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Abstract 

Various compositions of CeO2-Ce3Si2 (0, 10, 30, 50, and 100 wt%Ce3Si2) composites were 

fabricated using conventional sintering and spark plasma sintering. Lower relative density, 

enhanced interdiffusion of oxygen and silicon, and silicide agglomerations from the 

congruent melting of Ce3Si2 at 1390 °C were only observed from conventionally-sintered 

pellets. Thermal conductivity of spark plasma sintered CeO2-Ce3Si2 composites was 

calculated from the measured thermal diffusivity, specific heat, and density, which exhibited 

dense (> 90 %TD) and homogeneous microstructure. The composite with 50 wt%Ce3Si2 

exhibited 55% higher thermal conductivity than CeO2 at 500 ℃, and 81% higher at 1000 ℃. 

Keywords: Cerium oxide, Cerium silicide, Composite, Spark plasma sintering, Thermal 

conductivity 

 

1. Introduction 

Autonomous, Transportable, On-demand reactor-Module or ‘ATOM’, is a conceptual 

soluble-boron-free small modular water-cooled reactor that enables passive daily load 

following operation (PDLFO) by autonomous frequency control, which requires lower fuel 

temperature than conventional LWRs to obtain less negative fuel temperature coefficient 

(FTC) [1]. UO2-based composite fuel mixed with high thermal conductivity additives is 

considered for the reactor design to concurrently achieve enhanced fuel thermal conductivity, 

increased uranium loading, and reasonable corrosion resistance. 

Increased uranium loading narrows the material selection down to uranium compounds 

such as UN, UC, and U3Si2, which all have higher thermal conductivity and fissile density 

than those of UO2 [2-4]. Uranium sesquisilicide (U3Si2) was the first selected additive for this 

study owing to relatively better oxidation resistance among the uranium compounds, and it 
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also has 4-8 times higher thermal conductivity and 16% higher fissile density compared to 

UO2 [3]. 

Density-specific thermal conductivity database of the composite, which is the eventual 

goal of this study, is first required for candidate fuel compositions to examine the viability of 

the autonomous reactor design with UO2-U3Si2 fuel. Surrogate material was, however, first 

tested to develop the fabrication process for the composite fuel while minimizing uranium-

bearing waste generation. Among several surrogate elements, cerium (Ce) was selected since 

CeO2 and Ce3Si2 have the same crystal structures with UO2 and U3Si2, respectively [5-8]. The 

cerium compounds also have similar thermal conductivities and melting temperatures with 

their uranium counterparts [9-13]. In particular, the ratios between melting temperatures of 

CeO2/Ce3Si2 (2490 /℃1390 ) ℃ and UO2/U3Si2 (2865 /℃1660 )℃  were expected to be close 

enough to glimpse the sintering behavior of UO2-U3Si2 composite. 

In this study, various compositions of CeO2-xCe3Si2 (x = 0, 10, 30, 50, and 100 wt%) 

composite pellets were fabricated using conventional sintering (CS) and spark plasma 

sintering (SPS) with varying sintering temperatures (1000, 1200, 1400, and 1600 °C). The 

resulted density and microstructure of CeO2-Ce3Si2 composites were compared to optimize 

the parameters for each sintering method. The thermal conductivity of spark plasma sintered 

high density (> 90 %TD) composite pellets were measured using laser flash analyzer (LFA) 

up to 1000 °C. 

 

2. Material and methods 

2.1. Sample preparation 

Cerium sesquisilicide was synthesized utilizing high energy ball milling (HEBM) method, 

referring to G.A. Alanko et al [12]. The starting materials were high purity elemental Ce 

powder (~45 μm, 99.9%, Avention) and Si powder (~1 μm, 99.9995%, Avention). Material 

handing and sintering was conducted in a glove box under an argon atmosphere with less 

than 10 ppm O2 and H2O to suppress rapid oxidation and ignition of flammable Ce and 

Ce3Si2 powders. The synthesis was performed using a planetary ball mill (Fritsch 

PUVERISETTE 6, Germany) with 5- and 10-mm diameter milling media in 80 ml ZrO2 inert 
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atmosphere milling vessel. The elemental Ce and Si powder were loaded into milling vessel 

with 3:2 molar ratio, with milling media of 10:1 ball-to-powder ratio. The milling process 

was carried out at 550 rpm for 12 h, followed by 1 h milling and 5 min break. The milled 

powder attached to the vessel wall was collected by additional milling with acetone at 400 

rpm for 30 min and the resulted mixture was vaporized to obtain Ce3Si2 powder. The 

microstructure and phase of the as-milled powder were characterized using scanning electron 

microscope (Quanta200 FEG SEM, FEI, USA) and X-ray diffraction (XRD, D/MAX-2500, 

Rigaku, Japan). It needs to be noted that the XRD samples were prepared in a bulk form of 1 

mm high pellet, which was spark plasma sintered at 600  for 5 min℃ , to address the 

flammability issue of Ce3Si2 powder in air. 

 

2.2. Sintering 

As-received CeO2 powder (~1 μm, 99.9%, Avention) shown in Fig. 1 was homogeneously 

blended with 0/10/30/50/100 wt% of as-milled Ce3Si2 powder using 3d tubular mixer at 150 

rpm for 30 min. For the CS of the composite, ~57 %TD green pellets were prepared from 

cold compacting the mixed powder with 300 MPa in 12.7 mm diameter stainless steel die for 

1 min. The green pellets were then sintered using a tube furnace (Nabertherm GmbH, 

Germany) at various temperatures (1000, 1200, 1400, and 1600 ℃) for 6 h under an Ar 

atmosphere; 5 /min ramping rate℃ s and alumina (Al2O3) crucible were adopted for all 

sintering temperatures. The SPS of the composite was carried out using DrSinter SPS-211LX. 

The mixed powder was loaded into 9.5 mm diameter graphite mold of which inside was 

wrapped with graphite foil to avoid sample-mold reaction, and then heated up to the same 

sintering temperatures with CS; however, with different ramping rate (80 °C/min), holding 

time (10 min), and atmosphere (vacuum), under 45 MPa of biaxial pressure. The SPS system 

temperature was monitored through a 0.5 mm diameter hole at the center of graphite mold 

using focused infrared pyrometer. 

As-fabricated composite pellet density was measured using Archimedes immersion method 

with ethyl alcohol (C2H5OH), and validated with measured density with mass divided by 

measured volume. The pellet morphology was observed using an optical microscope (OM, 

DM2700M, Leica, Japan) and SEM (SU8220, Hitachi, Japan). The phase characterization 
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was carried out by energy dispersive spectrometry (EDS) and XRD (D8 advanced, Bruker 

AXS, USA) with 20-80˚ 2θ angle. 

 

2.3. Thermal conductivity measurements 

Thermal diffusivity and specific heat of the SPS pellets of CeO2-xCe3Si2 (x = 0, 10, 30, 50, 

and 100 wt%), sintered at 1000, 1200, and 1400 °C, were measured up to 1000 ℃ under an 

Ar atmosphere using LFA (LFA467HT, Netzsch, Germany); each measurement was repeated 

three times. The LFA samples were 9.8 mm in diameter and ~1.5 mm high, and graphite 

sprayed to increase Xenon laser absorptivity and emissivity. Thermal conductivity of the 

composite pellets was calculated from measured pellet density, average thermal diffusivity, 

and specific heat, using the equation (1), 

( ) ( ) ( ) ( )PT T C T Tλ α ρ= ⋅ ⋅                    (1) 

where λ is thermal conductivity, α is average thermal diffusivity, Cp is heat capacity, and ρ is 

measured density. Pellet density change during the measurement was tracked using a 

dilatometer (DIL-402C, Netzsch, Germany) and used to correct the measured density. 

 

3. Results 

3.1. Powder characterization 

As-received CeO2 powder with an average size of ~2 μm and conventionally sintered CeO2 

pellet at 1600  for 6 h℃  are indicated at Fig. 1. The morphology of metallic Ce powder 

(spherical) and as-milled Ce3Si2 powder (arbitrary, 0.1-3 µm), and Ce3Si2 pellet are shown in 

Fig. 2. The XRD peaks of the starting materials, Ce and Si, and as-milled Ce3Si2 powder 

shown in Fig. 3 were identified referring to Inorganic Crystal Structure Database (ICSD) [15]; 

likely tetragonal Ce3Si2 with secondary off-stoichiometric Ce5Si4 and Ce2O3 phases. A few 

missing primary diffraction peaks of Ce3Si2 could be attributed to crystallographic texture of 

bulk XRD sample resulted from spark plasma sintering under high pressure. 
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Figure 1: SEM image of (a) as-received CeO2 powder, (b) conventionally sintered CeO2 

pellet (1600 , ℃ 6 h) 
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Figure 2: SEM image of (a) as-received Ce metal powder, and (b) Ce3Si2 powder, (c) and (d) 

conventionally sintered Ce3Si2 pellet (1200 , 6h)℃  
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Figure 3: XRD diffraction pattern for homogeneously mixrd Ce-Si powder and HEBM 

synthesized Ce3Si2 powder with 24 h annealing at 800 ℃. 

 

3.2. Pellet characterization 

Figure 4 shows the XRD analysis of CeO2 powder and CeO2-30 wt%Ce3Si2 composites 

fabricated by CS and SPS. Both sintering methods yielded similar results which indicate the 

formation of Ce2O3, but much higher peak for CS . 
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Figure 4: XRD diffraction pattern for CeO2-30 wt%Ce3Si2 pellets sintered by CS at 1600 ˚C 

for 6 h and SPS at 1400 ˚C for 10 min. 

 

The sintered pellet density was measured using Archimedes’ principle, and the relative 

density for four different sintering temperatures (1000, 1200, 1400, and 1600 ) ℃ are 

displayed in Fig 5; data for conventioanllys sintered 100wt% Ce3Si2 pellet are not included 

due to partial melt, sequential loss of mixed powder from the mold. Spark plasma sintering 

always yielded higher density (83 ~ 96 %TD) pellets compared to CS at the same sintering 

temperature, and pellet densities were increasing monotonically with increasing sintering 

temperature for both methods. For CS pellets, however, density increase with elevated 

sintering temperature was remarkable, from ~62 %TD for 1000  ℃to ~92%TD for 1600 ℃, 

especially at high sintering temperature which seems to be the effect of liquid phase sintering. 

In contrast, sintering temperature effect for SPS tends to saturate at 1200 °C, especially for 

silicide-rich (> 30 wt%Ce3Si2) pellets. For CS, sigle phase CeO2 showed the highest relative 

density, while 10 wt%Ce3Si2 showed the lowest. 
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Figure 5: Relative density of conventionally and spark plasma sintered composite pellets with 

varying sintering temperature and Ce3Si2 composition. 

 

The OM and SEM images of the 30 wt%Ce3Si2 composite pellet sintered at 1600 ℃ are 

given in Fig. 6, which representatively shows the characteristic microstructure of CS pellets, 

bulk composite matrix with submillimeter metallic inclusions surrounded with interacion area, 

which are comprised of numerous submicron hexagonal particles. The EDS mapping on the 

inclusion (Fig. 7) shows silicon enrichment for the inclusion and depletion from the bulk. 

This metallic inclusions was rarely observed from the SPS pellets; a rather homogeneous 

distribution of silicide within oxide matrix, almost without pores, is well shown in Fig. 8. The 

EDS mapping of CeO2-30 wt%Ce3Si2 (Fig. 9) also shows clear phase boundary and limited 

oxygen presence in the SPS pellet in contrast to diffused phase boundary and near 
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homogeneous oxygen distribution in the CS pellet. Both composite pellets sintered by CS and 

SPS method did not show distint interaction layer between the interface of CeO2 and Ce3Si2. 

 

 

Figure 6: Microstructure of CeO2-30 wt%Ce3Si2 composites sintered by CS at 1600 ℃ for 6 

hours. (a) cross section of pellet, (b) OM image, (c) SEM image of oxide matrix, and (d) 

silicide inclusion. 

 



11 

 

 

Figure 7: EDS mapping image of CeO2-30 wt%Ce3Si2 composites sintered by CS at 1600  ℃

for 6 hours. 
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Figure 8: Microstructure of CeO2-30 wt%Ce3Si2 composite sintered by SPS at 1400  for 10 ℃

min. (a) OM image, and (b) SEM image. 



13 

 

 

Figure 9: EDS mapping image of CeO2-30 wt%Ce3Si2 composite sintered by CS at 1600  ℃

for 6 hours and SPS at 1400  for 10 min℃ utes. 

 

3.2 Thermal conductivity of CeO2-Ce3Si2 composites 
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Thermal conductivity and specific heat capacity of the composites was only measured from 

the SPS pellets considering more homogeneous and dense microstructures shown in Figs. 8 

and 9. The measured thermal conductivities of CeO2-xCe3Si2 (x = 0, 10, 30, 50, and 100 wt%) 

composites are summarized in Table 1. Thermal conductivities of CeO2 (4.9 W/m-K) and 

Ce3Si2 (5.4 W/m-K) are similar at room temperature; however, with increasing temperature, 

increasing thermal conductivity of Ce3Si2 (8.3 W/m-K) reaches ~5.7 times higher value than 

that of CeO2 (1.9 W/m-K) at 1000 °C, which well resembles the temperature dependency of 

UO2 and U3Si2 thermal conductivities [3, 16]. Enhanced thermal conductivity of the 

composites for high temperature regime (> 300 °C) also can be confirmed from Fig. 10, even 

despite the higher relative density of CeO2 pellet than those of composite pellets. Quantitative 

comparisons between thermal conductivities of the composites and CeO2 are summarized in 

Table 2.  

 

 

Figure 10: Thermal conductivity of CeO2-xCe3Si2 (x = 0, 10, 30, 50, and 100 wt%) sintered 

by SPS at 1400 ˚C for 10 min in vacuum. Part of the CeO2 matrix was converted to Ce2O3 

due to the reducible environment. 
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Table 1 Thermal conductivity and specific heat capcity of CeO2-Ce3Si2 composite pellets 

sintered by SPS with varying Ce3Si2 composition. 

Composition 

(wt%Ce3Si2) 
0 10 30 50 100 0 10 30 50 100 

Temperature 
(˚C) 

Thermal conductivity  
(W/m-K) 

Specific heat capacity 
(J/g-K) 

50 4.54 3.62 3.46 3.92 5.53 0.36 0.42 0.38 0.37 0.36 
100 3.88 3.33 3.24 3.74 5.66 0.39 0.42 0.38 0.38 0.36 
150 3.35 3.09 3.06 3.62 5.76 0.40 0.43 0.39 0.39 0.36 
200 2.94 2.89 2.92 3.52 5.85 0.41 0.44 0.40 0.39 0.37 
250 2.67 2.73 2.81 3.41 5.89 0.42 0.44 0.40 0.40 0.37 
300 2.47 2.58 2.73 3.32 5.84 0.43 0.45 0.41 0.40 0.37 
350 2.28 2.47 2.60 3.23 5.90 0.43 0.45 0.42 0.40 0.38 
400 2.15 2.36 2.52 3.14 6.02 0.44 0.46 0.42 0.41 0.38 
450 2.02 2.26 2.46 3.07 6.12 0.44 0.47 0.43 0.41 0.38 
500 1.92 2.18 2.37 3.00 6.23 0.44 0.47 0.43 0.42 0.39 
550 1.84 2.11 2.31 2.94 6.35 0.44 0.48 0.44 0.42 0.39 
600 1.75 2.05 2.25 2.88 6.47 0.44 0.48 0.44 0.42 0.39 
650 1.68 2.01 2.21 2.84 6.61 0.45 0.49 0.45 0.43 0.40 
700 1.61 1.97 2.18 2.80 6.74 0.45 0.49 0.45 0.43 0.40 
750 1.56 1.95 2.14 2.78 6.90 0.45 0.50 0.46 0.43 0.40 
800 1.57 1.93 2.12 2.77 7.13 0.46 0.50 0.47 0.44 0.40 
850 1.52 1.93 2.11 2.76 7.46 0.46 0.51 0.47 0.44 0.40 
900 1.48 1.92 2.09 2.76 7.93 0.46 0.52 0.48 0.45 0.40 
950 1.49 1.93 2.09 2.75 8.36 0.46 0.52 0.48 0.46 0.40 
1000 1.51 1.94 2.09 2.76 8.73 0.47 0.53 0.49 0.46 0.40 
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Table 2 Thermal conductivity change of CeO2-xCe3Si2 (x = 10, 30, and 50 wt%) composite 

pellets compare to CeO2, sintered by SPS at 1400 ˚C. 

Temperature (˚C) 

Silicide composition (wt%) 

10 30 50 

Thermal conductivity change (%) 

25 -22.84 -23.14 -18.61 

100 -14.35 -12.08 -3.69 

200 -1.68 4.29 19.51 

300 4.80 13.32 34.53 

400 9.45 21.38 46.00 

500 13.26 27.81 56.09 

600 17.67 34.30 65.27 

700 22.28 39.64 73.67 

800 23.21 40.27 76.81 
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900 29.47 46.31 85.78 

1000 27.83 41.91 81.54 
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4. Discussion 

From the XRD diffraction pattern shown in Fig. 4, Ce2O3 peaks, rather than CeO2, were 

observed in both CS and SPS pellets. This reduction of the oxide was anticipated considering 

easily reducing enviornment of CeO2 such as high temperature, oxidizing of CexSiy and the 

aforementioned sintering atmosphere, vacuum for SPS and argon for CS [17-19]. However, 

these reductive sintering conditions were unavoidable to not oxidize the silicide since the 

goal of this study was to quantify the thermal conductivity enhancement effect from Ce3Si2 

addition. 

In the standpoint of establishing the fabrication process for UO2-U3Si2 composite, Fig. 5 

shows four important points: (1) SPS pellets always exhibited higher relative density 

compared to CS, regardless of silicide composition and sintering temperature; (2) relatively 

low sintering temperature (~1400 °C) was enough for SPS to achieve high relative density (> 

90 %TD); (3) higher sintering temperature (> 1600 °C) was required for CS to achieve the 

same level of high density; (4) for both sintering methods, higher relative density was 

achieved with higher silicide contents, perhaps largely indebted to high melting temperature 

of CeO2 and low temperature densification of Ce3Si2 [20-24]. The reason for high density of 

SPS pellets might be not only the high sintering performance of SPS, but also the actual 

temperature is higher than the measured temperature. The radial temperature gradient from 

mold surface to center exisits and the pyrometer measured only the mold surface temperature. 

[25, 26]. Even considering the fact above, however, SPS pellets already has fully compacted 

at 1200  of ℃ measured sintering temperature, which suggests that fact, the actual sintering 

temperature in SPS is higher than the measured temperature, has no significant effect of 

pellet density in this expriment.  

 Large silicon-rich inclusions, interaction area, and crack shown in Fig. 6(b) and Fig. 7 

were discovered from all compositions of CS pellets sintered at 1600 °C, which consisting of 

numerous hexagonal submicron precipitates as shown in Fig. 6(d). Smaller precipitate size 

than that of the starting Ce3Si2 powder may imply that their formation was by the congruent 

melting of Ce3Si2 at 1390 ℃ and its sequential agglomeration [7]. This type of complex 

microstructure such as inhomogeneous silicide agglomeration and 2nd phase formation in 
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high temperature sintered CS pellets could be potential performance and safety issues for the 

UO2-U3Si2 fuel, especially during daily load following operation incurring more frequent 

thermal cycling of the fuel. Differential thermal expansion coefficients of the silicide 

agglomeration, secondary phases, and the oxide bulk could facilitate additional fuel cracking, 

other than typical radial cracking in conventional UO2 fuel [27, 28]. This additional mode of 

cracking could decrease effective fuel thermal conductivity and increase stress concentration 

on zircaloy cladding via pellet-cladding mechanical interaction. The SPS pellets, on the 

contrary, relatively showed more homogeneous distribution of CeO2 and Ce3Si2 as shown in 

Fig. 8, likely resulted from 36 times shorter holding time (10 min) at lower sintering 

temperature (1400 °C), compared to 6 h and 1600 °C for CS pellets. 

 Density-wise, despite the remarkable increase of CS pellet densities by the liquid phase 

sintering with increasing sintering temperature, obtained relative densities of 10 wt%Ce3Si2 

composites are still below 90 %TD for all sintering temperatures. For 30 and 50 wt% 

composites, only the highest temperature (1600 °C) CS gives over 90 %TD. In contrast, 

1200 °C SPS already achieved over 90 %TD, except 10 wt% pellets, which indicates the 

congruent melting issue at 1390 °C in CS can be avoided using SPS. Thus, thermal 

conductivity database of UO2-U3Si2 composites can be more reliably constructed utilizing 

low temperature SPS, especially for silicide-rich (≥ 30 wt%) compositions. 

Another superior characteristic of SPS, suppressed interdiffusion of oxygen and silicon 

between the two-phase boundary, can be designated from the EDS results shown in Fig 9. 

Relatively enhanced interdiffusion of non-metallic elements in CS composites reaffirmed the 

decision to not measure the thermal conductivity of CS pellets with low relative density (< 

80 %TD) for lower sintering temperature (≤ 1400 °C) and the congruent melting for the high 

sintering temperature (1600 °C). However, conventional sintering will still be considered for 

the further study on uranium-bearing composite, since the congruent melting of U3Si2 occurs 

at 1660 °C and therefore less severe agglomeration and secondary phase formation are 

expected for UO2-U3Si2 binary system. 

Figure 10 indicates that the thermal conductivity of the composites is actually lower than 

pure CeO2 for low temperature region (< ~250 °C). The cerium dioixde can be easily 

converted to CeO2-x or Ce2O3 at reducible enviornment such as the presence of CexSiy nearby, 
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whichi is verified by the Ce2O3 peak shown in Fig. 4. The thermal conductivity of CeO2 is 

dominantly determined by the phonon scattering at the low temperature range. The oxygen 

vacancy from hypo-stoichiometry phase can interfere with phonon transfer, which resluted in 

lower thermal conductivity. The thermal conductivity tendency as Ce3Si2 fration is flipped for 

all composites for high temperature region by the significantly higher thermal conductivity of 

Ce3Si2 itself, which collectively are a suitable characteristic as a nuclear fuel. Most notably, 

50 wt%Ce3Si2 composite exhibited 55% higher value at 500 °C and 81% higher value at 

1000 °C.  

This thermal conductivity enhancement of the surrogate composites would be much more 

significant for UO2-U3Si2 composites mainly due to two following reasons. First, the 

reduction of CeO2 during the fabrication prohibited the thermal conductivity enhancement of 

the composites; however, UO2 stoichiometry decrease under high temperature reductive 

environment is very limited in comparison to that of CeO2 [17, 29]. Second, U3Si2 has 11% 

higher density (12.2 g/cm3) than UO2 (10.96 g/cm3), unlike 17% lower density of Ce3Si2 

(5.97 g/cm3) than that of CeO2 (7.22 g/cm3). This indicates that the thermal conductivity 

enhancement of the CeO2-Ce3Si2 composites was determined by higher thermal conductivity 

of Ce3Si2 and the reduction of CeO2. Additional thermal conductivity enhancement can thus 

be expected from UO2-U3Si2 composites due to stoichiometric UO2 and further increased 

density by silicide compositing. 

 

5. Conclusion 

Various compositions of non-radioactive surrogate composites, CeO2-xCe3Si2 (x = 0, 10, 

30, 50, and 100 wt%) were fabricated using conventional sintering and spark plasma sintering 

in order to effectively construct the thermal conductivity database of UO2-U3Si2 nuclear fuel 

with minimum uranium-bearing waste generation. Thermal conductivity of the composites 

was measured from spark plasma sintered pellets due to their homogeneous microstructure 

and high relative density (> 90%TD). Silicide agglomerations and enhanced interdiffusion of 

oxygen and silicon observed from conventionally-sintered pellets, which could be potential 

safety issue, were additional reasons to exclude the CS pellets from the in addition to their 

low relative densities. Based upon measured thermal conductivity of the surrogate, the UO2-
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U3Si2 composites may be suitable candidates, since CeO2-50wt%Ce3Si2 exhibited up to 81% 

higher thermal conductivity than pure CeO2 and even further thermal conductivity 

enhancement can be expected from UO2-U3Si2 composite due to stoichiometric UO2 and 

higher U3Si2 density than UO2. 
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