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Abstract 

Logarithmic quantization has many hardware-friendly features, but its lower accuracy in certain conditions 

has prevented more widespread use. Recently modified schemes have been proposed to solve the accuracy 

problem without compromising its hardware efficiency by selectively employing multiple words. This 

however causes variable-latency multiplication, demanding a new hardware architecture to support 

efficient mapping of large neural network layers as well as various types of convolution layers such as 

depthwise separable convolution. In this paper we present a novel hardware architecture for nonuniform 

multi-word log-quantized neural networks that is scalable with the number of processing elements while 

maximizing data reuse. Our architecture supports depthwise convolution and pointwise convolution as 

well as 3D convolution, which are important for recent mobile-friendly networks. We also propose a 

hardware-software cooperative optimization to reduce the impact of variable-latency multiplication on 

performance. Our experimental results using various convolution layers from MobileNetV2 demonstrate 

the speed advantage of our architecture and high scalability with the number of PEs, compared with 

previous architectures for depthwise separable convolution or log quantization. Our results also show that 

our optimization is very effective in improving the performance of our architecture. 
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I. Introduction 

Logarithmic quantization, or log quantization for short, encodes numbers in the logarithmic scale, 

meaning that log-quantized numbers are more densely populated in smaller-valued regions as opposed 

to larger-valued regions. This property of log quantization turns out to be very well-suited for 

encoding weight parameters of neural networks. LogNet[1], for instance, demonstrated that 5-bit log-

quantized weights can outperform 7-bit linear-quantized weight in the case of AlexNet. Moreover, log 

quantization is more hardware friendly. Log-quantized weights are shorter in width, hence takes less 

space in memory and less power to access. Using log quantization, multiplication can be reduced to 

either addition or shift, which not only makes hardware much faster but also reduces area and power 

considerably. 

However, log quantization, in its original form, performs very poorly for larger neural networks, or 

those that require higher precision arithmetic. This is true even if we increase the resolution of 

quantization (i.e., the number of bits used for encoding data) indefinitely [2]; increasing resolution for 

log quantization has nearly no effect on average precision after a certain point. 

To mitigate the limited precision problem of log quantization, multiple techniques have been 

proposed recently [2], [3], the common idea being that precision can be improved significantly by 

employing more than one log-quantized numbers.  

By representing data as a sum of log-quantized numbers, or a difference depending on the signs of 

the constituent numbers, we can achieve arbitrarily precise representations. How many log-quantized 

numbers to use for such an encoding, which we term cardinality, is an important design parameter.  

Since cardinality has a major impact on encoding efficiency, it must be increased parsimoniously; at 

the same time, for certain values, required precision can be achieved only by increasing cardinality. 

Thus it is no coincidence that both proposals [2], [3] stipulate that cardinality is variable, i.e., data-

dependent, which seems to be the best way to strike the balance between efficiency and precision. Yet, 

the data-dependent word length of encoded weights means variable-latency multiplication, posing a 

significant challenge to designing a scalable hardware architecture. 

Also to be relevant for recent deep neural networks (DNNs) such MobileNets [4], which are widely 

used in the embedded domain, hardware architectures must support efficient mapping of various types 

of computation including depthwise convolution (DWC), pointwise convolution (PWC), and 3D 
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convolution. Doing this efficiently when there is a large number of PEs (Processing Elements) 

performing variable-latency multiplication, is both challenging and necessary to realize the 

advantages of log quantization on recent DNNs. 

In this paper we present a novel hardware architecture for nonuniform multi-word neural networks 

that addresses the aforementioned challenges. Our proposed architecture is scalable with the number 

of PEs while maximizing the input/output data reuse, and supports DWC and PWC as well as 3D 

convolution. To minimize the impact of variable-latency multiplication on performance, we also 

propose a hardware-software cooperative technique. 

Our experimental results using various convolution layers from MobileNetV2 demonstrate the 

speed advantage of our architecture and high scalability with the number of PEs, compared with 

previous architectures for depthwise separable convolution or log quantization. Our results also show 

that our channel reordering technique is very effective in improving the performance of our 

architecture. 

This paper makes the following contributions: (i) a novel hardware architecture with high 

scalability and data reuse for nonuniform multi-word log-quantized neural networks; (ii) a scheme to 

support, without refabrication, various types of convolution layers, including DWC, PWC, and 3D 

convolution; and (iii) static and dynamic channel reordering that can significantly reduce the impact 

of variable-latency multiplication on performance. 

The rest of the paper is organized as follows. We review background and related work in Section II, 

and present our proposed architecture with examples in Section III. More details of our architecture 

including schemes to maximize data reuse are given in Section IV. Section V discusses how variable-

latency multiplication is handled along with our optimizations. Section VI presents our experimental 

results, and Section VII concludes the paper. 
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II. BACKGROUND AND RELATED WORK 

A. Linear vs Logarithmic Quantization 

Unlike linear quantization, log quantization [1] uses uneven quantization distances, which increase 

in proportion to the magnitude of value. For an input 0 < |x| ≤
1

2
, we define its log quantization, �̃�, 

as 𝐿𝑜𝑔𝑄(𝑥) ≔ 𝑠𝑖𝑔𝑛(𝑥) ∙ 𝑟𝑜𝑢𝑛𝑑(− log2|𝑥|). Conversely x = sign(�̃�) ∙ 2−|�̃�| (�̃� = 0). If �̃� = 0, 

𝑥 = 0. For a different input range, scaling is applied before quantization. 

The logarithmic quantization allows very high precision for small numbers. The smallest positive 

number that can be represented by R-bit quantization (including sign bit) is 2−2R−1+1, where R is 

referred to as resolution. On the other hand, the average quantization error can be quite high compared 

with linear quantization at high resolution. To remedy this problem, recently new techniques have 

been proposed [2], [3], which is to use multiple words to quantize a single value. For instance, if 

quantization error 𝑥 − �̃� is large, another round of log quantization can be invoked, generating an 

extra word, �̃� = LogQ(𝑥 − �̃�). This way, the accuracy of representation is significantly increased 

with minimal encoding overhead while the hardware advantage of log quantization is retained. 

While an arbitrary number of extra words can be used, a limit must be imposed for hardware 

design. We set the limit to one, which has been shown to be sufficient in practice [3]. A differentiable 

training algorithm for such networks is also proposed [3]. 

 

B. DNN Hardware Accelerators 

DNN layers are computationally simple and mostly regular, motivating hardware accelerator 

approaches [5], [6]. Hardware accelerators for DNNs have been built around an array of MAC 

(multiply-accumulate) units, which is typically arranged as a 2D or 3D array, to which some loops of 

the layer computation are mapped. Depending on how it is done, performance (in the number of 

cycles and clock speed) as well as area and the amount of on-chip memory and off-chip memory 

accesses all vary. The decision of which loops to map to hardware parallelism is also known as 

(hardware) dataflow [6]. 

Nonuniform multi-word neural networks, where some weights may have multiple words, pose 

another challenge to the design of efficient hardware architectures. Having multiple words means that 
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some MAC operations must take multiple cycles, which leads to a synchronization problem among 

MAC units or PEs, i.e. wasted cycles. The more weights we use simultaneously, the higher the 

likelihood of wasted cycle due to weight mismatch. One solution to this problem is to use a dataflow 

that permits only one weight value in any given cycle; all PEs in the architecture use the same weight 

value in any cycle, thus no synchronization issue (e.g., [2]). However, such an architecture is hard to 

scale to a large number of PEs. Minimizing the synchronization overhead while being scalable is an 

essential challenge of our design problem. 

Deep learning is a fast growing field, with increasing numbers of applications and DNNs. But the 

convolution layer has proven essential and effective in many applications related to image [7], video 

[8], and even speech [9]. For image-related tasks, depthwise separable convolution (DSC) has shown 

to be more competitive than 3D convolution when normalized to the number of MAC operations or 

weight parameters, leading to many state-of-the-art networks such as MobileNets [4], which are very 

popular in the embedded domain. Depthwise separable convolution consists of a combination of 

depthwise convolution (DWC) and pointwise convolution (PWC), the latter of which is also called 

1x1 convolution. In terms of computational complexity, PWC usually accounts for the majority of 

workload. 

There are previous hardware accelerators for DSC [10]-[12], which we discuss in VI-G. 

Finally, our nonuniform multi-word neural network is similar to sparse network in that the number 

of weight words, and therefore that of unskippable MAC operations, is data-dependent. However, 

there is an important difference that makes sparse DNN architectures not ideal for our problem. In our 

network each weight has at least one word and possibly one more, meaning that our architecture must 

be able to handle efficiently dense computation as well as sparse computation, unlike sparse hardware 

that only needs to do sparse computation. This explains why our architecture is based on dense 

processing, handling extra words as exceptions. 
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III. OUR PROPOSED ARCHITECTURE 

Table I: Some symbols used in this paper 

Symbol Description 

𝑊𝑜𝑢𝑡, 𝐻𝑜𝑢𝑡 Width and height of the output feature map 

C Number of input channels 

M Number of filters (output channels) 

K, S Size and stride of 2D convolution filter (in each dim) 

𝑇𝑊, 𝑇𝐻 Width and height of hardware PE plane 

N Number of PE planes 

 

A. Hardware Dataflow 

Pointwise convolution accounts for the majority of computation complexity in DNNs employing 

depthwise separable convolution. For instance, in MobileNetV2 [13] PWC and DWC account for 

82.4% and 6.9% of MAC operations, respectively. As such, our primary design target is PWC, but 

DWC is also supported, since having separate datapaths for DWC and PWC can lead to low resource 

utilization due to varying ratios of PWC to DWC within and across DNNs. 

Figure 1 shows the code for pointwise convolution. IFM and OFM stand for input feature map and 

output feature map, respectively, and key symbols are defined in Table I. One of the primary issues in 

architecting a hardware accelerator for such a loop nest is to select the set of iterations (or MAC 

operations) processed simultaneously by hardware. This often boils down to the problem of deciding 

which loop level(s) to be mapped to the hardware parallelism, though more elaborate mapping 

schemes can also be used. For instance, if we intend to use a 2D MAC array (thus the degree of 

hardware parallelism is two), we need to choose two loop levels that will be mapped to hardware. 

for (ℎ = 0;  ℎ < 𝐻𝑜𝑢𝑡;  ℎ + +) 

  for (𝑤 = 0;  𝑤 < 𝑊𝑜𝑢𝑡;  𝑤 + +) 

    for (𝑚 = 0;  𝑚 < 𝑀;  𝑚 + +) 

      for (𝑐 = 0;  𝑐 < 𝐶;  𝑐 + +) 

        𝑂𝐹𝑀 [𝑚, ℎ, 𝑤]+= 𝑊[𝑚, 𝑐] × 𝐼𝐹𝑀[𝑐, ℎ, 𝑤];  

Figure 1: PWC kernel. 
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Since the PWC kernel reuses the weight parameters along the OFM width and height directions 

(𝑊𝑜𝑢𝑡 and 𝐻𝑜𝑢𝑡 loop), those two loops are the best candidates for hardware parallelism. For higher 

scalability, if we choose to use a 3D PE array, what should be the next loop level to be mapped to 

hardware? There are two options, C or M-loop, which are mostly symmetrical. 

Table II: Mapping options for PWC kernel 

The third source of parallelism 

(Enclosing loop’s trip count) 

𝑇𝑀 

(× 𝐶) 

𝑇𝐶 

(× 𝑀) 

𝑇𝐶 

(× 𝑇𝑀) 

IFM regs 
Relative size 1 𝑇𝐶 𝑇𝐶 

Data reuse factor 1 C 𝑇𝑀 

OFM regs 
Relative size 𝑇𝑀 1 𝑇𝑀 

Data reuse factor C 1 C 

Datapath similarity (w/ DWC) Low High High 

 

Parallelizing along the M-loop (or C-loop) means that 𝑇𝑀 (or 𝑇𝐶) iterations of that loop (called 

tile) are processed simultaneously by the PE array, as illustrated in Figure 2. The figure also shows 

how the entire weight matrix W of size 𝑀 × 𝐶 can be covered by repeated invocations of the tile, 

where input or output data reuse can be inferred from the processing order shown by arrows. 

Table II summarizes the pros and cons of the two options. In both options, we can exploit data 

reuse with either IFM or OFM but not both. At first glance, choosing M (i.e., exploiting OFM data 

reuse) seems better, because OFM is read-and-write whereas IFM is read-only. Yet there is one 

deterrent: its datapath would be less similar to that of DWC, being devoid of post-MAC adder trees 

Figure 2: Three ways of parallelizing the M-C loop nest. (a) Output filter 

parallelism with OFM data reuse (b) Input channel parallelism with IFM data 

reuse (c) Input channel parallelism with reuse of both IFM & OFM data. 
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(see Section III-C). Choosing C instead can lead to a more similar datapath as that of DWC. But then 

the OFM registers will be live for only one cycle, resulting in constant thrashing of the registers. 

 

Thus we propose the third option combining the two. It is based on the channel parallelism with 

IFM data reuse (Figure 2b). But to enable OFM data reuse, we increase OFM registers by 𝑇𝑀 times 

and tile the M-loop as shown in Figure 3. The fourth innermost loop, whose trip count is 𝑇𝑀, is 

executed iteratively, but there are enough OFM registers for the 𝑇𝑀 iterations, that OFM registers 

will be fully reused instread of being thrashed. This option requires 𝑇𝐶 times as many input registers 

as choosing 𝑇𝑀 (i.e., output filter parallelism), and incurs corresponding load bandwidth increase for 

IFM registers. However, by making 𝑇𝑀 = 𝑇𝐶 we can ensure that the average bandwidth does not 

increase over that of choosing 𝑇𝑀. 

B. Consideration for Other Types of Convolution 

While 3D convolution can be easily implemented as either DWC or PWC, DWC has a very 

different computation pattern from PWC, and needs a special consideration. 

Figure 4 shows the code for DWC. Like other types of convolution, DWC shares weight parameters 

along the OFM width and height directions (𝑊𝑜𝑢𝑡, 𝐻𝑜𝑢𝑡), which are the obvious choice for our 

for (ℎ′ = 0; ℎ′ < 𝐻𝑜𝑢𝑡;  ℎ′+= 𝑇𝐻) 

  for (𝑤′ = 0; 𝑤′ < 𝑊𝑜𝑢𝑡;  𝑤′+= 𝑇𝑊) 

    for (𝑚′ = 0; 𝑚′ < 𝑀; 𝑚′+= 𝑇𝑀) 

      for (𝑐′ = 0; 𝑐′ < 𝐶; 𝑐′+= 𝑇𝐶) 

        for (𝑚 = 𝑚′;  𝑚 < 𝑇𝑀;  𝑚 + +) 

          for (ℎ = ℎ′;  ℎ < 𝑇𝐻;  ℎ + +) 

            for (𝑤 = 𝑤′;  𝑤 < 𝑇𝑊;  𝑤 + +) 

              for (𝑐 = 𝑐′;  𝑐 < 𝑇𝐶 ;  𝑐 + +) 

               𝑂𝐹𝑀 [𝑚, ℎ, 𝑤]+= 𝑊[𝑚, 𝑐] × 𝐼𝐹𝑀[𝑐, ℎ, 𝑤];  

for (ℎ = 0;  ℎ < 𝐻𝑜𝑢𝑡;  ℎ + +) 

  for (𝑤 = 0;  𝑤 < 𝑊𝑜𝑢𝑡;  𝑤 + +) 

    for (𝑐 = 0;  𝑐 < 𝐶;  𝑐 + +) 

      for (𝑘ℎ = 0; 𝑘ℎ < 𝐾; 𝑘ℎ + +) 

        for (𝑘𝑤 = 0; 𝑘𝑤 < 𝐾; 𝑘𝑤 + +) 

          𝑂𝐹𝑀 [𝑚, ℎ, 𝑤]+= 𝑊[𝑚, 𝑐] × 𝐼𝐹𝑀[𝑐, ℎ, 𝑤];  

Figure 4: PWC kernel with tiling. 

Figure 3: DWC kernel (for S=1) 
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hardware parallelism. This leaves us the question of what the third loop should be. Since the two K 

loops have usually very few trip counts, we can flatten them into one, hence called 𝐾2 loop. After 

this arrangement, we have only two options: the flattened 𝐾2 or C loop. 

If we choose the C loop, the DWC computation is completely independent among the iterations of 

the C loop, which means that there will be few wasted cycles due to synchronization. Thus this 

scheme may offer higher performance, but it requires rather large IFM/OFM registers due to the lack 

of data reuse along the C loop. 

On the other hand, if we parallelize along the 𝐾2 loop, we can exploit data reuse with both (i) 

OFM registers along the 𝐾2 loop and (ii) IFM registers within the loop nest involving the 𝑊𝑜𝑢𝑡, 

𝐻𝑜𝑢𝑡, and 𝐾2 loops. The IFM reuse is evident from the fact that the number of IFM elements needed 

for the loop nest is less than the total number of iterations. This means that this scheme can have an 

advantage in terms of input/output data transfer (e.g., fewer input/output registers). Moreover, we can 

mitigate the synchronization overhead of the second option by a scheduling trick (Section V-A). Thus 

we choose the 𝐾2 loop as the third source of parallelism. 

 

Table III: Hardware dataflow summary 

Kernel HW-mapped loops Latency w/ single-cycle mult. 

PWC 𝐻𝑜𝑢𝑡, 𝑊𝑜𝑢𝑡, 𝐶 ⌈
𝐶

𝑁
⌉ 𝑀 ⋅ ⌈

𝑊𝑜𝑢𝑡

𝑇𝑊
⌉ ⌈

𝐻𝑜𝑢𝑡

𝑇𝐻
⌉ 

DWC 𝐻𝑜𝑢𝑡, 𝑊𝑜𝑢𝑡, 𝐾2 ⌈
𝐾2

𝑁
⌉ ⌈

𝑊𝑜𝑢𝑡

𝑇𝑊
⌉ ⌈

𝐻𝑜𝑢𝑡

𝑇𝐻
⌉ ⋅ 𝐶 

3D Conv 

𝐻𝑜𝑢𝑡, 𝑊𝑜𝑢𝑡, 𝐶 𝐾2 ⋅ ⌈
𝐶

𝑁
⌉ 𝑀 ⋅ ⌈

𝑊𝑜𝑢𝑡

𝑇𝑊
⌉ ⌈

𝐻𝑜𝑢𝑡

𝑇𝐻
⌉ 

𝐻𝑜𝑢𝑡, 𝑊𝑜𝑢𝑡, 𝐾2 ⌈
𝐾2

𝑁
⌉ ⌈

𝑊𝑜𝑢𝑡

𝑇𝑊
⌉ ⌈

𝐻𝑜𝑢𝑡

𝑇𝐻
⌉ ⋅ 𝐶 ⋅ M 

 

Table III summarizes hardware dataflows for different convolution kernels, which are all output 

stationary. The pressure to minimize synchronization overhead due to mismatched weights has 

resulted in similar dataflows that stretch image width and height, but the third source of parallelism 

varies. 
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C. Main Datapath 

Based on the discussion in the previous section, we propose a common accelerator architecture to 

efficiently support different types of convolution while being robust to multiplication latency that 

varies with weight data. 

 

Figure 5: The datapath of our proposed architecture. 

Motivated by the three operations needed to realize our PWC dataflow as illustrated in figure 2c, 

which are pointwise multiplication, sum across channels, and output channel-wise accumulation, we 

design our datapath to be a sequence of 3D array of PEs (Processing Elements), adder trees, and 

accumulating adders, as illustrated in Figure 5. Each PE consists of just a multiplier or its equivalent 

(e.g., shifter for log quantization) and a mux; the mux is for DWC only, and adders are conspicuously 

missing from PEs. By removing adders, which are usually included in PEs, our PEs can be slimmer; 

yet, both DWC and PWC dataflows of ours can be successfully mapped to the datapath, which we 

show in the next section. 

It is convenient to consider the 3D PE array as a stack of PE planes, where each PE plane is a 𝑇𝐻 ×

𝑇𝑊 array of PEs. A PE plane naturally maps to a tile in the first two parallelized loops in Table III, 

which are the same for all three types of convolution; the third parallelized loop is mapped to the 

depth of the stack, which is denoted by N. Since a PE plane is mapped to a tile in the 𝐻𝑜𝑢𝑡-𝑊𝑜𝑢𝑡 loop 

nest (see Figure 3, Figure 4), each PE plane needs only one weight parameter at any given cycle, 

regardless of the type of convolution. In other words, all PEs in a PE planes are always in sync. 
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There are 𝑇𝐻 × TW adder trees, each of which takes N multiplication results from the 

corresponding PEs in the PE array, and produces one number, which is the sum of the N inputs. The 

output of adder trees goes through accumulating adders, and saved in the output registers. 

For PWC, both IFM and OFM registers need to be arranged as a stack of register planes, which has 

the same dimension as the PE array. But for DWC it is convenient to view the IFM registers as a 2D 

array, which we call Input Register Array (IRA). We discuss IRA sizing in Section IV-C. 

 

D. Main Examples 

We now illustrate how the main datapath works. Here we assume that multiplication takes one 

cycle; extension to multi-cycle multiplication is presented in Section V. 

 

Figure 6: Scheduling for variable latency 
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Figure 7: DWC mapping example. 

1) PWC: Since the PWC computation is the same across points, we only need to consider one point, 

which corresponds to one PE per PE plane, or N PEs for the entire PE array. Note that N is equal to 

𝑇𝐶(= 𝑇𝑀) in Figure 2c. 

Because we parallelize along the C-loop, the output from N PEs needs to be summed, which can be 

obviously done by adder trees. What is not very obvious is how to support the zig-zag processing 

order in Figure 2c and make sure that the result of adder trees are accumulated into the right set of 

OFM registers. Consider the example weight matrix in Figure 6a. Let 𝑁 = 2. 

Figure 6a shows the scheduling of the weight elements on two PEs. Note again that these PEs are 

representative of PE planes, as all PEs in the same PE plane use the same weight. Due to the zig-zag 

processing order, the final OFM data will be produced at cycles 3 and 4 for our example. If 𝑀 = 3, 

the next OFM data will be finalized at cycle 6. In general, generating OFM data of one PE plane size 

for all input/output channels takes ⌈𝐶/𝑁⌉ ⋅ 𝑀 cycles, which is to be repeated for the entire 

width/height of OFM. Managing output data is more cumbersome (explained in detail in Section IV-

A). The basic idea is to have 𝑁(= 𝑇𝑀) sets of output registers, to one of which we accumulate the 

result of adder trees. 

2) DWC: To illustrate how DWC can be mapped to our architecture, we use the example in Figure 

7a. For this example we assume TW = 4, TH = 4, N = 2, and the IRA size is 9 × 9 (see IV-C for 

IRA sizing). In our architecture all PE planes work simultaneously on the same channel, dividing the 

𝐾2 iterations among N PE planes. For our example kernel, Figure 7b illustrates how 2 PE planes 
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perform DWC convolution for one channel in 5 cycles (N = ⌈32/2⌉), assuming multiplication takes 

one cycle. 

Being output stationary, the output of the PE array during the 5 cycles, which is TW ⋅ 𝑇𝐻 ⋅ 𝑁 

multiplication results per cycle, corresponds to the same set of TW × TH OFM pixels. Thus we only 

need to accumulate them both spatially (across stack depth N) and temporally (across ⌈𝐾2/𝑁⌉ 

cycles), which is done by adder trees and accumulators, respectively. DWC uses only TW × 𝑇𝐻 OFM 

registers. On the other hand, providing input is more complicated, which is explained in detail in 

Section IV-C. 

So far we have generated OFM data of one PE plane size (TW × 𝑇𝐻) for one channel. To complete 

the entire kernel, we first finish the entire OFM for one channel, then move to the next channel. This 

way, weight parameters and IFM data can be better reused than the alternative (first channel-loop then 

OFM-loop). 

Table III shows the number of cycles for each convolution type assuming single-cycle 

multiplication operations. 

 

IV. MAXIMIZING INPUT AND OUTPUT REUSE 

A. Architecture Overview and OFM Data Path 

At the top level, our proposed architecture has the main datapath including IFM, weight, and OFM 

registers and three main on-chip buffers (IFM, weight, and OFM) and one very small buffer (index), 

which are all double-buffered to overlap DMA latency with computation time (see Figure 8). 

 

Figure 8: Overall architecture of our proposed accelerator. 
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Being output stationary, our architecture has a relatively simple OFM data path. The OFM registers 

form a stack of register planes, with the whole stack having the same dimension as the PE array, i.e., 

TW × 𝑇𝐻 × 𝑁. For PWC, all register planes are used in a round-robin fashion, which is crucial to fully 

reusing OFM register data. Specifically, the result of adder trees is accumulated to one of the register 

planes. This is achieved by employing only TW × 𝑇𝐻 accumulating adders, but each accumulating 

adder is attached to an N-to-1 mux and a 1-to-N demux to redirect its input and output from/to the 

right register plane, which is cheaper than replicating accumulating adders themselves by N times. 

Once final OFM data is generated, it is copied to the on-chip OFM buffer. 

 

B. Weight Data Path 

The weight data path is very simple, as the architecture requires only N weight parameters in any 

given cycle, which can be provided by the on-chip weight buffer via N weight registers. The weight 

buffer is also N-word wide. While SLQ uses extra words for some weight values, it does not 

complicate our accelerator at all, since the exact locations of the extra words can be determined in 

advance and stored in the main memory in the order they are used by the hardware. For this to work, 

the number of PE planes also needs to be known. 

Take Figure 6d for instance (the variable latency case). The weight parameters are realigned in N-

word bundles already in the main memory, which are copied to the weight buffer, and used by the PE 

array. The PE array knows that 𝑊2
′ and 𝑊7

′ are extra words, and therefore can get the cycle 

information correct (which is needed to control in-PE muxes; see next section). 

 

C. IFM Data Path 

IFM registers are organized in a 2D array of registers, called IFM register array (IRA). Unlike some 

previous work, the IRA consists of isolated registers; that is, registers in IRA are not connected to 

each other. With no mechanism to move data around inside IRA, PEs can still access IFM in different 

ways (which is crucial for DWC and switching between DWC and PWC) through in-PE muxes, the 

size of which is determined by the number of different ways of accessing IFM. We next discuss the 

requirements on the sizes of IRA and in-PE muxes. 
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1) DWC: For DWC, IRA size should be no less than (𝐾 + 𝑆(𝑇𝐻 − 1), 𝐾 + 𝑆(𝑇𝑊 − 1)). Once 

loaded, the IRA is used by the PE array for at least T consecutive cycles, where 𝑇 = ⌈𝐾2/𝑁⌉, which 

means that the in-PE muxes should be T-to-1, if the DWC kernel is the only kernel supported. 

Note that the mux size requirement does not increase if supporting two or more DWC layers that have 

the same set of K and S parameters. 

2) PWC: PWC requires IRA to have at least TH𝑇𝑊𝑁 words. In this case, PEs access IRA in only 

one way; in other words, PEs are one-to-one mapped to IRA data. Since the IRA size requirements are 

different between DWC and PWC, the final IRA size is given by the greater of the two1. The final 

mux size is given by the sum. 

1 The aspect ratio does not really matter because it is a register array, but from the perspective of coding, it is more 

convenient if IRA size covers DWC size requirement(s). 

3) Example: Table IV lists the various types of layers used in MobileNet V2 as well as the required 

IRA and mux sizes. 

 

Table IV: Determining IRA size for MobileNet V2 

(𝑇𝑊, 𝑇𝐻, 𝑁) = (8, 8, 4) 

Layer type IRA size (word) T Mux size 

DWC (𝑆 = 1, 𝐾 = 3) 10 × 10 (= 100) 3 3 

DWC (𝑆 = 2, 𝐾 = 3) 17 × 17 (= 289) 3 3 

PWC 8 ⋅ 8 ⋅ 4 (= 256) 4 1 

On the network level 17 × 17       - 7 

 

4) IFM Buffer: If IRA is large, it may be difficult to design a very wide SRAM buffer to load all 

IFM registers at once. Luckily, since IFM registers are reused over T cycles, we can load IFM 

registers over T cycles using 𝑇 × narrower IFM buffer. For instance, in the MobileNet V2 example 

the DWC layer with 𝑆 = 2 requires 289 words. Assuming the IFM buffer is 128-byte wide and a 

word is 8-bit, loading IFM registers can be done in 3 cycles (=⌈289/128⌉), which is no greater than 

the computation latency and therefore can be completely hidden. To hide register load latency, shadow 

latches can be used. 
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V. HANDLING VARIABLE LATENCY OPERATIONS 

SLQ represents some weight values using two words. While extra words are crucial to achieving 

high accuracy with log quantization, the same extra words incur not only extra cycles but also wasted 

cycles due to synchronization. To minimize the latter is our design goal. Since a PE plane uses a 

single weight value, we need to consider only across multiple PE planes. Thus in this section we 

consider the problem of scheduling multiple PEs, each belonging to a different PE plane, in the 

presence of extra weight words. 

A. DWC 

Consider a DWC weight matrix in Figure 6b, where two weight values shown in red need extra 

words in SLQ. Figure 6d shows how the order of weight processing is changed due to extra words, 

where the number of PE planes is assumed to be 2 (𝑁 = 2). Note that W2
′ must be processed by the 

same PE plane as that which processes W2, since each weight value requires connections to a specific 

set of IFM registers, and those connections are made specifically for each PE plane via in-PE muxes.  

In other words, only W2 uses the exact same set of IFM registers as W2
′ does, which creates a 

scheduling constraint. Note also that when PE1 is delayed by one cycle due to an extra weight W2
′, 

PE2 can proceed unaffected, which is contrary to PWC. This is because in DWC each PE plane 

maintains its own cycle counter and controls in-PE muxes independently of other PE planes, and also 

because all the PE planes share the same input and output registers. Thus in DWC extra words create 

wasted cycles only due to the imbalance among PE planes in the total number of extra words for each 

channel, which is relatively small. 

 

B. PWC and Column Reordering 

Recall that the 𝑀 × 𝐶 weight matrix of PWC is processed in units of 1 × 𝑇𝐶 submatrices, which 

we now call bundles, and that the number of bundles determines the latency of PWC. A bundle 

containing even a single extra weight means an extra cycle for the entire bundle; i.e., the other PE 

planes cannot proceed with the next cycle's work. This is because every cycle in PWC is for either 

different input or different output. 

On the other hand, we can reorder the columns of the weight matrix such that extra weights happen 

together in the same bundle or none at all. This can be done statically, by changing the (input) channel 
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ordering of the current layer and the (output) filter ordering of the previous layer simultaneously, 

which does not require any hardware or runtime overhead at all. Or it can be done dynamically at the 

granularity of 𝑇𝑀(= 𝑁) rows, by manipulating the column addresses when reading from the on-chip 

IFM buffer to IFM registers, in addition to offline reording of weights. 

For dynamic column reordering, we need a small on-chip index memory (called index buffer) that 

can give, each cycle, the base address or index of the next N columns' corresponding IFM data. Thus 

the width needs to be N words, and the amount of indices for the entire IFM buffer is very small 

(TH𝑇𝑊 times smaller than the IFM buffer size). Though we need a different set of indices for every 

TM rows, it can be supplied from the off-chip memory at regular interval via the index buffer. 

 

C. Column Reordering Algorithm 

Algorithm 1 Fast Column reordering 

Input: A set of bit-vectors and a parameter N 

Output: Initially every bit-vector is a group by itself. 

Step 0: Initially every bit-vector is a group by itself. 

Step 1: Create an interference graph, where nodes are groups and the weight of an edge (𝑣1, 𝑣2) is 

the number of wasted slots of merging 𝑣1 and 𝑣2 to a new group. 

Step 2: Remove a least-weighted edge along with the nodes connected to it. The removed nodes 

form a new group passed to the next round. Repeat this until all nodes are removed. 

Step 3: Go to Step 1 unless group size is N or the largest 2𝑘 no greater than N. 

 

 

Figure 9: Column grouping example (Algorithm 1). 

The problem of finding the best column ordering can be formulated as an optimization problem: 

Given an integer N and an 𝑀 × 𝐶 binary matrix, find an ordering of matrix columns that minimizes 

the number of size-N, aligned bundles containing at least one. The binary matrix is constructed such 

that an element is 1 if the corresponding weight value requires extra word, otherwise 0. 
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This problem can be viewed as partitioning C bit-vectors into 𝛼 = ⌈𝐶/𝑁⌉ groups whose size is at 

most N, which reveals that the number of unique orderings is 𝐶!/((𝑁!)𝛼 ⋅ 𝛼!), assuming N divides C. 

Also a special case of the problem with 𝛼 = 2 is the graph partition problem, which is NP-hard; 

hence, we propose a heuristic algorithm. 

First we observe that the optimal solution minimizes the number of wasted slots. For instance, for 

the weight matrix of Figure9a, if 𝑁 = 4, the second bundle, 0101, takes two cycles, wasting two 

slots, but the first or third bundle wastes no slot. We can extend this idea to entire columns. The 

number of wasted slots when grouping 𝑣1 and 𝑣2 together is 1, and so on. Then we would like to 

partition columns such that each partition (i.e., group of columns) has the fewest wasted slots. 

The problem is easier if 𝑁 = 2, in which case we can pair most similar bit-vectors, which we do 

greedily in Step 2 of the algorithm (see Figure 9b). The challenge is how to quickly estimate the 

number of wasted slots of merging two groups, which is necessary to compute interference (or 

dissimilarity) in Step 1. This can be done accurately and efficiently. First, each group is associated 

with an integer vector V (called bitcount), which is the bit-vector itself if the group size is 1, or V + U 

if merging two groups with bitcounts V and U. Then, the number of wasted slots of a group with 

bitcount V is given as ∑ (𝑛 − Vi)%𝑛i , where n is the size of the group and % is the modulo operation. 

Since Step 1 can be done in 𝑂(𝐶2), the overall complexity of Algorithm 1 is 𝑂(𝐶2 log 𝑁). 

If N is not a power of 2, the last few rounds proceed as follows. First, select the top 𝛼 groups with 

fewest wasted slots. Second, dismantle all remaining groups into bit-vectors. Third, compute the 

interference between every pair of a group and a bit-vector, forming a bipartite, interference graph. 

Fourth, find an edge with the least weight and remove it along with the nodes connected, creating new 

groups for the next round, which is repeated until all group nodes are removed. Steps 3 and 4 are 

repeated until there is no remaining bit-vector node.  

Some bit-vectors may be identical from the beginning. Thus we find all identical bit-vectors in the 

first-round interference graph, where zero edge weight means that the two bit-vectors are identical. 

Since N identical bit-vectors immediately form a completed group, we need only consider how to 

handle fewer than N identical bit-vectors: we split them into groups of 2𝑘 bit-vectors (𝑘 ≥ 0) and 

add each 2𝑘-sized group to the appropriate rounds. Note that our algorithm can be used for both 

dynamic and static reordering schemes. 
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VI. EXPERIMENTS 

A. Experiment Setup 

To evaluate the efficiency of our proposed architecture we use MobileNetV2 [13], which shows 

nearly the state-of-the-art performance (per MAC operation) for ImageNet classification. Our 

technique is applied to all PWC and DWC layers. We have retrained the network with Caffe [14] 

using log quantization [2] starting from pretrained weights. After confirming sufficient test accuracy, 

the trained weights are used to evaluate the performance of our architecture. 

The architectural parameters are as shown in Table IV including the IRA and mux size, making the 

total number of PEs 256, for easy comparison with the DaDianNao architecture [5], which has the 

same number of PEs. We have implemented our architecture (and the MVM case for comparison) in 

Verilog HDL, and synthesized it with Synopsys Design Compiler using Samsung 65~nm library. 

Results for on-chip memories are estimated with Cacti 7.0 [15]. 

For performance evaluation we have developed a DNN simulator extending Caffe [14] that not only 

verifies the correct functionality of the DNN but also generates the accurate cycle count, taking into 

account the architectural parameters such as PE array size and weight values. 

 

B. Hardware Synthesis Result 

In this section we compare the following cases: 

1) MVM, which serves as the baseline, represents the 2D MAC array structure employed by 

DaDianNao [5], which is chosen due to its high visibility and straightforward design. This is 

also representative of [12] designed for MobileNetV2.  

2) DSC is our proposed architecture supporting both DWC and PWC. 

3) PWC is our proposed architecture supporting PWC only (input muxes removed, fewer IFM 

registers), which may be useful for accelerating PWC layers only or for 3D convolution-

based networks (e.g., AlexNet and SqueezeNet). 

In addition, to make it easy to see the differences we show the results of the linear-quantized versions 

of DSC and PWC even though they are not the main comparison. We use 10-bit input activation and 

4-bit log-quantized weight or 9-bit linear-quantized weight (all including sign bit), which show near-

baseline performance in our training of MobileNetV2 (see Section VI-E). 
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Figure 10: Hardware synthesis result. 

Figure 10a shows the area and delay of the various architectures. The lower ones are the log-

quantized designs and the upper ones the linear-quantized ones, which clearly shows the area/delay 

advantage of the proposed log-quantized architecture. An iso-area comparison at about 0.22~mm2 

suggests that our log-quantized hardware is about 2.5× faster than the MVM case, demonstrating the 

strength of our architecture for applications where high speed is required. The actual performance of 

our architecture will be lower due to extra words in weight parameters, the overhead of which comes 

to about 50% additional cycles (see the next section). On the other hand, the MVM case also is not 

quite ready for MobileNets, as depthwise separable convolution requires more reconfigurable 

architectures such as ours and [10], with corresponding area overhead. 

Figure 10b shows the area breakdown for 𝑇𝑐𝑦𝑐 = 3ns. As expected, the linear versions of DSC and 

PWC show increased area compared with the MVM baseline, mostly due to IFM/OFM registers. But 

the PE area reduction in log-quantized versions more than compensates for the increase. The IFM 

registers take less area than OFM registers, which is because the OFM register area includes that of 

output muxes, and the PWC architecture uses fewer IFM registers, which can be implemented as 
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latches. In Figure 10a one can observe that when the cycle time is very small (𝑇𝑐𝑦𝑐 = 1.2ns), the 

MVM case has the largest area, even more than the other linear cases. This area increase is due to the 

adder trees, which being larger than those of our architecture (16-input vs 4-input), need much larger 

circuitry to meet the timing requirement. 

 

C. Performance and Effect of Column Reordering 

 

Figure 11: Cycle overhead due to extra words in PWC layers. 

 

Figure 12: Cycle overhead due to extra words in DWC layers. 

Figure 11 shows the performance overhead of using SLQ, showing only the highest impacting 

layers (in latency) out of all 34 PWC layers of MobileNetV2. Unlike the CNNs used in the previous 

work [2], MobileNetV2 turns out to use much more extra words for encoding its weights: 35 extra 

words per 100 weight parameters for PWC layers on average (see the Ideal case in the graph). Ideally, 

these extra words consume just 35% more cycles, which is the case if 𝑁 = 1, but require far more 

cycles if N is greater. The graph shows that extra cycles amount to 84% of the base latency if column 

reordering is not used, where base latency is that of using single-cycle multipliers. The static column 
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reordering has a very limited success, which is due to the large column length; when columns are 

long, interference among columns tends to be high. 

Dynamic column reordering, on the other hand, is very effective in reducing the overhead of extra 

words, often minimizing it to nearly the ideal level. Unlike static, the dynamic scheme has a limited 

scope, which we vary from 32 columns to unlimited. (Note that even in the dynamic scheme, the 

reordering information itself is generated statically before runtime, and at runtime it is only used.) 

Quite understandably, increasing the scope generates higher performance; when it doesn't, it is often 

because there are not enough columns in the weight matrix. Layer 2 is a good example: while it has an 

exceptionally high overhead, it is because the weight matrix has only 16 columns. 

The weights of DWC layers, Figure 12 suggests, tend to require significantly more extra words than 

those of PWC layers, which may be due to their smaller number. Fortunately, however, the 

performance overhead due to extra words in DWC is only marginally higher than the extra words, 

thanks to our scheduling (see Section V-A). 

 

D. Effect of the Number of PE Planes 

 

Figure 13: ADP vs Number of PE planes (PWC layers only). 

A distinguishing feature of our proposed architecture is the number of PE planes, N. To evaluate the 

importance of having this dimension, we vary N from 1 to 4 while holding the total number of PEs 

constant. Note that the single-plane architecture (N = 1) corresponds to previous work [2], though it 

supports 3D convolution only. For this comparison we use all PWC layers of MobileNetV2, with the 

same settings as before. Figure 13 compares the area-delay product (ADP) of the three architectures, 

under different column reordering schemes (𝑇𝑐𝑦𝑐 is 3ns). Because the three architectures have very 

similar areas, nearly all the ADP difference comes from the latency.  
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From the result we glean the following facts. First, we note that the base latency (i.e., that of using 

single-cycle multipliers) works favorably to the 4-plane architecture, which is the advantage of 3D 

arrays over 2D arrays especially in layers with shrinking height and width as is the case with the last 

layers of representation learning DNNs. Second, the performance overhead due to multiple PE planes, 

which ultimately comes from extra weight words, does not negate the advantage. Note that the 

amount of extra words is the same regardless of N (i.e., the Ideal-to-Single-cycle ratio in the graph is 

constant), but the conversion rate from extra words to extra cycles is different. The graph shows that 

the performance advantage of multiple PE planes becomes quite offset if no column reordering is 

used, but is mostly recovered by dynamic reordering. This result suggests that the additional 

dimension proposed by our architecture can indeed make a significant improvement to performance. 

Also dynamic column reordering is essential to realizing the improvement. 

 

E. Training Result 

 

Figure 14: Top-1 accuracy during retraining of MobileNet V2 

Figure 14 shows top-1 validation accuracy during our training of MobileNetV2 with SLQ 

quantization. One epoch corresponds to 5000 iterations. Initially we use 16-bit activation and 4-bit 

SLQ weight for all layers, starting from a full-precision pretrained model, which gives around 71% 

top-1 accuracy for ImageNet. After reaching 69% accuracy, which is our target, we reduced the 

activation precision to 10-bit. Finally, after adjusting input activation scales, the accuracy reached 

69% with 4-bit SLQ. Throughout our training, the ratio of extra words for weights has remained 

largely constant. 
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F. Scalability 

To evaluate the scalability of our architecture, we compare the performance, in the number of 

cycles, of various architectures, including previous MobileNet-targeting architectures TCAS-II [10] 

and MVM [12] and a SLQ-based architecture, DAC19 [2]. Here we use the dataflow information 

only, and map MobileNetV2 layers (both DWC and PWC) to each dataflow, while varying the 

number PEs. This essentially measures the PE utilization. We assume single-cycle multipliers for 

SLQ-based architectures (ours and DAC19). 

 

Figure 15: Computation latency vs Number of Pes. 

Figure 15 shows the result, which shows that 2D dataflows (MVM and DAC19) have worse 

scalability than 3D (ours) or 4D (TCAS-II) dataflows, which is quite understandable. Moreover, the 

performance of ours (as measured in simple latency) is competitive with TCAS-II, though the latter 

shows better performance and scalability when the number of PEs is over 500. 

 

G. Comparison with Previous Work 

Recently hardware architectures targeting MobileNetV2 have been proposed [10]-[12], which all 

take different approaches. Wu et al. [11] proposes an architecture with separate datapaths for DWC 

and PWC, which means high efficiency at the layer level but possible low efficiency at the network 

level, due to pipeline imbalance between DWC and PWC “stages”. Since MobileNetV2's MAC-

operation-count ratio between DWC and PWC varies quite a lot across the network, there is a 

significant limit to optimizing the throughput of DWC and PWC statically. Also one optimized 

architecture may become easily suboptimal for another DSC-based network. Liu et al. [12] proposes 

an architecture based on a MVM (Matrix-Vector Multiplication) structure, which is a 2D MAC array 
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with its two dimensions mapped to C and M-loops. While this dataflow maps well to PWC, there is no 

efficient way to map DWC to it. Their solution is to size the dimensions such that the un-utilized 

dimension, since it is not possible to utilize both dimensions for DWC, has small length. Lastly, Bai et 

al [10] proposes an architecture that are most similar to ours, in that its datapath can support both 

DWC and PWC. Such reconfigurability comes with hardware overhead, but their solution gives high 

PE utilization. Coincidentally all the above architecture was evaluated on FPGAs (and different 

FPGAs), with no information about area or clock frequency of any standard cell implementation, 

which makes straightforward comparisons between them or with our architecture difficult. 

The main advantage of our architecture compared with the previous DSC architectures is that ours 

is especially fast, being based on shifters instead of multipliers (see Figure 10a). Second, in terms of 

area, ours is slightly larger than the simplest one [12], but [10], which is the most elaborate one, is 

also more complex, and should be larger, than [12]. But area depends on clock speed, and again for 

high speed applications, our datapath can actually be smaller than even the simplest one, as shown by 

our experiment. Third, one disadvantage of our architecture is its variable cycle latency, and 

additional cycle overhead, which is about 50% for PWC and low compared with the area-delay 

advantage of our architecture. Fourth, our dataflow is very scalable with the number of PEs, 

especially compared with all 2D array based ones, which includes [2], [12], and on a similar level 

with [10]. 

 

VII. CONCLUSION 

We presented an architecture for nonuniform multi-word neural networks, showing its advantages 

and scalability over previous state-of-the-art architectures. While the primary application of our 

architecture is log-quantized networks, it could be applied to any neural network if multiplication has 

variable latency (e.g., [16]). We plan to apply and evaluate our architecture to more diverse CNNs, 

and also develop a methodology to optimize the architectural parameters, which is not straightforward 

due to complex dependence between performance, weight values, and architectural parameters (e.g., 

the number of PE planes). 
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