However, at that electric field strength, it was found that the nanobomb 

would burst within a few picoseconds, which was much shorter than the time in the thermal shock 

method. Therefore, for the RMD simulations using the electric field to run on a time scale similar to 

thermal shock, a few strengths of electric field less than 10 V nm−1 were considered. The strengths of 
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the applied electric field were set to 6, 7, and 8 V nm−1, which were within the range of the values 

employed by Li et al.25 

Further, to simulate the electromagnetic induction according to the Wood et al.’s work,26 the 

following equation was employed to apply oscillating electric field to the whole system by modulating 

the strength and direction of electric field with the simulation time: 

0 sin( )xE E t=                             (3.2.1) 

where 
xE  is the electrical field applied in the x-direction, 

0E  is the strength of the electric field,   

is the frequency of the electric field, and t  is the simulation time (in ps unit). The electric field 

strengths were the same as those applied for the electric spark (i.e. E0 = 6, 7, and 8 V nm−1). The 

frequency of the oscillating field was set to correspond to the vibrational frequency of the C−N bond 

stretch in NM (659.5 cm−1), which was derived by calculating the infrared (IR) spectrum of the bulk 

NM system using RMD simulation at room temperature. To identify molecular species from the RMD 

simulation, the bond cutoff values were taken from the data reported by Rom et al.21 

3.2.2.4 DFT Calculations 

DFT calculations were carried out to quantitatively compare the effects of the modified CNTs on 

bursting of the nanobomb. For the model systems, the curved carbon cluster model was used to reflect 

the curvatures of each CNT model (Figure 3.2.2). A carbon-cluster with a radius of ~10 Å  was adopted 

for the (20,20) CNT, and the terminal carbon atoms were hydrogenated. Specifically, the positions of 

the hydrogen atoms were determined by optimization, while the carbon atoms were fixed. The positions 

of the carbon atoms were subsequently recalculated with fixed hydrogen atoms, which were previously 

optimized. To construct the cluster model of the zigzag CNT, the same procedure was applied to the 

(35,0) CNT. For the monovacancy defect and N-doping models, one C atom at the center of the (20,20) 

cluster model was removed or substituted with a N atom.  

The electron exchange-correlation energy was calculated with the GGA and PBE53 functional with 

the DNP 4.4 basis set. The Tkatchenko−Scheffler (TS) dispersion correction54 was applied to consider 

van der Waals interaction of the molecule during adsorption on the carbon cluster. The convergence 

criteria for the energy, force, and displacement were set to 1.0 × 10−5 Ha, 0.002 Ha Å −1, and 0.005 Å , 

respectively. To investigate the transition state involved in formation of the SW defect, the linear 

synchronous transit (LST) and quadratic synchronous transit (QST) methods55,56 were applied until the 

convergence criteria of the root-mean-square (rms) force, which was set as 0.002 Ha Å −1, were met. 

The binding energy ( . .B EE ) of the molecule adsorbed on the cluster model was calculated as follows: 
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. .B E adsorbed cluster moleculeE E E E = − −                  (3.2.2) 

where adsorbedE , clusterE , and moleculeE  are the total energies of the intermediate-adsorbed carbon 

cluster, carbon cluster, and intermediate atom or molecule, respectively. 

  



80 

  

3.2.3 Results and Discussion 

For thermal shock-induced bursting of the nanobomb, the confined NM molecules were heated 

through the CNT container that was exposed to thermal energy. The radial distribution of the 

temperature of the (20,20) nanobomb system is shown in Figure 3.2.5. With the progress of time, the 

temperature of the NM molecules reached the temperature of the CNT container by absorbing heat 

energy from the CNT container. Over the total simulation time, including heat up and decomposition 

period, the average temperature of the contents inside the nanobomb (i.e. NM and decomposed product) 

increased, with slight changes in the slopes of the profiles depending on the progress of decomposition 

(Figure 3.2.6(a)). The temperature increased during the heat up period, where only a small fraction of 

NM was decomposed (Figure 3.2.6(b)). When the temperature of the nanobomb system reached the 

target temperature, the NVE MD simulation was conducted. Thereafter, the NM molecules were heavily 

decomposed. For the systems subjected to high temperature, a rapid rise of the temperature was 

observed due to the formation of water molecules, which was the most exothermic reaction in the NM 

decomposition mechanism, as reported in our previous work (Figure 3.2.6(c)).8 Note that even though 

water molecules were produced when the system was heated at 2000 K, the highest fraction of water 

molecules produced was ~0.1. At the final stage of nanobomb decomposition, the nanobomb heated to 

2500 K exhibited a sudden temperature rise at around 350 ps, where the CNT container was ruptured.  

 

 

Figure 3.2.5 Radial temperature distributions for NM in (20,20) pristine nanobomb during the heating-

up period at (a) 2000K, (b) 2250K, (c) 2500K over time. Radius of CNT is about 12~15 Å. Copyright 

© 2020, American Chemical Society. 
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Figure 3.2.6 (a) Temperature profiles of NM, molar fractions of (b) NM and (c) H2O in (20,20) pristine 

nanobomb during NERMD simulation vs simulation time depending on heat up temperature. Heat up 

period and decomposition period are shown by dashed line and solid line respectively. Vertical dashed 

lines indicate the time of the burst of CNT heated to 2500 K. Copyright © 2020, American Chemical 

Society. 

 

To define the overall trend due to the effects of CNT modification (i.e. chirality, N-doping, and 

monovacancy defects), five independent simulations were carried out for the systems heated at 2500 K. 

The bursting times from five simulations for each modification type were averaged, and the results (i.e. 

bursting time and mechanism) of the simulation, of which bursting time was closest to the averaged 

value, were analyzed depending on the type of CNT modification (see Table 3.2.2 for bursting time of 

reproduction simulations). Figure 3.2.7 shows the results, where focus was placed on the changes in 

temperature (including bursting time), decomposition of NM, and water formation. The fraction of 

species in Figure 3.2.7 represents the relative amount of species to the initial number of NM molecules 

(NNM,0) inside the CNT container, i.e. NNM,0 = 453 for (20,20) pristine, N-doped, and monovacancy 

CNTs, and NNM,0 = 454 for (35,0) pristine CNT. Three temperature spikes were observed for the pristine 

(20,20) nanobomb system, where the formation of water molecules contributed to the second 

temperature spike and the NM molecules were completely decomposed within 150 ps. Eventually, the 

nanobomb systems burst, as indicated by the sharp temperature change. The effect of chirality on 

bursting of the nanobomb is shown in Figures 3.2.7(a)–(c). Due to the slightly inferior mechanical 

properties of the (35,0) CNT relative to that of the (20,20) CNT,57,58 the bursting time, indicated by 

vertical dashed lines in the temperature profile, was shorter for the (35,0) nanobomb. Except for the 

difference in the bursting time, however, changing the chirality had little effect on the bursting 

phenomenon. Nitrogen-doping of the CNTs also led to quite small changes in the rate of NM 

decomposition and water formation, while the bursting time was consistently shortened by increasing 

the concentration of the N-dopant atoms (Figures 3.2.7(d)–(f)). 
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Table 3.2.2 Bursting time of five independent simulations for each physicochemical modification type. 

According to our criteria, i.e. simulation trial of which bursting time is the closest to the average bursting 

time, trial 5 for (20,20) pristine nanobomb, trial 2 for (35,0) pristine nanobomb, trial 3 for N-doping 1% 

nanobomb, trial 3 for N-doping 2% nanobomb, trial 1 for monovacancy defect 1% nanobomb, trial 4 

for monovacancy defect 2% nanobomb, trial 4 for monovacancy defect 1% with hydrogenation 

nanobomb, and trial 2 for monovacancy defect 2% with hydrogenation nanobomb were employed, 

respectively. Copyright © 2020, American Chemical Society. 

Type of structural 

modification 

Bursting time (ps) 

trial 1 trial 2 trial 3 trial 4 trial 5 average 

Chirality 

(20,20) 292.7 351.1 397.6 308.0 350.7 340.0 ± 36.9 

(35,0) 222.0 305.5 300.4 363.4 342.4 306.7± 48.4 

Nitrogen 

-doping 

1.0 % 278.3 270.5 318.7 337.8 338.8 308.8 ± 29.1 

2.0 % 287.7 279.6 234.0 190.2 229.1 244.1 ± 35.8 

Monovacancy 

defect 

1.0 % 160.7 146.7 180.6 148.1 149.5 157.1 ± 12.7 

2.0 % 136.2 138.5 170.3 155.9 137.5 147.7 ± 13.4 

Hydrogenated 

monovacancy 

defect 

1.0 % 158.1 203.6 200.3 179.1 172.6 182.7 ± 17.1 

2.0 % 160.1 159.8 144.4 150.4 161.2 155.2 ± 6.6 
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Figure 3.2.7 NERMD simulation data for nanobomb with physicochemical modifications at the heating 

temperature of 2500 K. (a) Temperature profiles of NM, molar fractions of (b) NM and (c) H2O in 

nanobomb with chirality modification, respectively. (d) Temperature profiles of NM, molar fractions 

of (e) NM and (f) H2O in nanobomb with N-doping modification, respectively. (g) Temperature profiles 

of NM, molar fractions of (h) NM and (i) H2O in nanobomb with monovacancy defect modification, 

respectively. (20,20), (35,0), N 1%, N 2%, Mono 1%, and Mono 2% represent the (20,20) pristine 

nanobomb, (35,0) pristine nanobomb, nitrogen-doped nanobombs with 1% and 2% dopant 

concentration, and monovacancy nanobombs with 1% and 2% vacancy concentration, respectively. The 

heat up period and decomposition period are indicated by dashed line and solid line, respectively. 

Vertical dashed lines indicate the time required for the CNT to burst for each system. Copyright ©  2020, 

American Chemical Society. 
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The most noticeable difference was achieved with the monovacancy defect-based nanobomb 

(Figure 3.2.7(g)–(i)). The monovacancy defect brought about a promising result: the higher the 

concentration of monovacancy defects, the faster the decomposition of NM and the formation of H2O. 

Notably, bursting occurred within 170 ps for the monovacancy systems. To assess the effect of the 

chemical reactivity of the nanocontainer with monovacancy defects on bursting of the nanobomb, a 

hydrogenated nanobomb, where the defective carbons were stabilized by functionalization with 

hydrogen atoms, was also considered (Figure 3.2.8). The rates of NM decomposition and H2O 

formation were accelerated even for the hydrogenated monodefective nanobomb, where the bursting 

time of the hydrogenated nanobomb was slightly longer than that of the non-hydrogenated 

monodefective nanobomb. The bursting time was shortened when the concentration of defects increased. 

Thus, the reactivity of the defect vacancy is thought to be a relevant factor for nanobomb bursting. 

 

 

 

Figure 3.2.8 (a) Temperature profiles of NM, molar fractions of (b) NM and (c) H2O in nanobomb with 

hydrogenated monovacancy modification during NERMD simulation vs simulation time at the heating 

temperature of 2500 K. (20,20), H-Mono 1%, and H-Mono 2% represent for (20,20) pristine nanobomb, 

and hydrogenated monovacancy nanobombs with 1% and 2% concentration, respectively. Heat up 

period and decomposition period are shown by dashed line and solid line respectively. Vertical dashed 

lines indicate the time of the burst of CNT for each system. Copyright ©  2020, American Chemical 

Society. 
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For the intermediates, we analyzed the changes in the amount of CO, H, and OH species, which 

are highly reactive radicals among the numerous products.8 The products generated by NM 

decomposition as a function of the simulation time for the nanobombs with different CNT modifications 

are shown in Figure 3.2.9. CO and H species were formed and gradually increased in line with the time 

domain of water formation (~100 ps), while the OH species were formed as early as within the time 

domain of initial NM decomposition (~50 ps). This trend was similar for all the modified systems, 

including that with the hydrogenated defect vacancy (Figure 3.2.10). After bursting was achieved for 

each modified system, the amount of CO increased sharply and the amount of H species also increased, 

whereas the concentration of OH species decreased sharply. It is proposed that consumption of the 

oxygen-containing species, including the OH species, was associated with the increase in the CO and 

H species. Interestingly, the concentration of OH increased steadily after the sudden drop due to 

reactions between the confined products. The relative amount of CO was larger than that of H due to 

reaction between the torn CNT and oxygen-containing species. In the case of the system with 2% N-

doping, before nanobomb bursting, H atoms were formed at a faster rate than in the other systems. This 

is because the H atoms could be detached from the small torn sites in the CNT prior to bursting of the 

nanobomb, rather than remaining attached to the CNT. 
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Figure 3.2.9 Molar fractions of CO, H, and OH in nanobomb with physicochemical modifications 

during NERMD simulation vs simulation time. (a) CO, (b) H, and (c) OH profiles for nanobomb with 

chirality modification. (d) CO, (e) H, and (f) OH profiles for nanobomb with N-doping modification. 

(g) CO, (h) H, and (i) OH profiles for nanobomb with monovacancy modification. (20,20), (35,0), N 

1%, N 2%, Mono 1%, and Mono 2% represent the (20,20) pristine nanobomb, (35,0) pristine nanobomb, 

nitrogen-doped nanobombs with 1% and 2% dopant concentration, and monovacancy nanobombs with 

1% and 2% vacancy concentration, respectively. The heat up period and decomposition period are 

indicated by dashed line and solid line, respectively. Vertical dashed lines indicate the time required for 

the CNT to burst for each system. Copyright ©  2020, American Chemical Society. 
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Figure 3.2.10 Molar fractions of (a) CO, (b) H, and (c) OH in nanobomb with hydrogenated 

monovacancy modification during NERMD simulation vs simulation time at the heating temperature 

of 2500 K. (20,20), H-Mono 1%, and H-Mono 2% represent for (20,20) pristine nanobomb, and 

hydrogenated monovacancy nanobombs with 1% and 2% concentration, respectively. Heat up period 

and decomposition period are shown by dashed line and solid line respectively. Vertical dashed lines 

indicate the time of the burst of CNT for each system. Copyright © 2020, American Chemical Society. 

 

 

 

 

 

Thus, it was found that certain physicochemical modifications of the CNT nanocontainer induced 

fast decomposition of NM and early bursting of the system. For deeper evaluation, the bursting 

mechanism of the nanobomb after NM decomposition in each system was scrutinized. First, we 

analyzed the bursting mechanism of the (20,20) nanobomb (see Figures 3.2.11(a) and 3.2.12). Bursting 

was initiated by internal functionalization of the reaction intermediate, which was mainly composed of 

carbon and oxygen atoms, to form an unstable carbon ring (e.g. a 7−7 ring as observed at 305.2 ps). 

The unstable ring evolved to form a nanopore by further functionalization of the intermediate (343.1 

ps). Thereafter, the nanopore grew further by subsequent functionalization of other intermediates (349.8 

ps). Finally, ejection of the reaction products was initiated at 350.8 ps, and the nanopore was torn rapidly 

from 352.1 to 398.2 ps. The bursting time was found to be closely related to the time when the internal 

compounds reacted with the CNT wall and the six rings of the CNT were deformed.  
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We also investigated the difference in the reaction mechanisms due to the effect of CNT 

modification on the reactivity of the CNT wall. Note that for the N-doped and monovacancy systems, 

the atomic trajectories of the 2% model systems were employed for comparison of the mechanism. 

Figures 3.2.11(b)–(d) show the bursting mechanism of the nanobombs with different CNT 

modifications. The reaction mechanisms were similar, regardless of the type of physicochemical 

modification. At the beginning of the reaction, the internal products attached to the CNT; it occurred at 

291.2 ps for the (35,0) CNT (Figure 3.2.11(b)), 169.3 ps for the CNT with 2% N-doping (Figure 

3.2.11(c)), and 77.3 ps for the CNT with 2% monovacancy (Figure 3.2.11(d)). Thereafter, the 

hexagonal carbon rings were deformed to generate a nanopore at 294.9, 220.9, and 134.1 ps, 

respectively. This pore gradually enlarged over time, and ejection of the encapsulated products was 

initiated at 305.5−307.4, 227.9−229.3, and 147.4−155.0 ps, respectively. From the temperature profile 

and bursting mechanism, the bursting time of the (35,0) nanobomb was faster than that of the (20,20) 

nanobomb. Nanopore formation on the (35,0) CNT container took about 3.7 ps, compared to 37.9 ps 

for the (20,20) container (Figures 3.2.11(a) and (b)). Moreover, for the N-doped and monovacancy 

systems, bursting proceeded more rapidly than for the systems with different chirality. These 

observations demonstrate that the reaction site of the CNT and the reaction time varied based on the 

modification. In the case of the N-doped system, radical species (i.e. hydrogen atoms) were generally 

adsorbed on the carbon around the doping sites at early time (Figure 3.2.11(c)). In the case of the 

monovacancy defect system, radical species (i.e. oxygen atoms) were strongly adsorbed on the defective 

sites, even before the thermal decomposition period, and additional radical oxygen atoms were further 

adsorbed around the defect sites (Figure 3.2.11(d)). Note that the preferential sites for the reacting 

radicals were further investigated via DFT calculations, as presented in the later paragraphs of this 

section. The adsorption of radical atoms accelerated the bursting phenomenon. In the hydrogenated 

monovacancy system, the CNT wall adopted two different configurations prior to nanopore formation. 

In one configuration, the hydrogen atom was detached from the defective site, after which a confined 

product such as a nitrogen atom from NM was attached to the dangling carbon atom (Figure 3.2.13(a)). 

For the other configuration, the carbons around the defect site were directly cleaved to form dangling 

bonds and a small nanopore (Figure 3.2.13(b)). Considering the structures, it is proposed that although 

the defect sites were stabilized by hydrogen, the defect characteristics were regenerated during the 

decomposition of NM, leading to rapid bursting. 

  



89 

  

 

Figure 3.2.11 Mechanistic models of bursting for each physicochemical modification of CNT at the 

heating temperature of 2500 K. (a) (20,20) pristine nanobomb, (b) (35,0) pristine nanobomb, (c) N-

doped nanobomb with 2% dopant, and (d) monovacancy nanobomb with 2% vacancy. The four 

simulation snapshots of each system show the moments of adsorption of the internal products, pore 

generation, pore expansion, and initial bursting, respectively, in time order. The carbon, oxygen, 

nitrogen, and hydrogen atoms are represented by gray, red, blue, and white, respectively. Copyright ©  

2020, American Chemical Society. 
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Figure 3.2.12 Bursting mechanistic models of nanobomb system. Representative snapshots with time 

evolution are taken from (20,20) nanobomb system at 2500 K. The carbon, oxygen, nitrogen, and 

hydrogen atoms are colored in gray, red, blue, and white, respectively. Red dashed boxes represent the 

location of bursting for the clear view. Green dashed-circle at 305.2 ps represents unstable 7−7 carbon 

atoms ring. The reaction mechanism was depicted with functionalization of reaction intermediate to 

unstable carbon atoms ring at 305.2 ps, generation of nanopore by the continuous functionalization of 

intermediate at 343.1 ps, growth of nanopore by the internal pressure at 349.8 ps, start of eruption with 

intermediate in nanopore at 350.8 ps, ejection of inner product and rapid tearing of nanopore at 352.1 

ps, and termination of bursting at 398.2 ps. Copyright © 2020, American Chemical Society. 
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Figure 3.2.13 Simulation snapshots from the nanobomb with hydrogenated monovacancy defect 

modification at 95.2 ps. (a) Adsorption of internal products to deprotonated site. (b) C−C bond cleavage 

at bursting site. The carbon, nitrogen, and hydrogen atoms are colored in gray, blue, and white, 

respectively. Copyright © 2020, American Chemical Society. 

 

 

To gain detailed insight into these phenomena, formation of the SW defect and adsorption of 

radical species to the curved cluster models for each physicochemical modification type were explored 

based on DFT calculations. Note that the SW defect was consistently formed in the period right after 

the functionalization of the internal products to the CNT wall. To construct the SW defect, two central 

carbon atoms were rotated by 90° (Figure 3.2.14). The activation energy was not significantly different 

for the armchair (20,20) pristine CNT and zigzag (35,0) pristine CNT (i.e. ~3.6 kcal mol−1). The 

formation energy of the SW defect in the zigzag (35,0) pristine CNT was 13% larger than that of the 

armchair (20,20) pristine CNT due to the differences in the direction of curvature of the carbon atoms 

involved in forming the SW defect. For the curved cluster models with nitrogen-doping and 

monovacancy defects, the activation energy and formation energy were significantly lower than that of 

the (20,20) pristine CNT model. In particular, the vacancy defect exerted a more significant effect 

because of the reduced strain energy for rotating the carbon atoms around the vacancy defect. Formation 

of unstable rings on the CNT wall was less favored by modification of the chirality but was promoted 

by nitrogen-doping and monovacancy defects.  

(a) (b)
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Figure 3.2.14 Mechanism of formation of SW defect on carbon cluster model. (a) Relative energy 

diagram according to reaction coordinates. (b) Optimized carbon clusters with single SW defect. At the 

bottom of each figure, Ea and ΔE denote the activation and formation energies (in units of kcal mol−1) 

for the SW defect, respectively. For a clear view, the carbon atoms in the SW defect and doped nitrogen 

atoms are indicated by green and blue ball-and-sticks, respectively. The carbon and hydrogen atoms are 

represented by gray and white sticks, respectively. Copyright ©  2020, American Chemical Society. 

 

 

Additionally, to investigate the effect of physicochemical modification of the CNT on adsorption 

of the reaction intermediates after NM decomposition, the binding energies of O, OH, H, and CO on 

the CNT wall were compared. Figure 3.2.15(a) shows the optimized configuration of O, OH, H, and 

CO adsorbed on the curved cluster models for each physicochemical modification. Note that the radical 

or intermediate molecules were strongly adsorbed on the C atom nearest to the doping or defect sites. 

O and CO formed bidentate bonds with two C atoms. There was no difference in the binding energy 

due to modification of the chirality (Figure 3.2.15(b)). Nitrogen-doping and monovacancy defects 

enlarged the binding energy relative to that of the pristine cluster models, where the binding energy was 

lower for the monovacancy defect. Notably, for the monovacancy defect system, the adsorbed O atom 

could be inserted at the vacancy site (inset figure in Figure 3.2.15(b)), where the largest binding energy 

was obtained (i.e. −159.5 kcal mol−1). Thus, nitrogen-doping and the monovacancy defect are expected 
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to facilitate binding between the intermediate and the CNT wall, thereby accelerating bursting of the 

nanobomb.  

 

 

 

Figure 3.2.15 (a) Optimized carbon clusters with adsorbed products, i.e. O, OH, H, and CO, depending 

on CNT modifications. Colors of atoms are the same as those in Figure 3.2.11. Among the three 

products, each O and CO form a bridge with two carbon atoms on each carbon cluster (magnified for 

clear view). (b) Binding energies of products with carbon-cluster, calculated using optimized models in 

(a). Cyan-colored bar is the binding energy where O substitutes the monovacancy defect site of carbon-

cluster, and the inset figure shows the corresponding optimized structure. Copyright ©  2020, American 

Chemical Society. 
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The optimal method of triggering bursting (e.g. thermal shock, electric spark, or electromagnetic 

induction) was also of interest. Thus, in addition to investigating thermal shock-induced bursting of the 

nanobomb, we further investigated the effects of an electrical spark and electromagnetic induction on 

bursting of the nanobomb. To directly compare the electrical spark and electromagnetic induction with 

thermal shock-induced bursting, an electrical field was applied with and without sinusoidal variation of 

the field strength and direction until the temperature of NM reached 2500 K. Subsequently, NVE RMD 

simulation was implemented without applying an electrical field to observe bursting of the nanobomb 

system. Note that the (20,20) pristine CNT was chosen for this control simulation. The temporal 

evolution of the temperature, number of NM, and water molecules produced depending on the type and 

strength of the external shock are shown in Figure 3.2.16. During decomposition of the nanobomb 

systems upon application of an electric spark, the temperature increased in three stages, where the 

second stage was closely related to the formation of water. In the final stage, the nanobomb systems 

were ruptured, as indicated by the rapid temperature change (see vertical dashed line). This propagation 

of the decomposition reaction was almost the same as that observed for decomposition under thermal 

shock, and the time required for bursting after the heat up period was also similar to that in the systems 

heated by thermal shock. However, in the electric spark simulations, due to the overheating of NM 

compared to CNT by the strong electric field, the temperature declined slightly within a few 

picoseconds after the heat up period. On the other hand, in all of the nanobomb systems heated by the 

electromagnetic induction method, the time for heating the nanobomb was less than 3 ps. Due to the 

strong electromagnetic wave with a vibrational frequency corresponding to that of the C−N bond 

stretch in NM, the kinetic energy transferred to NM was much higher than that of the CNT during the 

heat up period. As the result, when the NVE RMD simulation was started, the entire system was 

temporarily quenched to 1600−1700 K, as the thermal energy of NM was transferred to the CNT within 

30 ps. Thereafter, the temperature increased very slowly over the remaining simulation time due to 

limited decomposition of the NM molecules and retarded water formation. 
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Figure 3.2.16 NERMD simulation data for nanobomb under electric spark and electromagnetic 

induction. (a) Temperature profiles of NM, molar fractions of (b) NM and (c) H2O in nanobomb with 6 

V nm-1 field strength, respectively. (d) Temperature profiles of NM, molar fractions of (e) NM and (f) 

H2O in nanobomb with 7 V nm-1 field strength, respectively. (g) Temperature profiles of NM, molar 

fractions of (h) NM and (i) H2O in nanobomb with 8 V nm-1 field strength, respectively. EM induction 

represent for electromagnetic induction. Heat up period and decomposition period are shown by dashed 

line and solid line respectively. Vertical dashed lines indicate the time of the burst of CNT for each 

system. Copyright © 2020, American Chemical Society. 
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When the two kinds of electric field-based shocks were applied, the time required for bursting after 

heating was similar or much longer than that induced by thermal shock. Nevertheless, we expected that 

if the electric field was continuously applied until the nanobomb burst, the electric field could accelerate 

decomposition by effectively influencing the arrangement and bond environment of the NM molecules 

(Figure 3.2.17).  

 

 

Figure 3.2.17. Molar fractions of NM and temperature profiles of NM in nanobomb with (a) electric 

spark and (b) electromagnetic induction during NERMD simulation vs simulation time. The strength of 

the electric field was set at 6, 7, and 8 V nm−1. ES and EMI represent “electric spark” and 

“electromagnetic induction”, respectively. The rate of NM decomposition in each nanobomb is 

represented by translucent solid line. Vertical dashed lines indicate the bursting time of the CNT for 

each system. Copyright © 2020, American Chemical Society. 
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explained by the different bursting mechanisms induced by the two types of external shock (Figure 

3.2.18). In the case of the electric spark (Figure 3.2.18(a)), the NM molecules were aligned along the 

direction of the electric field, and decomposition was initiated. As the reaction progressed further, the 

oxygen- and hydrogen-containing reaction products segregated from each other inside the 

nanocontainer. Note that the CNT walls were partially functionalized at the opposite side from the 
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direction of the electric field where the oxygen-containing molecules were found to be concentrated. 

Finally, the nanobomb burst and the internal products were ejected, starting from tearing of the 

functionalized site. On the other hand, in the case of electromagnetic induction (Figure 3.2.18(b)), there 

was no observable alignment of the NM molecules induced by the electric field. Instead, the C−N bond 

dissociated rapidly due to the effect of the frequency of the electric field. Thus, the encapsulated reaction 

intermediates were randomly and immediately functionalized on the CNT walls, and rupture of the 

nanobomb occurred within 10 ps. 

 

 

Figure 3.2.18 Schematic illustration of bursting mechanism of the (20,20) nanobomb under 6 Vnm−1 

electric field. Bursting of nanobomb (a) under electric spark, and (b) under electromagnetic induction. 

The atoms in CNT and NM molecules are represented by stick and ball-and-stick models, respectively. 

The carbon, oxygen, nitrogen, and hydrogen atoms are colored in gray, red, blue, and white, respectively. 

The orange arrow represents the direction of electric field. Copyright © 2020, American Chemical 

Society. 
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3.2.4 Conclusion 

Nanobomb systems were constructed by confining NM in CNT nanocontainers that were subjected 

to physicochemical modifications by changing the chirality, nitrogen-doping, and introducing a 

monovacancy. The systems were investigated by thermal shock-induced NERMD simulation and DFT 

calculations. The bursting properties of each nanobomb system were determined from the temperature 

profile, NM decomposition rate, intermediates, and reaction mechanism with respect to the simulation 

time. Even though the overall mechanism was similar for all modifications to that of pristine (20,20) 

CNT, CNT modifications generally accelerated bursting of the nanobomb. Changing the chirality of the 

CNT nanocontainer produced marginal differences in the bursting properties except for the reduced 

bursting time, which was expected to be associated with weak mechanical property of zigzag CNT. 

Nitrogen-doping on CNT also had a little effect on the bursting properties of the nanobomb, but earlier 

attachment of the confined products reduced the bursting time of nitrogen-doped nanobomb. Among 

physicochemical modifications of interest, monovacancy defect induced the most noticeable and 

concentration-dependent effect, where a higher concentration of monovacancy defects accelerated the 

decomposition of NM, the generation of H2O, and the temperature increase before bursting. Due to high 

chemical reactivity around the defective sites, the most rapid bursting of nanobomb was achieved by 

facilitated attachment of reaction intermediates as observed in the nitrogen-doped nanobomb. When the 

mono-vacancies were saturated with hydrogen, bursting of the nanobomb was slightly retarded 

compared to that of the monovacancy nanobomb due to the reduced reactivity. However, because 

hydrogen desorption occurred over time, the saturated vacancies eventually exhibited a similar effect 

to that of the monovacancy defects. To analyze the reason for this difference, the energy related to SW 

defect formation and the binding energies of the confined products determined from DFT calculations 

were compared for the systems with different physicochemical modifications. Formation of SW defects 

and adsorption of the confined product at the nitrogen-doping site or monovacancy defect site were 

much easier than in the case of the pristine CNT.  

The effects of electric spark and electromagnetic induction were examined by applying an electric 

field to the (20,20) nanobomb system. When the NVE RMD simulation was performed after the 

temperature was raised to 2500 K by application of the respective electric field-based shocks, the 

explosion characteristics of the nanobomb heated by the electric spark were similar to those subjected 

to the thermal shock, whereas the nanobomb heated by electromagnetic induction cooled rapidly and 

decomposed very slowly. However, when the electric field was continuously applied, both shocks 

induced significant changes in the explosion of the nanobomb. Continuous collision and decomposition 

of NM were induced by applying an electric spark to the nanobomb, and the temperature of the 

nanobomb gradually increased, resulting in bursting within 200 ps. Notably, in the case of 
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electromagnetic induction, the frequency of the electric field, which corresponded to the C−N bond 

stretch in NM, brought about rapid decomposition of NM, and the nanobombs exploded within 10 ps, 

which is much faster than the case with the electric spark. 
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3.3 Effect of Co-encapsulation of Nitromethane and Detonating Molecule 

This chapter includes the published contents: 

Jeon, W. C.†; Lee, J. H.†; Kim, J. C.†; Jung, S.-H.; Cho, S. G.; Kwak, S. K. J. Ind. Eng. Chem. 2020, 83, 

64-71 (†: equally contributed). Reproduced with permission from Elsevier. Copyright © 2019, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

___________________________________________________________________________ 

 

3.3.1 Introduction 

In the defense industry, high-energy materials (HEMs) are steadily developed and applied for 

explosive, propellant, and pyrotechnic applications for their superior explosive properties. Among the 

HEMs, explosives are detonated by external impact, such as physical or chemical shock, and invoke 

subsequent explosive reactions, while generating an instantaneous shock wave. For practical and safe 

use, the sensitivity of HEMs to external stimuli should be sufficiently low. However, the stability and 

reactivity of explosive compete; if one property is improved, the other deteriorates. To overcome this 

limitation, up to these days, several researchers have attempted to synthesize new HEMs1-3 or construct 

new types of composites, in which the structures of conventional HEMs are controlled at the 

nanoscale.4,5 

The nanobomb is another type of nanostructured complex that can improve the explosion 

properties of HEMs. In our previous study, the nanobomb model, in which compressed NM was 

encapsulated inside a CNT vessel, was proposed to improve the explosion power and stability of NM.6 

In the nanobomb structure, synergistic effects between NM and CNT were expected such that the 

confined NM was not only stabilized at ambient condition,7 but also decomposed rapidly at bursting.8,9 

However, owing to the increased stability of the surrounding container, the nanobomb required 

pressurized NM or high thermal-shock energy for bursting. Therefore, we have investigated alternative 

ways to improve the explosion characteristics by supporting the decomposition of NM. In general, an 

explosive device is equipped with detonator to trigger the explosive reaction the less-sensitive HEM. 

To mimic this concept at the molecular scale and consequently enhance the explosion performance of 

the nanobomb, we herein aim to propose a detonator-integrated nanobomb.  

Detonators deliver reaction energy through their high pressure and velocity. Thus, when external 

stimuli are exerted on the explosive device, they first decompose and generate a shock wave to initiate 

the chain reaction. Until recently, several mixture models, in which explosive and detonating molecules 

coexist, have been suggested to improve explosion characteristics. Guo et al. showed that CL–20 
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exhibited excellent detonating properties with reduced sensitivity when co-crystallized with TNT, 

compared to those of pure crystal of CL–20.10 Li and his coworkers found that RDX decomposed more 

completely than pure RDX at the same decomposition temperature when RDX existed as a composite 

with AlH3 nanoparticles.11 Other studies12-15 have also shown that the coexistence of detonators and 

explosives could modulate the explosive power and sensitivity. Therefore, it would be possible to design 

new nanobomb with improved detonating speed of NM with guaranteed stability in CNT with NM 

loaded with a detonating molecule. 

In this study, to improve the bursting kinetics of a nanobomb without the loss of structural stability 

of the container, we employed a molecular-scale detonator mixed with NM. To address the reaction 

characteristics of the nanobomb, we investigated how the nanobomb is decomposed by thermal shock 

according to the existence of detonators by tracking the reaction rate and investigating the bursting 

mechanism. First, the candidate detonating molecules were screened to check their applicability to 

nanobombs by estimating their detonating properties by DFT calculations. In addition, bulk mixtures 

of the NM and detonating molecule were prepared, and decomposed using NERMD at high 

temperatures. The changes in the energetics and species of molecules were compared to those in pure 

NM. After that, the detonating molecules were selected for the nanobomb as a mixture with NM. Their 

explosion kinetics were investigated depending on the composition of molecules and variation of heat-

up temperature with NERMD simulations. Finally, we analyzed how the decomposed intermediates in 

the initial reaction mechanism affected the reaction kinetics of NM. 

3.3.2 Simulation Details 

3.3.2.1 DFT 

The detonation velocity (D in km s−1 unit) and detonation pressure (P in GPa unit) of candidate 

material were calculated using Kamlet–Jacobs (K–J) equations, as follows16: 

 ( )
1/2

1/2 1/2

01.01 (1 1.30 )D NM Q = + ,  (3.3.1) 

 
2 1/2 1/2

01.558P NM Q= ,  (3.3.2) 

where N is the moles of gas produced per gram of explosives, �̅�  is the average molar weight of 

detonation product (in g mol−1 unit), Q is the energy of detonation (in kJ g−1 unit) acquired from heat of 

formation, and ρ0 is the packed density (in g cm−3 unit). According to the previous work done by Gui-

xiang et al., N, �̅�, and Q could be estimated considering the elemental composition of the detonating 

molecules (Table 3.3.1).17 For the detonating molecule composed of C, H, O, and N elements, the 
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amount and kinds of final products are varied by the stoichiometric ratio in the molecule. Oxygen, in 

particular, participates in producing several stable species, such as H2O, CO2, and O2. Therefore, three 

stoichiometric conditions of oxygen (i.e. c in Table 3.3.1) compared to other elements were considered. 

To calculate the heat of formation, diamond, nitrogen gas, oxygen gas, and hydrogen gas were assumed 

as the reference products for each carbon, nitrogen, oxygen, and hydrogen atom, respectively. We 

considered NM and five species of detonating molecule (i.e. HMX, HNS, PETN, RDX, and TNT), 

which have excellent detonating properties, for DFT calculations, referring to the previous study 

(Figure 3.3.1).18 

 

 

Table 3.3.1 Theoretical N, �̅� , and Q values depending on the stoichiometric ratio of detonating 

molecule composed of CaHbOcNd. Copyright © 2019, The Korean Society of Industrial and Engineering 

Chemistry. Published by Elsevier B.V. 

Parameter 

Range of stoichiometric ratio 

c ≥ 2a + b/2 2a + b/2 ≥ c ≥ b/2 b/2 ≥ c 

N (b + 2c + 2d)/4M (b + 2c + 2d)/4M (b + d)/4M 

�̅� 4M/(b + 2c + 2d) (56d + 88c - 8c)/(b + 2c + 

2d) 

(2b + 28d + 32c)/(b + d) 

Q × 10-3 (28.9b + 94.05a + 

0.239∆Hf°)/M 

[28.9b + 94.05(c/2 - b/4) + 

0.239∆Hf°]/M 

(57.8c + 0.239∆Hf°)/M 
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Figure 3.3.1 Explosive and detonating molecules considered in this study. The carbon, oxygen, nitrogen, 

and hydrogen atoms are colored in gray, red, blue, and white, respectively. Copyright © 2019, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

 

 

DFT calculations were carried out to investigate the heat of formation of the detonating molecules 

using Dmol3 program19,20 in Materials Studio 2019 package21. For the DFT calculations, we employed 

PBE22 exchange–correlation functional and DNP 4.4 basis set with all-electron core treatment. To 

consider van der Waals interactions of detonating molecules, TS dispersion correction23 was applied. 

The convergence criteria for the energy, force, and displacement were set to 1×10−5 Ha, 0.002 Ha/Å, 

and 0.005 Å, respectively. 
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3.3.2.2 RMD 

To evaluate the detonators’ enhancing effects on nanobomb, RMD simulations were conducted on 

LAMMPS package24 using bulk liquid mixture systems and nanobomb systems. In this study, ReaxFF 

parameters, which were used for the simulation of the decomposition reaction of the bulk NM at 

different densities25, were applied for RMD simulations. For the bulk system, 200 NM molecules with 

some portion of additional detonating molecules were randomly packed in a cubic simulation cell. The 

compositions of NM and detonating molecules were considered in two weight ratios (i.e. 75:25 and 

50:50) (Figure 3.3.2), and their equilibrium densities were acquired via 50 ps of NPT-MD simulation 

at ambient condition. After the detonating molecules are selected through assessment of the bulk 

systems, periodic (20, 20) pristine CNT (the number of carbon atoms in CNT: 2400) was relaxed in the 

first step of nanobomb construction. To reduce the strain effect in the periodic direction of CNT, the 

models were relaxed by COMPASS II force field26 and ReaxFF force field, consecutively. Next, RMD 

simulations were conducted for 50 ps at 298 K and 1 atm via NPzzT ensemble while fixing the length of 

the x and y axes of each system. Then, pure NM or mixtures of NM and detonating molecules were 

randomly packed inside the CNT considering the equilibrium density. To relax the nanobomb system, 

the entire structure was optimized, followed by NVT–RMD simulation for 100 ps at 298 K (Figure 

3.3.3). 

To observe the decomposition phenomena of bulk and nanobomb systems, two different simulation 

procedures were considered. For the bulk system, the temperature of each system was rapidly raised to 

the target temperature (i.e. 2000, 2500, and 3000 K) within a short simulation time (100 fs). After that, 

the NVT–NERMD simulation was conducted for 200 ps. In contrast, for the nanobomb system, thermal 

shock was applied to nanobomb. In the thermal-shock-induced bursting, the NM and detonating 

molecules were indirectly heated by the CNT nanocontainer, which was assumed to be a heat source. 

The heating process continued until the average temperature of the contents reached to the target 

temperature (i.e. heat-up period). Next, the NVE–NERMD simulation was conducted for 300 ps in total 

while conserving the total energy of the system (i.e. decomposition period). Time step for all RMD 

simulations was set to 0.1 fs. 
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Figure 3.3.2 Relaxed bulk systems of pure NM and mixtures. (a) Pure NM bulk system. (b) HMX-

mixed bulk systems. (c) HNS-mixed bulk systems. (d) PETN-mixed bulk systems. (e) RDX-mixed bulk 

systems. (f) TNT-mixed bulk systems. The values of lattice parameter are written with arrows. NM, 

HMX, HNS, PETN, RDX, and TNT are colored in light gray, orange, blue, red, green, and magenta, 

respectively. Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. 

Published by Elsevier B.V. 
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Figure 3.3.3 Front (left) and side views (right) of relaxed nanobomb models. (a) Pure NM nanobomb. 

(b) 25 wt% HMX-mixed nanobomb. (c) 50 wt% HMX-mixed nanobomb. (d) 25 wt% RDX-mixed 

nanobomb. (e) 50 wt% RDX-mixed nanobomb. The values of diameter and periodic length of CNT are 

written on the side view of (a), and the others are identical to (a). CNTs are colored in dark gray depicted 

with line and NM, HMX, and RDX are colored in light gray, orange, and green depicted with ball-and-

stick. Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. Published by 

Elsevier B.V. 
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3.3.3 Results and Discussion 

3.3.3.1 Selection of Detonating Molecule 

To improve the bursting performance of the nanobomb, the appropriate detonating molecule must 

be chosen and encapsulated inside the CNT nanocontainer. The most important criteria for evaluating 

the performance of detonating molecule are the detonation velocity (D in km s−1 unit) and pressure (P 

in GPa unit). D and P are the velocity and pressure emitted from shock wave energy when the external 

shock is applied to the detonating molecules. Detonating molecules with high D and P values become 

quickly spread out and release strong shock wave energy. Therefore, they can promote the activation of 

surrounding explosives, improving explosion performance. Several widely employed explosives 

composed of CHON elements were chosen from literature18, and their detonation properties were 

calculated via the DFT method. Table 3.3.2 summarizes the calculated results of D and P, as well as 

the molecular properties employed in the K–J equation. Among the detonating molecules, molecules 

with aromatic ring (i.e. HNS and TNT) exhibited relatively low and weak D and P values, whereas 

saturated ring molecules containing nitrogen (i.e. RDX and HMX) had high and strong D and P values. 

Based on the theoretical detonation properties, RDX and HMX were expected to enhance the bursting 

performance of the nanobomb when mixed with NM.  

 

 

Table 3.3.2 Thermodynamic and detonating properties of detonating molecules employed in this study. 

Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier 

B.V.  

Detonating 

molecule 

∆Hf° 

(kJ/mol) 

0 

(g/cm3) 
N 

�̅� 

(g/mol) 

Q 

(kJ/g) 

D 

(km/s) 

P 

(GPa) 

NM -11.98 1.137 0.0368 23.1 1406.14 6.451 13.384 

HMX 157.13 1.91 0.0338 27.2 1542.62 9.249 39.312 

HNS 144.01 1.70 0.0233 32.0 1401.64 7.203 22.239 

PETN -102.95 1.77 0.0316 30.4 1332.72 8.411 32.078 

RDX 131.21 1.86 0.0338 27.2 1521.69 9.039 36.948 

TNT -276.50 1.65 0.0253 28.5 1192.67 6.874 19.901 
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Before we apply detonating molecules to the nanobomb, the enhancing effects were investigated 

on a bulk liquid mixture with NM. Liquid mixtures of NM and detonating molecules were modeled by 

considering two composition ratios (i.e. 75:25 and 50:50 weight ratio in the total system), and were 

relaxed at room temperature to acquire the equilibrium density of mixture (Table 3.3.3). Decomposition 

phenomena were observed by heating the bulk systems to 2000, 2500, and 3000 K, respectively, using 

NVT–NERMD simulations. Figure 3.3.4 shows the decomposition rate of NM in the bulk systems 

depending on the temperature and composition ratio. The decomposition of NM was accelerated in most 

mixture systems due to the fast reaction of the detonating molecule compared to NM (Table 3.3.4). In 

contrast to almost intact NM molecules at 2000 K, for example, HMX was completely decomposed 

within 6 ps. As expected in the detonation properties via DFT calculations, the decomposition rates of 

NM, as well as those of the detonating molecule itself, were observed in the order of HMX, RDX, 

PETN, HNS, and TNT. Note that under the high-temperature heating, all species, regardless of NM and 

detonating molecule, were rapidly decomposed by excessive heat energy.  

 

Table 3.3.3 Number of molecules (Nt0) and density of bulk mixture systems at the initial step. Copyright 

© 2019, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

Model system (wt%) 

Nt0 

Density (g/cm3) 
NM 

Detonating 

molecule 

Pure NM 200 - 1.0837 

HMX 
25 200 14 1.1373 

50 200 41 1.1986 

HNS 
25 200 9 1.1196 

50 200 27 1.2175 

PETN 
25 200 13 1.1102 

50 200 39 1.1611 

RDX 
25 200 18 1.1289 

50 200 55 1.1924 

TNT 
25 200 18 1.1017 

50 200 54 1.2255 
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Figure 3.3.4 Molecular fraction of NM in the bulk systems over simulation time for 200 ps. (a)–(c) 

Decomposition of 25 wt% mixture at (a) T = 2000 K, (b) T = 2500 K, and (c) T = 3000 K. (d)–(f) 

Decomposition of 50 wt% mixture at (d) T = 2000 K, (e) T = 2500 K, and (f) T = 3000 K. Copyright © 

2019, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 
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Table 3.3.4 Time (in ps unit) for the detonating molecule to be completely decomposed from each bulk 

mixture system. Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. 

Published by Elsevier B.V. 

Model system (wt%) T = 2000 K T = 2500 K T = 3000 K 

HMX 
25 2.8 0.4 0.1 

50 5.7 1.2 <0.1 

HNS 
25 174.2 16.7 6.8 

50 177.3 34.8 12.9 

PETN 
25 8.5 1.2 0.2 

50 9.8 2.4 0.6 

RDX 
25 3.8 1.0 0.3 

50 3.5 1.4 0.5 

TNT 
25 >200 39.9 16.4 

50 >200 42.9 11.7 

 

To directly compare the effect of the detonator on the energy-emitting performance, time 

evolutions of the total potential energy (PE) were investigated (Figure 3.3.5). Because of the initial 

endothermic reaction and following exothermic reactions, the PE curves increased slightly and then 

decreased significantly with time. In contrast to the rates of NM decomposition, which were similar to 

each other regardless of detonator at high temperature heating, changes in PE curve were prominently 

different depending on the types of detonating molecule. HMX- and RDX-containing systems exhibited 

huge heat release during decomposition and differences increased as the composition of detonating 

molecule increased. On the other hand, mixture systems with HNS and TNT showed similar heat of 

reaction with pure NM system at 2000 and 2500 K and showed much lower heat release at 3000 K. 

These differences increased as the composition of detonating molecule increased. For the PETN, even 

though the D and P values were similar to those of HMX and RDX, weak heat was released from the 

mixture system compared to that of HMX- and RDX-containing systems.  
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Figure 3.3.5 PE curves of the bulk systems by the simulation time for 200 ps. (a)–(c) Decomposition 

of 25 wt% mixture at (a) T = 2000 K, (b) T = 2500 K, and (c) T = 3000 K. (d)–(f) Decomposition of 50 

wt% mixture at (d) T = 2000 K, (e) T = 2500 K, and (f) T = 3000 K. Copyright © 2019, The Korean 

Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

As in the PE curves depending on the type of detonating molecule, these differences were also 

observed in the time evolution of the formation of water molecules. In our previous study,6 the formation 

of water molecules among several reaction products made from pure NM was found to be closely related 

to the heat of reaction. For the mixture of detonating molecules, this trend was also applied, as depicted 

in Figure 3.3.6. The amount of water produced was scaled by the total weight of each mixture system. 

At the conditions of 2000 K and 25 wt% detonating molecule, water molecules were produced rapidly 

when NM was mixed with HMX, RDX, and PETN. As the ratio of detonating molecules was increased 

to 50 wt%, prominent increments at HMX and RDX were observed. These trends were more remarkable 

at 2500 K. However, note that as the reaction progressed further at 3000 K, the relative amount of water 

in all mixture systems was less than that in the pure NM system. Furthermore, at the conditions of 3000 

K, the water slightly decomposed after it reached its maximum quantity due to further reaction to other 

products. 

  

0 50 100 150 200

-6000

-5000

-4000

-3000

-2000

-1000

0

1000


P

E
 (

J
/g

)
Time (ps)

 Pure NM

 HMX

 HNS

 PETN

 RDX

 TNT

0 50 100 150 200

-6000

-5000

-4000

-3000

-2000

-1000

0

1000


P

E
 (

J
/g

)

Time (ps)

 Pure NM

 HMX

 HNS

 PETN

 RDX

 TNT

0 50 100 150 200

-6000

-5000

-4000

-3000

-2000

-1000

0

1000


P

E
 (

J
/g

)

Time (ps)

 Pure NM

 HMX

 HNS

 PETN

 RDX

 TNT

0 50 100 150 200

-6000

-5000

-4000

-3000

-2000

-1000

0

1000


P

E
 (

J
/g

)

Time (ps)

 Pure NM

 HMX

 HNS

 PETN

 RDX

 TNT

0 50 100 150 200

-6000

-5000

-4000

-3000

-2000

-1000

0

1000


P

E
 (

J
/g

)

Time (ps)

 Pure NM

 HMX

 HNS

 PETN

 RDX

 TNT

a) b) c)

d) e) f)

0 50 100 150 200

-6000

-5000

-4000

-3000

-2000

-1000

0

1000


P

E
 (

J
/g

)
Time (ps)

 Pure NM

 HMX

 HNS

 PETN

 RDX

 TNT

(a) (b)

(d) (e) (f)

(c)



117 

  

 

Figure 3.3.6 Fractions of produced water from the bulk systems by the simulation time for 200 ps. 

Decomposition of 25 wt% mixture at (a) T = 2000 K, (b) T = 2500 K, and (c) T = 3000 K. Decomposition 

of 50 wt% mixture at (d) T = 2000 K, (e) T = 2500 K, and (f) T = 3000 K. Copyright © 2019, The 

Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. 

 

3.3.3.2 Construction of Detonator-integrated Nanobomb 

Considering the enhancement effect of HMX and RDX in the bulk mixture, nanobombs 

encapsulating HMX and RDX with NM together were constructed, respectively. Improved nanobombs 

were also constructed with two composition ratios, and their packing densities inside the nanocontainer 

were obtained from the NPT–MD simulation of each mixture at room temperature (Table 3.3.5). To 

evaluate the enhancement effect on the bursting performance of nanobombs, thermal-shock-induced 

bursting was studied. From the heat-up period to the decomposition period, the temperature of the 

contents (i.e. NM and detonating molecule) continuously increased with some changes in slope with 

the propagation of the simulation (Figure 3.3.7). In the first stage of the temperature profile, via 

numerous collisions of contents to the CNT, the thermal energy of the container was transferred to the 

contents to be heated from room temperature to the reaction temperature, accompanying some fraction 

of decomposition of the explosives. Then, by implementing NVE simulation to the nanobomb, the NM 
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and detonating molecules were decomposed to produce many water molecules as well as other species, 

and their PE was converted to thermal energy to increase the system temperature (second stage). In the 

final stage of the reaction, for the system heated to 3000 K, a sudden increase in temperature occurred 

due to the bursting nanobomb with the expulsion of reaction intermediates.  

 

Table 3.3.5 Number of molecules (Nt0) and density of the contents in nanobomb systems at the initial 

step. Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. Published by 

Elsevier B.V. 

Model system (wt%) 

Nt0 

Density (g/cm3) 
NM 

Detonating 

molecule 

Pure NM 374 - 1.0837 

HMX 
25 296 21 1.1373 

50 210 43 1.1986 

RDX 
25 299 27 1.1289 

50 209 57 1.1924 

 

 

Figure 3.3.7 Temperature profiles of the contents in nanobomb systems for heating temperatures of (a) 

T = 2000 K, (b) T = 2500 K, and (c) T = 3000 K. Vertical dashed lines in (c) represent the bursting time. 

Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier 

B.V. 
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To further investigate the detonator-induced change in reaction mechanism, reaction intermediates 

produced during the heat-up period were scrutinized. As observed in the bulk liquid mixture, while the 

contents were heated from room temperature to bursting temperature, the detonator-mixed nanobomb 

exhibited an accelerated decomposition rate of NM due to the fast decomposition rate of the detonating 

molecule compared to that of NM (Figure 3.3.8−3.3.10). Within the heat-up period, HMX and RDX 

were completely decomposed, whereas half of NM molecules were reacted at most. Note that the effect 

of the detonating molecule mixing was pronounced at low temperature, but the higher the temperature, 

the less the effect of mixing due to the excessively high temperature. 
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Figure 3.3.8 Fractions of the contents in nanobomb at a heating temperature of 2000 K. (a) Fractions 

of NM during decomposition simulation (i.e. heat-up and decomposition periods). Fractions of NM and 

HMX of (b) 25 wt% and (c) 50 wt% HMX-mixed nanobomb during the heat-up period. Fractions of 

NM and RDX of (d) 25 wt% and (e) 50 wt% RDX-mixed nanobomb during the heat-up period. For 

clarity, the heat-up and decomposition periods are represented by dashed and solid lines, respectively. 

Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier 

B.V. 
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Figure 3.3.9 Fractions of the contents in nanobomb at a heating temperature of 2500 K. (a) Fractions 

of NM during decomposition simulation (i.e. heat-up and decomposition periods). Fractions of NM and 

HMX of (b) 25 wt% and (c) 50 wt% HMX-mixed nanobomb during the heat-up period. Fractions of 

NM and RDX of (d) 25 wt% and (e) 50 wt% RDX-mixed nanobomb during the heat-up period. For 

clarity, the heat-up and decomposition periods are represented by dashed and solid lines, respectively. 

Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier 

B.V. 
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Figure 3.3.10 Fractions of the contents in nanobomb at a heating temperature of 3000 K. (a) Fractions 

of NM during decomposition simulation (i.e. heat-up and decomposition periods). Fractions of NM and 

HMX of (b) 25 wt% and (c) 50 wt% HMX-mixed nanobomb during the heat-up period. Fractions of 

NM and RDX of (d) 25 wt% and (e) 50 wt% RDX-mixed nanobomb during the heat-up period. For 

clarity, the heat-up and decomposition periods are represented by dashed and solid lines, respectively. 

Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier 

B.V. 
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In the reaction intermediate, the most obvious change when the HMX and RDX were added to the 

nanobomb was the fast and large formation of NO2 and CH2N molecules, which were made by 

dissociation of the N–N and C–N bonds of each detonating molecule (see the following equations and 

Figure 3.3.11 and 3.3.12), consistent with the RDX decomposition mechanism in previous studies.27,28 

 4 8 8 8 4 8 7 6 2 2 2( ) 4 4HMX C H N O C H N O NO CH N NO→ + → → +   (3.3.3) 

 3 6 6 6 3 6 5 4 2 2 2( ) 3 3RDX C H N O C H N O NO CH N NO→ + → → +   (3.3.4) 

According to our observation, the NO2 molecule was initially isolated from each detonating 

molecule. Then, through cascading decomposition reactions, CH2N and NO2 molecules were formed 

largely during the heat-up period. After hydrogen transfer from CH2N to NO2, as-made HNO2 was 

further decomposed to NO and OH, which are reactive radical molecule to decompose NM. Note that 

even though OH was observed to form during the heat-up period, owing to its fast reaction time, the 

number of OH was very small and thus it was not seen in Figure 3.3.11 and 3.3.12. As depicted in 

Figure 3.3.13, NM molecules packed with detonating molecules inside the CNT were facilitatively 

reacted with radical intermediates (i.e. NO molecule made from HMX), and decomposed into NO2, NO, 

and CH2. Thus, it was noteworthy that the decomposition reaction of NM was assisted by reaction 

intermediates directly made from the detonating molecule. 
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Figure 3.3.11 Number of major reaction intermediates observed during the heat-up period in HMX-

mixed nanobombs. (a) 25 wt% HMX-mixed nanobomb with 2000 K heating. (b) 50 wt% HMX-mixed 

nanobomb with 2000 K heating. (c) 25 wt% HMX-mixed nanobomb with 2500 K heating. (d) 50 wt% 

HMX-mixed nanobomb with 2500 K heating. (e) 25 wt% HMX-mixed nanobomb with 3000 K heating. 

(f) 50 wt% HMX-mixed nanobomb with 3000 K heating. Copyright © 2019, The Korean Society of 

Industrial and Engineering Chemistry. Published by Elsevier B.V. 
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Figure 3.3.12 Number of major reaction intermediates observed during the heat-up period in RDX-

mixed nanobombs. (a) 25 wt% RDX-mixed nanobomb with 2000 K heating. (b) 50 wt% RDX-mixed 

nanobomb with 2000 K heating. (c) 25 wt% RDX-mixed nanobomb with 2500 K heating. (d) 50 wt% 

RDX-mixed nanobomb with 2500 K heating. (e) 25 wt% RDX-mixed nanobomb with 3000 K heating. 

(f) 50 wt% RDX-mixed nanobomb with 3000 K heating. Copyright © 2019, The Korean Society of 

Industrial and Engineering Chemistry. Published by Elsevier B.V. 
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Figure 3.3.13 Mechanistic snapshots of NM and reactive intermediate (NO) made from HMX observed 

in reactive MD simulation. The number below each figure represents the simulation time obtained from 

the 50 wt% HMX-mixed nanobomb under a heating temperature of 2500 K. Color scheme is same as 

Figure 3.3.1. Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. 

Published by Elsevier B.V. 

 

In the temperature profiles over simulation time, the most noticeable difference between the 

original and improved nanobombs due to incorporating detonating molecules was observed at the 

second elevation of temperature. Particularly for the decomposition under a heating temperature of 2000 

K, the difference between HMX and RDX was not significant, but with increasing quantities of 

detonating molecules, the temperature-elevation rate increased in this period. In contrast, nanobomb 

without detonating molecule did not exhibit second temperature elevation during 300 simulation time 

even though about 40% of NM molecules were decomposed as shown in Figure 3.3.8(a). We speculated 

that the absence of a temperature increase was due to the slow reaction rate of the pure-NM nanobomb. 

According to our previous study on nanobomb, the temperature of the nanobomb after heat-up period 

was dominantly affected by the formation of water, which was the largest exothermic reaction in the 

NM decomposition reaction. In Figure 3.3.14, the numbers of produced water molecules were 

compared depending on the number of detonating molecules. For the decomposition of the pure-NM 

nanobomb heated to 2000 K, only about 10% of the largest number of water formation compared to the 

other systems (≈ 280) was produced, whereas the 50 wt%-mixed nanobomb already reached maximum 

point at 200 ps NERMD simulation time. For the higher heating temperature, due to the high thermal 

energy, the difference between pure NM, 25 wt%-mixed, and 50 wt%-mixed systems at second 

temperature elevation period was diminished. At 3000 K, nanobomb systems were initially burst within 

300 ps simulation time, which was identified by sudden increase in temperature, except for the pure-

NM nanobomb. The difference in bursting time of each system was obvious, representing that HMX-

mixed nanobomb is more effective in bursting performance. 
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Figure 3.3.14 Number of water molecules produced from the nanobomb under heating temperatures of 

(a) 2000 K, (b) 2500 K, and (c) 3000 K. For the clear view, heat-up and decomposition periods are 

presented by dashed and solid lines, respectively. Copyright © 2019, The Korean Society of Industrial 

and Engineering Chemistry. Published by Elsevier B.V. 
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By considering the relation between the bursting time and reactivity of the CNT wall in our 

previous studies, we also compared the differences in reaction mechanisms to analyze the cause of the 

difference in bursting time depending on the detonating molecule. For the nanobomb systems 

containing detonating molecules, 50 wt% detonator-mixed nanobomb systems under the heating 

temperature of 3000 K were employed to compare the mechanism. Because the pure-NM nanobomb 

did not burst within 300 ps, short additional simulation was conducted to observe the precise bursting 

time and mechanism. A similar reaction mechanism was observed regardless of the species of 

detonating molecules (Figure 3.3.15). More specifically, at the beginning of the nanobomb 

decomposition, the internal products attached to the inside wall of the CNT, as observed at the beginning 

of the bursting mechanism for the pure-NM nanobomb in our previous studies.6 At the same time, the 

hexagonal carbon atoms rings were deformed to make 7–7 carbon atom rings or 5–7 carbon atom rings 

(SW defect), at 307.1 ps (Figure 3.3.15(a)), 126.6 ps (Figure 3.3.15(b)), and 213.1 ps (Figure 

3.3.15(c)). Then, a nanopore was formed by bond cleavage between carbon atoms around the deformed 

carbon ring at 327.8 ps (Figure 3.3.15(a)), 206.9 ps (Figure 3.3.15(b)), and 231.7 ps (Figure 3.3.15(c)). 

This pore gradually enlarged over time, and intermediates started to be ejected (i.e. burting of nanobomb 

started) at 336.0 ps (Figure 3.3.15(a)), 212.6 ps (Figure 3.3.15(b)), and 234.3 ps (Figure 3.3.15(c)). 

According to the bursting mechanism and temperature-profile analysis, the bursting time of the 

nanobomb systems with HMX and RDX was earlier than that of the pure-NM nanobomb. This 

difference was speculated to be due to the expedited attachment of reaction intermediates as well as the 

decomposition of NM by the addition of detonating molecules. 
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Figure 3.3.15 Mechanistic models in bursting with each physicochemical modification of CNT at the 

heating temperature of 3000 K: (a) pure-NM nanobomb, (b) 50 wt% HMX-mixed nanobomb, (c) 50 

wt% RDX-mixed nanobomb. The three simulation snapshots in each system show the moments of the 

adsorption of internal products, pore generation, and expansion of the pore to burst, in chronological 

order. The carbon, oxygen, nitrogen, and hydrogen atoms are colored gray, red, blue, and white, 

respectively. Copyright © 2019, The Korean Society of Industrial and Engineering Chemistry. 

Published by Elsevier B.V. 
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3.3.4 Conclusion 

In this study, to improve the bursting performance of nanobombs, a detonating molecule, which 

was calculated to achieve superior detonation velocity and pressure by DFT calculation, was 

incorporated in the nanobomb system. Their enhanced performance was investigated by NERMD 

simulations. The detonation velocity and pressure were calculated for five well-known explosive 

molecules (i.e. RDX, HMX, TNT, PTEN, and HNS) using the K–J equation, and the effects of mixing 

the NM and detonating molecule were observed at the bulk liquid mixture. As the result, RDX and 

HMX were observed not only to have high detonation velocity and pressure, but also to accelerate the 

NM decomposition in the bulk liquid mixture. These quickened reaction kinetics were more apparent 

at higher concentrations of the detonating molecule. Finally, to verify the enhancement of the bursting 

kinetics of the improved nanobombs, where HMX or RDX were encapsulated with NM together inside 

the CNT, NERMD simulations were conducted. All detonating molecules were first broken by the 

transferred heat from the CNT during the heat-up period, and eventually decomposed into NO and OH 

molecules. These reactive intermediates directly reacted with NM to promote rapid decomposition. 

According to the bursting mechanism observed from atomic trajectories during NERMD simulation, 

even though detonators helped the nanobomb decompose rapidly (i.e. fast decomposition of NM, 

formation of water, and bursting of nanobomb), the overall mechanisms of bursting were similar to each 

other because of the same atomic composition in the detonating molecule as NM. In conclusion, it has 

been observed that injecting a detonator, which was expected to have high D and P values in DFT 

calculation, inside the molecular bomb was effective in improving the performance of the molecular 

bomb. 
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Chapter 4. Reaction Mechanism in Charge/Discharge Process of 

Rechargeable Li-CO2 Battery 

This chapter includes the following content: 

Baek, K.†; Jeon, W. C.†; Woo, S.; Kim, J. C.; Lee, J. G.; An, K.; S. K. Kwak.; Kang, S. J., Nat. Commun. 

2020 11:456 (†: equally contributed). Reproduced with permission from Springer Nature. Copyright 

© 2020, Springer Nature. 

 

4.1 Introduction 

Rechargeable alkali metal-gas cells have drawn attention as high energy storage system and ultra-

lightweight due to their air cathodes.1-8 For the case of Li−O2 battery, which is the representative alkali 

metal-gas cell, specific energy of the battery cell can reach to about 3860 m Ah g−1, which is extremely 

higher value than that in existing Li ion batteries.1-3 However, an unintended side reaction evoked by 

the carbon current collector and the aprotic electrolyte heavily lowers down the performance of Li−O2 

battery.9–11 In addition, even in the Li−O2 battery with nitrate-based molten salt electrolyte, although 

detrimental side reactions were reduced and the operation of battery cycle was prolonged, there is still 

one critical problem; the accumulation of the parasitic product Li2CO3 in repeating discharge-charge 

process.9,12 Formation of Li2CO3 creates a useless space inside the battery cell and continuously induces 

overpotential, which eventually reduces the limit of capability in battery cycle.  

To tide over these issues, researchers have succeeded in proposing a Li−CO2 cell and showed the 

importance of its application as both a rechargeable secondary battery and CO2 capture device to retard 

global warming5,13–20. However, although the Li-CO2 cell effectively captures CO2 gas during the 

discharge process, the high charge over-potential caused by the insulating and insoluble characteristics 

of Li2CO3 in the aprotic electrolyte should be reduced to prevent the severe parasitic reaction7,13,14,21. 

Moreover, the sluggish electron transfer enforce the Li−CO2 cells operates on mild current densities, 

which can’t meet the demands of high-performance battery for commercial purpose. Thus, recent 

researches are focusing on enhancing performance of Li−CO2 cells by reducing the charge over-

potential and extending the cycle ability, which enables the battery operation on high current densities.  

In this regards, in-depth study on electrochemical reactions in Li−CO2 battery is essential for 

battery cell design to step forward. The electrochemical reaction in Li−CO2 battery, in general, CO2 

reduction reaction (CO2RR), is known as follows; 4Li+ + 3CO2 + 4e− → 2Li2CO3 + C (2.80 V vs. 

Li/Li+)5
. This electrochemical reaction has been verified through experimental analysis5,22, and reaction 
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mechanism analysis through DFT calculation23. However, CO2RR would differ depending on the battery 

operating temperature22, and is established on the most of conditions that aprotic solvent and carbon 

structure are used as electrolyte and cathode in battery cell.17 In addition, because the electrochemical 

reaction is irreversible in Li−CO2 battery, the electrochemical reaction in the charge process is still 

veiled. Therefore, it is necessary to closely investigate the mechanistic domain of electrochemical 

reaction covering both charge and discharge processes, and a theoretical approach can be an effective 

solution. 

Herein, we revealed the reaction mechanism in the charge process and discharge process of high-

power-density Li−CO2 cell based on a quinary molten salt electrolyte containing Ru nanoparticles on 

the carbon cathode via DFT calculation. For the charge process, we could derive three reaction pathways 

of Li2CO3 decomposition, which were differentiated by operating temperature (e.g. 100 and 150 °C). 

These reaction pathways were validated with differential electrochemical mass spectrometry (DEMS) 

and X-ray photoelectron spectroscopy (XPS) data in experimentally synthesized quinary molten salt Li-

CO2 battery. In addition, we explored the reaction pathway of Li2CO3 formation on the discharge 

process depending on the existence of Ru surface to examine the catalytic effect of Ru nanoparticle. As 

the result, we could find that thermodynamic barrier energy was strikingly reduced when the reaction 

progress on Ru surface, which was supported by the electron transfer between CO2 and Ru surface. Our 

theoretical method plays a key role in explaining the reason why the power density of Li−CO2 battery 

is improved with the introduction of Ru surface. 
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4.2 Simulation Details 

4.2.1 Calculation Details 

The decomposition mechanism of Li2CO3 compound (charge process), and the formation 

mechanism of Li2CO3 with and without Ru surface (discharge process) were by DFT calculation. DFT 

calculations were performed with the DMol3 program24,25. GGA and PBEsol were used for exchange-

correlation functional26. The effective core potentials were used for core treatment with the basis set of 

DNP 4.4 level. The convergence tolerances of energy, force and displacement were set to 1×10−5 Ha, 

0.002 Ha Å−1, and 0.005 Å, respectively. To include van der Waals interaction effect, TS scheme was 

used27. The Brillouin-zone was sampled by a Monkhorst–Pack and k-point meshes for the bulk and slab 

models were set to (2×3×3) and (2×1×1), respectively. The COSMO solvation model was applied and 

the dielectric constant of quinary molten salt (ε = 5.0) was used. 28,29 Single LST and QST methodologies 

were applied to calculate transition states in reaction pathways of Li2CO3 decomposition, and the 

convergence criteria value of the rms force was set to 0.003 Ha Å–1.30,31 

 

4.2.2 Model Systems 

The unit cell structure of Li2CO3, which was reported from previously experimental X-ray 

diffraction study, was optimized by DFT calculations (Figure 4.1(a))32. The optimized lattice 

parameters for the monoclinic Li2CO3 (i.e. a = 8.25 Å, b = 4.90 Å, and c = 5.89 Å) were well matched 

with those of experimental crystal. To construct the surface slab models, we considered (001)-oriented 

three layers of the Li2CO3 slab model because of the most stable surface energy (Figure 4.1(b))33,34. In 

all calculations for slab model, one layer on the top was allowed to relax, while two layers at the bottom 

were fixed to their position to represent the bulk phase during geometry optimization calculation. The 

vacuum space with a height of at least 12 Å was applied to slab model. To estimate the synergistic effect 

of quinary molten nitrate salts and Ru nanoparticles in discharge process, we constructed a Ru surface 

slab model, which consisted of (101) surface observed in the experiment. The slab models for our 

calculations consisted of 4 atomic layers. Among four layers, two layers on the top were relaxed while 

two layers on the bottom were fixed to represent the bulk phase. The vacuum space was applied at least 

20 Å for all slab models. For the charge balance of system, K+, which has the largest molar ratio in 

molten salt, was added explicitly to vacuum space of each slab model (Figure 4.2). Note that the 

vacuum space was treated to be implicitly the molten salt environment by the COSMO method. 
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Figure 4.1 Li2CO3 model systems employed for reaction step calculation. (a)-(b) Unit cell structure (a) 

for monoclinic Li2CO3 (space group - C2/c), and slab model (b) of three layered Li2CO3 on (001) 

direction. Carbon, oxygen, and lithium atoms are colored in light gray, pink, and sky blue, respectively. 

For clear view in (b), top layer is presented by ball-and-stick style, and bottom two layers, which are 

fixed in position, are displayed in stick style. Copyright © 2020, Springer Nature. 

 

 
Figure 4.2 Optimized configurations of each molecule adsorbed on Ru (101) surface for discharge 

process. The empty region was treated by the COSMO method to impose the explicit molten salt phase. 

To balance an atomic charge, K+ ion was added in explicit solvent phase of each model wherever 

necessary. Nitrogen, carbon, oxygen, ruthenium, lithium, and potassium atoms are colored in blue, light 

gray, red, dark cyan, purple, and yellow, respectively. For the clear view, Ru atoms in the top layer were 

colored in mint green. Copyright © 2020, Springer Nature. 

(a) (b)
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4.2.3 Free Energy Calculation 

The Li+ extraction free energy, reaction free energy, activation free energy for decomposition 

reactions were calculated as follows,  

 (X = TRV, R, a)X XG E ZPE T S =  +  −                   (4.1) 

where XE represents the Li+ extraction energy ( TRVE ) in electrochemical reaction, and the heat of 

reaction ( RE ), and activation energy ( aE ) for each reaction, ZPE is the change of zero-point 

vibrational enthalpy, and T S−   is the entropic contribution at 100 °C and 150 °C, where T is the 

temperature of system and S  is the change of entropy. Notably, the electrochemical reaction energy, 

which is calculated directly from the differences between total energies of before and after the extraction 

of lithium, is represented as the theoretical lithiation–delithiation reaction voltage ( TRVE  )35. This 

energy was calculated as follows,  

( )
3 2 3

2  (  = 0, 1, 2)
xTRV Li CO Li Li COE E x E E x = + − −        (4.2) 

where 
3xLi COE and 

2 3Li COE are the total energies of a formula unit for LixCO3 and Li2CO3 structure, 

respectively, and LiE  is the energy of one atom in the lithium metal.  

For the discharge process after charge process in Figure 4.7 and 4.8, Gibbs free energies were 

calculated based on equation (4.1) substituting ZPE  with the vibrational enthalpy in each 

temperature. 
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4.3 Results and Discussion 

4.3.1 Reaction Mechanism in Charged Process 

Although the exact electrochemical reaction remains unclear, we examined the Li2CO3 

decomposition mechanism by the DFT calculation to explain the variation of generating amount of CO2 

depending on the operating temperature (i.e. 100 °C and 150 °C) of Li−CO2 cells (Figure 4.1). The 

Li2CO3 decomposition mechanism under implicit quinary molten salt condition was divided into the 

electrochemical reaction step, where Li ion is extracted by the charge potential, and the thermodynamic 

reaction step, where the carbonate on the surface participates in the reaction. We compared the Li 

extraction energy and activation energy of CO2 formation reaction by NO2
− to determine the reaction 

priority (Figure 4.3). Since the Li extraction energy (i.e. 2.79 and 3.24 eV for the first and second Li 

extraction, respectively) was lower than the activation energy of CO2 formation reaction (i.e. 4.01 eV), 

it was predicted that the CO2 formation reaction could occur after the Li extraction reaction. Thus, we 

suggest path a (Li2CO3 + NO2
− → 2Li+ + CO2 + NO3

− + 2e−) for the decomposition mechanism of 

Li2CO3 at 100 °C (Figure 4.4(a)-(c)). In path a, after the two Li atoms were extracted, carbonate ion 

reacted with NO2
− to produce [CO3NO2]

− at the first intermediate state (IM1). From IM1 to IM2, a 

bridge O atom bonded to C and N atoms was moved to form NO3
− and produce CO2. Then, CO2 was 

desorbed from the surface in final state (FS). The full-charge N1s XPS analysis showed no peak of 

NO2
− because of the generation of NO3

− as we conjectured (Figure 4.5(c)). At 150 °C, as shown in 

Figure 4.4(b)-(c), the Li2CO3 decomposition mechanism initially followed the same reaction process 

of path a. However, after CO2 and NO3
− are formed on the surface (IM2') in path b (2Li2CO3 + NO2

− 

→ 4Li+ + C2O5
2− + NO3

− + 2e−), CO2 could react further with the adjacent carbonate to form C2O5
2− 

(FS'). Separately, the unstable carbonate could react with the adjacent carbonate to form C2O6
2− (FS'') 

in path c (2Li2CO3 → 4Li+ + C2O6
2−

 +
 2e−), where NO2

− was not used as the reactant in the Li2CO3 

decomposition mechanism. The three paths in the reaction mechanisms predicted to be occurred at 

150 °C were consistent with experimental results, where NO2
− and NO3

− presented on the surface and 

small amount of CO2 was released (Figure 4.5(a)-(c)). We speculated that the thermal energy at the 

higher temperature could promote the reactions of paths b and c; the activation energies of the two 

mechanisms (i.e. 1.39 eV for path b and 1.54 eV for path c at 150 °C) were higher than the activation 

energy for the mechanism to produce CO2 gas (i.e. 0.99 eV for path a at 100 °C). Interestingly, CO2 

was favored in the adsorbed state considering the endothermic heat of reaction from IM2 to FS in path 

a without a transition state. This also could be a reason for CO2 to undergo the reaction step from IM2 

to FS' at 150 °C. All of the optimized configurations in each reaction mechanism were depicted in 

Figure 4.6. It should be noted that because the proposed pre-equilibrium electrochemical reactions are 

not the complete reaction mechanism of the charge process, the generation of the short-lived 
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intermediate C2O6
2− produces new adducts, resulting in irreversible CO2 evolution at 150 °C in the 

DEMS measurements in Figure 4.5. 

 

 

 

Figure 4.3 Comparison of the electrochemical reaction step and reaction step of Li2CO3 decomposition 

on the surface at 100 °C. (a) Optimized configurations of the extraction of Li reactions. (b) Optimized 

configurations of the reaction mechanism between CO3
2− and NO2

− to produce CO2 and NO3
−. The 

states and relative energies are written in the top and bottom of each figure. NO2 IS, NO2 TS, and NO2 

FS represent initial state, transition state, and final state, respectively. Nitrogen, potassium, carbon, 

oxygen, and lithium atoms are colored in green, purple, light gray, pink, and sky blue. And, for the clear 

view, the carbon, oxygen, and lithium atoms which participate in the reaction are colored in dark gray, 

red, and blue. Copyright © 2020, Springer Nature. 

  

(a)

(b)
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Figure 4.4 Reaction mechanism of Li2CO3 decomposition. (a) Reaction coordinate of one possible path 

a to produce CO2 and NO3
− (black line) at 100 °C. (b) Reaction coordinate of three plausible pathways 

(i.e. path a, path b to produce C2O5
2− and NO3

− (red line), and path c to produce C2O6
2− (blue line)) at 

150 °C. (c) Optimized configurations on three plausible pathways for reaction step corresponding to (a) 

and (b). IS, IM, and FS in each reaction mechanism represent the initial state, intermediate state, and 

final state, respectively. The yellow dotted line is the boundary between the Li extraction step and the 

reaction step, and the numbers represent the relative free energies based on that of bare surface in (a) 

and (b). Nitrogen, potassium, carbon, oxygen, and lithium atoms are colored in green, purple, light gray, 

pink, and sky blue. And, for the clear view, the carbon, oxygen, and lithium atoms which participate in 

the reaction are colored in dark gray, red, and blue. Arrow dotted lines represent the movement of 

molecules from state to state. For the clear view, the molecules except reacting molecules were made 

to be translucent in (c). Copyright © 2020, Springer Nature. 

(a) (b)

(c)
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Figure 4.5 Experimental characterizations of Li−CO2 battery using quinary molten salt electrolyte. (a) 

DEMS result of the Li−CO2 cell containing quinary molten salt electrolyte at different operating 

temperatures during charge process. The green dots correspond to the theoretical amount of CO2 

evolution. (b)-(c) High-resolution XPS Li1s (b) and N1s (c) spectra of the carbon cathodes after 1000 

mAh g−1 discharge and charge processes. The black and red lines indicate the results at operating 

temperatures of 100 and 150 °C, respectively. Copyright ©  2020, Springer Nature. 
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Figure 4.6 Optimized configurations of three plausible pathways for reaction step of Li2CO3 

decomposition. (a)-(c) Reaction path a (a), reaction path b (b), and reaction path c (c) which produce 

NO3
− and CO2, NO3

− and C2O5
2−, and C2O6

2−, respectively. The names of states are written on the top 

of each figure. IS, IM, TS, and FS in each reaction mechanism represent the initial state, intermediate 

state, transition state, and final state, respectively. Color scheme is same with Figure 4.3. Copyright © 

2020, Springer Nature. 
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4.3.2 Reaction Mechanism in Discharged Process 

To estimate the energy change along reaction coordinate in CO2RR mechanism, energy states of 

reaction intermediates in the discharge process were estimated on free energy diagram depending on 

temperature of battery operation (Figure 4.7). As the result, the thermodynamic barrier for Li2CO3 

formation was the step from CO2 to CO2
–. The barrier was slightly reduced at 150 ℃ but overall reaction 

went through same pathway. In addition, Gibbs free energy of reaction was estimated, and the value 

was substituted into the Nernst equation to derive the discharge potential at different temperatures as 

follows, 

 ∆𝐺 =  −𝑛𝐹𝑉                                (4.3) 

where ∆𝐺 is the free energy of the reaction, n is the number of electrons in the electrochemical reaction, 

F is the Faraday constant, and V is the discharge potential. The resulting discharge potentials are 2.42 

and 2.39 V at 100 and 150 °C (Table 4.1 and Figure 4.7), respectively, and these values are in the range 

of experimental data. Additionally, the trend in the plot of the temperature versus discharge potential 

matches the trend reported in a previous Li–CO2 study22. 
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Figure 4.7 Free energy diagrams of the discharge process at 100 and 150 °C. (a)–(b) The 

electrochemical reaction starts from CO2. The black numbers in (a) and the red numbers in (b) below 

each energy state represent the relative free energies compared to each initial state at 100 and 150 °C. 

Oxygen, carbon, nitrogen, and lithium atoms are colored in red, gray, blue, and purple, respectively. 

Copyright © 2020, Springer Nature. 
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Furthermore, the role of Ru nanoparticles on the improvement of battery performance was 

investigated by comparing the free energy diagrams. Gibbs free energies (G) on each state in discharge 

process from initial state to the formation of Li2CO3 were calculated with and without Ru particles 

(Figure 4.8). Overall, G, which is the free energy of reaction till the formation of Li2CO3, decreased 

by 0.87 eV at 100 °C and 0.66 eV at 150 °C, respectively, when the reaction occurs on the Ru surface. 

Interestingly, at the potential determining step that requires the largest endothermic energy change (i.e. 

thermodynamic barrier) in the discharge process: Li+ + e− + CO2 → Li+ + CO2
−, (G decreased by 2.07 

eV at 100 °C and 2.04 eV at 150 °C, respectively. In the operation of battery cell, thermodynamic barrier 

is directly proportional to the overpotential. Therefore, the overpotential was reduced by the addition 

of Ru. This result corresponds to the operating voltage and power density versus current density of the 

Li-CO2 battery measured in the experiment that the power density was dramatically increased with the 

Ru catalyst (Figure 4.9(a)-(b)). Therefore, the addition of Ru nanoparticles induced a lower decrease 

in operating voltage at high current densities, indicating the decrease of overpotential. 

To gain further insight into the origin of reduction of thermodynamic barrier, we looked at atomic 

charge states. It was found that charges of adsorbed CO2 and CO2
− were similar value to each other (i.e. 

−0.451 and −0.429) (Figure 4.10(a)). However, charges of Ru with adsorbed CO2 and CO2
− were 

+0.451 and −0.562, respectively (Figure 4.10(b)). The integrated DOS also showed that Ru with 

adsorbed CO2
− showed more numbers of electrons than that of Ru with adsorbed CO2 (Figure 4.10(c)). 

Thus, electron transfer occurred from CO2
− to Ru, indicating that CO2

− was easily stabilized on Ru 

surface. Consequently, these results can explain the synergistic effect of the quinary molten salts and 

Ru nanoparticle contributing to the swift improvement of power density of Li−CO2 battery.  
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Figure 4.8 Free energy diagrams of discharge process from CO2 reduction to one Li2CO3 formation at 

100 °C and 150 °C. Electrochemical reaction starts from CO2 at 100 °C (a) and 150 °C (b), respectively. 

The black and green numbers in each (a) and (b) represent the relative free energies compared to each 

initial state of molten salt only and Ru (101) surface. Oxygen, carbon, nitrogen, lithium atoms are 

colored in red, gray, blue, and purple, respectively. Red arrow and number represent the change of G 

in potential determining step. Copyright © 2020, Springer Nature. 
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Figure 4.9 Electrochemical performance of Li−CO2 battery cell with quinary-molten salt electrolyte. 

Profile of operating voltage and power density versus current density of the Li-CO2 battery at 150 °C 

with scan rate of 0.01 mA s−1 without Ru nanoparticle (a) and with Ru nanoparticle (b). Copyright © 

2020, Springer Nature. 

 

 

 

Figure 4.10 Atomic charges and configurations of CO2−Ru surface (a) and CO2
−−Ru surface (b). 

Integrated DOS of all Ru atoms in CO2−Ru surface and CO2
−−Ru surface (c). Copyright © 2020, 

Springer Nature. 
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4.4 Conclusion 

Electrochemical reaction pathways in charge and discharge process on a high-performance 

Li−CO2 cell based on the quinary molten salt electrolyte with Ru nanoparticles on the carbon cathode 

were theoretically investigated. For the calculation of energy state in each reaction intermediate on 

charge process, it was found that reaction pathways were varied with temperature and especially three 

plausible pathways coexisted in 150 °C. In addition, free energy diagrams in discharge process were 

compared to examine the catalytic effect of Ru nanoparticle. As the result, it is found that Ru surface 

effectively reduced thermodynamic barrier on discharge process, which was identified with electron 

transfer. Through our finding, we could effectively explain the synergistic effect on the improvement 

of Li−CO2 battery performance through a combination of molten salt electrolyte and Ru catalyst. 
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Chapter 5. Summary and Future Perspectives 

5.1 Summary  

Estimation of the reaction characteristics is essential for advanced nanomaterials in energy 

application because it can grasp and predict physicochemical properties of nanomaterials and provide 

guidelines for development. This doctoral dissertation includes theoretical studies on reaction 

characteristics of energetic nanomaterials and Li−CO2 battery via multi-scale molecular simulation 

approach. 

In Chapter 2, we theoretically investigated and quantified reaction characteristics of Ni-Al 

nanolayer by MD simulations. The overall procedure of reaction process between Ni and Al nanolayer 

showed marginal difference by varying different ignition temperature, bilayer thickness, and 

stoichiometry of Ni-Al nanolayer. However, the rate and range of atomic diffusion in the reaction of 

Ni-Al nanolayer varied with each condition. In particular, the reaction time decreased with an increase 

in the ignition temperature and decrease in bilayer thickness of Ni-Al nanolayer. The stoichiometry 

which exhibited maximized thermodynamic and kinetic properties in reaction was Ni0.5Al0.5.  

In Chapter 3, we studied explosion dynamics of a nanobomb depending on various modifications 

of nanobomb components and external shocks via multi-scale molecular simulation approach. It was 

found that higher packing density of NM and initial heating temperature reduced the time for bursting 

but the overall bursting sequence of nanobomb was consistent to every packing density and heating 

temperature.  

Subsequently, the effects of every physicochemical modifications (e.g. chirality, nitrogen-doping, 

and monovacancy defect) of CNT were examined in reaction characteristics of nanobomb. Among 

physicochemical modifications, monovacancy defect distinctly accelerated the explosion of nanobomb 

due to its lowest energy for SW defect formation and strong binding with reaction intermediates from 

NM decomposition. In addition, we observed the different explosion trends by each heating method 

(e.g. electric spark and electromagnetic induction) and their continuity on time for shocking on 

nanobomb. 

Thirdly, we investigated the bursting dynamics of nanobomb where NM and detonating molecule 

were co-encapsulated into nanocontainer. HMX and RDX were selected as target detonating molecules 

by screening thermodynamic and detonating properties using K−J equation and NERMD simulations 

of their bulk models. After co-encapsulation with NM, both HMX and RDX shortened the bursting time 

of nanobomb. This was because detonating molecules were decomposed prior to NM and their reaction 
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intermediates help to decompose NM. 

In Chapter 4, we theoretically investigated mechanistic domains in electrochemical reactions of 

molten-salt based Li−CO2 battery cell. In charge process, there was one reaction pathway at 100 °C and 

three reaction pathways at 150 °C simultaneously, which were possible to go over the activation energy 

barrier by thermal energy at high temperature. Further, we sketched free energy diagram of Li2CO3 

formation in discharge process. Thermodynamic barrier was located on the reduction of CO2 (CO2 + e− 

→ CO2
−) and Ru surface could lower down the barrier energy by energetic stabilization of CO2

−.  

In summary, we theoretically investigated reaction pathways and estimated thermodynamic and 

kinetic properties of nanomaterials, which can be utilized for energy applications. We expect our 

fundamental studies to lay the groundwork for the development of optimized nanomaterials for energy 

applications to meet the commercial needs.  
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5.2 Future Perspectives  

It is necessary to discuss the direction of the future theoretical studies for suggesting smart and 

efficient design of nanomaterial in energy applications. In other words, we would like to address the 

perspectives on current technological trends and propose alternatives to solve existing problems in 

energetic applications of nanomaterials. 

First, in the case of reactive multilayers such as Ni-Al system, recent studies have been focused on 

the investigation of reaction characteristics in the interface of multilayers, including the contents in 

Chapter 2 of this doctoral thesis. However, thermodynamic and kinetic properties associated with the 

reaction pathway on the surface of each layer have not been fully established. In particular, if reactive 

multilayers are used in the form of nanoparticles with a size of few nanometers, the reaction process at 

the atomic level becomes very complicated as the proportion of surface where uncoordinated sites exist 

gets much higher than that in bulk foils, and sintering and merging between nanoparticles should be 

considered in reaction progress. Therefore, it is necessary to conduct screening and quantification of 

reaction characteristics of exothermic multilayers for various conditions such as heating temperature, 

system size, stoichiometry of constituent elements, and crystal morphologies through multi-scale 

molecular simulation approaches.  

In addition, researches have been actively conducted to manipulate high-energy nanomachinery 

such as nanobomb in recent years. These encapsulated HEMs are expected to be applicable for 

biomedical purposes (e.g. killing harmful bacteria) and military purposes (e.g. destroying electronic 

device) through combination with functional polymers. However, there are still limitations in the actual 

production and application due to lack of physicochemical data on these nanomaterials. To overcome 

these shortcomings, synthetic methods need to be systematically and repeatedly examined to ensure the 

physicochemical stability and reproducibility in encapsulation of HEM into the nanocontainer with high 

density. Furthermore, theoretical studies on polymer candidates are needed to determine which polymer 

can form nanomaterial complex much stable when it binds to encapsulated HEMs by responding only 

to specific stimuli and strengthen physical and chemical stabilities.  

Since Li−CO2 battery cells have only been studied with limited combinations of cathodes and 

electrolytes, more researches are needed to establish a battery system that enables an ideal 

electrochemical reaction.1,2 Screening appropriate electrolytes is needed to increase chemical stability 

by avoiding unwanted side reactions and to maximize the efficiency of battery performance. The 

catalyst should therefore be investigated further. Additionally, it is essential to present an optimized 

pathway in the electrochemical reaction by investigating every possible reaction intermediate on energy 

surfaces that can be generated on the operation of Li−CO2 battery depending on possible conditions. In 
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this series of research processes, it can be expected that a mechanistic study through a multi-scale 

molecular simulation approach can incessantly provide important information in the future. 
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